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Abstract
Let k be an algebraically closed field. It is known that any stable equivalence between
standard representation-finite self-injective k-algebras (without block of Loewy length 2)
lifts to a standard derived equivalence, in particular, it is of Morita type. We show that
the same holds for any stable equivalence between nonstandard representation-finite self-
injective k-algebras. We also fill a gap in the original proof in standard case. This gives a
complete solution of the liftability question raised by H. Asashiba about twenty years ago.
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1 Introduction

Throughout this paper, we fix an algebraically closed field k. Unless otherwise stated,
all algebras will be finite-dimensional k-algebras, and all their modules will be finite-
dimensional left modules. For an algebraA, we denote by modA the category ofA-modules,
and by modA the stable category of modAmodulo projective modules. We abbreviate (inde-
composable, basic) representation-finite self-injective algebra over k (not isomorphic to the
underlying field k) by RFS algebra.

The classification of RFS algebras was finished in the 1980’s by Riedtmann and her
collaborators using covering theory and the notion of (combinatorial) configurations. Let
Q be a Dynkin quiver of type An, Dn,E6, E7 or E8, and let ZQ be the translation quiver
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associated to Q with the translation denoted as τ . For a translation quiver Γ , we let kΓ

be its path category, whose objects are the vertices of Γ and morphisms are generated by
the paths of Γ over k; and let k(Γ ) be the mesh category of Γ , which is a factor category
of kΓ by the mesh ideal. Riedtmann showed in [12] that for an RFS algebra A, the stable
AR-quiver sΓA is of the form ZQ/Π , where Q (the underlying graph of which is called the
tree class of A) is a Dynkin quiver of type An,Dn,E6, E7 or E8, and Π is some admissible
subgroup of the automorphism group of ZQ.

Definition 1.1 ([13]) Let Δ be a stable translation quiver. A (combinatorial) configuration
C is a set of vertices of Δ which satisfies the following conditions:

(1) For any e, f ∈ C, Homk(Δ)(e, f ) =
{
0 (e �= f ),

k (e = f ).
(2) For any e ∈ Δ0, there exists some f ∈ C such that Homk(Δ)(e, f ) �= 0.

In [5, 13–15], it was shown that the isoclasses of Π -stable ZQ configurations (two
configurations C and C ′ of ZQ are called isomorphic if C is mapped onto C ′ under an auto-
morphism of ZQ) correspond bijectively to the isoclasses of RFS algebras of tree class Q

with admissible group Π , except in the case of Q = D3m with underlying field having char-
acteristic 2. In such a case, an isoclass of Π -stable ZQ configuration might correspond to
two isoclasses of RFS algebras; both are symmetric algebras, one of which is standard, while
the other one is nonstandard. Here, an RFS algebra A is called standard if k(ΓA) is equiv-
alent to indA, where ΓA is the AR-quiver of A and indA is the full subcategory of modA
whose objects are specific representatives of the isoclasses of indecomposable A-modules.
Nonstandard RFS algebras are RFS algebras which are not standard. We will introduce the
representative algebra of nonstandard RFS algebras in next section.

The derived and stable classifications of RFS algebras were given by Asashiba in 1999.
Now we briefly recall his results. First we need to define the type of an RFS algebra A.
If A is as above, by a theorem of Riedtmann [12], Π has the form 〈ζ τ−r 〉 where ζ is
some automorphism of Q and τ is the translation. We also recall the Coxeter numbers of
Q = An, Dn,E6, E7, E8 are hQ = n+ 1, 2n− 2, 12, 18, 30 respectively. The frequency of
A is defined to be fA = r/(hQ − 1) and the torsion order tA of A is defined as the order of
ζ . The type of A is defined as the triple (Q, fA, tA) and denoted by typ(A).

Theorem 1.2 ([1]) Let A and B be RFS k-algebras for k algebraically closed.

(1) If A is standard and B is non-standard, then A and B are not stably equivalent, and
hence not derived equivalent.

(2) If both A and B are standard, or both non-standard, the following are equivalent:

(a) A,B are derived equivalent;
(b) A,B are stably equivalent of Morita type;
(c) A,B are stably equivalent;
(d) A,B have the same stable AR-quiver;
(e) A,B have the same type.

(3) The types of standard RFS algebras are the following:

(a) {(An, s/n, 1)|n, s ∈ N},
(b) {(A2p+1, s, 2)|p, s ∈ N},
(c) {(Dn, s, 1)|n, s ∈ N, n ≥ 4},
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(d) {(D3m, s/3, 1)|m, s ∈ N,m ≥ 2, 3 � s},
(e) {(Dn, s, 2)|n, s ∈ N, n ≥ 4},
(f) {(D4, s, 3)|s ∈ N},
(g) {(En, s, 1)|n = 6, 7, 8; s ∈ N},
(h) {(E6, s, 2)|s ∈ N}.
Non-standard RFS algebras are of type (D3m, 1/3, 1) for some m ≥ 2.

An interesting question arising from the above classification theorem is the following:
The liftability question ([2]): Does every stable equivalence φ : modA → modB between

two RFS k-algebras A and B lift to a standard derived equivalence? In particular, is φ a
stable equivalence of Morita type?

Asashiba answered positively the above question for most standard RFS algebras, and
the other few cases in standard case were solved by Dugas [7] using mutation theory (see
also [6] for an alternative proof).

Remark 1.3 (1) We noticed that there are counterexamples of [2, Proposition 3.3] if Λ and
Π have Loewy length 2. Let Λ = Π = A be the RFS algebra given by the quiver

1
α

����
��

��
�

2
β

�� 3

γ

���������

and relations βα = γβ = αγ = 0. Let φ : modA → modA be the stable equivalence
given by φ(1) = 2, φ(2) = 1, φ(3) = 3. Since the configuration of A is the set of simple
modules, φ preserves the configuration of A. But φ does not commute with the loop functor
ΩA, hence is not a stable equivalence of Morita type.

The reason why such counterexamples appear is that in the proof of [2, Proposition 3.3],
the author assumed that each stable equivalence between standard RFS algebras induces
a translation quiver isomorphism between the corresponding stable AR-quivers, thus the
proposition needs an additional assumption that the stable equivalence in question com-
mutes with AR-translation up to isomorphisms. However, by [3, Chapter X, Corollary
1.9(2)], it might be wrong for self-injective algebras with blocks of Loewy length 2.

(2) One key step in the proof of [2, Proposition 3.3] is to construct a functorΦ : k(ΓΛ) →
k(ΓΠ) from an equivalence functor φ′ : k(sΓΛ) → k(sΓΠ) such that φ′(CΛ) = CΠ , where
CΛ (resp. CΠ ) corresponds to the radicals of indecomposable projective Λ-modules (resp.
the radicals of indecomposable projective Π -modules). Since k(sΓΛ) (resp. k(sΓΠ)) is a
quotient category of k(ΓΛ) (resp. k(ΓΠ)), and the values of Φ on the arrows α of sΓΛ

depend on the choices of the lifting of φ′(α) in k(ΓΠ), one needs to choose carefully these
values so that Φ preserves all mesh relations. It seems that this verification is skipped in
the proof of [2, Proposition 3.3] (see page 435, line 1), and we filled the gap by giving the
precise definition of the functor Φ.

To obtain a corrected form of [2, Proposition 3.3], we need to strengthen the condition
on φ′ so that φ′ : k(sΓA) → k(sΓA) is an isomorphism functor inducing identity map on
the objects of k(sΓA), where A is some representative algebra for a given type of standard
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RFS algebras. Then we can construct a functor Φ : k(ΓA) → k(ΓA) which lifts φ′ under
the above condition. The construction of Φ is based on several technical lemmas presented
in Section 3. The detailed explanation will be given in Appendix A.

However, the liftability question in nonstandard case remains open. The main purpose of
the present paper is to give a positive answer in nonstandard case.

Theorem 1.4 Let A, B be nonstandard RFS algebras. Then each stable equivalence φ :
modA → modB lifts to a standard derived equivalence. In particular, it is of Morita type.

Thus, together with Appendix A, we give a complete solution of the liftability question
in [2] with a corrected form (Proposition A.1) of [2, Proposition 3.3].

This article is organized as follows. In Section 2, we recall the representative algebra
Λ of nonstandard RFS algebras, its stable AR-quiver sΓΛ and indΛ in terms of a quotient
category of the path category k sΓΛ. In Section 3, we prove a technical result (Proposition
3.7) on lifting of a stable auto-equivalence of the nonstandard RFS algebra Λ to a Morita
equivalence. The last section is devoted to prove our main result Theorem 1.4. As a by-
product, we determine the stable Picard group StPic(Λ) of Λ (Proposition 4.4).

In Appendix A, we prove a corrected form (Proposition A.1) of [2, Proposition 3.3] and
explain how to use it to reprove [2, Theorem 3.1]. In Appendix B, we give a detailed proof
of [6, Lemma 4.10], which will be used in the proof of our main result.

