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Abstract. Derived equivalences and stable equivalences of Morita type, and new (candidate)
invariants thereof, between symmetric algebras will be investigated, using transfer maps as a
tool. Close relationships will be established between the new invariants and the validity of the
Auslander–Reiten conjecture, which states the invariance of the number of non-projective simple
modules under stable equivalence. More precisely, the validity of this conjecture for a given pair
of algebras, which are stably equivalent of Morita type, will be characterized in terms of data
refining Hochschild homology (via Külshammer ideals) being invariant and also in terms of cyclic
homology being invariant. Thus, validity of the Auslander–Reiten conjecture implies a whole set
of ring theoretic and cohomological data to be invariant under stable equivalence of Morita type,
and hence also under derived equivalence. We shall also prove that the Batalin-Vilkovisky algebra
structure of Hochschild cohomology for symmetric algebras is preserved by derived equivalence.
The main tools to be developed and used are transfer maps and their properties, in particular
a crucial compatibility condition between transfer maps in Hochschild homology and Hochschild
cohomology via the duality between them.

1. Introduction

Derived equivalences have been studied and used in representation theory of groups and of
algebras since the pioneering work of Happel ([12, 13]), of Rickard ([28, 29, 30]) and of Keller
([15]). In particular, Broué’s conjecture ([6]) has been the starting point of a major development
in modular representation theory of finite groups, centreing around derived equivalences and their
consequences. More generally, Broué ([7]) has introduced stable equivalences of Morita type,
which are implied by derived equivalences between symmetric algebras. There are two key sets
of problems about derived or stable equivalences. One is concerned with constructing derived
or stable equivalences. The other one is about identifying and describing invariants, both of an
abstract and of an explicit nature. It is this second complex of problems that we will address in
this article.

While derived equivalences have been shown to preserve various cohomological invariants such
as Hochschild (co)homology ([30]), K-theory([33, 8]) and cyclic homology([16]), much less is known
for stable equivalences of Morita type. On the other hand, stable equivalences of Morita type are
both more frequent and more explicit than derived equivalences. We propose to use transfer
maps as a tool to set up and to investigate invariants under derived equivalences and under stable
equivalences of Morita type. In the first part of this paper we will define the appropriate transfer
maps and develop their basic properties, in particular a crucial compatibility condition (Theorem
2.10 and Corollary 2.12). In the second part we shall present some applications of the theory
developed in the first part. We then will demonstrate the usefulness of the transfer maps in a
general and abstract setup; we will work with symmetric algebras in full generality and with stable

∗ Corresponding author.
Mathematics Subject Classification(2010): Primary 16G10, 16E40; Secondary 20C20.
Keywords: Auslander–Reiten conjecture; Derived equivalence; Hochschild (co)homology; Stable equivalence of

Morita type; Transfer map.
Date: version of January 25, 2010.
The second author is supported by Marie Curie Fellowship IIF. The third author benefits from financial support

via a postdoctoral fellowship from the network ”Representation theory of algebras and algebraic Lie theory” and
the DAAD. This research work was mainly done while the last two authors visited the University of Köln.
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equivalences of Morita type in general, thus getting consequences for derived equivalences between
group algebras, or blocks of group algebras, as well.

The consequences we will derive from properties of transfer maps are threefold. Firstly, we
will discuss countable series of potential invariants, which all can be seen as refining Hochschild
homology, but which are of a ring theoretical nature. While Hochschild homology in positive degree
is known to be invariant under stable equivalences of Morita type ([23]), Hochschild homology
in degree zero is an invariant if and only if the two algebras in question have the same number
of non-projective simple modules, that is, when the so-called Auslander–Reiten conjecture ([2])
is valid in this situation ([24]). The series of candidate invariants that we are considering have
been defined by Külshammer ([18, 19]) in terms of ideals of the centre of an algebra, and thus
are closely related to degree zero Hochschild homology. We will show that any of these data is an
invariant under stable equivalence of Morita type if and only if all others are so if and only if the
Auslander–Reiten conjecture is valid in this case (Corollary 4.6 and Proposition 5.8). The main
tool to relate these data for different algebras are, of course, transfer maps.

Secondly, we will look at another potential invariant, cyclic homology. Here, the transfer maps
come in via Connes’ operator. Cyclic homology is a derived invariant by a result of Keller ([16]).
Surprisingly, it turns out that in odd degrees it is also invariant under stable equivalence of Morita
type, while in even degrees it is so if and only if the Auslander–Reiten conjecture is valid for the
given equivalence (Theorem 9.6).

Thus, our results provide various new interpretations of and a new approach to Auslander–
Reiten conjecture (which at present appears to be far beyond reach), to be based on the equivalent
versions of the conjecture contained in our results. To demonstrate feasibility of this approach, we
give a sufficient criterion for the Auslander–Reiten conjecture to hold true. For two not necessarily
symmetric algebras A and B over a field of positive characteristic, the conjecture follows from
the existence of two stable equivalences of Morita type, one relating A and B and the other one
relating their trivial extension algebras T(A) and T(B) (Corollary 8.2).

Thirdly, our results imply extensions and new proofs of various known results, especially on
derived categories. We reprove some results of Alexander Zimmermann ([35, 36, 37]) concerning
Külshammer ideals using transfer maps. We also prove that the Batalin-Vilkovisky algebra struc-
ture ([34][26]), in particular, the Gerstenhaber algebra structure, over Hochschild cohomology of
symmetric algebras is preserved by a derived equivalence (Theorems 10.7 and 10.8).

Now we are going to describe the contents of this article in more detail. In Section 2, we
recall transfer maps in Hochschild homology defined by Bouc and we introduce transfer maps
in Hochschild cohomology for symmetric algebras. We prove the compatibility theorem between
transfer maps in Hochschild homology and in Hochschild cohomology in this section. Section 3
studies when transfer maps preserve the product structure over Hochschild cohomology. P -power
maps over zero-degree Hochschild homology groups are investigated in Section 4. Section 5 con-
tains the stable version of Külshammer’s ζn. P -power maps over the centre Z(A), Külshammer’s
maps κn and their stable version are considered in the sixth section. Higher dimensional analogues
are presented in the seventh section. Section 8 contains the trivial extension construction. Cyclic
homology is studied in the ninth section and stable cyclic homology is introduced. We consider
Batalin-Vilkovisky algebra structure in the last section.

2. Transfer maps

Let k be a field of arbitrary characteristic and let A be a finite dimensional k-algebra. In the
sequel, ⊗ will denote ⊗k. The bar resolution Bar•(A) is defined as follows: Barn(A) = A⊗(n+2)

and for n ≥ 1, the differential is d′ =
∑n

i=0(−1)id′i : Barn(A) = A⊗(n+2) → Barn−1(A) = A⊗(n+1)

where for 0 ≤ i ≤ n, d′i sends a0 ⊗ · · · ⊗ an+1 for a0, · · · , an+1 ∈ A to

a0 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an+1.
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Then (Bar•(A), d′) is a projective resolution of A as Ae = A ⊗k Aop-modules. Let (C•(A), d) =
(A ⊗Ae Bar(A), IdA ⊗ d′) be the Hochschild complex. Namely, for n ≥ 0, Cn(A) ∼= A⊗(n+1) and
for n ≥ 1 the differential d : Cn(A) → Cn−1(A) sends a0 ⊗ · · · ⊗ an with a0, · · · , an ∈ A to

n−1∑

i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an + (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1.

Next we recall the construction of transfer maps in Hochschild homology due to Bouc ([4]).
Transfer maps in Hochschild homology and in cyclic homology also have been studied by Keller
([16]) and by Loday ([25]). Recall that for an algebra A, the Hochschild homology of degree zero
is HH0(A) = A/K(A) where K(A) is the subspace spanned by commutators.

Let A and B be two finite dimensional k-algebras and let M be an A-B-bimodule such that M is
finitely generated and projective as a right B-module. There exist xi ∈ M and ϕi ∈ HomB(M, B)
with 1 ≤ i ≤ s such that for any x ∈ M , x =

∑
i xiϕi(x). Then one can define a transfer map

tM : HHn(A) → HHn(B) for any n ≥ 0. The construction on the level of Hochschild complexes
is as follows: tM : Cn(A) → Cn(B) sends a0 ⊗ a1 ⊗ · · · ⊗ an to

∑

1≤i0,··· ,in≤s

ϕi0(a0xi1)⊗ ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0).

Bouc proved that this is a chain map and thus induces a morphism between Hochschild homology
groups, written also by tM : HHn(A) → HHn(B). In particular, the construction in degree zero

tM : HH0(A) = A/K(A) → HH0(B) = B/K(B)

is given by a + K(A) 7→ ∑s
i=1 ϕi(axi) + K(B).

We summarize basic properties of this transfer map in the following

Proposition 2.1. ([4, Section 3]) Let A, B and C be finite dimensional k-algebras.
(1) If M is an A-B-bimodule and N is a B-C-bimodule such that MB and NC are finitely

generated and projective, then tN ◦ tM = tM⊗BN : HHn(A) → HHn(C), for each n ≥ 0.
(2) Let

0 → L → M → N → 0
be a short exact sequence of A-B-bimodules which are finitely generated and projective as right
B-modules. Then tM = tL + tN : HHn(A) → HHn(B), for each n ≥ 0.

(3) For a finitely generated projective A-B-bimodule P , the transfer map tP : HHn(A) →
HHn(B) is zero for each n > 0.

(4) Consider A as an A-A-bimodule by left and right multiplications, then tA : HHn(A) →
HHn(A) is the identity map for any n ≥ 0.

Remark 2.2. Given a bounded (cochain) complex X• of A-B-bimodules whose terms are finitely
generated and projective as right B-modules, one can also define a transfer map tX• : HHn(A) →
HHn(B) by tX• :=

∑
i(−1)itXi. Note that if Y • is another bounded complex of A-B-bimodules

whose terms are finitely generated and projective as right B-modules such that X• and Y • are
quasi-isomorphic, then tX• = tY • ([4, Section 4]).

We will define transfer maps in Hochschild cohomology for symmetric algebras. Our definition
will turn out to coincide with the construction due to Linckelmann ([20]). We recall some basic
facts about symmetric algebras and for details we refer to [20, Section 6]. A symmetric algebra is
a finite dimensional k-algebra such that there is a symmetric non-degenerate associative bilinear
form ( , )A : A × A → k, or equivalently, A ∼= D(A) = A∗ = Homk(A, k) as bimodules. The
image of the unit element of A under this isomorphism is called a symmetrizing form on A and is
denoted by s. Note that the bilinear form can be given by (a, a′)A = s(aa′) for arbitrary a, a′ ∈ A.

Now let B be another finite dimensional k-algebra and AMB be an A-B-bimodule. Then M∗ =
Homk(M, k) is isomorphic to HomA(M, A) as B-A-bimodules. The isomorphism HomA(M, A) ∼=
M∗ sends f ∈ HomA(M, A) to the composition s◦f . The inverse map can be described as follows.
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Let {ui} be a basis of A and let {vi} be the dual basis with respect to the bilinear form ( , )A

or s ∈ A∗, that is, (ui, vj) = δij . Then the image of θ ∈ M∗ under the inverse map is the map
sending x ∈ M to

∑
i θ(vix)ui.

Now suppose that AM is finitely generated and projective. Then we have isomorphisms of
functors

HomA(M,−) ∼= HomA(M, A)⊗A − ∼= M∗ ⊗A −.

By adjointness, there is an adjoint pair (M ⊗B −,M∗ ⊗A −). One can compute the associate
counit morphism εM : M ⊗B M∗ → A. Let x ∈ M and θ ∈ M∗. Then εM (x⊗A θ) =

∑
i θ(vix)ui.

Suppose now that B is also symmetric with t ∈ B∗ giving the symmetrizing form. If further-
more, MB is finitely generated and projective, then M∗ is finitely generated projective as left
B-module and we have isomorphisms of functors

HomB(M∗,−) ∼= HomB(M∗, B)⊗B − ∼= M∗∗ ⊗B − ∼= M ⊗B −.

Hence there is another adjoint pair (M∗⊗A−,M ⊗B−). Its unit morphism ηM∗ : A → M ⊗B M∗
can be computed. Since M is finitely generated and projective as a right B-module, there exist
xi ∈ M and ϕi ∈ HomB(M, B) with 1 ≤ i ≤ s such that for any x ∈ M , x =

∑
i xiϕi(x). It

follows that ηM∗ sends a ∈ A to
∑

i axi ⊗B t ◦ ϕi.

Remark 2.3. We can give another realization of the above unit morphism ηM∗ by considering
adjoint pairs between the categories of right modules. Namely, since M is finitely generated and
projective as a right B-module, there are isomorphisms of functors

HomB(M,−) ∼= −⊗B HomB(M, B) ∼= −⊗B M∗.

Hence there is an adjoint pair (−⊗A M,−⊗B M∗). A computation shows that the unit morphism
A → M ⊗B M∗ of this adjoint pair coincides with the above ηM∗.

Now transfer maps in Hochschild cohomology can be defined. Recall that the Hochschild
cohomology is the cohomology of the Hochschild complex C•(A) = HomAe(Bar•(A), A). Then
Cn(A) = HomAe(Barn(A), A) = Homk(A⊗n, A). Our goal is to define a chain map tM : C•(B) →
C•(A) for an A-B-bimodule AMB which is finitely generated and projective as a left A-module
and a right B-module for two symmetric algebras A and B. To this end, we need a chain map

Θ• : Bar•(A) → M ⊗B Bar•(B)⊗B M∗

which lifts the unit morphism ηM∗ : A → M ⊗B M∗.

Proposition 2.4. Let A and B be two finite dimensional k-algebras with B symmetric by a
symmetrizing form t ∈ B∗. Let AMB be an A-B-bimodule such that MB is finitely generated and
projective.

