
SIMPLE-MINDED SYSTEMS IN STABLE MODULE CATEGORIESSTEFFEN KOENIG AND YUMING LIU∗Abstrat. Simple-minded systems in stable module ategories are de�ned by orthogonalityand generating properties so that the images of the simple modules under a stable equivaleneform suh a system. Simple-minded systems are shown to be invariant under stable equiva-lenes; thus the set of all simple-minded systems is an invariant of a stable module ategory.The simple-minded systems of several lasses of algebras are desribed and onnetions tothe Auslander-Reiten onjeture are pointed out.1. IntrodutionThree ategories are usually assoiated with a �nite dimensional algebra A: The moduleategory modA, whih is an abelian ategory, the derived ategory Db(modA), whih is trian-gulated, and the stable ategory modA, whih is also triangulated in ase A is self-injetive.The abelian ategory modA is generated by the set of simple modules and, in a di�erent sense,by eah progenerator, that is, by a full set of indeomposable projetive modules. Equivalenesof module ategories are desribed by Morita theory, in terms of images of projetive modulesor by progenerators. The triangulated ategory Db(modA) is also generated by the set ofsimple modules and alternatively by eah tilting omplex. Equivalenes of derived ategoriesare desribed by Rikard's and Keller's versions of Morita theory, again in terms of images ofprojetive modules. Rikard [21℄ has shown how to assign a tilting omplex to a set of objets'behaving like simple modules', thus allowing to swith between the two kinds of generators.Rouquier [23℄ formalised a onept of generators of triangulated ategories and used it to de�nethe dimension of a triangulated ategory.The stable ategory modA is generated by the set of simple modules, too. But the projetivemodules are not visible in this ategory and there is no substitute known for progenerators.An analogue of Morita theory for stable ategories is missing. In partiular, it is not knownhow to haraterize equivalenes of stable ategories in terms of images of generators. In fat,it is not even known how to best de�ne 'generators' of stable ategories. This appears to be amajor obstrution to solve a fundamental problem on stable ategories, the Auslander-Reitenonjeture; this onjeture states that stable equivalenes preserve the number of isomorphismslasses of non-projetive simple modules.The aim of this artile is to suggest and to explore a new de�nition of generating sets of stableategories, whih inludes the set of (non-projetive) simple modules as an example.This suggestion is not the �rst one made. Pogorzaly [19, 20℄ introdued what he alled maximalsystems of orthogonal stable briks. He showed that these generate the stable Grothendiek
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2 STEFFEN KOENIG AND YUMING LIU∗group, and he used his onept to prove the Auslander-Reiten onjeture for self-injetivespeial biserial algebras.The main features of Pogorzaly's systems are mutual orthogonality and maximality. Theseproperties are learly invariant under stable equivalenes, while it is a problem to show �nite-ness of the system in general. In ontrast to this, the generating systems we are introduinghere - the simple-minded systems - satisfy, in addition to the orthogonality properties, a gen-erating ondition that replaes maximality. Simple-minded systems always are �nite (Propo-sition 2.7). Invariane under stable equivalenes is not for free any more, but it is true; this isone of the main results we are going to prove (Theorem 3.2). The generating assumption weare using also provides a diret relation to the stable Grothendiek group.We onsider simple-minded systems for triangular algebras and one-point extensions and forNakayama algebras, pointing out onnetions with the Auslander-Reiten onjeture. Moreover,we ompare the new onept with that of Pogorzaly and we use the results of this omparisonto de�ne the onept of stable Loewy length.2. Definition and basi propertiesLet R be a ommutative artin ring. Reall from [4℄ that an R-algebra A is alled an artinalgebra if A is �nitely generated as a R-module. Important examples of artin algebras are�nite dimensional algebras over a �eld.Given an artin algebra A, we denote by modA the ategory of all �nitely generated left A-modules. For an A-module X, we denote by soc(X), top(X), and rad(X) its sole, top andradial, respetively. We denote by modPA the full subategory of modA onsisting of moduleswithout diret summands isomorphi to a projetive module. For an A-module X, there is amaximal summand (unique up to isomorphism) whih has no nonzero projetive summands.We all this summand the non-projetive part of the module X.The stable ategorymodA of A is de�ned as follows: The objets ofmodA are the same as thoseof modA, and the morphisms between two objetsX and Y are given by the quotient R-moduleHomA(X,Y ) = HomA(X,Y )/P(X,Y ), where P(X,Y ) is the R-submodule of HomA(X,Y )onsisting of those homomorphisms from X to Y whih fator through a projetive A-module.Given two artin algebras A and B, we say that A and B are stably equivalent if their stableategories modA and modB are equivalent. The Auslander-Reiten translate τ = DTr over anartin algebra and the Heller funtor (i.e. the syzygy funtor) Ω over a self-injetive algebraare typial examples of stable self-equivalenes. For basi material on stable equivalene, werefer the reader to [2℄, [3℄, [4℄.Let A be an artin algebra. In [3℄, Auslander and Reiten de�ned e(A) to be the full additivesubategory of modA whose indeomposable objets are the indeomposable non-injetiveobjets X in modA, suh that if 0 −→ X −→ Y −→ Z −→ 0 is an almost split sequene,then X or Y is projetive. Using the notion of node introdued by Martinez-Villa (f. [17℄),the indeomposable objets of e(A) onsist of preisely the following three lasses of modules:simple projetive modules, nodes, and indeomposable non-simple non-injetive projetivemodules. Clearly e(A) has only a �nite number of indeomposable modules. We denote by
e′(A) the full subategory of e(A) whose indeomposable objets are simple projetive modulesand nodes.Let C be a lass of A-modules. We denote by 〈C〉 the full subategory of modA onsisting ofmodules whih are diret summands of �nite diret sums of objets in C. For two subategories
C and D of modA, we denote by 〈C〉 ∗ 〈D〉 the lass of indeomposable A-modules Y suh thatthere is a short exat sequene of the following form

(†) 0 −→ X −→ Y ⊕ P −→ Z −→ 0,



SIMPLE-MINDED SYSTEMS 3where Z ∈ 〈D〉,X ∈ 〈C ∪ e(A)〉, and P is a projetive A-module. We put 〈C〉1 = 〈C〉 and wede�ne indutively 〈C〉n = 〈〈C〉n−1 ∗ 〈C〉〉 for n ≥ 2.De�nition 2.1. Let A be an artin algebra. A lass of objets S in modPA is alled a simple-minded system (for short: s.m.s.) if the following two onditions are satis�ed:(1) (orthogonality ondition) For any S, T ∈ S,
HomA(S, T ) =

{

0 S 6= T,division ring, S=T.(2) (generating ondition) For any indeomposable non-projetive A-module X, there existssome natural number n (depending on X) suh that X ∈ 〈S〉n.Remark 2.2. (1) The de�nition of a simple-minded system formally depends on the hosenalgebra A. In Theorem 3.2 we will see that in fat a simple-minded system depends only onthe equivalene lass of the stable module ategory modA. Therefore, instead of talking of asimple-minded system over A we may then also talk of a simple-minded system in modA.
(2) By de�nition, there is no simple-minded system over a semisimple algebra. From now on,we assume that all algebras onsidered are non-semisimple.
(3) Let A = B×C be a diret produt of artin algebras. Then it is easy to see that the simple-minded systems over A are exatly of the forms S1 ∪ S2, where S1 is a simple-minded systemover B and S2 is a simple-minded system over C.
(4) When the algebra A is self-injetive, its stable module ategory is triangulated. In thissetup, parallel and independent work of Rikard and Rouquier [22℄ is disussing the problem ofreonstruting A from its stable module ategory. They are also using ([22℄, 3.2, hypothesis 1)the orthogonality and generating onditions satis�ed by the simple modules. Moreover, they areadding a splitting �eld assumption and a ondition using that there are no extensions betweensimple modules in negative degrees. To formulate the latter ondition needs the triangulatedstruture.The following lemma is an easy onsequene of our de�nition.Lemma 2.3. Let A be an artin algebra.
(1) Suppose that S is a simple-minded system over A. Then for any X ∈ S, X is an indeom-posable non-projetive module. Moreover, the objets in S are pairwise non-isomorphi.
(2) Let S be a omplete set of non-isomorphi simple non-projetive A-modules. Then S is asimple-minded system over A.
(3) If S is a simple-minded system, then S generates the stable Grothendiek group Gst