2 The Representative Algebra of Nonstandard RFS Algebras

Let k be an algebraically closed field of characteristic 2, Λ be the representative algebra of
nonstandard RFS algebras of type (D3m, 1/3, 1) as in [2, Appendix 2], where m ≥ 2. The
algebra Λ is given by the quiver Q below with relations αm . . . α1 = β2, αi . . . αi+1αi = 0
for all i ∈ {1, ...,m} = Z/〈m〉, α1αm = α1βαm.

m

αm

����
��

��
��

αm−1�� ·········

1β ��

α1
���

��
��

��
�

2 α2
�� ·········

Let ΓΛ be the AR-quiver of Λ and sΓΛ be the stable AR-quiver of Λ, then sΓΛ
∼=

ZD3m/〈τ 2m−1〉. We use the following enumeration on the vertices of D3m:

3m

1 �� 2 �� · · · �� 3m − 2

		

�� 3m − 1
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Recall that the vertices 3m and 3m−1 are called high vertices ofD3m and it is convenient
to write a vertex of sΓΛ as its coordinate (p, q), where p ∈ {1, ..., 2m − 1} = Z/〈2m −
1〉, 1 ≤ q ≤ 3m. The simple Λ-module corresponding to the vertex i (1 ≤ i ≤ m) in
the quiver Q of Λ will be simply denoted by i. Note that by [17, Satz 4.4: 3) a)], we can
draw the stable AR-quiver sΓΛ so that the simple module 1 corresponds to (0, 3m), the
simple module j corresponds to (2m − j, 1) for 2 ≤ j ≤ m. Let Pi be the indecomposable
projective Λ-module corresponding to the vertex i. Then we have the following structure of
the indecomposable projective Λ-modules:

P1 = 1
���

�� ��
�

1

��
��

��
��

��
��

� 2

2 3

m − 1 m

m
			

		 1







1

, P2 = 2

3

m

1







1
��

�

2

, . . . , Pm = m

1







1
��

�

2

3

m

.

Let C := {radPi | i = 1, 2, · · · , m}. Then we have
radP1 = 1

��
��

��
��

��
��

� 2

2 3

m − 1 m

m
			

		 1







1

, radP2 = 3

m

1







1
��

�

2

, . . . , radPm = 1







1
��

�

2

3

m

.

The positions of C in the stable AR-quiver sΓΛ are important, they indicate the positions
of the indecomposable projective modules in the AR-quiver ΓΛ. Since the loop functor ΩΛ

induces an automorphism of sΓΛ and a bijection between the set of simple Λ-modules and
C, and since {(0, 3m−1), (2m−1−j, 1) | j = 1, ...,m−1} and {(0, 3m), (2m−1−j, 1) |
j = 1, ...,m − 1} are isomorphic configurations, we can draw the stable AR-quiver sΓΛ in
a new way so that C corresponds to {(0, 3m−1), (2m−1−j, 1) | j = 1, ...,m−1} in sΓΛ.
In the following, we fix C to the position {(0, 3m − 1), (2m − 1 − j, 1) | j = 1, ...,m − 1}
in sΓΛ, except in Appendix B (where we fix the simple Λ-modules 1, 2, · · · ,m to the
positions (0, 3m), (2m − 2, 1), · · · , (m, 1), respectively).

Since Λ is a nonstandard RFS algebra, according to [15, Proof of Proposition 3.3],
there is a well-behaved functor Ũ : kΓΛ → indΛ, that is, it maps each vertex of ΓΛ to
the corresponding indecomposable module and maps each arrow of ΓΛ to an irreducible
morphism, where kΓΛ is the path category of the quiver ΓΛ. Moreover, the functor Ũ

induces an isomorphism U : kΓΛ/J � indΛ, where J is the ideal of kΓΛ generated
by the modified mesh relations {mx | x �= (0, 3m − 1)} ∪ {m(0,3m−1) + p}, where mx

denotes the mesh relation starting at x and p denotes the following path of length 4m:
(0, 3m−1) → (1, 3m−2) → (2, 3m−3) → (2, 3m−2) → (3, 3m−3) → (3, 3m−2) →
· · · → (2m−1, 3m−2) → (2m, 3m−3)→ (2m, 3m−2) → (2m, 3m−1) = (1, 3m−1).
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Here is a diagram of the path p in the case m = 3 (where � denotes the modules in C and
the path p is marked by the double arrows):
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Furthermore, U induces an isomorphism V : k sΓΛ/I � indΛ, where I is the ideal of
k sΓΛ generated by {mx | x �= (0, 3m − 1)} ∪ {m(0,3m−1) + p}, where mx , p denote the
residue classes of mx , p in k sΓΛ under the natural quotient functor kΓΛ −→ k sΓΛ.

We would like to mention an interesting fact on the category k sΓΛ/I , although we will
not use it in the present paper. It is known that the smallest integer such that each path of
length greater than or equal to this integer is zero in k(ZD3m) is 6m − 3 (see [5, Section
1.1]). From the existence of a covering functor k(ZD3m) → k sΓΛ/I (see [15, Section 4]
and [4, Example 3.1c)]), it is not hard to see that the same holds in the category k sΓΛ/I . In
particular, rad(modΛ) has nilpotency 6m − 3.

3 A Technical Result on Stable Auto-Equivalence of Nonstandard RFS
Algebras

Let C be a Krull-Schmidt k-additive category. For the definition of the radical rad(−, −) of
C and the irreducible morphisms in C, we refer to [16, Section 2.2]. Recall that if both X

and Y are indecomposable, then a morphism f : X → Y in C is irreducible if and only if
f ∈ rad(X, Y ) \ rad2(X, Y ). We shall frequently use the following simple fact.

Lemma 3.1 If X and Y are two indecomposable nonprojective A-modules over a self-
injective algebra A, and if f : X → Y is a morphism in modA with the image f in modA,
then f is an irreducible morphism in modA if and only if f is an irreducible morphism in
modA.

The following two lemmas give a way to lift a mesh relation in modA to a mesh relation
in modA (that is, an almost split sequence in modA). For any A-module X, we denote by
lA(X) the composition length of X.
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Lemma 3.2 Let A be an algebra, ΓA be the AR-quiver of A. Let

Y1
β1

���
��

��
��

�

X

α1

���������� α2 ��

αs ��












Y2
β2 �� Z

Ys

βs

����������

be a mesh in ΓA, where X, Y1, · · · , Ys, Z are indecomposable nonprojectives. Let fi (resp.
gi) be irreducible morphisms corresponding to αi (resp. βi) such that

∑
gifi = 0 inmodA.

Then we have the following.

(1) There exist morphisms f ′
i for 1 ≤ i ≤ s such that f ′

i = fi in modA for 1 ≤ i ≤ s and∑
gif

′
i = 0 in modA.

(2) If moreover, A is a self-injective algebra, then there exist morphisms g′
i for 1 ≤ i ≤ s

such that g′
i = gi in modA for 1 ≤ i ≤ s and

∑
g′

ifi = 0 in modA.

Proof The assumption shows that we can assume that
∑

gifi +vu = 0, where u : X → P ,
v : P → Z, and P a projective module. Since Y1, · · · , Ys are pairwise nonisomorphic, it
is easy to verify that (g1, · · · , gs) : Y1 ⊕ · · · ⊕ Ys → Z is irreducible. Since there exists
an almost split sequence 0 → X → Y1 ⊕ · · · ⊕ Ys → Z → 0, lA(Y1 ⊕ · · · ⊕ Ys) >

lA(Z). Since irreducible morphisms are injective or surjective, we have that (g1, · · · , gs)

is surjective. Since P is projective, v factors through (g1, · · · , gs). Let v = ∑
giwi , then∑

gi(fi + wiu) = 0. Let f ′
i = fi + wiu, we have f ′

i = fi in modA for 1 ≤ i ≤ s and∑
gif

′
i = 0 in modA. This proves (1). Notice that projective modules are also injective over

a self-injective algebra, the proof of (2) is dual to that of (1), using the injective envelope of
X.

By modifying the proof of Lemma 3.2, we have the following lemma.

Lemma 3.3 Let A be an algebra, ΓA be the AR-quiver of A. Let

Y1
β1

���
��

��
��

�

X

α1

���������� α2 ��

αs ��












Y2
β2 �� Z

Ys

βs

����������

be a mesh in ΓA, where X, Y1, · · · , Ys, Z are indecomposable nonprojectives. Let fi (resp.
gi) be irreducible morphisms corresponding to αi (resp. βi) such that

∑
gifi = 0 inmodA.

Then we have the following.

(1) If there exists some t (1 ≤ t ≤ s) with
∑t

i=1 lA(Yi) > lA(Z) (or equivalently
(g1, · · · , gt ) is an epimorphism), then there exist morphisms f ′

i for 1 ≤ i ≤ t such
that f ′

i = fi in modA for 1 ≤ i ≤ t and
∑t

i=1 gif
′
i + ∑s

i=t+1 gifi = 0 in modA.
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(2) If moreover, A is a self-injective algebra such that there exists some t (1 ≤ t ≤ s)
with

∑t
i=1 lA(Yi) > lA(X) (or equivalently (f1, · · · , ft ) is a monomorphism), then

there exist morphisms g′
i for 1 ≤ i ≤ t such that g′

i = gi in modA for 1 ≤ i ≤ t and∑t
i=1 g′

ifi + ∑s
i=t+1 gifi = 0 in modA.

The following lemma, which is inspired by some idea from the proof of [2, Proposition
3.3], gives a sufficient condition for a functor ψ : modA → modA to be an equivalence,
where A is an algebra of finite representation type.

Lemma 3.4 Let A be an algebra of finite representation type, ψ : modA → modA be a
k-functor such that

(1) ψ preserves the radical of modA: for every pair (X, Y ) of A-modules,

ψ(radA(X, Y )) ⊆ radA(ψ(X),ψ(Y ));

(2) ψ preserves the indecomposability and irreducible morphisms between indecompos-
ables;

(3) ψ reflects isomorphism classes: for A-modules X and Y , if ψ(X) ∼= ψ(Y ), then X ∼=
Y .

Then ψ is an equivalence.