Then for n ≥ 0, the map

Θn : Barn(A) = A⊗(n+2) → M ⊗B Barn(B)⊗B M∗ = M ⊗B⊗n ⊗M∗

sending a0 ⊗ · · · ⊗ an+1 for a0, · · · , an+1 ∈ A to∑

i0,··· ,in
a0xi1 ⊗ ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0)⊗ t ◦ ϕi0an+1

commutes with the differential, where xi ∈ M and ϕi ∈ HomB(M, B) with 1 ≤ i ≤ s such that for
any x ∈ M , x =

∑
i xiϕi(x). Moreover, Θ• lifts the unit morphism ηM∗ : A → M ⊗B M∗.

Proof We first prove that Θ• lifts the unit morphism ηM∗ : A → M ⊗B M∗, that is, ηM∗µA =
(IdM ⊗µB⊗IdM∗)Θ0 where µA : A⊗k A → A and µB : B⊗k B → B are the multiplication maps.
For a0, a1 ∈ A, we have (IdM ⊗µB⊗IdM∗)Θ0(a0⊗a1) = (IdM ⊗µB⊗IdM∗)(

∑
i a0xi⊗ t◦ϕia1) =∑

i a0xi ⊗B t ◦ ϕia1, and on the other hand, ηM∗µA(a0 ⊗ a1) = ηM∗(a0a1) =
∑

i a0xi ⊗B t ◦ ϕia1

since ηM∗ is an A-A-bimodule homomorphism.
Next, we prove that Θ• is a chain map. To do this, we need to prove that Θn−1d

′
i = (IdM ⊗

d′i ⊗ IdM∗)Θn for each 0 ≤ i ≤ n. We shall only give the proof for i = 0 and for i = n, the other
cases being similar.
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Case i = 0. For a0, · · · , an+1 ∈ A, we have

Θn−1d
′
0(a0 ⊗ · · · ⊗ an+1)

= Θn−1(a0a1 ⊗ · · · ⊗ an+1)

=
∑

i2,··· ,in,i0

a0a1xi2 ⊗ ϕi2(a2xi3)⊗ · · · ⊗ ϕin(anxi0)⊗ t ◦ ϕi0an+1

and on the other hand, we have

(IdM ⊗ d′0 ⊗ IdM∗)Θn(a0 ⊗ · · · ⊗ an+1)

= (IdM ⊗ d′0 ⊗ IdM∗)(
∑

i0,i1,i2,··· ,in
a0xi1 ⊗ ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0)⊗ t ◦ ϕi0an+1)

=
∑

i0,i1,i2,··· ,in
a0xi1ϕi1(a1xi2)⊗ ϕi2(a2xi3) · · · ⊗ ϕin(anxi0)⊗ t ◦ ϕi0an+1

=
∑

i0,i2,··· ,in
(
∑

i1

a0xi1ϕi1(a1xi2))⊗ ϕi2(a2xi3) · · · ⊗ ϕin(anxi0)⊗ t ◦ ϕi0an+1

=
∑

i2,··· ,in,i0

a0a1xi2 ⊗ ϕi2(a2xi3)⊗ · · · ⊗ ϕin(anxi0)⊗ t ◦ ϕi0an+1

where we use the equality ∑

i1

xi1ϕi1(a1xi2) = a1xi2 .

Case i = n. For a0, · · · , an+1 ∈ A, we have

Θn−1d
′
n(a0 ⊗ · · · ⊗ an+1)

= Θn−1(a0 ⊗ · · · ⊗ anan+1)

=
∑

i0,i1,··· ,in−1

a0xi1 ⊗ ϕi1(a1xi2)⊗ · · · ⊗ ϕin−1(an−1xi0)⊗ t ◦ ϕi0anan+1

and on the other hand, we have

(IdM ⊗ d′n ⊗ IdM∗)Θn(a0 ⊗ · · · ⊗ an+1)

= (IdM ⊗ d′n ⊗ IdM∗)(
∑

i0,··· ,in
a0xi1 ⊗ ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0)⊗ t ◦ ϕi0an+1)

=
∑

i0,··· ,in
a0xi1 ⊗ ϕi1(a1xi2)⊗ · · · ⊗ ϕin−1(an−1xin)⊗ ϕin(anxi0)t ◦ ϕi0an+1

=
∑

in,i1,··· ,in−1,i0

a0xi1 ⊗ ϕi1(a1xi2)⊗ · · · ⊗ ϕin−1(an−1xi0)⊗ ϕi0(anxin)t ◦ ϕinan+1

=
∑

i0,i1,··· ,in−1

a0xi1 ⊗ · · · ⊗ ϕin−1(an−1xi0)⊗ (
∑

in

ϕi0(anxin)t ◦ ϕinan+1).

To finish the proof, we need to show that

t ◦ ϕi0anan+1 =
∑

in

ϕi0(anxin)t ◦ ϕinan+1.

For x ∈ M , we have t ◦ ϕi0anan+1(x) = t(ϕi0(anan+1x)) and on the other hand, we have

∑

in

ϕi0(anxin)t ◦ ϕinan+1(x) =
∑

in

t ◦ ϕin(an+1xϕi0(anxin)) = t(
∑

in

ϕin(an+1x)ϕi0(anxin))

= t(
∑

in

ϕi0(anxin)ϕin(an+1x)) = t(ϕi0(an

∑

in

xinϕin(an+1x))) = t(ϕi0(anan+1x)).

¤
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Now we can define transfer maps in Hochschild cohomology for symmetric algebras. Let A and
B be two symmetric algebras and let AMB be a bimodule such that AM and MB are finitely
generated and projective. Then for f ∈ Cn(B) = HomBe(Barn(B), B) with n ≥ 0, we define
trM (f) to be the composition

Barn(A) Θn→ M ⊗B Barn(B)⊗B M∗ IdM⊗f⊗IdM∗−→ M ⊗B B ⊗B M∗ εM→ A.

Proposition 2.5. (1) For f ∈ Cn(B) = HomBe(Barn(B), B) ∼= Homk(B⊗n, B) with n ≥ 0,
the map trM (f) ∈ Homk(A⊗n, A) sends a1 ⊗ · · · ⊗ an to

∑

i0,··· ,in,j

(ϕi0(vjxi1), f(ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0)))Buj

where xi ∈ M and ϕi ∈ HomB(M, B) with 1 ≤ i ≤ s such that for any x ∈ M , x =∑
i xiϕi(x), where ( , )B is the bilinear form over B and where {uj}, {vj} are dual bases

in A, that is, (ui, vj)A = δij.
(2) The map trM : Cn(B) → Cn(A) is a chain map and thus induces a transfer map tM :

HHn(B) → HHn(A) for n ≥ 0. In particular, in degree zero, tM : Z(B) → Z(A) is given
by

b 7→
∑

i,j

(ϕi(vjxi), b)Buj .

Moreover, if we identify Z(A) with EndAe(A,A) (Z(B) with EndBe(B,B), respectively),
then tM : Z(B) → Z(A) coincides with the composition

A
ηM∗→ M ⊗B B ⊗B M∗ IdM⊗f⊗IdM∗−→ M ⊗B B ⊗B M∗ εM→ A.

Proof The proof of the first assertion is easy using the explicit construction of Θn and εM . The
second assertion is also direct since Θ• is a chain map by Proposition 2.4.

¤
Remark 2.6. (1) Linckelmann introduced in [20] transfer maps for symmetric algebras as follows.
Let A and B be two symmetric k-algebras . Let AMB be an A-B-bimodule such that AM and MB

are finitely generated and projective. Let PA (resp. PB) be a projective resolution of A (resp.
of B) as bimodules. Suppose we are given ζ ∈ HHn(B) ∼= HomK(Be)(PB,PB[n]) where K(Be)
is the homotopy category of complexes of Be-modules. Then we define tM (ζ) ∈ HHn(A) ∼=
HomK(Ae)(PA,PA[n]) to be the class in the homotopy category K(Ae) of the composition

PA → M ⊗B PB ⊗B M∗ IdM⊗ζ⊗IdM∗−→ M ⊗B PB[n]⊗B M∗ → PA[n].

Here the first map in the composition lifts the unit morphism ηM∗ : A → M ⊗B M∗ and the
third map lifts a translation of the counit morphism εM : M ⊗B M∗ → A. It is obvious that our
construction is a special case of Linckelmann’s construction. We choose PA (resp. PB) to be the
Bar resolution Bar•(A) (resp. Bar•(B)) and we explicitly construct the first lift. Linckelmann’s
construction also works for a bounded complex X• of A-B-bimodules whose terms are finitely
generated and projective as left and right modules. But here we first define the case of modules,
and point out some basic properties of transfer maps. Afterwards we will deal with the case of
complexes in Remark 2.8.

(2) As Linckelmann has pointed out in [20, Remark 2.10], the definition of the transfer map in
Hochschild cohomology depends on the choice of the symmetrizing forms s on A and t on B in
the following way: if s′ ∈ A∗ and t′ ∈ B∗ are some other symmetrizing forms, there are unique
invertible elements u ∈ Z(A) and v ∈ Z(B) such that s′ = us and t′ = vt. It follows that the
corresponding transfer map tM

′ associated with s′ and t′ satisfies tM
′([f ]) = u−1tM (v[f ]) for any

[f ] ∈ HHn(B).

As in Hochschild homology, the transfer maps in Hochschild cohomology satisfy the following
properties proved in [20]. Here we shall give a different proof for them by using our explicit
construction and some ideas from [4].
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Proposition 2.7. ([20, Section 2]) Let A, B and C be (finite dimensional) symmetric k-algebras.
(1) If M is an A-B-bimodule and N is a B-C-bimodule such that AM , MB, BN and NC are

finitely generated and projective as left and right modules, then tM ◦ tN = tM⊗BN : HHn(C) →
HHn(A), for each n ≥ 0.

(2) Let

0 → L
α→ M

β→ N → 0
be a short exact sequence of A-B-bimodules which are finitely generated and projective as left
A-modules and as right B-modules. Then tM = tL + tN : HHn(B) → HHn(A), for each n ≥ 0.

(3) For a finitely generated projective A-B-bimodule P , the transfer map tP : HHn(B) →
HHn(A) is zero for each n > 0.

(4) Consider A as an A-A-bimodule by left and right multiplications. Then tA : HHn(A) →
HHn(A) is the identity map for any n ≥ 0.

Proof (1) Since M is finitely generated and projective as a right B-module, there exist xi ∈ M and
ϕi ∈ HomB(M, B) with 1 ≤ i ≤ s such that for any x ∈ M , x =

∑
i xiϕi(x). Similarly, since N is

finitely generated and projective as a right C-module, there exist yj ∈ N and ψj ∈ HomC(N, C)
with 1 ≤ j ≤ t such that for any y ∈ N , y =

∑
j yjψj(y). Moreover, we choose the elements

xi⊗yj ∈ M⊗BN and define θi,j ∈ HomC(M⊗BN, C) by θi,j(x⊗y) = ψj(ϕi(x)y), where 1 ≤ i ≤ s
and 1 ≤ j ≤ t. Then for any x⊗ y ∈ M ⊗B N ,

∑
i,j(xi⊗ yj)θi,j(x⊗ y) =

∑
i,j xi⊗ yjψj(ϕi(x)y) =∑

i xi ⊗ ϕi(x)y =
∑

i xiϕi(x) ⊗ y = x ⊗ y. Since A, B and C are symmetric k-algebras, we can
choose bilinear forms ( , )A, ( , )B, and ( , )C , respectively. We choose dual bases {ui}, {vi} in A,
that is, (ui, vj)A = δij . Similarly, we choose dual bases {pj}, {qj} in B. To prove the statement,
it suffices to prove that, for any f ∈ Homk(C⊗n, C), trM ◦ trN (f) = trM⊗BN (f).

For f ∈ Homk(C⊗n, C), we have trN (f) ∈ Homk(B⊗n, B) sends b1 ⊗ · · · ⊗ bn to
∑

j0,··· ,jn,j

(ψj0(qjyj1), f(ψj1(b1yj2)⊗ · · · ⊗ ψjn(bnyj0)))Cpj .

Let g = trN (f). Then we have trM (g) = trM trN (f) ∈ Homk(A⊗n, A) sends a1 ⊗ · · · ⊗ an to
∑

i0,··· ,in,i

(ϕi0(vixi1), g(ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0)))Bui

=
∑

i0,··· ,in,i

(ϕi0(vixi1),
∑

j0,··· ,jn,j

(ψj0(qjyj1), f(ψj1(ϕi1(a1xi2)yj2)⊗ · · · ⊗ ψjn(ϕin(anxi0)yj0)))Cpj)Bui

=
∑

i0,··· ,in,j0,··· ,jn,i

∑

j

(ϕi0(vixi1), (ψj0(qjyj1), f(ψj1(ϕi1(a1xi2)yj2)⊗· · ·⊗ψjn(ϕin(anxi0)yj0)))Cpj)Bui

=
∑

i0,··· ,in,j0,··· ,jn,i

∑

j

(ψj0(qjyj1), f(ψj1(ϕi1(a1xi2)yj2)⊗· · ·⊗ψjn(ϕin(anxi0)yj0)))C(ϕi0(vixi1), pj)Bui

=
∑

i0,··· ,in,j0,··· ,jn,i

(
∑

j

ψj0(qjyj1)(ϕi0(vixi1), pj)B, f(ψj1(ϕi1(a1xi2)yj2)⊗· · ·⊗ψjn(ϕin(anxi0)yj0)))Cui.

On the other hand, we have trM⊗BN (f) sends a1 ⊗ · · · ⊗ an to
∑

i0,··· ,in,j0,··· ,jn,i

(θi0,j0(vixi1 ⊗ yj1), f(θi1,j1(a1xi2 ⊗ yj2)⊗ · · · ⊗ θin,jn(anxi0 ⊗ yj0)))Cui

=
∑

i0,··· ,in,j0,··· ,jn,i

(ψj0(ϕi0(vixi1)yj1), f(ψj1(ϕi1(a1xi2)yj2)⊗ · · · ⊗ ψjn(ϕin(anxi0)yj0)))Cui.

It remains to prove that∑

j

ψj0(qjyj1)(ϕi0(vixi1), pj)B = ψj0(ϕi0(vixi1)yj1).
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But this follows from the equality

ϕi0(vixi1) =
∑

j

(ϕi0(vixi1), pj)Bqj .