0 (A) of
A.Proof (1) is a diret onsequene of the orthogonality ondition. For (2), the orthogonalityondition is lear. To prove the generating ondition, we use the natural exat sequene
0 −→ rad(X) −→ X −→ top(X) −→ 0 and indution on the Loewy length ll(X) for anindeomposable module X in modPA. (3) is an easy onsequene of the de�nition of Gst

0 (A)(refer to Remark 2.4) and the generating ondition on S.
�Remark 2.4. (1) Let A be an artin algebra. Reall from [18℄ that the stable Grothendiekgroup Gst

0 (A) is by de�nition the okernel of the Cartan map. In other words, there is thefollowing short exat sequene
K0(A)

CA→ G0(A)→ Gst
0 (A)→ 0,



4 STEFFEN KOENIG AND YUMING LIU∗where CA is the Cartan matrix of A and where K0(A) (respetively, G0(A)) is a free abeliangroup of �nite rank generated by isomorphism lasses of indeomposable projetive modules(respetively, isomorphism lasses of simple modules). For our purpose, we shall use the fol-lowing equivalent de�nition of the stable Grothendiek group (f. [17℄): Gst
0 (A) is the quotientgroup L1/R1, where L1 is the free group generated by the isomorphism lasses [X] of mod-ules X in modPA, R1 is the subgroup generated by the following three lasses of elements: (i)

[Y ]− [X]− [Z], where 0 −→ X⊕Q −→ Y ⊕P −→ Z −→ 0 is an exat sequene suh that Q,Pare projetive A-modules; (ii) [X]+ [Z], where 0 −→ X⊕Q −→ P −→ Z −→ 0 is an exat se-quene suh that Q,P are projetive A-modules; (iii) [Z], where 0 −→ Q −→ P −→ Z −→ 0 isan exat sequene suh that Q,P are projetive A-modules. In partiular, if A is a self-injetivealgebra, then Gst
0 (A) is the quotient group L1/R1, where L1 is the free group generated by theisomorphism lasses [X] of modules X in modPA, R1 is the subgroup generated by the elements

[Y ]− [X] − [Z] suh that there is an exat sequene 0 −→ X −→ Y ⊕ P −→ Z −→ 0 with Pprojetive.
(2) The statement (3) in Lemma 2.3 says that the simple-minded systems are just sets ofgenerators of the stable Grothendiek group. For an artin algebra A of �nite global dimensionit an be easily proved that the stable Grothendiek group is trivial, while on the other hand,there still may exist nontrivial stable equivalene related to A and suh information will bereorded in the simple-minded systems over A (see Theorem 3.2). This indiates that thesimple-minded system is a �ner notion than the stable Grothendiek group.Before giving further properties of a simple-minded system, we prove the following lemma, tobe used frequently.Lemma 2.5. Let 0 −→ X −→ Y −→ Z −→ 0 be an exat sequene of A-modules and M an
A-module. If HomA(M,X) = HomA(M,Z) = 0, then HomA(M,Y ) = 0.Proof Applying the funtor HomA(−,M) to the above exat sequene and using theAuslander-Reiten formula, we get the following exat ommutative diagram

Ext1A(Z,M) −−−−→ Ext1A(Y,M) −−−−→ Ext1A(X,M)

≀




y
≀




y
≀




y

DHomA(τ
−1(M), Z) −−−−→ DHomA(τ

−1(M), Y ) −−−−→ DHomA(τ
−1(M),X),where D =Homk(−, k) denotes the usual duality and τ−1 = TrD is the inverse of theAuslander-Reiten translation. When M runs through modA, τ−1(M) runs through modPA.The lemma thus follows.

�Remark 2.6. For self-injetive algebras, the same result holds true for HomA(−,M) andboth results are speial ases of [9, Lemma 1.4℄. However, Lemma 2.5 does not hold for
HomA(−,M) in general. For example, let A be a path algebra over a �eld given by the quiver
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�There is an exat sequene of A-modules 0 −→ 4 −→
3
4
−→ 3 −→ 0. Here, HomA(4,

3
4
) =

HomA(3,
3
4
) = 0, but HomA(

3
4
,
3
4
) 6= 0.The next proposition ollets some elementary fats on a simple-minded system.



SIMPLE-MINDED SYSTEMS 5Proposition 2.7. Let A be an artin algebra and let S be a simple-minded system over A.Then we have the following.
(1) S ontains (up to isomorphism) any simple non-projetive injetive module.
(2) S ontains (up to isomorphism) any node.
(3) Assume that S1 and S2 are two lasses of objets in modPA suh that S1 $ S $ S2. Thenneither S1 nor S2 is a simple-minded system.
(4) The number of objets in S is �nite, that is, the ardinality |S| <∞.Proof (1) Let S be a simple non-projetive injetive module. Suppose that S does not ontain
S. Then S an be generated by an exat sequene of the following form

0 −→ X −→ S ⊕ P −→ Z −→ 0,where X ∈ modA, Z ∈ 〈S〉 and P is a projetive A-module. Moreover, we an assume thatthe morphism S −→ Z in the above exat sequene is nonzero. But then S −→ Z splitsand therefore S is a diret summand of Z. This ontradits the assumption that S does notontain S and (1) follows.(2) Similarly, suppose that S is a node and that S does not ontain S. Let S ∈ 〈S〉n \ 〈S〉n−1.Then S an be generated by an exat sequene of the following form
0 −→ X −→ S ⊕ P −→ Z −→ 0,where X ∈ 〈S〉n−1, Z ∈ 〈S〉 and P is a projetive A-module. Clearly neither X nor Zontains a summand isomorphi to S. Sine S is a node, we have an almost split sequene

0 −→ S −→ E −→ τ−1(S) −→ 0 with E projetive. Sine X ontains no summand isomorphito S, any homomorphism S −→ X must fator through the left almost split homomorphism
S −→ E and therefore HomA(S,X) = 0. Similarly, HomA(S,Z) = 0. It follows from Lemma2.5 that HomA(S, S) = 0. This ontradition shows that S is an objet in S.(3) We only need to prove the statement for S1. Suppose that S1 is a simple-minded system andthat X ∈ S \ S1. Then X is generated from objets in 〈S1 ∪ e(A)〉. By (2) and the de�nitionof simple-minded systems, X is left orthogonal (in the stable ategory) to every objet in
〈S1 ∪ e(A)〉. It follows from Lemma 2.5 that HomA(X,X) = 0. This is a ontradition andtherefore S1 is not a simple-minded system.(4) To generate all simple A-modules, we only need a �nite number of objets in S, say,
X1, · · · ,Xn. We an assume that {X1, · · · ,Xn} ontains all nodes (otherwise, we just addthe nodes into this set). We shall prove that S = {X1, · · · ,Xn}. Suppose that there exists
X ∈ S \ {X1, · · · ,Xn}. Sine HomA(X,Xi) = 0 for all 1 ≤ i ≤ n, by Lemma 2.5, we havethat HomA(X,S) = 0 for any simple module S. This is learly a ontradition and thereforeour onlusion follows.

�For self-injetive algebras, any projetive summand of X in the generating sequene (†) anbe anelled. Thus we get the following result.Corollary 2.8. Let A be a self-injetive algebra and let S be a simple-minded system over A.For any indeomposable non-projetive A-module X, there is a projetive A-module P and a�ltration
X ⊕ P = X0 ⊇ X1 ⊇ · · · ⊇ Xm = 0with the subquotients in 〈S〉.The above orollary suggests the following de�nition.