Proof First we claim that ψ(radA) + rad2A = radA. Since ψ(radA) ⊆ radA, ψ(radA) +
rad2A ⊆ radA. To show that radA ⊆ ψ(radA)+rad2A, let X, Y be indecomposableA-modules
and f ∈ radA(X, Y ). If f ∈ rad2A, then f ∈ ψ(radA) + rad2A. If f /∈ rad2A, since X, Y are
indecomposable, f is irreducible. Since A is of finite representation type, by (2) and (3), ψ
induces a quiver automorphism of ΓA, where ΓA is the AR-quiver of A. Then there exists
some indecomposable A-modules Z, W and an irreducible morphism g : Z → W such
that ψ(g) is an irreducible morphism from X to Y . Since A is of finite representation type,
dimk(radA(X, Y )/rad2A(X, Y )) ≤ 1. Then there exists some λ ∈ k∗ and h ∈ rad2A(X, Y )

such that f = λψ(g) + h = ψ(λg) + h. Since λg ∈ radA(Z,W) and h ∈ rad2A(X, Y ),
f ∈ ψ(radA) + rad2A.

Inductively, we show that ψ(radn
A)+ radn+1

A = radn
A for all n ≥ 1. When n = 1 it is true.

Assume that ψ(radn
A) + radn+1

A = radn
A for some n ≥ 1, then radn+1

A = (radn
A)(radA) =

(ψ(radn
A) + radn+1

A )(ψ(radA) + rad2A) = ψ(radn+1
A ) + ψ(radn

A)rad2A + radn+1
A ψ(radA) +

radn+3
A . Since ψ(radA) ⊆ radA, ψ(radn

A) ⊆ radn
A. Then ψ(radn

A)rad2A + radn+1
A ψ(radA) +

radn+3
A ⊆ radn+2

A . Hence radn+1
A ⊆ ψ(radn+1

A ) + radn+2
A . Since ψ(radn+1

A ) ⊆ radn+1
A and

radn+2
A ⊆ radn+1

A , ψ(radn+1
A ) + radn+2

A = radn+1
A .

We now show that ψ is full. Since ψ(radn
A) + radn+1

A = radn
A for all n ≥ 1, by

induction we have ψ(radA) + radn+1
A = radA for all n ≥ 1. Since A is of finite represen-

tation type, radA is nilpotent. Then ψ(radA) = radA. For indecomposable A-module X,
Y , if X � Y , then radA(ψ(X),ψ(Y )) = HomA(ψ(X),ψ(Y )) and ψ : HomA(X, Y ) →
HomA(ψ(X),ψ(Y )) is an epimorphism. If X ∼= Y , for f ∈ EndA(ψ(X)), f = λ · id + g

for some λ ∈ k and g ∈ radA(ψ(X),ψ(X)). Since ψ(radA) = radA, ψ : EndA(X) →
EndA(ψ(X)) is an epimorphism and ψ : HomA(X, Y ) → HomA(ψ(X),ψ(Y )) is an
epimorphism. Then ψ is full.
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Since ψ is full, ψ induces an epimorphism⊕
X,Y∈indA

HomA(X, Y ) →
⊕

X,Y∈indA
HomA(ψ(X),ψ(Y )).

Since ψ induces a quiver automorphism of ΓA, ψ is dense and

dimk

⊕
X,Y∈indA

HomA(X, Y ) = dimk

⊕
X,Y∈indA

HomA(ψ(X),ψ(Y )).

Hence ψ induces an isomorphism
⊕

X,Y∈indA
HomA(X, Y ) → ⊕

X,Y∈indA
HomA(ψ(X), ψ(Y )).

This implies that ψ is full, faithful and dense. Therefore ψ is an equivalence.

Lemma 3.5 Let P be an indecomposable projective-injective module over an algebra A

with lA(P ) > 2. Let f : radP → P , g : P → P/socP be A-module homomorphisms with
im(gf ) = radP/socP . Then both f and g are irreducible morphisms.

Proof It is sufficient to show that f is injective and g is surjective. If g is not surjective,
since radP/socP is the unique maximal submodule of P/socP , im(g) ⊆ radP/socP .
Since im(f ) ⊆ radP by the same reason, im(gf ) ⊆ g(radP) ⊆ rad(radP/socP) �

radP/socP , a contradiction. Then g is surjective.

Since im(f ) ⊆ radP , we have a sequence of morphisms radP
f ′
−→ radP

g′
−→ radP/socP ,

where f ′, g′ are morphisms induced from f , g respectively. Since lA(P ) > 2, rad2(P ) �=
0. Then socP ⊆ rad2(P ). Since g is surjective, g′ is surjective and ker(g′) = socP ⊆
rad2(P ) = rad(radP). Then g′ is an essential epimorphism. Since im(gf ) = radP/socP ,
g′f ′ is an epimorphism. Then f ′ is an epimorphism, which implies that f ′ an isomorphism.
Therefore f is injective.

Recall from Section 2 that for the representative algebra Λ of nonstandard RFS algebras
of type (D3m, 1/3, 1), there is an isomorphism U : kΓΛ/J → indΛ such that U maps each
vertex of ΓΛ to the corresponding indecomposable module and maps the residue class of
each arrow of ΓΛ to an irreducible morphism. Let q : kΓΛ/J → k sΓΛ/I and q : indΛ →
indΛ be the natural quotient functors, respectively. Since U restricts to an isomorphism
between the subcategory of projective vertices of kΓΛ/J and the subcategory of projective
modules in indΛ, U induces naturally an isomorphism V : k sΓΛ/I → indΛ, which also
maps the residue class of each arrow of sΓΛ to an irreducible morphism. Let φ′ : indΛ →
indΛ be an isomorphism, which induces an isomorphism φ′

0 : k sΓΛ/I → k sΓΛ/I . Then
we have a diagram with three commutative faces, see Fig. 1.

We often use the following fact without mentioning.

Lemma 3.6 Under the above assumptions, let α be an arrow of ΓΛ which is also considered
as a morphism in kΓΛ/J , and let σ(α) be a morphism in kΓΛ/J such that q(σ (α)) =
φ′
0(q(α)). Then U(σ(α)) is an irreducible morphism in indΛ.

Proof To show that U(σ(α)) is an irreducible morphism in indΛ, by Lemma 3.1, it suffices
to show that qU(σ(α)) is an irreducible morphism in indΛ. Since U : kΓΛ/J → indΛ
maps the residue class of each arrow of ΓΛ to an irreducible morphism, U(α) is an
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irreducible morphism, and qU(α) is an irreducible morphism in indΛ. Since φ′ is an
isomorphism and

qU(σ(α)) = V q(σ(α)) = V φ′
0q(α) = φ′V q(α) = φ′qU(α),

qU(σ(α)) is an irreducible morphism in indΛ.

It is clear that the similar result as Lemma 3.6 holds for any RFS algebra A.
We now prove the main result of this section, which is a corrected form of [2, Proposition

3.3] in nonstandard case.

Proposition 3.7 Let k be an algebraically closed field of characteristic 2, Λ be the repre-
sentative algebra of nonstandard RFS algebras of type (D3m, 1/3, 1), where m ≥ 2. Let
φ : modΛ → modΛ be a stable equivalence such that φ(X) ∼= X for any X ∈ modΛ. Then
φ lifts to a Morita equivalence.

Proof Since φ : modΛ → modΛ is a stable equivalence, it induces an equivalence φ′ :
indΛ → indΛ. Then we have the diagram in Fig. 1. Note that since the categories kΓΛ/J ,
indΛ, k sΓΛ/I , and indΛ are basic, equivalences between them automatically become iso-
morphisms. By construction, the left, the right and the bottom faces of the diagram in Fig. 1
are (strictly) commutative.

We will divide our proof into two steps. In Step 1, we define a functor ψ ′
0 : kΓΛ/J →

kΓΛ/J such that the back face of the diagram in Fig. 1 is commutative; the functor ψ ′
0 then

induces a functor ψ ′ : indΛ → indΛ such that the top and the front faces of the diagram in
Fig. 1 are also commutative. In Step 2, we show that ψ ′ : indΛ → indΛ is an isomorphism.

Step 1: To define a functor ψ ′
0 : kΓΛ/J → kΓΛ/J which lifts the functor φ′

0 :
k sΓΛ/I → k sΓΛ/I .

We begin to define ψ ′
0 on objects as the identity map. For each arrow α : x → y of

ΓΛ (by abuse of notation, we also denote by α the corresponding morphism in kΓΛ or in
kΓΛ/J ), we need to choose a morphism σ(α) : x → y of kΓΛ/J such that qσ(α) =
φ′
0q(α) in k sΓΛ/I and all σ(α) are compatible with the modified mesh relations in kΓΛ/J .

Once this is done, we get the desired functor ψ ′
0 : kΓΛ/J → kΓΛ/J . We will divide Step

1 into four substeps.

Step 1.1: To choose a section D′
3m in sΓΛ

∼= ZD3m/〈τ 2m−1〉 (note that sΓΛ
∼=

ZD′
3m/〈τ 2m−1〉 since the underlying graphs of D′

3m and D3m are isomorphic)

Fig. 1 The diagram at the beginning of Step 1
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and to define inductively (to the left direction) the values of σ on all the arrows
in sΓΛ except for the arrows β0

i (1 ≤ i ≤ 3m − 2) and δ0 in Fig. 2, such that
σ(mx) = 0 in kΓΛ/J for all vertices x in sΓΛ and not in C once the values of
σ on all arrows which belong to mx have been defined.