(2) By assumption, both α and β are split as right B-module homomorphisms. So there exist
right B-homomorphisms α′ : M → L and β′ : N → M such that α′α = 1L, ββ′ = 1N and
αα′+β′β = 1M . We choose xi ∈ L and ϕi ∈ HomB(L,B) with 1 ≤ i ≤ s such that for any x ∈ L,
x =

∑
i xiϕi(x). Similarly, we choose yj ∈ N and ψj ∈ HomB(N, B) with 1 ≤ j ≤ t such that for

any y ∈ N , y =
∑

j yjψj(y). We define zl ∈ M and πl ∈ HomB(M, B) as follows

zl =
{

α(xl) 1 ≤ l ≤ s
β′(yl−s) s + 1 ≤ l ≤ s + t,

πl =
{

ϕlα
′ 1 ≤ l ≤ s

ψl−sβ s + 1 ≤ l ≤ s + t.

Then for any z ∈ M ,
∑

l zlπl(z) =
∑

i α(xi)(ϕiα
′)(z) +

∑
j β′(yj)(ψjβ)(z) = α(

∑
i xiϕi(α′(z)) +

β′(
∑

j yjψj(β(z)) = α(α′(z))+β′(β(z)) = z. As before, we choose bilinear forms ( , )A and ( , )B,
respectively, and let {ui}, {vi} be dual bases in A. To prove the statement, it suffices to prove
that, for any f ∈ Homk(B⊗n, B), trL(f) + trN (f) = trM (f).

For f ∈ Homk(B⊗n, B), the map trL(f) ∈ Homk(A⊗n, A) sends a1 ⊗ · · · ⊗ an to

(i)
∑

i0,··· ,in,i

(ϕi0(vixi1), f(ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0)))Bui

and the map trN (f) ∈ Homk(A⊗n, A) sends a1 ⊗ · · · ⊗ an to

(ii)
∑

j0,··· ,jn,i

(ψj0(viyj1), f(ψj1(a1yj2)⊗ · · · ⊗ ψjn(anyj0)))Bui.

On the other hand, trM (f) ∈ Homk(A⊗n, A) sends a1 ⊗ · · · ⊗ an to

(iii)
∑

l0,··· ,ln,i

(πl0(vizl1), f(πl1(a1zl2)⊗ · · · ⊗ πln(anzl0)))Bui.

Observe that if 1 ≤ j, k ≤ s, then πj(vizk) = ϕj(α′(viα(xk))) = ϕj(α′(α(vixk))) = ϕj(vixk).
Similarly, if s + 1 ≤ j, k ≤ s + t, then πj(vizk) = ψj−s(β(viβ

′(yk−s))) = ψj−s(viβ(β′(yk−s))) =
ψj−s(viyk−s). However, if 1 ≤ k ≤ s and s + 1 ≤ j ≤ s + t, then πj(vizk) = ψj−s(β(viα(vixk))) =
ψj−s(viβ(α(xk))) = 0. It follows that each term in (iii) occurs exactly once in (i) or (ii), and
conversely, each term in (i) or (ii) is a term in (iii). Therefore, (iii) = (i) + (ii).

(3) Without loss of generality we can assume that P is an indecomposable projective A-B-
bimodule. Therefore P ∼= Ae ⊗k fB for some idempotents e ∈ A and f ∈ B. It follows that
tP = tAe ◦ tfB : HHn(B) → HHn(A) factors through HHn(k). However, HHn(k) = 0 for each
n ≥ 0.

(4) For the regular A-A-bimodule A, we choose x = 1, ϕ = 1A so that xϕ(a) = a for any
a ∈ A. We fix a bilinear form ( , )A, and let {ui}, {vi} be dual bases in A. Then for any
f ∈ Homk(A⊗n, A), we have that trA(f) ∈ Homk(A⊗n, A) sends a1 ⊗ · · · ⊗ an to

∑

j

(vj , f(a1 ⊗ · · · ⊗ an)Auj = f(a1 ⊗ · · · ⊗ an).

¤
Remark 2.8. Given a bounded (cochain) complex X• of A-B-bimodules whose terms are finitely
generated and projective as left and right modules, one can also define a transfer map tX

•
:

HHn(B) → HHn(A) by tX
•

:=
∑

i(−1)itX
i
. Note that if Y • is another bounded complex of

A-B-bimodules whose terms are finitely generated and projective as left and right modules such
that X• and Y • are quasi-isomorphic, then tX

•
= tY

•
(by the same argument as in [4, Section 4]).

Let A be a symmetric algebra. Then there is a non-degenerate bilinear pairing between HHn(A)
and HHn(A) for any n ≥ 0 induced by the following isomorphism of complexes:

Homk(C•(A), k) = Homk(A⊗AeBar•(A), k) ∼= HomAe(Bar•(A), A∗) ∼= HomAe(Bar•(A), A) = C•(A),
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where the third isomorphism is induced by the isomorphism of bimodules A∗ ∼= A.

Lemma 2.9. Let f ∈ Cn(A) ∼= Homk(A⊗n, A). Then its image in Homk(A⊗(n+1), k) under the
inverse of the above isomorphism, denoted by Φ(f),

sends a0 ⊗ · · · ⊗ an for a0, · · · , an ∈ A to (a0, f(a1 ⊗ · · · ⊗ an))A.

Proof For f ∈ Cn(A) ∼= Homk(A⊗n, A), its image in HomAe(Bar•(A), A) sends a0⊗· · ·⊗an⊗an+1

to a0f(a1⊗· · ·⊗an)an+1. Its image in HomAe(Bar•(A), A∗) sends a0⊗· · ·⊗an⊗an+1 to a0f(a1⊗
· · · ⊗ an)an+1s, where s is the symmetrizing form over A. Its image in Homk(A ⊗Ae Bar•(A), k)
sends a⊗a0⊗· · ·⊗an⊗an+1 to (a0f(a1⊗· · ·⊗an)an+1s)(a). Finally, its image in Homk(A⊗(n+1), k)
sends a0 ⊗ · · · ⊗ an to (a0f(a1 ⊗ · · · ⊗ an)s)(1) = s(a0f(a1 ⊗ · · · ⊗ an)) = (a0, f(a1 ⊗ · · · ⊗ an))A.

¤
Let A and B be two symmetric algebras and let AMB be a bimodule such that AM and MB

are finitely generated and projective. Given such a bimodule M , transfer maps are defined in
Hochschild homology and also in Hochschild cohomology. It will be crucial to know whether they
are compatible via the above duality. This question is answered by the following theorem.

Theorem 2.10. Let A and B be two symmetric algebras and let AMB be a bimodule such that
AM and MB are finitely generated and projective.

Then there is a commutative diagram

C•(B)
∼= //

trM

²²

Homk(C•(B), k)

−◦trM

²²
C•(A)

∼= // Homk(C•(A), k)

where the horizontal isomorphisms are the above duality and the rightmost map is induced by
composing trM on the right-hand side.

Proof We compare the action of the two compositions on arbitrary elements.
Let a0, · · · , an ∈ A and let f ∈ Cn(B) = Homk(B⊗n, B). Then

Φ(f)trM (a0 ⊗ · · · ⊗ an)

= Φ(f)(
∑

i0,··· ,in
ϕi0(a0xi1)⊗ · · · ⊗ ϕin(anxi0))

=
∑

i0,··· ,in
(ϕi0(a0xi1), f(ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0)))B

and on the other hand,

Φ(trM (f))(a0 ⊗ · · · ⊗ an)

= (a0, tr
M (f)(a1 ⊗ · · · ⊗ an))A

= (a0,
∑

i0,··· ,in,j

(ϕi0(vjxi1), f(ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0))Buj)A

=
∑

i0,··· ,in,j

(a0, uj)A(ϕi0(vjxi1), f(ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0))B

=
∑

i0,··· ,in
(ϕi0((

∑

j

(a0, uj)A)vjxi1), f(ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0))B

=
∑

i0,··· ,in
(ϕi0((a0xi1), f(ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0))B,

where {uj}, {vj} are dual bases in A.
¤
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Remark 2.11. An analogous result holds true when replacing the above M by a bounded complex
X• of A-B-bimodules whose terms are finitely generated and projective as left and right modules.

Corollary 2.12. Let A and B be two symmetric algebras and let AMB be a bimodule such that
AM and MB are finitely generated and projective.

Then the transfer maps tM : Z(B) → Z(A) and tM : A/K(A) → B/K(B) satisfy the following
compatibility property:

(tM (a), b)B = (a, tM (b))A, where a ∈ A/K(A), b ∈ Z(B).

Proof In degree zero case, both C0(B) and C0(B) identify with B and the duality Φ : C0(B) ∼=
B → Homk(B, k) ∼= Homk(C0(B), k) (cf. Lemma 2.9) maps any b ∈ B to (−, b)B ∈ Homk(B, k).
Now the conclusion follows easily from the degree zero case of Theorem 2.10.

¤

Let Zpr(A) be the projective centre of A, that is, the set of A-A-bimodule homomorphisms
from A to itself which factor through projective bimodules. The projective centre is an ideal of
the centre Z(A) and we denote the stable centre by Zst(A) = Z(A)/Zpr(A).

Lemma 2.13. Let A and B be two symmetric algebras and let AMB be a bimodule such that AM
and MB are finitely generated and projective. Then tM (Zpr(B)) ⊆ Zpr(A) and hence there is an
induced map tMst : Zst(B) → Zst(A).

Proof Note that tM : Z(B) → Z(A) coincides with the composition

A
ηM∗→ M ⊗B B ⊗B M∗ IdM⊗f⊗IdM∗−→ M ⊗B B ⊗B M∗ εM→ A.

Therefore our conclusion follows from the fact that M ⊗B P ⊗B M∗ is a projective A-A-bimodule
for any projective B-B-bimodule P .

¤
Next we recall the definition of stable Hochschild homology of degree zero and its basic prop-

erties (cf. [24]).

Definition 2.14. Let A be a finite dimensional k-algebra over a field k with the decomposition
AA =

⊕r
i=1 Aei, where Aei (1 ≤ i ≤ r) are indecomposable projective A-modules. The stable

Hochschild homology group HHst
0 (A) of degree zero is defined to be a subgroup of the 0-degree

Hochschild homology group HH0(A) = A/K(A), namely

HHst
0 (A) = {a ∈ A | the trace of the map Aei → Aei(b 7→ ab) vanishes for any 1 ≤ i ≤ r}/K(A).

The main property of this group is its invariance under derived equivalences and stable equiv-
alences of Morita type.

Theorem 2.15. (1) [24, Corollary 4.5] Let A and B be two derived equivalent finite dimen-
sional algebras over an algebraically closed field. Then dimHHst

0 (A) = dimHHst
0 (B).

(2) [24, Theorem 4.7] Let A and B be two finite dimensional algebras over an algebraically
closed field which are stably equivalent of Morita type. Then dimHHst

0 (A) = dimHHst
0 (B).

(3) [24, Proposition 4.13] If A is symmetric, then HHst
0 (A) = Zpr(A)⊥/K(A).

(4) [24, Proof of Theorem 4.7] Let M be an A-B-bimodule such that M induces a stable
equivalence of Morita type between A and B. Then tM (HHst

0 (A)) ⊆ HHst
0 (B) and we

denote its restriction on HHst
0 (A) by tstM : HHst

0 (A) → HHst
0 (B).

Now let A and B be two symmetric algebras which are stably equivalent of Morita type (defined
by the bimodule AMB). We have defined two stable transfer maps tMst : Zst(B) → Zst(A) and
tstM : HHst

0 (A) → HHst
0 (B). By Theorem 2.15 (3), the symmetrizing form s ∈ A∗ induces a non-

degenerate bilinear pairing ( , )A : Zst(A) × HHst
0 (A) → k, and the symmetrizing form t ∈ B∗

induces a non-degenerate bilinear pairing ( , )B : Zst(B)×HHst
0 (B) → k. As in Corollary 2.12,

tMst and tstM are compatible via ( , )A and ( , )B.
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Proposition 2.16. Let M be an A-B-bimodule such that M induces a stable equivalence of Morita
type between two symmetric algebras A and B. Then

(tstM (a), [b])B = (a, tMst ([b]))A

where a = a + K(A) ∈ HHst
0 (A) and [b] = b + Zpr(B) ∈ Zst(B) for a ∈ A and b ∈ Z(B).

Proof This is an easy consequence of Corollary 2.12 and the previous discussion.
¤

3. Transfer maps and product structure of Hochschild cohomology

In this section, we investigate the problem when transfer maps in Hochschild cohomology pre-
serve the product structure of the Hochschild cohomology algebras. We concentrate on the case
where the bimodule (bounded complex of bimodules, respectively) is given by a stable equivalence
of Morita type (a derived equivalence, respectively).

Recall first the definition of a stable equivalence of Morita type.

Definition 3.1. ([7]) Let A and B be two finite dimensional k-algebras. We say that A and B are
stably equivalent of Morita type, if there are two bimodules AMB and BNA which are projective
as left modules and as right modules and such that we have bimodule isomorphisms:

AM ⊗B NA
∼= AAA ⊕ APA, BN ⊗A MB

∼= BBB ⊕ BQB

where APA and BQB are projective bimodules.

From now on, when talking about a stable equivalence of Morita type between algebras A and
B, we shall always assume that A and B have no semisimple direct summands (as algebras). By [9,
Corollary 3.1] and [22], we may and will assume that both (N⊗A−,M⊗B−) and (M⊗B−, N⊗A−)
are pairs of adjoint functors. In particular, we can identify N with HomA(M, A) as B-A-bimodules.
The bimodule isomorphism AM ⊗B NA

∼= AAA ⊕ APA, defines a projection p : M ⊗B N → A and
an injection i : A → M ⊗B N . Then we have p ◦ i = 1A. Note that i can be chosen as the unit
morphism ηN of the adjoint pair (N ⊗A −,M ⊗B −) (see [9]), but in general, for a fixed choice of
i, one cannot choose p as the counit morphism εM of the adjoint pair (M ⊗B −, N ⊗A −).