6 STEFFEN KOENIG AND YUMING LIU∗De�nition 2.9. Let A be a self-injetive algebra and let S be a simple-minded system over A.For any indeomposable non-projetive A-module X, we de�ne µ(X) as the minimum integer
m suh that there is a projetive A-module P and a �ltration

X ⊕ P = X0 ⊇ X1 ⊇ · · · ⊇ Xm = 0with the subquotients in 〈S〉. For a general A-module X, we de�ne µ(X) = maxµ(Y ) where
Y runs through all the indeomposable non-projetive summands of X.Proposition 2.10. Let A be a self-injetive algebra and let S be a simple-minded system over
A. Then the values µ an take are bounded above as follows: For any A-module X, there is aninequality µ(X) ≤ n0 · ll(A), where ll(A) denotes the usual Loewy length of the regular module
A and n0 = µ(A/radA).Proof The proof proeeds by indution on the usual Loewy-length ll(X) of X. Withoutloss of generality, we an assume that X is an indeomposable non-projetive A-module. If
ll(X) = 1, then X is a simple module and learly µ(X) ≤ n0. Now assume that ll(X) = n > 1.There is an exat sequene

0 −→ Y −→ X −→ Z −→ 0,where Y,Z ∈ modPA, ll(Y ) = n− 1 and Z is semisimple. By indution, there is a projetivemodule P1 suh that Y ⊕P1 has a 〈S〉-�ltration of length ≤ (n−1)n0, and there is a projetivemodule P2 suh that Z ⊕ P2 has a 〈S〉-�ltration of length ≤ n0. It follows that the module
X ⊕ P1 ⊕ P2 has a 〈S〉-�ltration of length ≤ (n− 1)n0 + n0 = nn0 ≤ n0 · ll(A).

�3. Invariane under stable equivalenesIn this setion, we shall prove that the simple-minded systems are preserved by any stableequivalene. First of all, we reall some basi fats on funtor ategories due to Auslander andReiten (f. [2℄, [3℄).Let A be an artin algebra. We denote by mod(modA) the ategory of �nitely presentedontravariant funtors F from modA to abelian groups. By de�nition, F ∈ mod(modA) if andonly if there is a morphism f : X −→ Y in modA suh that F is the okernel of the morphism
(−, f) : (−,X) −→ (−, Y ),where HomA(−,X) = (−,X) and HomA(−, f) = (−, f). Moreover, we denote by mod(modA)the full subategory of mod(modA) whose objets are the funtors whih vanish on projetivemodules. The ategories mod(modA) and mod(modA) have enough projetive objets andenough injetive objets. There is a natural funtor modA −→ mod(modA) given by sending

X to (−,X), where (−,X)(Y ) = HomA(Y,X), whih indues an equivalene between modAand the full subategory of projetive objets in mod(modA). In partiular, we have that twoartin algebras A and B are stably equivalent if and only if the ategories mod(modA) and
mod(modA) are equivalent. Notie also that the injetive objets in mod(modA) are of theform Ext1A(−,X) with X ∈ modA.The following lemma extends the result in [3, Lemma 3.4℄.Lemma 3.1. Let α : modA −→ modB be a stable equivalene and X be an indeompos-able non-injetive A-module. Denote also by α the indued equivalene: mod(modA) −→
mod(modB). Then there is the following orrespondene:

α(Ext1A(−,X)) ≃

{

Ext1B(−, α(X)) if X is not in e(A),
Ext1B(−, Y ) for some Y ∈ e(B) if X is in e(A).Moreover, if X is in e′(A), then we also have Y ∈ e′(B).



SIMPLE-MINDED SYSTEMS 7Proof Sine X is an indeomposable non-injetive A-module, the funtor Ext1A(−,X) is anindeomposable injetive objet in mod(modA). It follows that α(Ext1A(−,X)) is an inde-omposable injetive objet in mod(modB). If X is not in e(A), by [3, Lemma 3.4℄, wehave that α(Ext1A(−,X)) ≃ Ext1B(−, α(X)) with α(X) not in e(B). If X ∈ e(A), then
α(Ext1A(−,X)) ≃ Ext1B(−, Y ) for some indeomposable non-injetive B-module Y sine ev-ery indeomposable injetive objet in mod(modB) has this form. We laim that Y ∈ e(B).Suppose that Y is not in e(B). Again by [3, Lemma 3.4℄, we know that X = α−1(Y ) is not in
e(A). This ontradition shows that Y ∈ e(B).Now we suppose that X ∈ e′(A). Then there is an almost split sequene

0 −→ X
f
−→ P

g
−→ Z −→ 0with P a projetive A-module. By [3, Proposition 2.1℄, we have an exat sequene

0 −→ (−, Z) −→ Ext1A(−,X)in mod(modA) suh that Ext1A(−,X) is an injetive envelope of (−, Z). We onsider thefollowing almost split sequene
0 −→ Y

f ′

−→ Q
g′

−→ α(Z) −→ 0,where Y,Q ∈ modB. We laim that Q is a projetive B-module and therefore Y ∈ e′(B).Otherwise, Q ontains a non-projetive diret summand and it follows from [4, Proposition1.3℄ that P ontains a non-projetive diret summand, whih is a ontradition! Again by [3,Proposition 2.1℄, there is an exat sequene
0 −→ (−, α(Z)) −→ Ext1B(−, Y )in mod(modB) suh that Ext1B(−, Y ) is an injetive envelope of (−, α(Z)). Sine under theequivalene α : mod(modA) −→ mod(modB), the funtor (−, Z) orresponds to (−, α(Z)), itfollows that α(Ext1A(−,X)) ≃ Ext1B(−, Y ).

�Theorem 3.2. Let α : modA −→ modB be a stable equivalene and S be a simple-mindedsystem over A. Then α(S) is a simple-minded system over B.Proof Obviously, α(S) is a lass of objets in modPB and satis�es the orthogonality onditionin modB. It remains to prove that 〈α(S) ∪ e(B)〉 generates any module in modPB. First weprove the followingClaim: Let 0 −→ X
f
−→ Y ⊕ P

g
−→ Z −→ 0 be an exat sequene in modA whih ontainsno split exat summands, where X ∈ 〈modPA ∪ e(A)〉, Y and Z are non-zero, Z ∈ 〈S〉, Y ∈modPA and P is a projetive A-module. Then there is an exat sequene 0 −→ K

f ′

−→ α(Y )⊕

P ′ g′

−→ α(Z) −→ 0 in modB whih ontains no split exat summands, whereK ∈ 〈α(X)∪e(B)〉and P ′ is a projetive B-module.Proof of Claim: Sine 0 −→ X
f
−→ Y ⊕P

g
−→ Z −→ 0 is an exat sequene in modA with nosplit exat summands, by [3, Proposition 2.1℄, we know that

(−, Y )
(−,g)
−→ (−, Z) −→ F −→ 0is a minimal projetive presentation of F = Coker(−, g) in mod(modA), and that

0 −→ F −→ Ext1A(−,X)
Ext1

A
(−,f)
−→ Ext1A(−, Y )is a minimal injetive presentation of F = Coker(−, g) in mod(modA).