Recall that we fix C = {radPi | i = 1, 2, · · · , m} to the position {(0, 3m−1), (2m−2, 1),
. . . , (m, 1)} in the stable AR-quiver sΓΛ (cf. Section 2). The arrows in the section D′

3m

Fig. 2 (part of s�� where � denotes the modules in C, and 0 and 2m − 1 are identified)
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are marked by α0
1, · · · , α0

3m−2, γ
0 from the bottom to the top (see Fig. 2). Note that the

irreducible morphisms corresponding to α0
i are monomorphisms for 1 ≤ i ≤ m − 2 or

2m − 1 ≤ i ≤ 3m − 2 and are epimorphisms for m − 1 ≤ i ≤ 2m − 2, and that the
irreducible morphism corresponding to γ 0 is an epimorphism. We just give one example to
show that α0

2m−1 corresponds to an irreducible monomorphism. Since there exists an almost
split sequence 0 → U(2m−1, 1) → U(2m−1, 2) → U(2m, 1) → 0, lΛ(U(2m−1, 1)) <

lΛ(U(2m − 1, 2)). Inductively, since there exists almost split sequences 0 → U(2m − 1 −
i, 1 + i) → U(2m − 1 − i, 2 + i) ⊕ U(2m − i, i) → U(2m − i, 1 + i) → 0 for each
1 ≤ i ≤ 2m − 2, we have that lΛ(U(1, 2m − 1)) < lΛ(U(1, 2m)). Therefore α0

2m−1 is a
monomorphism. For example, in the case m = 4, the section D′

12 is marked by the broken
arrows (with an indication of the injectivity or the surjectivity) in sΓΛ as follows (Fig. 3).

For each 1 ≤ i ≤ 3m − 2, suppose α0
i to be the arrow from x to y, define β0

i to be the
arrow from y to τ−1x in ΓΛ. Let αr

i = τ rα0
i , β

r
i = τ rβ0

i , γ
r : (1−r, 3m−2) → (1−r, 3m),

δr : (1 − r, 3m) → (2 − r, 3m − 2).
For each arrow α0

i (1 ≤ i ≤ 3m − 2) on the section D′
3m, choose σ(α0

i ) to be a mor-
phism of kΓΛ/J such that q(σ (α0

i )) = φ′
0(q(α0

i )), choose σ(γ 0) to be a morphism of
kΓΛ/J such that q(σ (γ 0)) = φ′

0(q(γ 0)), and choose a morphism σ(β1
1 ) of kΓΛ/J such

that q(σ (β1
1 )) = φ′

0(q(β1
1 )). Next, choose temporarily morphisms σ ′(β1

2 ), σ
′(α1

1) of kΓΛ/J

such that q(σ ′(β1
2 )) = φ′

0(q(β1
2 )), q(σ ′(α1

1)) = φ′
0(q(α1

1)) (such morphisms σ ′(−) may not
be compatible with the modified mesh relations but we will adjust them to get our promised
morphisms). By Lemma 3.6, U(σ(α0

2)), U(σ ′(β1
2 )), U(σ(β1

1 )), U(σ ′(α1
1)) are irreducible

in indΛ. On the other hand, we have

qU(σ(α0
2)σ

′(β1
2 )+σ(β1

1 )σ
′(α1

1))=V q(σ(α0
2)σ

′(β1
2 )+σ(β1

1 )σ
′(α1

1))=V φ′
0q(α0

2β
1
2 +β1

1α
1
1)=0

in indΛ, since α0
2β

1
2 + β1

1α
1
1 lies in the modified mesh ideal J . By Lemma 3.2(1), there

exist morphisms f , g in modΛ such that qU(σ ′(β1
2 )) = q(f ) and qU(σ ′(α1

1)) = q(g)

Fig. 3 (where � denotes the modules in C, and 0 and 7 are identified)
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in modΛ and U(σ(α0
2))f + U(σ(β1

1 ))g = 0 in modΛ. Define σ(β1
2 ) := U−1(f ) and

σ(α1
1) := U−1(g) (note that U is an isomorphism). Now we have q(σ (α1

1)) = φ′
0(q(α1

1))

and q(σ (β1
2 )) = φ′

0(q(β1
2 )) in k sΓΛ/I , and σ(α0

2)σ (β1
2 ) + σ(β1

1 )σ (α1
1) = 0 in kΓΛ/J .

Similarly one can define σ(α1
i ), σ(β1

i ) for all 1 ≤ i ≤ 3m − 2 and σ(γ 1), σ(δ1) such that
qσ = φ′

0q for all these arrows, and that σ(mx) = 0 in kΓΛ/J for the vertices x in sΓΛ \ C
once the values of σ on all arrows that belong to mx have been defined.

By induction, one can define the values of σ on αr
i , β

t
i , γ

r , δt for all 1 ≤ i ≤ 3m − 2,
0 ≤ r ≤ 2m − 2, 1 ≤ t ≤ 2m − 2 such that qσ = φ′

0q on all these arrows, and that
σ(mx) = 0 in kΓΛ/J for all vertices x in sΓΛ and not in C once the values of σ on all
arrows which belong to mx have been defined.

Step 1.2: To define the values of σ on arrows β0
i (1 ≤ i ≤ 3m − 2) and δ0 in Fig. 2

such that σ(mx) = 0 in kΓΛ/J for all vertices x in sΓΛ except for the vertex
(1, 3m − 2) and the vertices in C.

We start from the middle ones (β0
m and β0

m−1) to define the values of σ on arrows β0
i

(1 ≤ i ≤ 3m − 2). By Lemma 3.2(2), one can choose morphisms σ(β0
m) and σ(β0

m−1) such
that q(σ (β0

i )) = φ′
0(q(β0

i )) for i = m − 1,m and σ(β0
m−1)σ (α0

m−1) + σ(β0
m)σ(α0

m) = 0.
Note that since the irreducible morphisms corresponding to α0

i are monomorphisms for
1 ≤ i ≤ m − 2 or 2m − 1 ≤ i ≤ 3m − 3, and the irreducible morphisms corresponding to
α2m−2

i = τ−1α0
i are epimorphisms for m+1 ≤ i ≤ 2m−2, using Lemma 3.3, the values of

σ on arrows β0
m−2, · · · , β0

1 and arrows β0
m+1, · · · , β0

3m−3 can be defined inductively such
that qσ = φ′

0q on all these arrows, and that σ(mx) = 0 in kΓΛ/J for all vertices x once
the values of σ on all arrows which belong to mx have been defined. Finally, using Lemma
3.2(1), the value of σ on β0

3m−2, δ0 can be defined, which satisfy qσ = φ′
0q on arrows

β0
3m−2, δ

0, and σ(mx) = 0 in kΓΛ/J for x = (1, 3m − 1) or (1, 3m). Therefore the values
of σ on all arrows of sΓΛ have been defined, which satisfy qσ = φ′

0q on all arrows of sΓΛ

and σ(mx) = 0 in kΓΛ/J for all vertices x in sΓΛ except the vertex (1, 3m − 2) and the
vertices which correspond to the radical of some indecomposable projective module.

Step 1.3: To adjust the values of σ on arrows α0
3m−2 and γ 0 in Fig. 2 such that σ(mx) = 0

in kΓΛ/J for all vertices x in sΓΛ and not in C.
Since there exists an exact sequence

0 → U(1, 1) → U(1, 2) → U(2, 1) → 0,

lΛ(U(1, 2)) > lΛ(U(2, 1)). Since there exists exact sequences

0 → U(1, i) → U(1, i + 1) ⊕ U(2, i − 1) → U(2, i) → 0

for 2 ≤ i ≤ 3m−3, by induction lΛ(U(1, 3m−2)) > lΛ(U(2, 3m−3)). Since there exists
an exact sequence

0 → U(1, 3m − 2) → U(1, 3m − 1) ⊕ U(1, 3m) ⊕ U(2, 3m − 3) → U(2, 3m − 2) → 0,

lΛ(U(1, 3m − 1)) + lΛ(U(1, 3m)) > lΛ(U(2, 3m − 2)). By Lemma 3.3(1), the values of
σ on α0

3m−2 and γ 0 can be changed such that it satisfies q(σ (α0
3m−2)) = φ′

0(q(α0
3m−2)),

q(σ (γ 0)) = φ′
0(q(γ 0)) and σ(β0

3m−2)σ (α0
3m−2) + σ(δ0)σ (γ 0) + σ(α2m−2

3m−3)σ (β0
3m−3) = 0.

As a result, we get σ(mx) = 0 for the vertex x = (1, 3m−2). Note that the above adjustment
changes the value of σ on γ 0 and we still need to show that σ(mx) = 0 for the vertex
x = (0, 3m).
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Indeed, we will show that there is no nonzero morphism from U(0, 3m) to U(1, 3m)

which factors though a projective module, which implies U(σ(γ 0))U(σ(δ1)) = 0.
Note that U(1, 3m − 2) = radP1/socP1 = 1

��
��

��
��

��
��

2

2 3

m − 1 m

m 1
Let X = 2

3

m

1

, Y = 1

2

m − 1

m

. There is a nonsplit exact sequence 0 → X → radP1/socP1 →

Y → 0. Since Λ is symmetric, DT r = Ω2 and Ω2(Y ) = Ω(Z) = X, where Z =
1

��
��

��
��

��
��

2

m − 1

m
			

		 1
��

�

1
Since each nonzero endomorphism of Y is an isomorphism, each nonisomorphism h : Y →
Y is zero, hence h factors through radP1/socP1 → Y . By [3, Chapter V, Proposition 2.2],
0 → X → radP1/socP1 → Y → 0 is an almost split sequence. Then U(0, 3m) ∼= X

and U(1, 3m) ∼= Y . If a morphism f : X → Y factors through the projective cover P1
of Y , let f = vu, u : X → P1, v : P1 → Y , we have u = λι, v = μπ , where
λ, μ ∈ k, ι : X → P1 be the inclusion and π : P1 → Y be the projection. Since
πι = 0, f = 0. It implies that each morphism form X to Y which factors through a pro-
jective module is equal to zero. Since q(σ (δ1)) = φ′

0(q(δ1)) and q(σ (γ 0)) = φ′
0(q(γ 0)),

q(σ (γ 0))q(σ (δ1)) = 0, U(σ(γ 0))U(σ(δ1)) : X → Y factors through a projective module.
Hence U(σ(γ 0))U(σ(δ1)) = 0 and σ(γ 0)σ (δ1) = 0.