Remark 3.2. Note that in general the composition εMηN is an invertible element in the centre
Z(A). Indeed, εMηN is an element in the centre Z(A) since both εM and ηN are A-A-bimodule
homomorphisms. It is also invertible by the following argument. Without loss of generality, we may
assume that A is an indecomposable (non-simple) algebra and therefore the centre Z(A) is a local
algebra. Both εM and ηN induce invertible elements in the stable centre Zst(A) = Z(A)/Zpr(A)
and Zpr(A) ⊆ radZ(A) in this case. It follows that εMηN is also invertible in Z(A).

Now suppose that A and B are symmetric k-algebras. One can identify N with M∗ =
Homk(M, k). Under a suitable choice of symmetrizing forms over A and B, i can be chosen
as the unit morphism ηM∗ : A → M ⊗B M∗ of the adjoint pair (M∗ ⊗A −,M ⊗B −), and p can
be chosen as the counit morphism εM : M ⊗B M∗ → A of the adjoint pair (M ⊗B −,M∗ ⊗A −).
Explicit computations for ηM∗ and εM have been given in Section 2. Note that ηM∗ depends on
the choice of the symmetrizing form t on B and that εM depends on the choice of the symmetrizing
form s on A. Since the composition εMηM∗ is an invertible element, say u, in the centre Z(A),
we can choose another symmetrizing form s′ ∈ A∗ such that s′ = us. With respect to s′ and t,
the composition εMηM∗ is the identity element 1 ∈ A.

For a stable equivalence of Morita type, by a result of the second author ([22, Corollary 2.4]),
if B is symmetric, then so is A. More precisely, one can deduce from the bilinear form on B given
by t ∈ B∗ a bilinear form on A which makes it a symmetric algebra. We shall show that, with
respect to this pair of bilinear forms, the composition εMηM∗ is the identity element 1 ∈ A.
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Lemma 3.3. Let A and B be two symmetric algebras which are stably equivalent of Morita type
given by AMB and BNA. Suppose that t ∈ B∗ gives the bilinear form on B.
Then the induced bilinear form on A can be described as follows:

s : A → k, a 7→
∑

t(ϕi(axi))

where xi ∈ M and ϕi ∈ HomB(M, B) with 1 ≤ i ≤ s such that for any x ∈ M , x =
∑

i xiϕi(x).

Proof The proof follows exactly that of [22, Corollary 2.4]. Since MB is projective, we have by
[1, Proposition 20.11], M ⊗B D(B) ∼= D(HomB(M, B)) as A-B-bimodules. As BN is projective,
by [32, Lemma 3.59], we have A-A-bimodule isomorphisms

M ⊗B B ⊗B N ∼= M ⊗B D(B)⊗B N
∼= D(HomB(M, B))⊗B N
∼= D(HomB(N, HomB(M, B)))
∼= D(HomB(N, B)⊗B HomB(M, B)))
∼= D(M ⊗B N).

We have thus M ⊗B N ∼= D(M ⊗B N). If we compose it with the injection j : A → M ⊗B N and
the surjection: D(M ⊗B N) → D(A), f 7→ f ◦ j, one obtains an A-A-bimodule homomorphism

σ : A → M ⊗B N ∼= D(M ⊗B N) → D(A).

We claim that σ is an isomorphism so that σ defines a symmetrizing bilinear form for the algebra
A. In fact, from the isomorphisms M ⊗B N ∼= A ⊕ P and M ⊗B N ∼= D(M ⊗B N), we get an

isomorphism h =
(

h1 h2

h3 h4

)
: A⊕ P ∼= D(A)⊕D(P ) with h1 = σ. Suppose that the inverse of

h is given by g =
(

g1 g2

g3 g4

)
: D(A) ⊕D(P ) ∼= A ⊕ P . Then we have that g1h1 + g2h3 = 1A ∈

EndAe(A). Since A has no projective Ae-summand and g2h3 factors through a projective Ae-
module, g2h3 ∈ radEndAe(A) and therefore g1h1 = 1A − g2h3 is an isomorphism. It follows that
σ = h1 is an isomorphism.

Now the element s ∈ D(A) is just the image of 1 ∈ A under σ and can be computed explicitly.
¤

Proposition 3.4. Let A and B be two symmetric algebras which are stably equivalent of Morita
type given by AMB and BNA = M∗. Suppose that t ∈ B∗ gives the bilinear form over B and that
the bilinear form on A is induced from that of B as in Lemma 3.3.
Then εMηM∗ = 1A.

Proof By the explicit computations of ηM∗ and εM in Section 2 and by Lemma 3.3, we have

εM (ηM∗(1)) = εM (
∑

i

xi ⊗ t ◦ ϕi) =
∑

ij

t ◦ ϕi(vjxi)uj =
∑

j

s(vj)uj = 1.

The conclusion follows from the fact that both ηM∗ and εM are A-A-bimodule homomorphisms.
¤

Now we can state the result that transfer maps preserve product structure once the above choice
of bilinear form over A has been made.

Theorem 3.5. Let A and B be two symmetric algebras which are related by a stable equivalence
of Morita type that is given by AMB and BNA = M∗. Suppose that the bilinear form on A is
induced from that of B as in Lemma 3.3.
Then the transfer map tM : HH∗

st(B) = HH∗(B)/Zpr(B) → HH∗
st(A) is an isomorphism of

algebras.

This result is indicated without proof in [20, Remark 2.13]. We give a proof here based on
a result of Pogorzaly ([27]). He proved that a stable equivalence of Morita type between self-
injective algebras induces an isomorphism of stable Hochschild cohomology algebras HH∗

st(A) =



TRANSFER MAPS 13

HH∗(A)/Zpr(A). He identified HHn
st(A) ∼= HomAe(Ωn

Ae(A), A) and the isomorphism he con-
structed sends f : Ωn

Be(B) → B to the composition in the stable category Ae-mod

Ωn
Ae(A) ∼= M ⊗B Ωn

Be(B)⊗B N
IdM⊗f⊗IdN−→ M ⊗B B ⊗B N ∼= A,

where the first isomorphism in the above composition is induced from the injection i : A →
M ⊗B N , and the last isomorphism is induced from the projection p : M ⊗B N → A. Note
that if the algebras are symmetric and BNA = M∗, then we can choose i as the unit morphism
ηM∗ : A → M ⊗B M∗ and p as the counit morphism εM : M ⊗B M∗ → A. To prove Theorem 3.5,
it suffices to prove that the above map can be deduced by our transfer map.
Proof If g : Barn(B) → B (n > 0) is a map of Be-modules such that the composition with the
differential d′ : Barn+1(B) → Barn(B) is zero, then we get a map of Be-modules f : Ωn

Be(B) → B;
and if g is equal to a composition of a map Barn−1(B) → B with the differential d′ : Barn(B) →
Barn−1(B), then the corresponding f factors through a projective Be-module. When B is a
self-injective algebra, this gives an isomorphism HHn

st(B) ∼= HomBe(Ωn
Be(B), B) (n > 0). Since

Θ : Bar•(A) → M ⊗B Bar•(B)⊗B N is a chain map, we have a commutative diagram:

Ωn
Ae(A) Ψ //

²²

M ⊗B Ωn
Be(B)⊗B N

IdM⊗f⊗IdN//

²²

M ⊗B B ⊗B N
εM // A

Barn(A)
Θn // M ⊗B Barn(B)⊗B N

IdM⊗g⊗IdN// M ⊗B B ⊗B N
εM // A

where the first two vertical morphisms are natural injections, where Ψ is induced from Θn and
thus induced from ηM∗ . It is easy to see that Ψ is an isomorphism in the stable category of
Ae-modules. Since εM is an isomorphism in the stable category, the composition of all morphisms
in the upper sequence is exactly the image of f under Pogorzaly’s isomorphism. We are done.

¤

Now we look at derived equivalences between symmetric algebras. Let A and B be two finite
dimensional symmetric algebras which are derived equivalent given by a two-sided tilting (cochain)
complex AX•

B. Note that AX•
B can be chosen as a bounded complex whose terms are finitely

generated bimodules and projective as left and right modules. In the following, we always assume
that a two-sided tilting complex has this form. It is well known that if B is symmetric, so is A.
Similarly, we have the following result.

Proposition 3.6. Let A and B be two symmetric algebras, related by a derived equivalence given
by a two-sided tilting complex X• whose terms are bimodules that are projective as left A-modules
and right B-modules.
Then there is a choice of symmetrizing forms s for A and t for B such that the transfer map
tX

•
: HH∗(B) → HH∗(A) is an isomorphism between Hochschild cohomology algebras.

This result has been indicated without proof in [20, Remark 2.13]. We give a proof here
based on the next lemma. Before we state this lemma, we recall the following result proved by
Rickard (cf. [17, Theorem 9.2.8]): If A and B are two symmetric algebras, related by a derived
equivalence given by X• a two-sided tilting complex whose terms are bimodules that are projective
as left A-modules and right B-modules, then X• ⊗B X•∗ ∼= A in the chain homotopy category
Kb(A ⊗k Aop) and X•∗ ⊗A X• ∼= B in the chain homotopy category Kb(B ⊗k Bop). Therefore
the functors X• ⊗B − and X•∗ ⊗A − are quasi-inverse equivalences between the chain homotopy
categories Kb(A) and Kb(B) (where X•∗ is the dual complex of X• over k). As before, we denote
by εX• : X• ⊗B X•∗ → A the counit morphism of the adjoint pair (X• ⊗B −, X•∗ ⊗A −) and by
ηX•∗ : A → X• ⊗B X•∗ the unit morphism of the adjoint pair (X•∗ ⊗A −, X• ⊗B −).

Lemma 3.7. Let A and B be two symmetric algebras. Fix a symmetrizing form s for A and a
symmetrizing form t for B. Suppose that A and B are related by a derived equivalence given by a
two-sided tilting complex X•, whose terms are bimodules that are projective as left A-modules and
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right B-modules.
Then, in degree zero the counit morphism εX• : X• ⊗B X•∗ → A is given by εX• =

∑
i(−1)iεXi,

and in degree zero the unit morphism ηX•∗ : A → X• ⊗B X•∗ is given by ηX•∗ =
∑

i ηXi∗ (where
εXi is the counit morphism of the adjoint pair (Xi⊗B−, X i∗⊗A−) and ηXi∗ is the unit morphism
of the adjoint pair (Xi∗ ⊗A −, X i ⊗B −)). Moreover, we can choose the symmetrizing form s for
A such that the composition εX•ηX•∗ is the identity element in the centre Z(A).

Proof Given two (cochain) complexes U• := (· · · → Um
dm

U•→ Um+1 → · · · ) and V • := (· · · →
V m

dm
V •→ V m+1 → · · · ) in A-mod, we set the complex

Hom•
A(U•, V •) := (· · · → Homm

A (U•, V •) dm→ Homm+1
A (U•, V •) → · · · )

where
Homm

A (U•, V •) :=
∏

j−i=m

HomA(U i, V j) and

dm : HomA(U i, V j) → HomA(U i−1, V j)×HomA(U i, V j+1)
α 7→ (αdi−1

U• , (−1)idj
V •α).

In particular, the dual complex of X• over k is given by X•∗, and dm : (X−m)∗ → (X−m−1)∗ (α 7→
αd−m−1

U• ). Assume now that W • := (· · · → Wm
dm

W•→ Wm+1 → · · · ) is a (cochain) complex in Aop-
mod. Define the complex

W • ⊗A U• := (· · · → (W • ⊗A U•)m dm→ (W • ⊗A U•)m+1 → · · · )
where

(W • ⊗A U•)m :=
⊕

i+j=m

W i ⊗A U j and

dm : W i ⊗A U j → (W i+1 ⊗A U j)⊕ (W i ⊗A U j+1)
w ⊗ u 7→ (di

W •(w)⊗ u, (−1)iw ⊗ dj
U•(u)).

Now let X• be a two-sided tilting complex whose terms are bimodules that are projective as left
A-modules and right B-modules. Then the adjunction isomorphism φ : Hom•

A(X• ⊗B Y •, Z•) ∼=
Hom•

A(Y •, X•∗⊗A Z•) can be realized as follows. For any i, j, k ∈ Z, there is a natural adjunction
isomorphism

φi,j,k : HomA(Xi ⊗B Y j , Zk) → HomA(Y j , X i∗ ⊗A Zk).
We just put

φ =
⊕

i,j,k

(−1)ijφi,j,k .

From this, the counit morphism εX• and the unit morphism ηX•∗ can be computed easily. Since
the functors X• ⊗B − and X•∗ ⊗A − are quasi-inverse equivalences, the last statement is clear.

¤
Proof of Proposition 3.6 We choose the symmetrizing forms s for A and t for B such that

the composition εX•ηX•∗ is the identity element in the centre Z(A). It is well known that derived
equivalences preserve the Hochschild cohomology algebras (see, for example, [17, Corollary 6.3.7]).
We shall prove that our transfer map coincides with the isomorphism given in [17, Corollary
6.3.7]. First we recall the isomorphism between HH∗(B) and HH∗(A). Given a representative
f : Barn(B) → B of an element in HHn(B), it corresponds to a morphism f : Bar•(B) →
B[n] in Kb(B). Tensoring from the left by X• and from the right by X•∗, we get a morphism
IdX• ⊗ f ⊗ IdX•∗ : X• ⊗B Bar•(B) ⊗B X•∗ → X• ⊗B X•∗[n] in Kb(A). Then the composition
morphism in Kb(A)

(εX• [n])(IdX• ⊗ f ⊗ IdX•∗)∆ : Bar•(A) → X• ⊗B Bar•(B)⊗B X•∗ → X• ⊗B X•∗[n] → A[n]
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represents the image of f in HH∗(A), where ∆ : Bar•(A) → X•⊗B Bar•(B)⊗B X•∗ lifts the unit
morphism ηX•∗ : A → X•⊗B X•∗. Note that ∆ is unique up to homotopy. Since ηX•∗ =

∑
i ηXi∗ ,

we know that ∆ can be taken as
∑

i Θn,i in degree −n, where for each i,

Θn,i : Barn(A) → Xi ⊗B Barn(B)⊗B Xi∗

is the morphism which lifts the unit morphism ηXi∗ : A → Xi⊗B Xi∗ as given in Proposition 2.4.
On the other hand, the image of f under our transfer map is given by tX

•
(f) =

∑
i(−1)itX

i
(f),

where tX
i
(f) is the following composition (which is the transfer map defined by the A-B-bimodule

Xi)

Barn(A)
Θn,i→ Xi ⊗B Barn(B)⊗B Xi∗ IdXi⊗f⊗Id

Xi∗−→ Xi ⊗B B ⊗B Xi∗ εXi→ A.