8 STEFFEN KOENIG AND YUMING LIU∗Sine α : modA −→ modB is a stable equivalene, we an hoose g′′ : α(Y ) −→ α(Z) suhthat α(g) = g′′ and hoose t : P ′ −→ α(Z) suh that P ′ −→ α(Z) −→ Cokerg′′ is a projetiveover. Let g′ = (g′′, t) : α(Y )⊕ P ′ −→ α(Z), and onsider the exat sequene
0 −→ K

f ′

−→ α(Y )⊕ P ′ g′

−→ α(Z) −→ 0.Clearly this sequene has no split exat summands. So, again by [3, Proposition 2.1℄, there isan exat sequene
(−, α(Y ))

(−,α(g))
−→ (−, α(Z)) −→ G −→ Ext1B(−,K)in mod(modB), where G = Coker(−, α(g)) = α(F ) and G −→ Ext1B(−,K) is an injetiveenvelope ofG. It follows that α(Ext1A(−,X)) ≃ Ext1B(−,K). Write down X = X1⊕· · ·⊕Xm⊕

Xm+1⊕· · ·⊕Xn, where eah Xi (1 ≤ i ≤ n) is an indeomposable non-injetive A-module and
Xi is not in e(A) for 1 ≤ i ≤ m, Xi ∈ e(A) for m+1 ≤ i ≤ n. By Lemma 3.1, Ext1B(−,K) ≃
α(Ext1A(−,X)) ≃

⊕n
i=1 α(Ext1A(−,Xi)) = Ext1B(−, α(X1)) ⊕ · · · ⊕ Ext1B(−, α(Xm)) ⊕ · · · ⊕

Ext1B(−,Kn) for some Ki (m + 1 ≤ i ≤ n) ∈ e(B). Therefore K ≃ α(X1) ⊕ · · · ⊕ α(Xm) ⊕
Km+1 ⊕ · · · ⊕Kn ∈ 〈α(X) ∪ e(B)〉. This �nishes the proof of Claim.From the above laim, it is easy to see that α(〈S〉n) = 〈α(S)〉n for any natural number n. Itfollows that 〈α(S) ∪ e(B)〉 generates any module in modPB.

�The theorem shows that simple-minded systems are stably invariant. As an appliation, wedetermine the simple-minded systems over the 4-dimensional weakly symmetri loal k-algebra
At = k < x, y > /(x2, y2, xy − tyx), where k is an algebraially losed �eld and t 6= 0 is anelement in k. If chark = 2 and t = 1, then At is isomorphi to the group algebra of the Klein4-group.Let S be the unique (up to isomorphism) simple At-module. The Auslander-Reiten quiver of
At is known to have a omponent C ontaining S and a P1(k)-family of homogenous tubes. Forany non-projetive module X in the omponent C, X is an image of S under some appropriateomposition of the stable equivalene funtors DTr and Ω. It follows that eah non-projetive
At-module X ∈ C de�nes a simple-minded system over At. Conversely, every simple-mindedsystem over At is of this form. In fat, if there is another kind of simple-minded system S over
At, then by Proposition 2.7 (3), S should not ontain any module in C. So eah X ∈ S has evendimension. Sine the unique indeomposable projetive At-module is also even-dimensional,
S an only generate even-dimensional modules, a ontradition!The above argument works for all group algebras A of �nite p-groups if the harateristiof the �eld k is the prime number p. Indeed, by a result of Carlson ([6℄), an A-module Msatis�es HomA(M,M) = k if and only if M is an endotrivial module. On the other hand,eah endotrivial module M indues a stable self-equivalene of Morita type over A suh thatthe unique simple module k is mapped to M . Therefore every endotrivial module de�nes asimple-minded system and these are all simple-minded systems over A. Theorem 3.2 implies:Corollary 3.3. The Auslander-Reiten onjeture holds true for two algebras (i.e. two algebrasrelated by a stable equivalene have the same number of non-projetive simple modules up toisomorphism) if one of the algebras is a group algebra of a �nite p-group in harateristi p.This result is due to Linkelmann ([11, Theorem 3.4℄).Clearly, in the above examples, eah simple-minded system an be obtained from the simplemodules by applying a suitable stable self-equivalene. However, the following example showsthat simple-minded systems over an artin algebra are in general not ated upon transitively bythe group of stable self-equivalenes. It may be interesting to determine all the artin algebraswith transitive ation of the stable self-equivalenes on the simple-minded systems.



SIMPLE-MINDED SYSTEMS 9Example 3.4. Let k be a �eld. Let A be a �nite dimensional k-algebra with the followingregular representation
A =

1′

2′

1′
⊕

2′

1′ 3′

2′
⊕

3′

2′

3′and let B be a �nite dimensional k-algebra with the following regular representation
B =

1
2
3
1
⊕

2
3
1
2
⊕

3
1
2
3 .Both A and B are representation-�nite and symmetri, and there is a stable equivalene ofMorita type α between B and A suh that α(1) = 1′, α(2) =

3′

2′
, α(3) =

2′

3′
(f. [15, Setion6℄). By Theorem 3.2, {1′, 3′

2′
,
2′

3′
} is a simple-minded system. However, there is no stableself-equivalene β over A suh that β({1′, 2′, 3′}) = {1′, 3′

2′
,
2′

3′
}. In fat, if β is suh a stableself-equivalene then β must be a stable self-equivalene of Morita type (f. [1℄). Therefore theomposition β−1α is a stable equivalene of Morita type between B and A under whih eahsimple B-module orresponds to a simple A-module. It follows from Linkelmann's theorem([11, Theorem 2.1℄) that B and A are Morita equivalent, whih is learly a ontradition.The next example shows that simple-minded systems over an artin algebra may even fail to beated upon transitively by arbitrary stable equivalenes. This is in ontrast with the situationfor derived ategories. Here, the main result of Rikard's work on derived equivalenes forsymmetri algebras in [21, Theorem 5.1℄ shows transitivity.Example 3.5. Let k be a �eld. Let A be a �nite dimensional k-algebra with the followingregular representation

A =

1
2
1
2
1

⊕

2
1
2
1
2 .Suppose that B is another �nite dimensional k-algebra suh that there is a stable equivalene

α between B and A. As in the above example, α is lifted to a stable equivalene of Moritatype. Sine A is an indeomposable representation-�nite symmetri algebra, so is B (by [14℄).It follows easily that A and B are Morita equivalent. Without loss of generality we an identify
B and A and assume that α is a stable self-equivalene of Morita type over A. By Proposition6.2, one an verify that there are preisely four simple-minded systems over A:
S1 = {1, 2}; S2 = {1, 2

1
2
}; S3 = { 1

2
1
, 2}; S4 = { 1

2
1
2

,

2
1
2
1

}.Clearly α ommutes with the syzygy funtor Ω, and therefore α annot map the simple-mindedsystem S1 to S2.



10 STEFFEN KOENIG AND YUMING LIU∗4. Simple-minded systems and triangular algebrasIn this setion, we apply simple-minded systems to study triangular algebras and one-pointextension algebras.For simpliity, throughout this setion, we onsider (�nite dimensional) quiver algebras of theform kQ/I, where k is a �eld, Q is a quiver and I is an admissible ideal in kQ. Reall that aquiver algebra kQ/I is said to be a triangular algebra if there is no oriented yle in its quiver
Q.Proposition 4.1. If A = kQ/I is a triangular algebra, then A has only one simple-mindedsystem S = {simple non-projetive A-modules}.Proof Clearly we an assume that the quiver Q ontains no isolated verties. Suppose that
S is a simple-minded system. Then, by Proposition 2.7, S must ontain all simple injetive
A-modules, say, L11, · · · , L1i1 (whih orrespond to the soure verties in the quiver Q of A).By the orthogonal ondition, every other module in S has no omposition fator isomorphi to
L1j (1 ≤ j ≤ i1). Let {L21, · · · , L2i2} be simple A-modules whih orrespond to suh verties
vL that vL is not a sink vertex but is next to a soure vertex in the quiver Q. Take suh asimple A-module L whih orresponds to a vertex vL, that is, we are in the following situation:

◦(some soure vertex)
◦ vL

· · ·

· · ·

R

	 R

	Then L an be generated by an exat sequene of the following form
0 −→ X −→ L⊕ P −→ Z −→ 0,where X ∈ modA, Z ∈ 〈S〉 and P is a projetive A-module. Thus there exists some S ∈ Ssuh that L ⊆ soc(S). However, if L2j (1 ≤ j ≤ i2) is a omposition fator of a module in

S, then L2j must our in its top. It follows that L is also ontained in top(S). This fores
L ≃ S by the indeomposability property. We thus proved that S ontains the simple modules
L21, · · · , L2i2 . Observe that the modules other than the above two lasses of simple modules in
S have no omposition fator isomorphi to suh simple modules. Next we onsider the simplenon-projetive A-modules L31, · · · , L3i3 whih are �next� to simple modules L21, · · · , L2i2 .Continuing by this way, we an prove that S ontains all the simple non-projetive A-modulesand therefore S = {simple non-projetive A-modules}.