Step 1.4: To define the values of σ on the remaining arrows ιj (corresponding to radPj →
Pj ) and κj (corresponding to Pj → Pj/socPj ) for 1 ≤ j ≤ m such that
σ(mx) = 0 in kΓΛ/J for all vertices x in sΓΛ. This step is corresponding to
[2, page 435, line 2].

Since q(σ (α0
3m−2β

1
3m−2 + p)) = φ′

0(q(α0
3m−2β

1
3m−2 + p)) = 0, we have

qU(σ(α0
3m−2β

1
3m−2 + p)) = V q(σ(α0

3m−2β
1
3m−2 + p)) = 0

and U(σ(α0
3m−2β

1
3m−2 + p)) : radP1 → P1/socP1 factors through a projective module.

Since P1 is the projective cover of P1/socP1,U(σ(α0
3m−2β

1
3m−2+p)) : radP1 → P1/socP1

factors through P1. Let U(σ(α0
3m−2β

1
3m−2 + p)) + vu = 0, where u : radP1 → P1,

v : P1 → P1/socP1. Define σ(ι1), σ(κ1) to be morphisms in kΓΛ/J by σ(ι1) := U−1(u),
σ(κ1) := U−1(v). Then U(σ(m(0,3m−1) + p)) = 0 and σ(m(0,3m−1) + p) = 0. Similarly
one can define σ(ιi), σ(κi) for all 2 ≤ i ≤ m such that σ(mx) = 0 in kΓΛ/J for each
vertex x which corresponds to the radical of some Pi for 2 ≤ i ≤ m.
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As a summary, since qσ = φ′
0q on all arrows of ΓΛ and σ(mx) = 0 in kΓΛ/J for

all vertex x in sΓΛ, we have lifted the functor φ′
0 : k sΓΛ/I → k sΓΛ/I to a functor

ψ ′
0 : kΓΛ/J → kΓΛ/J such that ψ ′

0(x) = x for each vertex x in kΓΛ and ψ ′
0(α) = σ(α)

for each arrow α of ΓΛ, which again induces a functor ψ ′ : indΛ → indΛ making all the
faces of the diagram commutative (Fig. 4).

Step 2: To show that ψ ′ : indΛ → indΛ is an isomorphism.

Let ψ : modΛ → modΛ be a functor induced by ψ ′ : indΛ → indΛ. To show that ψ ′
is an isomorphism, it suffices to show that ψ is an equivalence. Since ψ(X) ∼= X for all
Λ-module X, ψ satisfies condition (3) and the former half of the condition (2) of Lemma
3.4. By Lemma 3.4, it suffices to show that ψ(radΛ) ⊆ radΛ and ψ preserves irreducible
morphisms between indecomposable Λ-modules. Since the radical of kΓΛ/J is generated
by arrows of ΓΛ and ψ ′

0(x) = x for each vertex x of ΓΛ, ψ ′
0 sends the morphisms in the

radical of kΓΛ/J to the morphisms in the radical of kΓΛ/J . Hence ψ(radΛ) ⊆ radΛ.
Next we show that ψ preserves irreducible morphisms between indecomposable Λ-

modules. Since the diagram

modΛ
ψ ��

q

��

modΛ

q

��
modΛ

φ �� modΛ

commutes up to natural isomorphisms and φ is an equivalence, ψ maps irreducible mor-
phism between indecomposable nonprojective modules to irreducible morphism between
indecomposable nonprojective modules (cf. Lemma 3.1). Then it suffices to show that
ψ preserves irreducible morphisms radP → P and P → P/socP , where P is an
indecomposable projective module. Let P be an indecomposable projective module and

0 → radP
(f1,f2)

T

−−−−−→ P ⊕ radP/socP
(g1,g2)−−−−→ P/socP → 0

be an almost split sequence. Since ψ preserves irreducible morphisms between inde-
composable nonprojective modules, ψ(f2), ψ(g2) are irreducible. Then ψ(f2) is an
epimorphism and ψ(g2) is a monomorphism. Since radP/socP is the unique maximal sub-
module of P/socP , im(ψ(g2)) ⊆ radP/socP . Since lΛ(im(ψ(g2))) = lΛ(radP/socP),
im(ψ(g2)) = radP/socP . Since ψ(f2) is an epimorphism, im(ψ(g2f2)) = radP/socP .

Fig. 4 The diagram at the ending of Step 1
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Since ψ(g1f1) = −ψ(g2f2), we have im(ψ(g1)ψ(f1)) = radP/socP . By Lemma 3.5,
ψ(f1), ψ(g1) are irreducible morphisms. Therefore ψ preserves irreducible morphisms
between indecomposable Λ-modules. By Lemma 3.4, ψ is an equivalence.

Remark 3.8 Notice that since the modified mesh relation mx for x = (0, 3m − 1) starts
at a point which belongs to the configuration C, it allows us to adjust the modified mesh
relation using the projective module (see Step 1.4 above), which is the same as we do for
the usual mesh relations. Therefore, the method in Proposition 3.7 applies for the standard
RFS algebra which has the isomorphic AR-quiver as Λ. A similar method applies for each
type of standard RFS algebras, see Appendix A for a detailed explanation.

4 Proof of theMain Result

Combining Proposition 3.7 and some ideas from [2, 6, 8] we prove our main result Theorem
1.4 in this section.

Definition 4.1 ([2, Definition 1]) Let A be an algebra. The stable Picard group StPic(A)

of A is the group formed by natural isomorphism classes of stable auto-equivalences
of A. Let Pic′(A) be the image of canonical homomorphism Pic(A) → StPic(A),
where Pic(A) denotes the Picard group formed by natural isomorphism classes of Morita
auto-equivalences of A.

The following result was proved in [6] using the mutation theory of simple-minded
systems. For the completeness we give its proof in Appendix B.

Proposition 4.2 ([6, Lemma 4.10]) Let k be an algebraically closed field of characteristic
2, Λ be the representative algebra of nonstandard RFS algebras of type (D3m, 1/3, 1),
where m ≥ 2. Then there exists a standard derived auto-equivalence of Λ which induces a
stable auto-equivalence H of Λ such that H induces the automorphism of sΓΛ defined by
the swap of the two high vertices.

Remark 4.3 Using the fact that indΛ is equivalent to k sΓΛ/I , one can give a concrete
construction of the stable auto-equivalence H up to a Morita equivalence in viewing of
Proposition 3.7. For each 2 ≤ i ≤ 3m − 2, let qi−1 be the path (0, i) → (1, i − 1) →
(1, i) → (2, i − 1) → (2, i) → · · · → (2m − 1, i − 1) → (2m − 1, i). For each 0 ≤
i ≤ 2m − 2, let li be the path (i, 3m − 2) → (i, 3m) → (i + 1, 3m − 2), hi be the
path (i, 3m − 2) → (i, 3m − 1) → (i + 1, 3m − 2), pi be the path (i, 3m − 2) →
(i +1, 3m−3) → (i +1, 3m−2). Define a functor H ′ : k sΓΛ → k sΓΛ by H ′(x) = η(x)

for each vertex x of sΓΛ, where η is the automorphism on sΓΛ by the swap of the two high
vertices (see Fig. 5), and the definition of H ′ on arrows are given as follows: H ′(α) :=
γ + l2m−1h2m−2 . . . l3h2l1γ , H ′(γ ) := α + h2m−1l2m−2 . . . h3l2h1α, H ′(δi) := δi + δiqi ,
where 1 ≤ i ≤ 3m− 3, H ′(ζ ) := η(ζ ) for other arrows ζ in sΓΛ. Then it is straightforward
to verify that H ′ preserves all the modified mesh relations and therefore induces a functor
H : k sΓΛ/I → k sΓΛ/I . Moreover, H preserves the radical rad( , ) and irreducible
morphisms, it follows that H is an equivalence (cf. Lemma 3.4).
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Fig. 5 The diagram for Remark 4.3

The following result should be compared with [2, Theorem 3.1] (or Corollary A.2) for
standard RFS algebras.

Proposition 4.4 Let k be an algebraically closed field of characteristic 2, Λ be the rep-
resentative algebra of nonstandard RFS algebras of type (D3m, 1/3, 1), where m ≥ 2.
For any stable auto-equivalence φ of Λ, we denote by [φ] its natural isomorphism class.
Then StPic(Λ) = (Pic′(Λ) · 〈[ΩΛ]〉) ∪ (Pic′(Λ) · 〈[ΩΛ]〉)[H ], where ΩΛ is the loop func-
tor, and H is a stable auto-equivalence of Λ as defined in Proposition 4.2, which satisfies
[H ]2 ∈ Pic′(Λ), and 〈[ΩΛ]〉 denotes the cyclic subgroup of StPic(Λ) generated by [ΩΛ].