It follows that the image of f given in [17, Corollary 6.3.7] coincides with tX
•
(f) =

∑
i(−1)itX

i
(f).

¤

4. P -power maps over the (stable) Hochschild homology of degree zero

Throughout this section, k denotes a field of characteristic p > 0. Let A be a finite dimensional
k-algebra. There exist p-power maps over HH0(A) = A/K(A) defined as follows: for any n ≥ 0,

µpn

A : HH0(A) → HH0(A), a + K(A) 7→ apn
+ K(A).

These maps are semi-linear. Moreover, Ker(µpn

A ) = Tn(A)/K(A), where

Tn(A) := {a ∈ A|apn ∈ K(A)}
and Im(µpn

A ) = Pn(A)/K(A), where

Pn(A) := {apn
: a ∈ A}+ K(A).

Note that if n = 0, T0(A) = K(A) and P0(A) = A. We thank the referee for pointing out the fact
that the abelian group Pn(A) is not a vector space unless the ground field k is perfect.

Lemma 4.1. ([24, Lemma 7.1]) Let A and B be two finite dimensional k-algebras. Given an A-B
bimodule AMB which is finitely generated and projective as right B-module, there is a commutative
diagram:

HH0(A)

µpn

A
²²

tM // HH0(B)

µpn

B
²²

HH0(A)
tM // HH0(B).

Corollary 4.2. Suppose that two finite dimensional k-algebras A and B are related by a derived
equivalence that is given by a bounded two-sided tilting complex AX•

B whose terms are finitely
generated and projective on either side. Then there is a commutative diagram for each n ≥ 0,

HH0(A)
tX•
∼ //

µpn

A
²²

HH0(B)

µpn

B
²²

HH0(A)
tX•
∼ // HH0(B).

Hence, for each n ≥ 0,
(1) dimTn(A)/K(A) = dimTn(B)/K(B);
(2) If k is a perfect field, then we have dimPn(A)/K(A) = dimPn(B)/K(B).

Proof By Proposition 2.1 and Remark 2.2, the transfer map tX• : HH0(A) → HH0(B) is an
isomorphism. The commutativity of the diagram follows from the previous lemma, as tX• =∑

i(−1)itXi .
¤
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Remark 4.3. The assertion (1) was first proved by C. Bessenrodt, T. Holm and A. Zimmermann
([3, Corollary 1.2]), under the stronger assumption that the ground field k is perfect.

Proposition 4.4. Let k be an algebraically closed field of characteristic p > 0 and let A be a
finite dimensional k-algebra.

(1) For n ≥ 0, there is an inclusion µpn

A (HHst
0 (A)) ⊆ HHst

0 (A) and thus an induced map

µpn

A,st := µpn

A |HHst
0 (A) : HHst

0 (A) → HHst
0 (A).

(2) For n ≥ 0, Ker(µpn

A,st) = Tn(A)/K(A).

(3) For n ≥ 0, we define P st
n (A)/K(A) := Im(µpn

A,st) ⊆ HHst
0 (A).

(4) dimPn(A)/K(A) = dimP st
n (A)/K(A) + rankpCA, where CA is the Cartan matrix of A.

Proof The first assertion is [24, Corollary 7.2]. The second follows from [24, Lemma 7.3] which
says that Tn(A)/K(A) ⊆ HHst

0 (A) for each n ≥ 0. For the last statement,

dimPn(A)/K(A)− dimP st
n (A)/K(A) = dimHH0(A)− dimHHst

0 (A) = rankpCA,

where the last equality is [24, Theorem 4.4].
¤

Proposition 4.5. ([24, Proposition 7.4]) Let k be an algebraically closed field of characteristic
p > 0 and let A and B be two finite dimensional k-algebras. Let AMB be an A-B bimodule, which
is finitely generated and projective as right B-module.
Then we have a commutative diagram

HHst
0 (A)

µpn

A,st
²²

tst
M // HHst

0 (B)

µpn

B,st
²²

HHst
0 (A)

tst
M // HHst

0 (B).

Corollary 4.6. Let k be an algebraically closed field of characteristic p > 0 and let A and B
be two finite dimensional algebras related by a stable equivalence of Morita type that is given by
(AMB, BNA).
Then the following diagram is commutative:

HHst
0 (A)

tst
M

∼ //

µpn

A,st
²²

HHst
0 (B)

µpn

B,st
²²

HHst
0 (A)

tst
M

∼ // HHst
0 (B).

Therefore,
(1) for any n ≥ 0, dimP st

n (A)/K(A) = dimP st
n (B)/K(B);

(2) for any n ≥ 0, dimTn(A)/K(A) = dimTn(B)/K(B);
(3) under the condition that A and B have no semisimple summands, the Auslander–Reiten

conjecture holds for this stable equivalence of Morita type if and only if dimPn(A)/K(A) =
dimPn(B)/K(B) for some n ≥ 0.

Proof The commutativity of the above diagram was proved in the previous proposition and the
assertions (1) and (2) thus follow. The last assertion is implied by (4) of Proposition 4.4 and [24,
Proposition 5.1].

¤
Remark 4.7. The maps µpn

A,st are invariant under derived equivalences by Proposition 4.5 applied
to a two-sided tilting complex.
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5. Külshammer’s maps ζn and their stable versions

Throughout this section, k denotes a perfect field of characteristic p > 0. Let A be a symmetric
k-algebra. Then there is a non-degenerate associative symmetric bilinear form ( , )A : A×A → k.
Since Z(A) = K(A)⊥ ([19, (35)]), we have an induced bilinear form, denoted also by ( , )A :
Z(A)×A/K(A) → k. Using the p-power maps over A/K(A), for n ≥ 0, Külshammer introduced
a map ζn : Z(A) → Z(A) by the defining equation

(a, a′p
n

+ K(A))A = (ζn(a), a′ + K(A))pn

A

for any a ∈ Z(A) and a′ ∈ A. It is easy to see ([19, (46) and (47)]) that Ker(ζn) = P⊥
n (A) and

Im(ζn) = T⊥n (A). One can prove ([19, (36)]) that T⊥n (A) form a decreasing sequence of ideals in
Z(A) and their intersection is R(A) := Z(A) ∩ Soc(A) ([19, (37)]), the so-called Reynolds ideal.
The ideals T⊥n (A) are called generalised Reynolds ideals or Külshammer ideals. Note that by [5,
Lemma 4.1 (iii)], Zpr(A) ⊆ R(A) ⊆ T⊥n (A) for any n ≥ 0. (The statement of this result in [5,
Lemma 4.1 (iii)] is assuming that k is algebraically closed, but it is easy to verify that the proof
doesn’t use this assumption.)

Proposition 5.1. Let A and B be two symmetric k-algebras and let AMB be a bimodule which
is finitely generated and projective on either side.
Then the following diagram is commutative:

Z(B) tM //

ζB
n

²²

Z(A)

ζA
n

²²
Z(B) tM // Z(A).

Proof For any a ∈ A and b ∈ Z(B), write a = a + K(A) ∈ A/K(A). Then

(tM (ζB
n (b)), a)pn

A = (ζB
n (b), tM (a))pn

B

= (b, tM (a)pn
)B

= (b, tM (apn
))B

= (tM (b), apn
)A

= (ζA
n (tM (b)), a)pn

A ,

where the first and the forth equality use Corollary 2.12 and the third one uses Lemma 4.1. Since
a is arbitrary, this implies tM (ζB

n (b)) = ζA
n (tM (b)).

¤
Now we can give a new proof of the following theorem of Zimmermann.

Theorem 5.2. [35, Theorem 1] Let A and B be symmetric k-algebras. Let A and B be derived
equivalent given by a bounded two sided tilting complex X• whose terms are finitely generated and
projective on either side.
Then symmetrizing forms s for A and t for B can be chosen in such a way that the following
diagram is commutative:

Z(B) tX
•

∼ //

ζB
n

²²

Z(A)

ζA
n

²²
Z(B) tX

•

∼ // Z(A).

Thus
(1) for n ≥ 0, tX

•
(T⊥n (B)) = T⊥n (A), that is, T⊥n (B) and T⊥n (A) are isomorphic as ideals via

the algebra isomorphism tX
•

: Z(B) → Z(A);
(2) for n ≥ 0, tX

•
(P⊥

n (B)) = P⊥
n (A).
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Proof The isomorphism is a consequence of Proposition 3.6. Since tX
•

=
∑

i(−1)itX
i
, the com-

mutativity of the diagram follows from the preceding proposition.
¤

Now we consider the stable version of ζA
n .

Lemma 5.3. (1) Let A be a finite dimensional algebra. Fix n ≥ 0. If a+K(A) ∈ HHst
0 (A)∩

(Pn(A)/K(A)), then there exists b + K(A) ∈ HHst
0 (A) such that a− bpn ∈ K(A).

(2) Let A be a symmetric algebra. Then the inverse image of Zpr(A) under ζA
n : Z(A) → Z(A)

is P⊥
n (A) + Zpr(A).

Proof (1) Let {e1, · · · , en} be a complete list of representatives of primitive orthogonal idem-
potents. Let tAei : HH0(A) → HH0(k) = k be the transfer maps in Hochschild homology.
If a + K(A) ∈ HHst

0 (A) ∩ Pn(A)/K(A), then there exists b + K(A) ∈ HH0(A) such that
a−bpn ∈ K(A) and tAei(b

pn
+K(A)) = 0 for all i. By [24, Lemma 7.1], tAei(b+K(A))pn

= 0 for all
i, and therefore tAei(b + K(A)) = 0 for all i since k is perfect. This implies b + K(A) ∈ HHst

0 (A).
(2) Let a ∈ Z(A). Then ζn(a) ∈ Zpr(A) if and only if a is orthogonal to the subspace generated

by {bpn
+ K(A) ∈ HH0(A) : b + K(A) ∈ HHst

0 (A) = Zpr(A)⊥/K(A)}. By (1), this subspace is
just (Zpr(A)⊥ ∩ Pn(A))/K(A) and thus a ∈ P⊥

n (A) + Zpr(A).
¤

Proposition 5.4. Suppose that A is a symmetric k-algebra.
(1) For n ≥ 0, we have ζA

n (Zpr(A)) ⊆ Zpr(A) and thus an induced map: ζA,st
n : Zst(A) →

Zst(A).
(2) For n ≥ 0, Im(ζA,st

n ) = T⊥n (A)/Zpr(A).
(3) For n ≥ 0, Ker(ζA,st

n ) ' P⊥
n (A).

Proof Let a′+K(A) ∈ HHst
0 (A). Then a′pn

+K(A) ∈ HHst
0 (A) = Zpr(A)⊥/K(A) by Proposition

4.4 (1). For a ∈ Zpr(A), (ζn(a), a′ + K(A)) = (a, (a′)pn
+ K(A))p−n

= 0 and (1) follows.
The assertion (2) is obvious, since Zpr(A) ⊆ T⊥n (A) for any n ≥ 0.
By (2), we have

dimKer(ζA,st
n ) = dimZst(A)− dimIm(ζA,st

n ) = dimZ(A)/T⊥n (A) = dimP⊥
n (A).

On the other hand, by Lemma 5.3 (2), we have

Ker(ζA,st
n ) = (P⊥

n (A) + Zpr(A))/Zpr(A) ∼= P⊥
n (A)/(P⊥

n (A) ∩ Zpr(A)).

So Zpr(A) ∩ P⊥
n (A) = {0} and (3) follows.

¤
Remark 5.5. The above proof shows that for a symmetric algebra A defined over a perfect field
of characteristic p > 0, Zpr(A) ∩ P⊥

n (A) = {0} for n ≥ 0.

Remark 5.6. Let A be a symmetric algebra. Since HHst
0 (A) = Zpr(A)⊥/K(A), we have an

induced non-degenerate bilinear pairing Zst(A)×HHst
0 (A) → k. The map ζA,st

n satisfies

(ζA,st
n ([a]), a′)pn

= ([a], µpn

A (a′))

where [a] = a + Zpr(A) ∈ Zst(A) and a′ = a′ + K(A) ∈ HHst
0 (A) for a ∈ Z(A) and a′ ∈ A. This

equation can also be used to define ζA,st
n .

Corollary 5.7. Let A and B be two symmetric k-algebras and let AMB be a bimodule which is
finitely generated and projective on either side.
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Then there is a commutative diagram

Zst(B)
tMst //

ζB,st
n

²²

Zst(A)

ζA,st
n

²²
Zst(B)

tMst // Zst(A).

Proof This follows from Proposition 5.1 and Proposition 5.4 (1).
¤

Proposition 5.8. Let A and B be two finite dimensional symmetric algebras which are are related
by a stable equivalence of Morita type given by (AMB, BNA). Suppose that the bilinear form of A
is induced from that of B.
Then there is a commutative diagram

Zst(B)
tMst

∼ //

ζB,st
n

²²

Zst(A)

ζA,st
n

²²
Zst(B)

tMst

∼ // Zst(A).

Thus
(1) for n ≥ 0, dimP⊥

n (A) = dimP⊥
n (B);

(2) for n ≥ 0, T⊥n (B)/Zpr(B) and T⊥n (A)/Zpr(A) are isomorphic as ideals via the algebra
isomorphism tMst : Zst(B) → Zst(A).