�Corollary 4.2. If α : modB −→ modA is a stable equivalene suh that A is a triangular al-gebra, then α maps eah non-projetive simple B-module to a non-projetive simple A-module,and therefore A and B have the same number of non-projetive simple modules.Proof Sine S = {simple non-projetive B-modules} is a simple-minded system over B, α(S)is a simple-minded system. But S ′ = {simple non-projetive A-modules} is the only simple-minded system. It follows that α(S) = S ′, and A and B have the same number of non-projetive simple modules.
�The next result is a speial ase of the result in [8, Theorem 4.3℄. Note that here we allow thealgebras have nodes. Given two �nite dimensional algebras A and B. Reall that A and B aresaid to be stably equivalent of Morita type if there are two bimodules AMB and BNA whihare projetive as left modules and as right modules suh that we have bimodule isomorphisms:

AM ⊗B NA ≃ AAA ⊕ APA, BN ⊗A MB ≃ BBB ⊕ BQB



SIMPLE-MINDED SYSTEMS 11where APA and BQB are projetive bimodules.Proposition 4.3. Let A and B be algebras over a �eld k. Suppose that A and B have nosemisimple summands and that their maximal semsimple quotient algebras are separable. Iftwo bimodules AMB and BNA de�ne a stable equivalene of Morita type between A and B suhthat B is a triangular algebra, then A and B are Morita equivalent.To prove Proposition 4.3, we need the following lemma whih is a generalization of Linkel-mann's result in [11, Theorem 2.1(ii)℄ for self-injetive algebras.Lemma 4.4. Let A and B be two indeomposable nonsimple algebras over a �eld k, whosemaximal semisimple quotient algebras are separable. If two indeomposable bimodules AMBand BNA de�ne a stable equivalene of Morita type between A and B, then N ⊗A S is anindeomposable B-module for eah simple A-module S.Proof Note that under the assumption of this lemma, by [8℄ we an assume that both (N⊗A−,
M ⊗B −) and (M ⊗B −, N ⊗A −) are adjoint pairs. In partiular, N ⊗A− and M ⊗B − mapprojetive (injetive, respetively) modules to projetive (injetive, respetively) modules, and
P and Q are projetive-injetive bimodules. We �rst state two simple fats.Fat 1: For any indeomposable non-(projetive-injetive) A-module X, N ⊗A X is a non-(projetive-injetive) B-module; Similarly, we have the result for M ⊗B −.Otherwise, M ⊗BN ⊗AX ≃ X⊕P ⊗AX is a projetive-injetive A-module and so is X. Thiswill be a ontradition!Fat 2: For any indeomposable non-(projetive-injetive) A-module X, suppose that N ⊗A

X ≃ Y ⊕ E with Y an indeomposable non-(projetive-injetive) B-module. Then E is aprojetive-injetive B-module.Otherwise, let E = Z ⊕ E′ with Z an indeomposable non-(projetive-injetive) B-module.Then M ⊗B N ⊗A X ≃ X ⊕ P ⊗A X ≃ M ⊗B Y ⊕M ⊗B Z ⊕M ⊗B E′. The left hand sideof this equality ontains only one indeomposable non-(projetive-injetive) summand but theright hand side ontains at least two indeomposable non-(projetive-injetive) summands. Aontradition!Now let S = Ae/radAe be a simple A-module. We want to show that N ⊗A S is an indeom-posable B-module. There are two ases to be onsidered.Case 1. S = Ae/radAe is isomorphi to soc(e′A) as left A-module for some indeomposableprojetive-injetive right A-module (or equivalently, an indeomposable projetive-injetive
Aop-module) e′A. (Note that soc(e′A) is an ideal in A sine e′A is projetive-injetive, see[7, Setion 9.2℄). Then, for any indeomposable projetive-injetive B-module Bf , Bf ⊗k e

′Ais a projetive-injetive B ⊗k Aop-module and soc(Bf ⊗k e′A) ≃ soc(Bf) ⊗k soc(e′A) bythe separability assumption. Sine as a B ⊗k Aop-module, N has no projetive summands,
soc(Bf ⊗k e′A)N = 0. On the other hand, soc(Bf ⊗k e′A)N = soc(Bf)Nsoc(e′A) ≃
soc(Bf)(N ⊗A soc(e′A)) ≃ soc(Bf)(N ⊗A S) = 0. This implies that the B-module N ⊗A Sontains no projetive-injetive summands and therefore N ⊗A S is indeomposable by Fat 1and 2.Case 2. S = Ae/radAe is not isomorphi to soc(e′A) as left A-module for any indeomposableprojetive-injetive right A-module e′A. Sine P is a projetive bimodule, we have a deompo-sition of the following form: P =

⊕

i,j Aei⊗kejA where the ei's and the ej 's are some primitiveidempotents in A. Sine P is also an injetive bimodule, eah Aei and eah ejA are also inje-tive modules. By [8, Theorem 4.3℄, for any suh idempotent ej , Aej is projetive-injetive and
Aej/radAej is isomorphi to the sole of some projetive-injetive A-module. Therefore theidempotent e is di�erent from any one of the above ej . It follows that ejA⊗A (Ae/radAe) = 0



12 STEFFEN KOENIG AND YUMING LIU∗for eah ej and P⊗A(Ae/radAe) = 0. This implies thatM⊗BN⊗A(Ae/radAe) ≃ (Ae/radAe)and therefore N ⊗A (Ae/radAe) must be an indeomposable B-module.
�Proof of Proposition 4.3. By [14℄, we an assume that both A and B are indeomposable

k-algebras, and that AMB and BNA are indeomposable bimodules. For any simple A-module
S, Lemma 4.4 implies that N ⊗A S is an indeomposable B-module. We want to show that
N ⊗A S is simple. There are two ases to be onsidered.Case 1. S is non-projetive. In this ase, Corollary 4.2 implies that N ⊗A S is simple.Case 2. S is simple projetive. In this ase, by [13, Lemma 3.1℄, N⊗AS must ontain a simpleprojetive summand and therefore is also simple.We have proved that N ⊗A− maps eah simple A-module to a simple B-module. By the gen-eralization of Linkelmann's theorem (see [12, Theorem 1.1℄), the funtor N ⊗A− : modA −→modB gives a Morita equivalene.

�Finally, we prove a general fat on simple-minded systems of one-point extension algebras.Proposition 4.5. Let B be a �nite dimensional algebra over a �eld k and let A =

(

B M
0 k

)be a one-point extension algebra of B by a B-module M .
(1) If S is a simple-minded system over B, then S ′ = S ∪ {L} is a simple-minded system over
A, where L is the simple injetive A-module with projetive over (

M
k

).
(2) Eah simple-minded system has the form S ′ = S ∪{L} where S is a simple-minded systemover B and L is as above.Proof (1) There is a anonial algebra epimorphism A −→ B given by (

b m
0 x

)

7→ b. Soevery B-module is automatially an A-module by this map. In partiular, B is a projetive
A-module and the embedding funtor AB⊗B− : modB −→modA indues a funtor AB⊗B− :
modB −→ modA. Note that AB ⊗B − : modB −→ modA is a fully faithful funtor, and that
e(A) ⊇ e(B).Clearly we have HomA(X,Y ) = 0 for any X,Y ∈ S. Sine every A-module in S has noomposition fator isomorphi to L, we also have HomA(X,L) = HomA(L,X) = 0 for any
X ∈ S. This proves the orthogonality ondition for S ′. Now let Y be any indeomposablenon-projetive A-module. Notie that if L is a omposition fator of Y , then L must our inthe top of Y . We onsider two ases.Case 1. Y has no omposition fator isomorphi to L. In this ase Y is a B-module andan be generated by 〈S ∪ e(B)〉. Sine B ⊗B e(B) ⊂ e(A), we know that Y is generated by
〈S ′ ∪ e(A)〉.Case 2. Y ontains a omposition fator isomorphi to L. We have an exat sequene