Proof Note that each stable auto-equivalence φ of Λ induces an automorphism f of sΓΛ

as a translation quiver (cf. [3, Chapter X, Corollary 1.9]). According to [12] (see also [2,
Proposition 2.1]), Aut(ZD3m) = 〈τ 〉 × 〈η′〉, where η′ is the automorphism of ZD3m which
is induced from the automorphism of the quiver D3m defined by the swap of the two high
vertices. Then Aut(sΓΛ) = 〈τ 〉×〈η〉, where η is the automorphism of sΓΛ induced from η′.

Let f = τ rηi ∈ Aut(sΓΛ) (where i = 0 or 1) be induced from a stable auto-equivalence
φ of Λ. Then the automorphism of sΓΛ induced by the stable auto-equivalence τ−r

Λ φH−i

acts as the identity map of the set of vertices, where H− is a quasi-inverse of H . By Propo-
sition 3.7, τ−r

Λ φH−i lifts to a Morita equivalence. Then [τ−r
Λ φH−i] ∈ Pic′(Λ). Since

[τΛ] = [Ω2
Λ], [τΛ] ∈ 〈[ΩΛ]〉. Therefore [φ] = [τΛ]r [τ−r

Λ φH−i][H ]i ∈ (Pic′(Λ)·〈[ΩΛ]〉)∪
(Pic′(Λ) · 〈[ΩΛ]〉)[H ]. The fact that [H ]2 ∈ Pic′(Λ) also follows from Proposition 3.7.

Remark 4.5 Sometimes the two cosets Pic′(Λ) · 〈[ΩΛ]〉 and (Pic′(Λ) · 〈[ΩΛ]〉)[H ] of the
subgroup Pic′(Λ) · 〈[ΩΛ]〉 of the stable Picard group StPic(Λ) are the same. For example,
in the case m = 3, [ΩΛ] ∈ Pic′(Λ) · [τΛ]3[H ] and therefore [H ] ∈ Pic′(Λ) · 〈[ΩΛ]〉.
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Proposition 4.6 Let k be an algebraically closed field of characteristic 2, Λ be the repre-
sentative algebra of nonstandard RFS algebras of type (D3m, 1/3, 1), where m ≥ 2. Then
each stable auto-equivalence of Λ lifts to a standard derived equivalence.

Proof It follows from Proposition 4.2 and Proposition 4.4.

Proof of Theorem 1.4 By Theorem 1.2, both A and B are derived equivalent to the same
nonstandard RFS representative algebra Λ. Then there exists stable equivalences ξ :
modA → modΛ and η : modB → modΛ such that ξ , η lift to standard derived equiva-
lences. By Proposition 4.6, ηφξ−1 : modΛ → modΛ lifts to a standard derived equivalence.
Then φ = η−1(ηφξ−1)ξ lifts to a standard derived equivalence.

Appendix A

Throughout this appendix we fix the enumeration on the vertices of An, Dn, En as follow:

The main purpose of this appendix is to prove the following result, which is a corrected
form of [2, Proposition 3.3]. We are grateful to the referee who suggests to add this content.

Proposition A.1 Let k be an algebraically closed field, and let A be some properly selected
representative algebra of standard RFS algebras. Let φ : modA → modA be a stable
equivalence such that φ(X) ∼= X for any X ∈ modA. Then φ lifts to a Morita equivalence.

Using Proposition A.1, we can reprove [2, Theorem 3.1], whose original proof uses [2,
Proposition 3.3], by filling the gap in [2, page 435, line 1]. Note that the main result [2, Main
Theorem] follows from [2, Theorem 3.1]. By the same reason as in Remark 1.3(1), here we
also need to assume that the considered algebra has Loewy length greater than 2.

Corollary A.2 ([2, Theorem 3.1]) Let A be the representative algebra of representation-
finite standard RFS algebras in Proposition A.1 with Loewy length greater than 2. If A is
not of type (D3m, s/3, 1) with m ≥ 2 and 3 � s ≥ 1, then

StPic(A) = Pic′(A) · 〈[ΩA]〉.
If A is of type (D3m, s/3, 1) with m ≥ 2 and 3 � s ≥ 1, then

StPic(A) = (Pic′(A) · 〈[ΩA]〉) ∪ (Pic′(A) · 〈[ΩA]〉)[H ],
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where H is a stable auto-equivalence of A induced from the automorphism of sΓΛ defined
by the swap of the two high vertices, which satisfies [H ]2 ∈ Pic′(A).

Proof Note that the representative algebra A has Loewy length 2 if and only if A has type
typ(A) = (A1, s, 1) with s ≥ 1, so we exclude this type in the following proof. For a given
A, let C be the set of vertices in the stable AR-quiver sΓA which correspond to radicals of
indecomposable projective A-modules. According to the proof of Proposition A.1, we list
the positions of C in sΓA for each representative algebra A as follows.

• If typ(A) = (An, s/n, 1) with s, n ≥ 1, then C = {(i, n) | 0 ≤ i ≤ s − 1}.
• If typ(A) = (A2p+1, s, 2) with s, p ≥ 1, then C = {((2p + 1)i + j, 1), ((2p + 1)i +

p, p + 1),
((2p + 1)i + j + p + 1, 2p + 1) | 0 ≤ i ≤ s − 1, 0 ≤ j ≤ p − 1}.

• If typ(A) = (Dn, s, 1) or typ(A) = (Dn, s, 2) with n ≥ 4 and s ≥ 1, then C =
{((2n− 3)i, n − 1), ((2n− 3)i, n), ((2n− 3)i + n− 1, n− 2), ((2n− 3)i + j, 1), | 0 ≤
i ≤ s − 1, 1 ≤ j ≤ n − 3}.

• If typ(A) = (D4, s, 3) with s ≥ 1, then C = {(5i, 3), (5i, 4), (5i + 3, 2), (5i + 1, 1) |
0 ≤ i ≤ s − 1}.

• If typ(A) = (D3m, s/3, 1) with m ≥ 2 and 3 � s ≥ 1, then C = {((2m − 1)i, 3m −
1), ((2m − 1)i + j, 1) | 0 ≤ i ≤ s − 1,m ≤ j ≤ 2m − 2}.

• If typ(A) = (En, s, 1) or typ(A) = (E6, s, 2) with 6 ≤ n ≤ 8 and s ≥ 1, then
C = {(mn · i+j, 1), (mn · i−1, n), (mn · i−2, n−1), (mn · i−1, n−1), (mn · i+(mn −
1)/2, n − 3) | 0 ≤ i ≤ s − 1, 0 ≤ j ≤ n − 5}, where m6 = 11, m7 = 17, m8 = 29.

Suppose that typ(A) /∈ {(An, s/n, 1), (D3m, r/3, 1) | n, r, s ≥ 1,m ≥ 2, 3 � r}.
Combining a result in [12] (see also [2, Proposition 2.1]), we can directly prove that each
automorphism of sΓA (as a translation quiver) is of the form τaρ, where ρ is an auto-
morphism of sΓA such that C is stable under ρ. Let φ : modA → modA be a stable
equivalence which induces an automorphism f of sΓA (as a translation quiver). Assume
f = τaρ with C stable under ρ, then ρ extends to an automorphism of ΓA, which induces
an auto-equivalence of k(ΓA). Thus, there exists a Morita equivalence Ψ : modA → modA
which induces a stable equivalence ψ : modA → modA, such that the automorphism
of sΓA induced by ψ is ρ. Since φ(τa

Aψ)−1 induces identity automorphism of sΓA, by
Proposition A.1, it lifts to a Morita equivalence. Since [φ] = [φ(τa

Aψ)−1][τA]a[ψ] with
[φ(τa

Aψ)−1], [ψ] ∈ Pic′(A) and [τA] ∈ Pic′(A) · 〈[ΩA]〉, [φ] ∈ Pic′(A) · 〈[ΩA]〉.
Suppose that typ(A) = (An, s/n, 1) with n > 1, s ≥ 1. Then each automorphism of

sΓA (as a translation quiver) is of the form τa or τaρ, where ρ is given by (p, q) �→
(p + q − 1, n + 1 − q). It can be shown that the automorphism of sΓA induced by ΩA

is τbρ for some b. Let φ : modA → modA be a stable equivalence which induces an
automorphism f of sΓA (as a translation quiver). If f = τa for some a, by Proposition
A.1, φτ−a

A lifts to a Morita equivalence. Then [φ] = [φτ−a
A ][τA]a ∈ Pic′(A) · 〈[ΩA]〉. If

f = τaρ for some a, by Proposition A.1, φΩ−1
A τb−a

A lifts to a Morita equivalence. Then
[φ] = [φΩ−1

A τb−a
A ][τA]a−b[ΩA] ∈ Pic′(A) · 〈[ΩA]〉.

Suppose that typ(A) = (D3m, s/3, 1) with m ≥ 2 and 3 � s ≥ 1. Then each auto-
morphism of sΓA (as a translation quiver) is of the form τa or τaη, where η is the
automorphism of sΓΛ defined by the swap of the two high vertices. By the same method,
it can be shown that for each stable auto-equivalence φ of A, [φ] ∈ Pic′(A) · 〈[ΩA]〉 or
[φ] ∈ (Pic′(A) · 〈[ΩA]〉)[H ]. The fact that [H ]2 ∈ Pic′(A) also follows from Proposition
A.1.
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Proof of Proposition A.1 We now turn to the proof of Proposition A.1. For each type
(Q, f, t) of standard RFS algebras, Asashiba gave a representative algebraΛ(Q, f, t) inside
its derived equivalence class, all the representative algebras are listed in [2, Appendix 2].
Unless otherwise stated, we will choose the representative algebra A in Proposition A.1 as
Λ(Q, f, t).