(3) under the condition that A and B have no semisimple summands, the Auslander–Reiten
conjecture holds for this stable equivalence of Morita type if and only if dimT⊥n (A) =
dimT⊥n (B) for some n ≥ 0.

Proof By [22], B is also symmetric. The proof easily follows from Theorem 3.5 and Corollary 5.7.
¤

Remark 5.9. (1) The above claim (2) generalises [24, Proposition 7.10] which proved an
equality of dimensions

dimT⊥n (B)/Zpr(B) = dimT⊥n (A)/Zpr(A).

(2) For n = 0, T⊥0 (A) = Z(A). Thus claim (3) generalises [24, Corollary 1.2] in case of
positive characteristic.

(3) The stable version ζst
n is invariant also under derived equivalences, by Corollary 5.7.

6. P -power maps over the (stable) centre and Külshammer’s maps κn

Throughout this section, k denotes a perfect field of characteristic p > 0. Let A be a symmetric
k-algebra. In [18], using the p-power maps over Z(A), for n ≥ 0, Külshammer introduced a map
κA

n : HH0(A) → HH0(A) by the defining equation

(apn
, a′) = (a, κA

n (a′))pn

for any a ∈ Z(A) and a′ ∈ A. This construction is in some sense dual to that of the maps ζn and
we can also define a stable version of κA

n . In contrast to the case of ζn, however, we cannot give a
satisfactory description of their kernels and cokernels.

Let A be a finite dimensional k-algebra. Since the centre Z(A) is a commutative algebra,
the p-power maps preserve the multiplication in Z(A) and they are denoted by µA

pn : Z(A) →
Z(A), a 7→ apn

for n ≥ 0. Note that KerµA
pn = Tn(Z(A)) := {a ∈ Z(A) : apn

= 0} and
ImµA

pn = Pn(Z(A)) := {apn
: a ∈ Z(A)}. Since derived equivalences preserve the centres as
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algebras, these maps are invariant under derived equivalences. Since Zpr(A) is an ideal of Z(A),
µA

pn(Zpr(A)) ⊆ Zpr(A). So there is an induced map µA,st
pn : Zst(A) → Zst(A). Note that if n = 0,

then T0(Z(A)) = 0 and P0(Z(A)) = Z(A). Proposition 3.5 gives the following commutative
diagram:

Zst(B) tM

∼ //

µB,st
pn

²²

Zst(A)

µA,st
pn

²²
Zst(B) tM

∼ // Zst(A).

Lemma 6.1. Let A be a Frobenius algebra. Then Zpr(A) ⊆ Soc(A). As a consequence, if A has
no semi-simple summands, then Zpr(A)2 = 0 and Zpr(A) ⊆ Tn(Z(A)) for n ≥ 1.

Proof The proof imitates that of [24, Proposition 4.11]. Let {ai} be a basis of A and let {bi}
be a dual basis with respect to the bilinear form over A, that is, (ai, bj) = δij . Then by [24,
Proposition 1.3 (1)], Zpr(A) is the image of the map τ : A → A, x 7→ ∑

bixai. We shall prove that
Im(τ) ⊆ Soc(A).

We carefully choose a basis {ai} and its dual basis {bi} in A, as follows. Suppose that

A/J(A) ' Mu1(k)× · · ·Mur(k).

Write Et
ij the matrix in Mut(k) whose entry at the position (i, j) is 1 and is zero elsewhere. Then

take a1 = e1, a2 = e2, · · · , am = em ∈ A such that their images in A/J(A) correspond to the
matrices Et

ii for 1 ≤ i ≤ ut and 1 ≤ t ≤ r and take am+1, · · · , an such that their images in
A/J(A) correspond to Et

ij for 1 ≤ i 6= j ≤ ut and 1 ≤ t ≤ r. Then {a1 · · · , an} are linearly
independent in A and their images in A/J(A) form a basis of the vector space A/J(A). Note that
for m+1 ≤ u ≤ n, au ∈ eiAej for some 1 ≤ i 6= j ≤ m. Moreover let an+1, · · · , as ∈ J(A) such that
their images in J(A)/J2(A) is a basis of the vector space J(A)/J2(A), let as+1, · · · , at ∈ J2(A)
such that their images in J2(A)/J3(A) is a basis of the vector space J2(A)/J3(A), and so on.
Let b1, b2, · · · be the dual basis. Then {b1, · · · , bn} is a basis of J(A)⊥ = Soc(A), {b1, · · · , bs} is
a basis of J2(A)⊥, {b1, · · · , bt} is a basis of J3(A)⊥, etc. Now we can prove the first assertion.
Since for any x ∈ A,

J(A)x = 0 ⇐⇒ x ∈ Soc(A) ⇐⇒ xJ(A) = 0,

we need to prove that J(A) · Im(τ) = 0. It is easy to see that J(A) · Jn(A)⊥ · Jn−1(A) = 0 for
n ≥ 1. Let y ∈ J(A) and x ∈ A. For 1 ≤ i ≤ n, we get ybixai ∈ J(A) · Soc(A) · A · A = 0;
for n + 1 ≤ i ≤ s, we get ybixai ∈ J(A) · J2(A)⊥ · A · J(A) = 0; for s + 1 ≤ i ≤ t, we get
yaixbi ∈ J(A) · J3(A)⊥ ·A · J2(A) = 0, etc. This proves that Im(τ) ⊆ Soc(A).

Now if A has no semi-simple direct summand, then Zpr(A)2 ⊆ (Soc(A))2 ⊆ Soc(A)J(A) = 0
and thus for n ≥ 1, Zpr(A) ⊆ Tn(Z(A)).

¤
As a consequence, we have

Corollary 6.2. Let A be a finite dimensional algebra without semi-simple direct summands. Then
for n ≥ 1,

(1) Tn(Z(A))/Zpr(A) ⊆ KerµA,st
pn ⊆ Tn+1(Z(A))/Zpr(A);

(2) Pn(Z(A)) ³ ImµA,st
pn ³ Pn+1(Z(A)).

The inclusions in (1) can be strict, as illustrated by the following

Example 6.3. Let A = k[X]/(Xpm+1) with m ≥ 1. Then Zpr(A) = (Xpm
)/(Xpm+1) and

Zst(A) = Z(A)/Zpr(A) ∼= k[X]/(Xpm
). Hence, for 1 ≤ n ≤ m, Tn(Z(A))/Zpr(A) =< Xi, pm−n <

i ≤ pm − 1 > and KerµA,st
pn =< Xi, pm−n ≤ i ≤ pm − 1 >.

Now we consider the stable version of κn. Recall that Ker(κA
n ) = P⊥

n (Z(A))/K(A) and
Im(κA

n ) = T⊥n (Z(A))/K(A) ([19, (52)(53)]).



TRANSFER MAPS 21

Proposition 6.4. ([36, Proposition 2.3]) Let A and B be symmetric k-algebras. Suppose that A
and B are derived equivalent, and the equivalence is given by a bounded two sided tilting complex
X• whose terms are finitely generated and projective on either side.
Then there exists an isomorphism tX• : HH0(A) ∼→ HH0(B) such that

HH0(A)
tX•
∼ //

κA
n

²²

HH0(B)

κB
n

²²
HH0(A)

tX•
∼ // HH0(B).

Proof For any b ∈ Z(B) and a ∈ A, write a = a + K(A) ∈ HH0(A). We have

(b, κB
n tX•(a))pn

B = (bpn
, tX•(a))B

= (tX
•
(bpn

), a)A

= (tX
•
(b)pn

, a)A

= (tX
•
(b), κA

n (a))pn

A

= (b, tX•κA
n (a))pn

B ,

where the second and the fifth equality use Corollary 2.12 and the third one uses Proposition 3.6.
We have thus κB

n tX•(a) = tX•κA
n (a), as b ∈ Z(B) is arbitrary.

¤
Now we consider the stable version of κA

n .

Lemma 6.5. Suppose that A is a symmetric algebra. For n ≥ 0, we have κn(HHst
0 (A)) ⊆

HHst
0 (A) and thus an induced map κA,st

n : HHst
0 (A) → HHst

0 (A).

Proof For a′ = a′ + K(A) ∈ HHst
0 (A) = Zpr(A)⊥/K(A) and a ∈ Zpr(A), since apn ∈ Zpr(A), we

have
(a, κA

n (a′))pn

A = (apn
, a′)A = 0.

Thus κA
n (a′) ∈ HHst

0 (A).
¤

Remark 6.6. Let A be a symmetric algebra. Since we have an induced non-degenerate bilinear
pairing Zst(A)×HHst

0 (A) → k, the map κA,st
n satisfies

([a], κA,st
n (a′))pn

= ([a]p
n
, a′)

where [a] = a + Zpr(A) ∈ Zst(A) and a′ = a′ + K(A) ∈ HHst
0 (A) for a ∈ Z(A) and a′ ∈ A. This

equation can also be used to define κA,st
n .

Although we don’t have a good description of the kernel and the cokernel of κA,st
n , we record

the following

Proposition 6.7. Let A and B be two finite dimensional symmetric algebras which are stably
equivalent of Morita type, where the equivalence is given by (AMB, BNA). Suppose that the bilinear
form of A is induced from that of B. Then the following diagram is commutative:

HHst
0 (A)

tst
M

∼ //

κA,st
n

²²

HHst
0 (B)

κB,st
n

²²
HHst

0 (A)
tst
M

∼ // HHst
0 (B).

Proof This is obvious.
¤
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Remark 6.8. The new maps κst
n are invariant under derived equivalences between symmetric

algebras, by an analogue of Proposition 6.7.

7. Higher dimensional analogue

Zimmermann introduced higher dimensional analogues of the map κn in [36]. Let us recall his
construction.

Let A be a symmetric algebra defined over a perfect field of characteristic p > 0. We have a
non-degenerate bilinear paring (cf. Lemma 2.9) for each m ≥ 0

( , )m : HHm(A)×HHm(A) → k

which generalizes the form in degree zero ( , ) : Z(A) × A/K(A) → k. Since there exists a
cup product on the Hochschild cohomology, one defines κ

(m),A
n : HHpnm(A) → HHm(A) by the

equation
(fpn

, x)pnm = (f, κ(m)
n (x))pn

m

for f ∈ HHm(A) and x ∈ HHpnm(A). Obviously κ
(0),A
n = κA

n .

Theorem 7.1. Let A and B be two symmetric k-algebras
(1) ([36, Theorem 1]) Suppose that A and B are related by a derived equivalence that is given by

a bounded two sided tilting complex AX•
B whose terms are finitely generated and projective

on either side.
Then for each m ≥ 1, there is a commutative diagram

HHpnm(A)
tX•
∼ //

κ
(m),A
n

²²

HHpnm(B)

κ
(m),B
n

²²
HHm(A)

tX•
∼ // HHm(B).

(2) Suppose that A and B are related by a stable equivalence of Morita type that is given by
(AMB, BNA).
Then for each m ≥ 1, there is a commutative diagram

HHpnm(A)
tM
∼ //

κ
(m),A
n

²²

HHpnm(B)

κ
(m),B
n

²²
HHm(A)

tM
∼ // HHm(B).

Proof The proof can be obtained by imitating the proofs of Proposition 6.4 and of Proposition 6.7
using Proposition 3.6 or Theorem 3.5.

¤
Remark 7.2. One can also obtain a proof of (2) in the above result by imitating the original proof
of Zimmermann.

8. Trivial extensions

Let A be a finite-dimensional algebra defined over a perfect field k of characteristic p > 0. We
denote by A∗ the k-linear dual Homk(A, k) which becomes an A-A-bimodule by setting (afa′)(b) =
f(a′ba) for all a, a′, b ∈ A and f ∈ A∗.

The trivial extension T(A) := A⊕A∗ is the k-algebra defined by the multiplication (a, f)(b, g) :=
(ab, ag + fb) for all a, b ∈ A and f, g ∈ A∗. The trivial extension T(A) is a symmetric algebra,
with respect to the bilinear form ((a, f), (b, g)) = f(b) + g(a).
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Let [A,A∗] denotes the commutator subspace of A∗, that is, the subspace generated by af −fa
for arbitrary a ∈ A and f ∈ A∗. If V is a subspace of A, then AnnA∗(V ) := {f ∈ A∗|f(V ) = 0}.

The following long proposition is collecting properties of the trivial extension algebra.

Proposition 8.1. (1) Z(T(A)) = Z(A)⊕AnnA∗(K(A));
(2) K(T(A)) = K(A)⊕ [A,A∗];
(3) T(A)/K(T(A)) = A/K(A)⊕A∗/[A,A∗];
(4) for n ≥ 1, Tn(T(A)) = Tn(A)⊕A∗;
(5) for n ≥ 1, Pn(T(A)) = Pn(A)⊕ [A,A∗];
(6) for n ≥ 1, Tn(T(A))/K(T(A)) = Tn(A)/K(A)⊕A∗/[A,A∗];
(7) for n ≥ 1, Pn(T(A))/K(T(A)) = Pn(A)/K(A)⊕ 0;
(8) for n ≥ 1, T⊥n (T(A)) = 0⊕AnnA∗(Tn(A));
(9) for n ≥ 1, P⊥

n (T(A)) = Z(A)⊕AnnA∗(Pn(A));
(10) for n ≥ 1, Tn(Z(T(A))) = Tn(Z(A))⊕AnnA∗(K(A));
(11) for n ≥ 1, Pn(Z(T(A))) = Pn(Z(A))⊕ 0;
(12) for n ≥ 1, T⊥n (Z(T(A))) = K(A)⊕AnnA∗(Tn(Z(A)));
(13) for n ≥ 1, P⊥

n (Z(T(A))) = A⊕AnnA∗(Pn(Z(A)));
(14) for n ≥ 1, T⊥n (Z(T(A)))/K(T(A)) = 0⊕AnnA∗(Tn(Z(A)))/[A,A∗];
(15) for n ≥ 1, P⊥

n (Z(T(A)))/K(T(A)) = A/K(A)⊕AnnA∗(Pn(Z(A)))/[A,A∗].