0 −→ X −→ Y −→ Lm −→ 0,where m is a natural number and X ontains no omposition fator isomorphi to L. It isreadily seen that this ase is redued to Case 1.(2) Suppose that S ′ is a simple-minded system. Then, by Proposition 2.7, S ′ must ontainthe simple injetive module L. So S ′ = S ∪ {L} with S a lass of objets in modPA. Forany X ∈ S, X ontains no omposition fator isomorphi to L: otherwise, L ∈ top(X) and
HomA(X,L) 6= 0. A ontradition! Therefore S ⊆ modPB. We shall prove that S is a



SIMPLE-MINDED SYSTEMS 13simple-minded system over B. Obviously, S satis�es the orthogonality ondition in modBsine modB is a full subategory of modA. Now let Y be an indeomposable B-module inmodPB. Then without loss of generality we an assume that the last exat sequene in modAwhih generates Y has the following form:
0 −→ X −→ Y ⊕ P −→ Z −→ 0,where X ∈ modA, Z ∈ 〈S〉 and P is a projetive B-module. It follows that X is a B-moduleand therefore all the exat sequenes involved in generating Y lie in modB. So Y is generatedby 〈S ∪ e(B)〉, and S is a simple-minded system over B.

�Remark 4.6. (1) Using the above proposition, we get a simple proof of Proposition 4.1 asfollows: without loss of generality we assume that A is an indeomposable algebra. Therefore
A an be obtained by a �nite number of one-point extensions from a single point and theonlusion follows immediately from Proposition 4.5.
(2) The result in Proposition 4.5 an not be generalized to triangular matrix algebras, i.e.algebras of the form Λ =

(

A M
0 B

), where A and B are arbitrary algebras. For example, let
k be an algebraially losed �eld. Let A = B = k[x]/(x3) be two �nite dimensional algebras over
k and let M = k[x]/(x3) be the natural A-B-bimodule. Consider the triangular matrix algebra
Λ =

(

A M
0 B

)

≃ k(α � 1
β
←− 2 	 γ)/(α3, γ3, αβ − βγ). Clearly (x2)/(x3) is a simple-minded system whih orresponds to the simple Λ-module 1, and (x)/(x3) is a simple-mindedsystem over B whih orresponds to the Λ-module 2

2
. But {1, 2

2
} is not a simple-mindedsystem over Λ sine 2

2
is not self-orthogonal.5. Simple-minded systems and self-injetive algebrasIn this setion, we shall ompare the simple-minded systems with Pogorzaly's maximal systemsof stable orthogonal briks over a self-injetive algebra. We simplify Pogorzaly's de�nitionand drop one ondition used by him to exlude a few trivial ases; in this way we arriveat 'weakly simple-minded system'. For representation �nite self-injetive algebras we showthese to oinide with the simple-minded systems de�ned before. Thus, for these algebrasPogarzaly's onept essentially oinides with ours. One this has been ahieved, we introduethe notion of stable Loewy length for modules in a stable ategory.Let A be a self-injetive algebra over an algebraially losed �eld k. Reall from [20, 19℄ that anindeomposable A-module X in modA is said to be a stable A-brik if its stable endomorphismring EndA(X) is isomorphi to k. A family {Xi}i∈I of stable A-briks is said to be a maximalsystem of orthogonal stable A-briks if the following onditions are satis�ed:(1) τ(Xi) ≇ Xi for any i ∈ I;(2) HomA(Xi,Xj) = 0 for any i 6= j;(3) For any nonzero objet X ∈ modA, there exists some i ∈ I suh that HomA(X,Xi) 6= 0and there exists some j ∈ I suh that HomA(Xj ,X) 6= 0.Note that the above de�nition an be simpli�ed. Indeed, one half of the assumption in ondi-tion (3) is enough: the two onditions �For any nonzero objet X ∈ modA, there exists some

i ∈ I suh that HomA(X,Xi) 6= 0� and �For any nonzero objet X ∈ modA, there exists some
j ∈ I suh that HomA(Xj ,X) 6= 0� are equivalent. This an be seen from a general fat on



14 STEFFEN KOENIG AND YUMING LIU∗stable ategories over a self-injetive algebra proved in [19℄. The general fat was presented inthe proof of [19, Proposition 1℄. For onveniene of the reader, we inlude the proof here.Proposition 5.1. ([19, Proof of Proposition 1℄) Let A be a self-injetive artin algebra. Let
M be an indeomposable non-projetive A-module and X be any indeomposable A-module. Ifthere is a nonzero homomorphism f : X −→ M in modA, then there is a nonzero homomor-phism h : τ−1Ω(M) −→ X suh that fh 6= 0 in modA.Proof If X ≃ M , then there is a nonsplit exat sequene in modA: 0 −→ Ω(M) −→
P (M) −→ M −→ 0, where P (M) −→ M is a projetive over of M . It follows from theAuslander-Reiten formula that HomA(τ

−1Ω(M),M) ≃ Ext1A(M,Ω(M)) 6= 0.Assume now that X ≇ M . Consider the following exat ommutative diagram
0 −−−−→ Ω(M) −−−−→ P (M)

l
−−−−→ M −−−−→ 0

j




y
i




y
1




y

0 −−−−→ Y −−−−→ X ⊕ P (M)
(f,l)
−−−−→ M −−−−→ 0,where f : X −→ M is a representative of f in modA, l : P (M) −→ M is a projetive over,

i is a anonial embedding and j is indued from i. Applying the snake lemma we get thefollowing exat sequene of A-modules:
0 −→ Ω(M)

j
−→ Y

s
−→ X −→ 0.Note that j is not a split monomorphism sine otherwise s is a split epimorphism and therefore

f(X) = 0, a ontradition! By the property of almost split sequene, we get the followingexat ommutative diagram
0 −−−−→ Ω(M) −−−−→ Z

r
−−−−→ τ−1Ω(M) −−−−→ 0

1




y
t




y
h




y

0 −−−−→ Ω(M)
j

−−−−→ Y
s

−−−−→ X −−−−→ 0,where the �rst row is an almost split sequene, h is indued from t. We �rst note that h 6= 0sine otherwise r will be a split epimorphism, and this is learly a ontradition! Next weshow that h 6= 0. Suppose that this is not the ase. We have the following exat ommutativediagram
0 - Ω(M) - Z

r′ r- τ−1Ω(M) - 0

0 - Ω(M)
j- Y s

- X - 0,

1
?

t
? ?

hP	

	 Rwhere h fators through the projetive over P of X, the homomorphism P −→ Y is induedfrom the property of projetive modules, and we denote the omposition map τ−1Ω(M) −→
P −→ Y by u. We have that Im(t−ur) ⊆ j(Ω(M)) and that (t−ur)r′(Ω(M)) = tr′(Ω(M)) =
j(Ω(M)) ≃ Ω(M). Therefore r′ is a split monomorphism whih is learly a ontradition.Finally, let us prove that fh 6= 0. Indeed, if fh fators through P (M) then fh = lh′ for some
h′ : τ−1Ω(M) −→ P (M), and onsequently h fators through Y by the following pullbakdiagram
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Y

s- X

P (M)
l
- M.