Since A is standard, there is a well-behaved isomorphism U : k(ΓA) → indA, that is, it
maps each vertex of ΓA to the corresponding indecomposable module and maps the residue
class of each arrow of ΓA to an irreducible morphism; moreover, U induces a well-behaved
isomorphism V : k(sΓA) � indA. Therefore, we can adopt the method in Proof of Propo-
sition 3.7 to give a proof of Proposition A.1. By analysing the proof of Proposition 3.7, we
know that if we can construct a functor Φ : k(ΓA) → k(ΓA) from a given isomorphism
functor φ′ : k(sΓA) → k(sΓA) with φ′(x) = x for all x ∈ sΓA, then Φ becomes auto-
matically an isomorphism functor under our assumption. Thus we can reduce the proof of
Proposition A.1 to the construction of a functor Φ : k(ΓA) → k(ΓA) lifting φ′.

We shall give the construction in each type using the similar idea as Step 1 in the proof of
Proposition 3.7. Recall that Step 1 in the proof of Proposition 3.7 divides into four substeps
(from Step 1.1 to Step 1.4), however, we do not need Step 1.3 in most cases except for the
type (D3m, s/3, 1) with m ≥ 2 and 3 � s ≥ 1.

In the following, C is always assumed to be the set of vertices in sΓA which correspond
to radicals of indecomposable projective A-modules and � denotes the positions of C.
1. Type (An, s/n, 1) with s, n ≥ 1.

LetA = Λ(An, s/n, 1) be the self-injective Nakayama algebra given by the quiver below
with relations αi+n · · ·αi+1αi = 0 for all i ∈ {1, 2, · · · , s} = Z/〈s〉.

Then sΓA
∼= ZAn/〈τ s〉 is of the form:
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By the position of C in sΓA, one can show that in sΓA the upward arrows corre-
spond to irreducible monomorphisms and the downward arrows correspond to irreducible
epimorphisms. Choose a section A′

n in sΓA as follow:

Let φ′ : k(sΓA) → k(sΓA) be an isomorphism which maps each object in k(sΓA)

to itself. To lift φ′ : k(sΓA) → k(sΓA) to a functor Φ : k(ΓA) → k(ΓA), one can
first choose morphisms Φ(α0

1), · · · , Φ(α0
n−1) which lift φ

′(α0
1), · · · , φ′(α0

n−1) respectively.
Using Lemma 3.2(2) (and similar result as Lemma 3.6 for A), one can lift arrows in sΓA

from the section A′
n to the right. Now assume that the values of Φ on all arrows of sΓA

except βs−1
1 , · · · , βs−1

n−1 have been defined, which satisfy Φ(mx) = 0 for each vertex x such
that x is not in C and such that the values of Φ on all arrows in mx have been defined (which
corresponds to Step 1.1 in Proof of Proposition 3.7). Since αs−1

1 , · · · , αs−1
n−1 correspond

to irreducible monomorphisms, by Lemma 3.3(2), one can define Φ(βs−1
1 ), · · · , Φ(βs−1

n−1)

from the bottom to the top such that Φ(mx) = 0 for each vertex x which is not in C (which
corresponds to Step 1.2 in Proof of Proposition 3.7). Finally, we define the values of Φ on
the arrows of ΓA which link to projective vertices (which corresponds to Step 1.4 in Proof
of Proposition 3.7).

2. Type (A2p+1, s, 2) with s, p ≥ 1.

Let A = Λ(A2p+1, s, 2) be the canonical Möbius algebra given by the quiver below with
relations

(1) αi
p· · ·αi

0 = βi
p· · ·βi

0 for all i ∈ {0, · · · , s − 1};
(2) βi+1

0 αi
p = αi+1

0 βi
p = 0 for all i ∈ {0, · · · , s − 2} and α0

0α
s−1
p = β0

0β
s−1
p = 0;

(3) Paths of length p + 2 are equal to 0.
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Let η be the automorphism of ZA2p+1 given by (m, n) �→ (m+ n− 1−p, 2p + 2− n).
Then part of sΓA

∼= ZA2p+1/〈τ (2p+1)sη〉 is of the form:

where the set C is stable under τ 2p+1. Choose a section A′
2p+1 in sΓA as follow:

By the position of C in sΓA, one can show that each arrow in A′
2p+1 corresponds to an

irreducible monomorphism. Let φ′ : k(sΓA) → k(sΓA) be an isomorphism which maps
each object in k(sΓA) to itself. To lift φ′ : k(sΓA) → k(sΓA) to a functor Φ : k(ΓA) →
k(ΓA), one can first choose morphisms Φ(α1), · · · , Φ(α2p) which lift φ′(α1), · · · , φ′(α2p)

respectively. Using Lemma 3.2(1), one can lift arrows in sΓA from the section A′
2p+1 to the

left. Now assume that the values of Φ on all arrows of sΓA except β1, · · · , β2p have been
defined, which satisfy Φ(mx) = 0 for each vertex x such that x is not in C and such that
the values of Φ on all arrows in mx have been defined. Since α1, · · · , α2p correspond to
irreducible monomorphisms, by Lemma 3.3(2), one can define Φ(β1), · · · , Φ(β2p) from
both sides to the middle such that Φ(mx) = 0 for each vertex x which is not in C. Finally,
we define the values of Φ on the arrows of ΓA which link to projective vertices.

3. Type (Dn, s, 1) with n ≥ 4, s ≥ 1.

The algebra B = Λ(Dn, s, 1) is given by the quiver below with relations

(1) αi
1α

i
2 · · ·αi

n−2 = βi
1β

i
0 = γ i

1γ
i
0 for all i ∈ {0, · · · , s − 1};

(2) For all i ∈ {0, · · · , s − 1} = Z/〈s〉, βi+1
0 αi

1 = γ i+1
0 αi

1 = αi+1
n−2β

i
1 = γ i+1

0 βi
1 =

αi+1
n−2γ

i
1 = βi+1

0 γ i
1 = 0;

(3) For all i ∈ {0, · · · , s − 1} = Z/〈s〉 and for all j ∈ {1, · · · , n − 2} = Z/〈n − 2〉,
αi+1

j−n+2· · · αi
j = 0, βi+1

0 βi
1β

i
0 = βi+1

1 βi+1
0 βi

1 = 0, γ i+1
0 γ i

1γ
i
0 = γ i+1

1 γ i+1
0 γ i

1 = 0.
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When s = 1, we take A = B. Then sΓA
∼= ZDn/〈τ 2n−3〉 and we may set

C = {(0, n − 1), (0, n), (n − 1, n − 2), (1, 1), (2, 1), · · · , (n − 3, 1)},
where part of sΓA

∼= ZDn/〈τ 2n−3〉 is of the form:

By the position of C in sΓA, one can show that the arrows β1, β2, · · · , βn−3 correspond
to irreducible epimorphisms. Choose a section D′

n in sΓA as follow:

Let φ′ : k(sΓA) → k(sΓA) be an isomorphism which maps each object in k(sΓA)

to itself. To lift φ′ : k(sΓA) → k(sΓA) to a functor Φ : k(ΓA) → k(ΓA), one can
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first choose morphisms Φ(α1), · · · , Φ(αn−1) which lift φ′(α1), · · · , φ′(αn−1) respectively.
Using Lemma 3.2(1), one can lift arrows in sΓA from the sectionD′

n to the left. Now assume
that the values of Φ on all arrows of sΓA except γ1, · · · , γn−1 have been defined, which
satisfy Φ(mx) = 0 for each vertex x such that x is not in C and such that the values of Φ on
all arrows in mx have been defined. Since β1, · · · , βn−3 correspond to irreducible epimor-
phisms, by Lemma 3.3(1), one can define Φ(γ1), · · · , Φ(γn−1) from the bottom to the top
such that Φ(mx) = 0 for each vertex x which is not in C. Finally, we define the values of Φ

on the arrows of ΓA which link to projective vertices.
When s > 1, since there exists a covering ZDn/〈τ (2n−3)s〉 → ZDn/〈τ 2n−3〉 of stable

translation quivers and

C = {(0, n − 1), (0, n), (n − 1, n − 2), (1, 1), (2, 1), · · · , (n − 3, 1)}
is a configuration of ZDn/〈τ 2n−3〉, by [13, Proposition 2.3],

C ′ = {((2n − 3)p, n − 1), ((2n − 3)p, n), ((2n − 3)p + n − 1, n − 2), ((2n − 3)p + 1, 1),

((2n − 3)p + 2, 1), · · · , ((2n − 3)p + n − 3, 1) | 0 ≤ p ≤ s − 1}
is a configuration of ZDn/〈τ (2n−3)s〉. According to [5, Proposition 1.3], there exists a stan-
dard RFS algebra A such that ΓA

∼= (ZDn/〈τ (2n−3)s〉)C′ . Using a similar method, it can be
shown that each isomorphism φ′ : k(sΓA) → k(sΓA) which maps each object in k(sΓA) to
itself lifts to a functor Φ : k(ΓA) → k(ΓA).

4. Type (Dn, s, 2) with n ≥ 4, s ≥ 1.

The stable AR-quiver is of the form ZDn/〈τ (2n−3)sη〉, where η is the automorphism of
ZDn defined by the swap of the two high vertices. We may proceed in a similar way as the
type (Dn, s, 1) with n ≥ 4, s ≥ 1.

5. Type (D4, s, 3) with s ≥ 1.

The stable AR-quiver is of the form ZD4/〈τ 5sη〉, where η is the automorphism of ZD4
induced from an automorphism of D4 of order 3. We may proceed in a similar way as the
type (D4, s, 1) with s ≥ 1.