Proof Most assertions have been proved in [3] and the rest are easy to verify.
¤

Corollary 8.2. Let A and B be two indecomposable finite dimensional algebras defined over an
algebraically closed field of characteristic p > 0. Suppose that A and B are stably equivalent of
Morita type and that A is symmetric.
Then the condition that T(A) and T(B) are also stably equivalent of Morita type implies that
Auslander–Reiten conjecture holds for A and B, that is, they have the same number of isoclasses
of non-projective simple modules.

Proof Since A is symmetric, for any n ≥ 0,

dimAnnA∗(Pn(A)) = dimA/Pn(A) = dimTn(A)/K(A).

By Corollary 4.6 (2), for any n ≥ 0, dimTn(A)/K(A) = dimTn(B)/K(B). On the other hand,
Corollary 5.8 (1) implies that for any n ≥ 0, dimP⊥

n (T(A)) = dimP⊥
n (T(B)). By Proposition 8.1

(9), we obtain that dimZ(A) = dimZ(B) and this implies the Auslander–Reiten conjecture by
Theorem 1.1 of [24].

¤
This motivates the following

Question 8.3. Let A and B be two indecomposable, non-simple finite dimensional algebras which
are stably equivalent of Morita type. Are their trivial extensions algebras T(A) and T(B) also
stably equivalent of Morita type?

Although we feel that the answer should be negative, we do not know of a counter-example.

9. Stable cyclic homology

In this section we study the invariance of cyclic homology under stable equivalences of Morita
type. The case of derived equivalences was considered by Keller in [16] using transfer maps. We
shall adopt the same approach, but we work in the setup of ordinary algebras. For basic notions
about cyclic homology, we refer the reader to [25] or a very readable brief introduction [14].

Let k be a commutative ring with unit. We shall write ⊗ instead of ⊗k. In order to agree with
the usual notations in cyclic homology, we shall modify our notations. We shall use R, T, · · · to



24 STEFFEN KOENIG, YUMING LIU∗ AND GUODONG ZHOU

denote k-algebras. Given a k-algebra R, the cyclic homology group HCn(R) is defined to be the
homology of the total complex of the following double complex CC••(R):

...

b

²²

...

−b′

²²

...

b

²²

...

−b′

²²
C3(R)

b
²²

C3(R)
id−too

−b′
²²

C3(R)Noo

b
²²

C3(R)
id−too

−b′
²²

· · ·Noo

C2(R)

b
²²

C2(R)
id−too

−b′
²²

C2(R)Noo

b
²²

C2(R)
id−too

−b′
²²

· · ·Noo

C1(R)

b
²²

C1(R)
id−too

−b′
²²

C1(R)Noo

b
²²

C1(R)
id−too

−b′
²²

· · ·Noo

C0(R) C0(R)
id−too C0(R)Noo C0(R)

id−too · · ·Noo

We recall the construction of the above double complex. Let (C ′•(R), b′) be the Bar complex.
Namely, for n ≥ 0, C ′

n(R) = R⊗(n+2) and for n ≥ 0 the differential b′ : C ′
n(R) → C ′

n−1(R) sends
x0 ⊗ x1 ⊗ · · · ⊗ xn+1 with x0, · · · , xn+1 ∈ R to

n∑

i=0

(−1)ix0 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1.

Note that here we use b′ to denote the differential. Let (C•(R), b) be the Hochschild complex.
Namely, for n ≥ 0, Cn(R) = C ′

n−1(R) = R⊗(n+1) and for n ≥ 1 the differential b : Cn(R) →
Cn−1(R) sends x0 ⊗ x1 ⊗ · · · ⊗ xn with x0, · · · , xn ∈ R to

n−1∑

i=0

(−1)ix0 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn + (−1)nxnx0 ⊗ x1 ⊗ · · · ⊗ xn−1.

Note that here we use b to denote the differential. For n ≥ 0, consider the endomorphism t of
Cn(R) = R⊗(n+1) defined for x0, · · · , xn ∈ R by

t(x0 ⊗ · · · ⊗ xn) = (−1)nxn ⊗ x0 ⊗ · · · ⊗ xn−1.

In the diagram, we denote by N the associated norm map

N = id + t + · · ·+ tn : Cn(R) → Cn(R).

One can verify that b(id− t) = (id− t)b′ and Nb = b′N . Thus CC••(R) is a double complex. We
define, for n ≥ 0, another map s : Cn(R) → Cn+1(R) by

s(x0 ⊗ · · · ⊗ xn) = 1⊗ x0 ⊗ · · · ⊗ xn.

Now the Connes’ operator B : Cn(R) → Cn+1(R) is defined to be

B = (id− t)sN : Cn(R) → Cn+1(R).

Since it can be shown that B2 = Bb + bB = 0, B induces a map HHn(R) → HHn+1(R), still
denoted by B.

The cyclic homology is defined to be HCn(R) := Hn(Tot(CC••(R))) for n ≥ 0. It is easy to see
that the bicomplex formed by the leftmost two columns, denoted by CC

{2}
•• , has a total complex

which is quasi-isomorphic to the Hochschild complex (C•(R), b). One has a short exact sequence
of bicomplexes,

0 → CC
{2}
•• (R) I→ CC••(R) S→ CC••(R)[2, 0] → 0
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where for the bicomplex CC••(R), (CC••(R)[2, 0])pq = CCp−2,q(R). We have thus a long exact
sequence, which is called Connes’ long exact sequence,

· · · ∂→ HHn(R) I→ HCn(R) S→ HCn−2(R) ∂→ HHn−1(R) I→ HCn−1(R) S→ · · · .

The degree −2 map S is called the periodicity map and we use ∂ to denote the connecting
morphism instead of the usual B to avoid possible confusion. As a consequence of this exact
sequence, one has HH0(R) ∼= HC0(R) and

HCn(k) =
{

k if n is even,
0 if n is odd.

Now let R and T be two k-algebras. Let M be an R-T -bimodule, which is finitely generated and
projective as right T -module. Then one can also define a transfer map tM : HCn(R) → HCn(T )
for n ≥ 0 as in the case of Hochschild homology. The construction was given in [16], and also
indicated in [4, Section 4.4]. The construction goes as follows. We begin with the transfer maps
for the Hochschild complex tM : C•(R) → C•(T ) and prove that it commutes with the operators
b′, b and t (see Section 2). This provides a morphism from the bicomplex CC••(R) to CC••(T )
which induces the desired map tM : HCn(R) → HCn(T ).

We include the proof of the following

Lemma 9.1. With the assumptions above, for n ≥ 0, there are commutative diagrams

Cn(R) b //

tM
²²

Cn−1(R)

tM
²²

Cn(T ) b // Cn−1(T ),

Cn(R) t //

tM
²²

Cn(R)

tM
²²

Cn(T ) t // Cn(T ),

C ′
n(R) b′ //

tM
²²

C ′
n−1(R)

tM
²²

C ′
n(T ) b′ // C ′

n−1(T ).

As a consequence, there is a morphism of bicomplexes tM : CC••(R) → CC••(T ) and thus tM :
HCn(R) → HCn(T ).

Proof We prove the commutativity of the first diagram, the proofs of the second and the third be-
ing similar. Since MT is finitely generated and projective, there are xi ∈ M and ϕi ∈ HomT (M, T )
such that for each x ∈ M , we have x =

∑
i xiϕi(x). For a0, · · · , an ∈ R, we have

tMb(a0 ⊗ · · · ⊗ an) =
∑n−1

i=0 (−1)itM (a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)
+(−1)ntM (ana0 ⊗ a1 ⊗ · · · ⊗ an−1)

=
∑n−1

i=0 (−1)i
∑

s0,··· ,si,si+2,··· ,sn
ϕs0(a0xs1)⊗ · · · ⊗ ϕsi−1(ai−1xsi)

⊗ϕsi(aiai+1xsi+2)⊗ ϕsi+2(ai+2xsi+3)⊗ · · · ⊗ ϕsn(anxs0)
+(−1)n

∑
sn,s1,··· ,sn−1

ϕsn(ana0xs1)⊗ · · · ⊗ ϕsn−1(an−1xsn)

and

btM (a0 ⊗ · · · ⊗ an) =
∑

t0,··· ,tn b(ϕt0(a0xt1)⊗ · · · ⊗ ϕtn(anxt0))
=

∑
t0,··· ,tn

∑n−1
i=0 (−1)iϕt0(a0xt1)⊗ · · · ⊗ ϕti−1(ai−1xti)

⊗ϕti(aixti+1)ϕti+1(ai+1xti+2)⊗ ϕti+2(ai+2xti+3)⊗ · · · ⊗ ϕtn(anxt0)
+

∑
t0,··· ,tn(−1)nϕtn(anxt0)ϕt0(a0xt1)⊗ · · · ⊗ ϕtn−1(an−1xtn)

=
∑n−1

i=0 (−1)i
∑

t0,··· ,ti,ti+2,··· ,tn ϕt0(a0xt1)⊗ · · · ⊗ ϕti−1(ai−1xti)
⊗(

∑
ti+1

ϕti(aixti+1)ϕti+1(ai+1xti+2))⊗ · · · ⊗ ϕtn(anxt0)
+(−1)n

∑
t1,··· ,tn(

∑
t0

ϕtn(anxt0)ϕt0(a0xt1))⊗ · · · ⊗ ϕtn−1(an−1xtn)
=

∑n−1
i=0 (−1)i

∑
t0,··· ,ti,ti+2,··· ,tn ϕt0(a0xt1)⊗ · · · ⊗ ϕti−1(ai−1xti)

⊗ϕti(aiai+1xti+2)⊗ ϕti+2(ai+2xti+3)⊗ · · · ⊗ ϕtn(anxt0)
+(−1)n

∑
t1,··· ,tn ϕtn(ana0xt1))⊗ ϕt1(a1xt2)⊗ · · · ⊗ ϕtn−1(an−1xtn)

where the last equality uses two other equalities, which are true by definition,∑
ti+1

ϕti(aixti+1)ϕti+1(ai+1xti+2) = ϕti(
∑
ti+1

aixti+1ϕti+1(ai+1xti+2)) = ϕti(aiai+1xti+2)
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and ∑
t0

ϕtn(anxt0)ϕt0(a0xt1) = ϕtn(
∑
t0

anxt0ϕt0(a0xt1)) = ϕtn(ana0xt1).

We have thus
tMb(a0 ⊗ · · · ⊗ an) = btM (a0 ⊗ · · · ⊗ an).

¤
Corollary 9.2. With the assumptions above, there is a commutative diagram of exact sequences
of bicomplexes

0 // CC
{2}
•• (R)

I //

tM
²²

CC••(R) S //

tM

²²

CC••(R)[2, 0] //

tM

²²

0

0 // CC
{2}
•• (T )

I // CC••(T ) S // CC••(T )[2, 0] // 0

and hence there is the following exact commutative diagram

· · · S // HCn−1(R) ∂ //

tM ²²

HHn(R) I //

tM ²²

HCn(R) S //

tM ²²

HCn−2(R) ∂ //

tM ²²

HHn−1(R) I //

tM ²²

HCn−1(R)
tM ²²

S // · · ·

· · · S // HCn−1(T ) ∂ // HHn(T ) I // HCn(T ) S // HCn−2(T ) ∂ // HHn−1(T ) I // HCn−1(T ) S // · · ·
Corollary 9.3. With the assumptions above, there is a commutative diagram for any n ≥ 0,

HHn(R) B //

tM
²²

HHn+1(R)

tM
²²

HHn(T ) B // HHn+1(T ).

Now we list some properties of the new transfer maps on cyclic homology.

Proposition 9.4. Let R, T and U be k-algebras.
(1) If M is an R-T -bimodule and N is a T -U -bimodule such that MT and NU are finitely

generated and projective, then there is an equality tN ◦ tM = tM⊗T N : HCn(R) → HCn(U), for
each n ≥ 0.

(2) Let
0 → L → M → N → 0

be a short exact sequence of R-T -bimodules which are finitely generated and projective as right
T -modules. Then tM = tL + tN : HCn(R) → HCn(T ), for each n ≥ 0.

(3) Let k be an algebraically closed field and let R and T be finite dimensional k-algebras. For
a finitely generated projective R-T -bimodule P , the transfer map tP : HCn(R) → HCn(T ) is zero
for n odd.

(4) Consider R as an R-R-bimodule by left and right multiplications, then tR : HCn(R) →
HCn(R) is the identity map for any n ≥ 0.

Proof The assertions (1), (2) and (4) follow from the corresponding statements for transfer maps
between Hochschild homology groups. Let us prove the assertion (3). Recall that HCn(k) = k
if n is even and HCn(k) = 0 if n is odd. Since k is an algebraically closed field, one can assume
that (without loss of generality) P = Re⊗ fT for certain idempotents e ∈ R and f ∈ T . By (1),
tP = tRe ◦ tfT : HCn(R) → HCn(k) → HCn(T ). The assertion (3) thus follows.

¤
Remark 9.5. As in the case of Hochschild homology, for a bounded (cochain) complex X• of R-
T -bimodules whose terms are finitely generated and projective as right T -modules, one can define a
transfer map tX• : HCn(R) → HCn(T ) by tX• :=

∑
i(−1)itXi. Note that if Y • is another bounded

complex of R-T -bimodules whose terms are finitely generated and projective as right T -modules
such that X• and Y • are quasi-isomorphic, then tX• = tY •.
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Theorem 9.6. Let k be an algebraically closed field of arbitrary characteristic and let R and T
be two finite dimensional k-algebras which are stably equivalent of Morita type.

(1) For n > 0 odd, dimHCn(R) = dimHCn(T );
(2) Suppose that R and T have no semi-simple direct summands. Then for any n ≥ 0 even,

the following statements are equivalent
(i) Auslander–Reiten conjecture holds for this stable equivalence of Morita type;
(ii) dimHCn(R) = dimHCn(T ).