? ?
f

τ−1Ω(M)

R j

W

h

h′

Hene there is h1 : τ−1Ω(M) −→ Y with h = sh1. Thus st = sh1r and Im(t− h1r) ⊆ Im(j).Then, as before, a ontradition an be dedued. This shows that fh 6= 0.
�Corollary 5.2. In the de�nition of maximal system of orthogonal briks, the two onditions�For any nonzero objet X ∈ modA, there exists some i ∈ I suh that HomA(X,Xi) 6= 0� and�For any nonzero objet X ∈ modA, there exists some j ∈ I suh that HomA(Xj ,X) 6= 0� areequivalent.Proof It su�es to prove it for X indeomposable. Suppose that the ondition �For anynonzero objet X ∈ modA, there exists some i ∈ I suh that HomA(X,Xi) 6= 0� is satis-�ed. By Proposition 5.1, HomA(Xi,Ω

−1τ(X)) ≃ HomA(τ
−1Ω(Xi),X) 6= 0. When X runsthrough the nonzero objets in modA, so does Ω−1τ(X). Therefore we have proved the seondondition. The proof of the other diretion is similar.

�In order to ompare simple-minded systems with Pogorzaly's maximal systems of orthogo-nal briks over a self-injetive algebra, we introdue the following de�nition (note that ourde�nition here applies in any artin algebra).De�nition 5.3. Let A be an artin algebra. A lass of objets S in modPA is alled a weaklysimple-minded system if the following two onditions are satis�ed:(1) (orthogonality ondition) For any S, T ∈ S,
HomA(S, T ) =

{

0 S 6= T,division ring, S=T.(2) (weak generating ondition) For any indeomposable non-projetive A-module X, thereexists some S ∈ S (depends on X) suh that HomA(X,S) 6= 0.Remark 5.4. Aording to Remark 2.6, for general artin algebras, the weak generating on-dition in De�nition 5.3 is not symmetri, that is, "HomA(X,S) 6= 0" annot be replaed by"HomA(S,X) 6= 0".It is easy to see that every simple-minded system is a weakly simple-minded system. Thereason is as follows: Let A be an artin algebra and let S be a simple-minded system. Toshow that S is a weakly simple-minded system, we only need to prove the weak generatingondition. Let 0 6= X ∈ modPA. Suppose that HomA(X,T ) = 0 for all T ∈ S. Then we havethat HomA(X,S) = 0 for any simple module S (f. the proof of Lemma 2.5). This is learlya ontradition and therefore S satis�es the weak generating ondition. Thus the questionarises: Is every weakly simple-minded system also a simple-minded system?At least for representation-�nite self-injetive �nite dimensional algebras, we an prove thatthe above question has a positive answer. First we need a lemma. Let A be a �nite dimensionalalgebra over a �eld k and let S = {M1, · · · ,Mn} be a weakly simple-minded system. Let X



16 STEFFEN KOENIG AND YUMING LIU∗be an A-module in modPA. Suppose that dimkHomA(X,Mi) = di for 1 ≤ i ≤ n. Following[19℄, we will say that ⊕n
i=1M

di
i is an s-top of X with respet to S. Of ourse, s-top(X) iswell-de�ned for X. We onsider the following exat sequene in modA:

(∗) 0 −→ X1
h=(h′,h′′)
−→ X ⊕ P

(f,g)
−→ s-top(X) −→ 0,where f : X −→ s-top(X) is suh a morphism that the oordinates of f form a basis ofthe nonzero k-spae HomA(X, s-top(X)) and g : P −→ s-top(X) is suh a morphism that

P −→ s-top(X) −→ Coker(f) is a projetive over.Lemma 5.5. Let X be an A-module in modPA. Up to isomorphism, the non-projetive partof the module X1 in the above sequene (∗) is independent of the hoie of the homomorphism
f : X −→ s-top(X).Proof First we note that if we replae g : P −→ s-top(X) in the above sequene (∗) by theprojetive over g′ : Q −→ s-top(X), then ker(f, g′) and X1 have isomorphi non-projetivepart. Now we hoose another homomorphism f ′ : X −→ s-top(X) suh that the oordinatesof f ′ still form a k-basis of HomA(X, s-top(X)). There learly is an A-module isomorphism
α : s-top(X) −→ s-top(X) suh that αf − f ′ fators through the projetive over q2 : P ′ −→s-top(X). More preisely, there is a homomorphism q1 : X −→ P ′ suh that αf − f ′ = q2q1.Hene we get the following exat ommutative diagram

0 −−−−→ Y1 −−−−→ X ⊕ P ′
(f,α−1q2)
−−−−−−→ s-top(X) −−−−→ 0

d




y

(

1 0
q1 1

)





y
α




y

0 −−−−→ Y ′
1 −−−−→ X ⊕ P ′

(f ′,q2)
−−−−→ s-top(X) −−−−→ 0,where d is indued from the isomorphism (

1 0
q1 1

). It follows that d is an isomorphism. Inpartiular, Y1 and Y ′
1 have isomorphi non-projetive parts.

�Clearly, if A is a self-injetive algebra, X1 ontains no projetive summands. However, ingeneral X1 may ontain projetive summands (although by our assumption, X ontains noprojetive summands). Aording to [19℄, we de�ne the s-radial of X with respet to Sto be the non-projetive part of X1 in the above sequene (∗). This is well-de�ned up toisomorphism, and we shall denote it by s-rad(X). Moreover, we denote s-rad(s-radi−1(X)) bys-radi(X).Theorem 5.6. Let A be a representation-�nite self-injetive �nite dimensional algebra overa �eld k and let S = {M1, · · · ,Mn} be a weakly simple-minded system. Then S even is asimple-minded system.Proof We only need to prove the generating ondition. Let X be an indeomposable non-projetive A-module. Suppose that dimkHomA(X,Mi) = di for 1 ≤ i ≤ n. As before, weonsider the following exat sequene in modA:
(∗) 0 −→ X1

h=(h′,h′′)
−→ X ⊕ P

(f,g)
−→ s-top(X) −→ 0,where f : X −→ s-top(X) is suh a morphism that the oordinates of f form a basis ofthe nonzero k-spae HomA(X, s-top(X)) and g : P −→ s-top(X) is suh a morphism that

P −→ s-top(X) −→ Coker(f) is a projetive over. Let M =
⊕n

i=1 Mi. Sine modA is atriangulated ategory (with translation funtor Ω−1 : modA −→ modA) and the above exatsequene indues a triangle
X1

h
−→ X

f
−→ s-top(X)

e
−→ Ω−1(X1)



SIMPLE-MINDED SYSTEMS 17in modA, after applying the ontravariant ohomologial funtor HomA(−,M) to the abovetriangle, we get the following long exat sequene of k-spaes
· · · −→ (Ω

−1(X),M)
(Ω−1(h),M)
−→ (Ω

−1(X1),M)
(e,M)
−→ (s-top(X),M)

(f,M)
−→ (X,M) −→ · · · .We laim that (f,M) is an isomorphism. Indeed, the spaes (s-top(X),M) and (X,M) havethe same k-dimension Σn

i=1di and the anonial basis elements of (s-top(X),M) map to theoordinates of f whih form a basis of (X,M). It follows that (Ω−1(h),M) is an epimorphismand that dimkHomA(Ω
−1(X),M) ≥ dimkHomA(Ω

−1(X1),M). We an assume that X1 6= 0sine otherwise X ≃ s-top(X) ∈ 〈S〉 and we are done. Note also that X1 ontains no projetivesummand. For any indeomposable summand ofX1 (we still denote it by X1), we an similarlytake an exat sequene as (∗) in modA:
0 −→ X2

h1−→ X1 ⊕ P1
(f1,g1)
−→ s-top(X1) −→ 0.From this we also dedue a anonial epimorphism (Ω−1(h1),M) : (Ω

−1(X1),M) −→

(Ω
−1(X2),M) and get an inequality dimkHomA(Ω

−1(X1),M) ≥ dimkHomA(Ω
−1(X2),M).Continuing in this way, we obtain a sequene of epimorphisms between k-spaes:

(Ω
−1(X),M)

(Ω−1(h),M)
−→ (Ω

−1(X1),M)
(Ω−1(h1),M)
−→ (Ω

−1(X2),M)
(Ω−1(h2),M)
−→ · · · .The above sequene is indued from the following sequene