6. Type (D3m, s/3, 1) with m ≥ 2 and 3 � s ≥ 1.

The case s = 1 has dealt with in Proposition 3.7 (see also Remark 3.8). For s ≥ 2, we can
use a similar method as the type (Dn, s, 1)with s ≥ 2. Note that in the case s = 1 we use the
fact that each morphism (0, 3m) → (1, 3m) in k((ZD3m/〈τ 2m−1〉)C) which factors through
a projective vertex is zero. Since there is a covering functor k((ZD3m/〈τ (2m−1)s〉)C′) →
k((ZD3m/〈τ 2m−1〉)C) which is faithful and sends projective vertices to projective vertices,
the similar fact is also true in k((ZD3m/〈τ (2m−1)s〉)C′).

7. Type (En, s, 1) with n ∈ {6, 7, 8} and s ≥ 1.

The algebra B = Λ(En, s, 1) is given by the quiver below with relations

(1) αi
1α

i
2 · · ·αi

n−3 = βi
1β

i
2β

i
3 = γ i

1γ
i
2 for all i ∈ {0, · · · , s − 1};

(2) For all i ∈ {0, · · · , s − 1} = Z/〈s〉, βi+1
3 αi

1 = γ i+1
2 αi

1 = αi+1
n−3β

i+1
1 = γ i+1

2 βi+1
1 =

αi+1
n−3γ

i
1 = βi+1

3 γ i
1 = 0;

(3) α-paths of length n − 2 are equal to 0, β-paths of length 4 are equal to 0, γ -paths of
length 3 are equal to 0.
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Note that sΓB
∼= ZEn/〈τmns〉, where m6 = 11, m7 = 17, m8 = 29. Similar to the type

(Dn, s, 1) with n ≥ 4, s ≥ 1, it suffices to consider s = 1. When n = 6 and s = 1, we take
A = B. Then C = {(0, 1), (1, 1), (−1, 6), (−2, 5), (−1, 5), (5, 3)} and part of sΓA is of the
form:

Choose a section E′
6 in sΓA as follow:
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By the position of C in sΓA, α1 and α5 correspond to irreducible monomorphisms. Let
φ′ : k(sΓA) → k(sΓA) be an isomorphism which maps each object in k(sΓA) to itself.
To lift φ′ : k(sΓA) → k(sΓA) to a functor Φ : k(ΓA) → k(ΓA), one can first choose
morphisms Φ(α1), · · · , Φ(α5) which lift φ′(α1), · · · , φ′(α5) respectively. Using Lemma
3.2(1), one can lift arrows in sΓA from the section E′

6 to the left. Now assume that the values
of Φ on all arrows of sΓA except β1, · · · , β5 have been defined, which satisfy Φ(mx) = 0
for each vertex x such that x is not in C and such that the values of Φ on all arrows in mx

have been defined. Using Lemma 3.2(2), the values Φ(β2),Φ(β3),Φ(β4) can be defined
such that Φ(m(−1,3)) = 0. Since α1 and α5 correspond to irreducible monomorphisms, by
Lemma 3.3(2), one can define Φ(β1), Φ(β5) such that Φ(m(0,2)) = 0 and Φ(m(−1,4)) = 0.
Finally, we define the values of Φ on the arrows of ΓA which link to projective vertices.

When n = 7 or 8, the proofs are similar to the case n = 6.

8. Type (E6, s, 2) with s ≥ 1.

The stable AR-quiver is of the form ZE6/〈τ 11sη〉, where η is the automorphism of ZE6
induced from an automorphism of E6 of order 2. We may proceed in a similar way as the
type (E6, s, 1) with s ≥ 1.

Remark A.3 Proposition A.1 is true for any RFS algebra, the reason is as follows. If A is
a RFS algebra of Loewy length ≥ 3, then every stable auto-equivalence of A is of Morita
type, according to Linckelmann’s theorem ([10, Theorem 2.1(iii)]), Proposition A.1 holds in
this case. If A is a RFS algebra of Loewy length ≤ 2, then every stable auto-equivalence of
A which maps each object to itself is the identity functor, which clearly lifts to the identity
functor on modA.

Appendix B

For the benefit of the reader we give a detailed proof of Proposition 4.2 ([6, Lemma 4.10]).
First we recall the notion of simple-minded system and the mutation theory of simple-
minded systems.

Let A be a self-injective algebra. For X, Y,Z ∈ modA, Y is called an extension of X and
Z if there exists an exact sequence 0 → X → Y ⊕ P → Z → 0 in modA, where P is a
projective module.

Definition B.1 (see [9] or [8]) Let A be a self-injective k-algebra, S be a set of objects

in modA such that for all S, T ∈ S , HomA(S, T ) =
{
0 (S �= T ),

k (S = T ).
Let F(S) be the

smallest subcategory of modA which contains S and closed under extensions. S is called a
simple-minded system (sms for short) in modA if F(S) = modA.

By definition, the set of nonprojective simple A-modules is an sms in modA.

Definition B.2 ([8, Definition 4.1 and Remark]) Let A be a self-injective algebra and S be
an sms which is stable under the Nakayama functor N = DHomA(−, A) up to isomor-
phisms. Let X be a subset of S which is stable under N . The left mutation of the sms S
with respect to X is the set {μ+

X (X) | X ∈ S}, where
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(1) μ+
X (X) = Ω−1

A (X), if X ∈ X ;
(2) Otherwise, μ+

X (X) is given by the push-out diagram

It is shown in [8] that the left mutation of an sms is again an sms.

Proposition B.3 ([6, Lemma 4.10]) Let k be an algebraically closed field of characteristic
2, Λ be the representative algebra of nonstandard RFS algebras of type (D3m, 1/3, 1),
where m ≥ 2. Then there exists a standard derived auto-equivalence of Λ which induces a
stable auto-equivalence H of Λ such that H induces the automorphism on sΓΛ by the swap
of the two high vertices.

Proof Let SΛ be the set of simpleΛ-modules,X = {2} ⊆ SΛ. SinceΛ is symmetric,N �
id and X is stable under N . Since the simple module 2 has only a trivial self-extension,
F(X ) = add(2). The projection radP1 → 2 is a minimal left F(X )-approximation of
radP1. There exists a commutative diagram

For 3 ≤ i ≤ m, HomΛ(radPi, 2) = 0. Then radPi → 0 is a minimal left F(X )-
approximation of radPi and μ+

X (i) = i. Moreover,

μ+
X (2) = Ω−1

Λ (2) = 2 .

3
...

m

1

1

In the following proof, we fix the simple Λ-modules 1, 2, · · · , m to the positions (0, 3m),
(2m − 2, 1), · · · , (m, 1) in the stable AR-quiver sΓΛ, respectively (cf. Section 2). Then
μ+
X (1) corresponds to (2m − 2, 3m − 1), and μ+

X (2) corresponds to (m − 1, 1).
By [8, Okuyama’s lemma] and noting that the definition of mutation we used here is a

variation of Dugas’ original one by shifting the objects by ΩΛ
−1, there exist an algebra Π

and a derived equivalence F : Db(modΠ) → Db(modΛ) which induces a stable equiv-
alence φ : modΠ → modΛ sending the set of simple Π -modules to ΩΛ(μ+

X (SΛ)). By
[11, Corollary 3.5], we can assume that F is a standard derived equivalence. Wemay assume
that Π is basic. Since both ΩΛ and τΛ lift to derived equivalences, there exists a stable
equivalence H = τ−1

Λ ΩΛ
−1φ : modΠ → modΛ which lifts to a derived equivalence and

sends the set of simple Π -modules to τ−1
Λ μ+

X (SΛ). Since Λ is symmetric and Π and Λ are
derived equivalent, by [11, Corollary 5.3], Π is a symmetric algebra of finite representation
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type. Hence by Theorem 1.2, Π is nonstandard and typ(Π) = typ(Λ).

Let CΠ and SΠ be the set of radicals of indecomposable projective Π -modules and the
set of simple Π -modules respectively. ΩΠ induces an automorphism ωΠ of sΓΠ which
sends SΠ to CΠ . Let h : sΓΠ → sΓΛ be the isomorphism between stable AR-quivers
induced by H , ωΛ be the automorphism of sΓΛ induced by ΩΛ. Since τ−1

Λ μ+
X (SΛ) corre-

sponds to the position {(0, 3m − 1), (m, 1), (m + 1, 1), · · · , (2m − 2, 1)}, ηh sends SΠ to
SΛ and ωΛηhωΠ

−1 : sΓΠ → sΓΛ is an isomorphism which maps CΠ to CΛ, where η is
the automorphism of sΓΛ which is induced from the automorphism of the quiver D3m by
the swap of the two high vertices and CΛ is the set of radicals of indecomposable projec-
tive Λ-modules. Then the AR-quivers of the two nonstandard RFS algebras Π and Λ are
isomorphic. According to Riedtmann’s configuration theory (see the paragraph after Defi-
nition 1.1 in Section 1), Π and Λ are isomorphic as algebras. Then H can be identified as a
stable auto-equivalence of Λ which induces an automorphism h of sΓΛ such that h maps the
set of vertices {(0, 3m), (2m−2, 1), · · · , (m, 1)} to {(0, 3m−1), (2m−2, 1), · · · , (m, 1)}.
Since Aut(sΓΛ) = 〈τ 〉 × 〈η〉, h = η and H induces the automorphism on sΓΛ by the swap
of the two high vertices.

Remark B.4 The same proof works for all standard RFS algebras of type (D3m, s/3, 1) with
3 � s and m ≥ 2, see [6, Remark 4.11] for an explanation. Combing Corollary A.2, we have
proved that every stable auto-equivalence also lifts to a standard derived equivalence in this
case.
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