Proof Suppose that two bimodules M and N define a stable equivalence of Morita type between
R and T by M ⊗T N ' R ⊕ P, N ⊗R M ' T ⊕ Q. Since tR = 1HCn(R) and tT = 1HCn(T ), the
transfer maps tM : HCn(R) → HCn(T ) and tN : HCn(T ) → HCn(R) are mutually inverse group
isomorphisms for all n > 0 by Proposition 9.4. This proves the first statement.

For the second statement, one uses the long exact sequence connecting Hochschild homology
and cyclic homology. By Corollary 9.2, for n ≥ 2 even, we have a commutative diagram

· · · // HCn−1(R) //

∼=²²

HHn(R) //

∼=²²

HCn(R) //

²²

HCn−2(R) //

²²

HHn−1(R) //

∼=²²

HCn−1(R)
∼=²²

// · · ·

· · · // HCn−1(T ) // HHn(T ) // HCn(T ) // HCn−2(T ) // HHn−1(T ) // HCn−1(T ) // · · ·
where the second and the third isomorphisms deduces from [24, Remark 3.3] and where the
second (and hence the forth) follows from (1). We have thus by 5-lemma that HCn(R) ∼= HCn(T )
if and only if HCn−2(R) ∼= HCn−2(T ), but HC0(R) ∼= HH0(R) and by Theorem 1.1 of [24],
HH0(R) ∼= HH0(T ) is equivalent to the Auslander–Reiten conjecture. We are done.

¤
By the previous theorem, one can define a stable version of cyclic homology for a finite dimen-

sional algebra over a field.

Definition 9.7. Let R be a finite dimensional algebra over a field k. The stable cyclic homology
of R, in degree n, is defined to be

HCst
n (R) =

⋂

P

Ker(tP : HCn(R) → HCn(k))

where P runs through the set of isomorphism classes of finite dimensional left projective R-modules
(which here are considered as R-k-bimodules).

Obviously HCst
n (R) differs from HCn(R) only when n is even. In Connes’ long exact sequence

one can replace HCn(R) by HCst
n (R) and HH0(R) by HHst

0 (R). This is the content of the
following

Proposition 9.8. There is a long exact sequence

· · · ∂→ HHst
n (R) I→ HCst

n (R) S→ HCst
n−2(R) ∂→ HHst

n−1(R) I→ HCst
n−1(R) S→ · · · .

If M is an R-T -bimodule such that MT is finitely generated and projective, then the following
diagram commutes

· · · S // HCst
n−1(R) ∂ //

tM ²²

HHst
n (R) I //

tM ²²

HCst
n (R) S //

tM ²²

HCst
n−2(R) ∂ //

tM ²²

HHst
n−1(R) I //

tM ²²

HCst
n−1(R)

tM ²²

S // · · ·

· · · S // HCst
n−1(T ) ∂ // HHst

n (T ) I // HCst
n (T ) S // HCst

n−2(T ) ∂ // HHst
n−1(T ) I // HCst

n−1(T ) S // · · ·
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Proof We have the following commutative diagram with exact columns and whose lower two rows
are also exact,

0
²²

0
²²

0
²²

0
²²

0
²²

· · · ∂ // HHst
n (R) I //

²²

HCst
n (R) S //

²²

HCst
n−2(R) ∂ //

²²

HHst
n−1(R) I //

²²

HCst
n−1(R)

²²

S // · · ·

· · · ∂ // HHn(R) I //
∑

tP ²²

HCn(R) S //
∑

tP ²²

HCn−2(R) ∂ //
∑

tP ²²

HHn−1(R) I //
∑

tP ²²

HCn−1(R)
∑

tP ²²

S // · · ·

· · · ∂ // ⊕P HHn(k) I // ⊕P HCn(k) S // ⊕P HCn−2(k) ∂ // ⊕P HHn−1(k) I // ⊕P HCn−1(k) S // · · ·
where P runs through the set of isoclasses of finite dimensional left projective R-modules. We
need to show that the first row is exact as well. This can be done by diagram chasing, using the

facts that HCn(k) =
{

k if n is even,
0 if n is odd.

and that HHn(k) =
{

k if n = 0,
0 otherwise.

¤
Theorem 9.9. The stable cyclic homology is invariant under derived equivalences and stable
equivalences of Morita type.

Proof The invariance of the stable cyclic homology under stable equivalences of Morita type is
easy by Definition 9.7 and Proposition 9.4 (refer to [24, Theorem 4.7]). The case of derived
equivalence is a consequence of the commutative diagram in Proposition 9.8 (we only need to
replace tM by tX• , where X• is a two-sided tilting complex; note that tX• gives isomorphisms
between stable Hochschild homology groups) and the fact that HCst

0
∼= HHst

0 .
¤

Remark 9.10. As in the case of ordinary cyclic homology, transfer maps can also be defined over
negative cyclic homology and periodic cyclic homology. We leave the details to the reader.

To conclude this Section, we add some comments on transfer maps in cyclic cohomology and
its variants.

Let k be a commutative ring with unit and let R be a k-algebra. The cyclic cohomology is
defined to be the cohomology of the total complex of CC••(R) := Homk(CC••(R), k). If we have
another k-algebra T and an R-T -bimodule M such that MT is finitely generated and projective,
then we have the transfer map defined as above tM : CC••(R) → CC••(T ) which in turn induces a
map tM : CC••(T ) → CC••(R). This new chain map induces a map in cyclic cohomology, denoted
also by tM : HCn(T ) → HHn(R) and called transfer map in cyclic cohomology. Obviously, these
new maps have some properties like those of Proposition 9.4. Evidently, we can also define
transfer maps over negative cyclic cohomology and periodic cyclic cohomology. Now let R be a
finite dimensional algebra over a field. For n ≥ 0, the stable cyclic cohomology HCn

st(R) is defined
to be the quotient of HCn(R) by the sum of the images of tP : HCn(k) → HCn(R) where P
runs through the set of isoclasses of (finitely generated) projective R-modules. We can also define
stable versions of negative cyclic cohomology and periodic cyclic cohomology. We have also similar
results as Proposition 9.8 and Theorem 9.9.

10. Batalin–Vilkovisky vs Gerstenhaber

Recall the definition of Gerstenhaber algebras and Batalin–Vilkovisky algebras. Let k be a
commutative ring with unit.

Definition 10.1. A Gerstenhaber algebra is a graded k-module A = ⊕i∈ZAi equipped with two
linear maps: a cup product

∪ : Ai ⊗Aj → Ai+j , x⊗ y 7→ x ∪ y
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and a Lie bracket of degree −1

[ , ] : Ai ⊗Aj → Ai+j−1, x⊗ y 7→ [x, y]

such that
(a) the cup product ∪ makes A into a graded commutative algebra;
(b) the Lie bracket [−,−] gives A a structure of graded Lie algebra of degree −1. This means

that for homogeneous elements a, b, c ∈ A

[a, b] = −(−1)(|a|−1)(|b|−1)[b, a]

and

(−1)(|a|−1)(|c|−1)[[a, b], c] + (−1)(|b|−1)(|a|−1)[[b, c], a] + (−1)(|c|−1)(|b|−1)[[c, a], b] = 0

where |a| denotes the degree of a;
(c) the cup product and the Lie bracket satisfy the Poisson rule. This means that for any

c ∈ A|c| the adjunction map [−, c] : Ai → Ai+|c|−1, a 7→ [a, c] is a (|c| − 1)-derivation, i.e.
for homogeneous a, b ∈ A,

[a ∪ b, c] = [a, c] ∪ b + (−1)|a|(|c|−1)a ∪ [b, c].

Definition 10.2. A Batalin–Vilkovisky (BV) algebra is a Gerstenhaber algebra A together with
a degree −1 operator ∆ : A• → A•−1 satisfying ∆ ◦∆ = 0 and

[a, b] = −(−1)(|a|−1)|b|(∆(a ∪ b)− (∆a) ∪ b− (−1)|a|a ∪ (∆b))

for a, b ∈ A.

The first examples of Gerstenhaber algebras are Hochschild cohomology algebra of rings first
discovered by Gerstenhaber in [11]. We recall his construction. Let R be a k-algebra. Let
f ∈ Cn(R) = Homk(R⊗n, R) and g ∈ Cm(R) with n,m ≥ 0. If n,m ≥ 1, then for 1 ≤ i ≤ n,
define

(f ◦i g)(a1 ⊗ · · · ⊗ an+m−1) = f(a1 ⊗ · · · ⊗ ai−1 ⊗ g(ai ⊗ · · · ⊗ ai+m−1)⊗ ai+m ⊗ · · · ⊗ an+m−1);

if n ≥ 1 and m = 0, then g ∈ A and for 1 ≤ i ≤ n, define

(f ◦i g)(a1 ⊗ · · · ⊗ an−1) = f(a1 ⊗ · · · ⊗ ai−1 ⊗ g ⊗ ai ⊗ · · · ⊗ an−1);

for any other case, define f ◦i g to be zero. Now denote

f ◦ g =
n∑

i=1

(−1)(n−1)(i−1)f ◦i g

and
[f, g] = f ◦ g − (−1)(n−1)(m−1)g ◦ f.

The above [ , ] is just the Gerstenhaber Lie bracket over the Hochschild cohomology algebra.
This Lie bracket with the usual cup product makes the Hochschild cohomology algebra into a
Gerstenhaber algebra.

Tradler noticed that the Hochschild cohomology algebra of a symmetric algebra is a BV algebra
in [34]. This fact has been reproved by many authors ([26, 10] etc). For a symmetric algebra R, he
showed that the operator ∆ over Hochschild cohomology corresponds to the Connes’ B operator
on Hochschild homology via the duality between Hochschild cohomology and homology. Our
main result in this section is that a derived equivalence between symmetric algebras preserves the
structure of BV algebras of the Hochschild cohomology algebras.

Theorem 10.3. Let k be a field. Let R and T be two symmetric algebras which are derived
equivalent, by an equivalence given by a two-sided tilting complex RX•

T whose terms are bimodules
that are projective as left R-modules and right T -modules. Then the transfer map tX

•
: HH∗(T ) →

HH∗(R) is an isomorphism of BV-algebras.
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Proof We need to show that transfer maps in Hochschild cohomology commute with the operator
∆. By the compatibility theorem 2.10, we only need to show that transfer maps in Hochschild
homology commute with Connes’ B operator, but this is Corollary 9.3.

¤
As a consequence, we obtain a special case of a theorem of Keller ([16]) which says that a de-
rived equivalence preserves the structure of Gerstenhaber algebra structure over the Hochschild
cohomology algebras.

Corollary 10.4. With the above assumptions, the transfer map tX
•

: HH∗(T ) → HH∗(R) is an
isomorphism of Gerstenhaber algebras.

Menichi ([26, corollary 1.7]) also proved that the negative cyclic cohomology of a symmetric
algebra is a graded Lie algebra of degree −2. His construction is as follows. Let R be a k-algebra.
Then we have the long exact sequence

· · · S→ HCn+1
− (R) ∂→ HHn(R) I→ HCn

−(R) S→ HCn+2
− (R) ∂→ · · · .

Let a ∈ HCn−(R) and b ∈ HCm− (R). Then the Lie bracket on HC∗−(R) is defined as follows

[a, b] = (−1)|a|I(∂a ∪ ∂b).

Theorem 10.5. Let R and T be two symmetric algebras which are related by a derived equivalence
that is given by RX•

T a two-sided tilting complex whose terms are bimodules that are projective
as left R-modules and right T -modules. Then the transfer map tX

•
: HC∗−(T ) → HC∗−(R) is an

isomorphism of graded Lie algebras.

Proof This follows from Proposition 3.6 and the analogue of Corollary 9.2 for negative cyclic
cohomology.

¤
Now we consider the invariance of the above structures under a stable equivalence of Morita

type. Let k be a field and let R be a symmetric k-algebra. Then by Corollary 9.3, transfer
maps commute with the operator ∆ : HHn+1(R) → HHn(R). Hence there is an induced map
∆st : HHn+1

st (R) → HHn
st(R) for n ≥ 0. This means that the stable Hochschild cohomology

algebra of a symmetric algebra is still a BV algebra. This also proves that the projective centre
of a symmetric algebra is a Lie ideal for the Gerstenhaber Lie bracket. We have thus proved the
following

Lemma 10.6. Let k be a field and let R be a symmetric k-algebra. Then HH∗
st is a BV algebra

with the ∆-operator induced from that of HH∗ and as a consequence, the projective centre is a
Lie ideal for the Gerstenhaber Lie algebra structure over the Hochschild cohomology algebra.

Now for stable negative cyclic cohomology, we have a long exact sequence

· · · S→ HCn+1
−,st (R) ∂→ HHn

st(R) I→ HCn
−,st(R) S→ HCn+2

−,st (R) ∂→ · · · .

Let a ∈ HCn−,st(R) and b ∈ HCm−,st(R). Then by [26, Lemma 7.2], we define a Lie bracket on
HC∗−,st(R) as follows

[a, b] = (−1)|a|I(∂a ∪ ∂b).
Combining Theorem 10.3, Theorem 10.5 and Lemma 10.6, we easily obtain the following

Theorem 10.7. Let k be an algebraically closed field. Let R and T be two symmetric algebras
which are related by a stable equivalence of Morita type that is given by RMT and T NR, which are
projective as R-modules and as T -modules. Suppose that the bilinear form on R is induced from
that of T . Then the transfer map tM : HH∗

st(T ) → HH∗
st(R) is an isomorphism of BV-algebras

and tM : HC∗−,st(T ) → HC∗−,st(R) is an isomorphism of graded Lie algebras.

Since stable Hochschild cohomology is invariant under a derived equivalence, similarly as in the
preceding result, we have the following
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Theorem 10.8. Let k be an algebraically closed field. Let R and T be two symmetric algebras
which are derived equivalent, where the equivalence is given by RX•

T a tilting complex whose terms
are bimodules that are projective as left R-modules and right T -modules. Then the transfer map
tX

•
: HH∗

st(T ) → HH∗
st(R) is an isomorphism of BV-algebras and tX

•
: HC∗−,st(T ) → HC∗−,st(R)

is an isomorphism of graded Lie algebras.
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