· · · −→ X3
h2

−→ X2
h1

−→ X1
h
−→ Xin modA and the latter one is again indued from the following sequene

(∗∗) · · · −→ X3
h′

2−→ X2
h′

1−→ X1
h′

−→ Xin modA. To �nish our proof, it su�es to prove the following onlusion: there exists somenatural number m suh that Xm = 0 (and onsequently Xi = 0 for all i ≥ m).By our assumption, all the modules in the above sequene (∗∗) are indeomposable. We laimthat all homomorphisms in (∗∗) are non-isomorphisms. In fat, if in the original sequene (∗)the s-radial X1 ontains an indeomposable summand X ′
1 suh that h′ : X ′

1 −→ X is an iso-morphism, then the inequality dimkHomA(Ω
−1(X),M) ≥ dimkHomA(Ω

−1(X1),M) impliesthat X1 an not ontain any other summands, and therefore X1 must be isomorphi to X. Thiswould lead to the absurd onlusion that the sequene (∗) splits and that X ≃ X ⊕ s-top(X).Similarly, one an show that all h′i(i ≥ 1) are non-isomorphisms. Sine A is representation-�nite and the modules in modA have bounded length, by [4, Corollary 1.3℄, for some large m(m ≤ 2b, where b denotes the least upper bound of the lengths of the indeomposable mod-ules in modA), the omposition h′h′1 · · · h
′
m is zero in modA. It follows that the omposition

(Ω−1(hm),M) · · · (Ω−1(h1),M) (Ω−1(h),M) is zero. Sine all (Ω−1(hi),M) are epimorphisms,we know that HomA(Ω
−1(Xm),M) = 0. By the weak generating ondition, we know that

Ω−1(Xm) = 0. It follows that Xm = 0 sine Ω−1 : modA −→ modA is an equivalene.
�Remark 5.7. Suppose that A is any (not neessarily representation-�nite) self-injetive alge-bra over a �eld k. The above proof implies that for any indeomposable non-projetive A-module

X, s-rad(X) annot ontain a diret summand isomorphi to X. Indeed, if this is the ase,we an take all Xi equal to X in the above proof, and �nally we get that X = 0, whih is aontradition. Moreover, it is easy to see that all the modules in {s-radi(X)|i = 0, 1, 2, · · · }are pairwise disjoint, i.e. do not have isomorphi diret summands.It is well-known that the Loewy length is a very useful onept in the module ategory modA.It would be interesting to generalize this notion to the stable module ategory modA. Here,



18 STEFFEN KOENIG AND YUMING LIU∗we replae the simple modules by a simple-minded system. Indeed, Lemma 5.5 supplies a wayto de�ne the stable Loewy length of an objet in modA.De�nition 5.8. Let A be a �nite dimensional algebra over a �eld k and let S be a simple-minded system over A. For any indeomposable non-projetive A-module X in modPA, wede�ne the stable Loewy length of X with respet to S (whih we denote by s-ll(X)) to be theleast number m suh that s-radm(X) = 0. If there is no suh m, then we de�ne s-ll(X) =∞.For a general module X ∈ modA, we de�ne s-ll(X) to be the stable Loewy length of its non-projetive part.Corollary 5.9. Let A be a representation-�nite self-injetive �nite dimensional algebra overa �eld k and let S be any simple-minded system. Then the stable Loewy length satis�es theinequality s-ll(X) ≤ 2b for any X ∈ modA, where b denotes the maximum of the lengths of theindeomposable modules in modA.Proof This is an easy onsequene of the proof of Theorem 5.6.
�Example 5.10. Consider the algebra A in Example 3.5. Both S1 = {1, 2} and S2 = {1,

2
1
2
}are simple-minded systems over A. For any indeomposable non-projetive A-module X, thestable Loewy length s-ll(X) with respet to S1 is equal to the usual Loewy length ll(X). However,the stable Loewy length s-ll(X) with respet to S2 is usually di�erent from ll(X). For example,the stable Loewy length of the A-module 1

2
1
2

with respet to S2 is equal to 2 while its usualLoewy length is 4. 6. Nakayama algebrasOne motivation to de�ne simple-minded systems is to explore the potential use of this oneptfor the Auslander-Reiten onjeture. This onjeture says that two stably equivalent artinalgebras have the same number of non-isomorphi non-projetive simple modules. Based onthe observation in Theorem 3.2, we pose the following question.Question 6.1. Is the ardinality of eah simple-minded system over an artin algebra A equalto the number of non-isomorphi non-projetive simple A-modules?A positive answer to this question implies the Auslander-Reiten onjeture. Atually,Pogorzaly [20℄ used an analogous idea in his setup to prove the onjeture for self-injetivespeial biserial algebras. We think that besides the relationship with Auslander-Reiten on-jeture, Question 6.1 is interesting in itself. Proposition 4.1 shows that the answer is positivefor triangular algebras. The next proposition answers this question for Nakayama algebras.Proposition 6.2. Let A be a Nakayama algebra and let S be a simple-minded system. Thenthe ardinality of S is equal to the number of non-isomorphi non-projetive simple A-modules.Moreover, if we assume that S = {M1, · · · ,Mn} and that {S1, · · · , Sn} is a omplete set of non-isomorphi non-projetive simple A-modules, then both the set of tops top(M1), · · · , top(Mn)and the set of soles soc(M1), · · · , soc(Mn) oinide, up to ordering, with the set of simplemodules S1, · · · , Sn.Proof First we remind the reader that every indeomposable module over a Nakayama algebrais uniserial. Let S be any non-projetive simple A-module. Then there exists some Mi ∈ Ssuh that S ≃ soc(Mi) by the weak generating ondition. This shows that eah non-projetive



SIMPLE-MINDED SYSTEMS 19simple A-module ours as a sole of some Mi ∈ S. On the other hand, any two di�erent Miand Mj must have non-isomorphi soles. Indeed, if Mi and Mj satisfy soc(Mi) ≃ soc(Mj),then there is a monomorphism from one module to another module, say, Mi →֒Mj . But learlyin this ase this homomorphism does not fator through a projetive module and therefore
Mi ≃ Mj by the orthogonality ondition. We have proved that the ardinality of S is equalto the number of non-isomorphi non-projetive simple A-modules and that the sole series
soc(M1), · · · , soc(Mn) is a rearrangement of S1, · · · , Sn. To prove the statement for top series,it su�es to show that any two di�erent Mi and Mj must have non-isomorphi tops. In fat,if Mi and Mj satisfy top(Mi) ≃ top(Mj), then there is an epimorphism from one module toanother module, say, Mi ։ Mj . But learly this homomorphism does not fator through aprojetive module and therefore Mi ≃Mj by the orthogonality ondition.

�We now give an example to illustrate the above proposition.Example 6.3. We onsider the Nakayama algebra B in Example 3.4. First we display theAuslander-Reiten quiver of B as follows:
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where the dotted lines indiate the Auslander-Reiten translation, and the same verties areidenti�ed. Clearly eah indeomposable non-projetive B-module is self-orthogonal in modB.Using Proposition 6.2, it is not hard to verify that there are preisely �ve simple-minded systemsover B:
S1 = {1, 2, 3}; S2 = {1, 2
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}; S3 = { 1

2
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, 3}; S4 = { 1
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, 2,
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}; S5 = { 1

2
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2
3
1
,
3
1
2
}.On the other hand, sine the algebra A in Example 3.4 is stably equivalent to B, there arealso �ve simple-minded systems over A. However, if we onsider the following quotient algebra(whih is still a Nakayama algebra but not self-injetive) of B

B′ =
1
2
3
⊕

2
3
1
2
⊕

3
1
2
3 ,then there are two simple-minded systems over B′:

S ′1 = {1, 2, 3}; S ′2 = {1, 2
3
,
3
1
2
}.This re�ets the fat that there are many more (non-trivial) stable equivalenes related to Bthan related to B′. However, if we onsider the number of orbits of the simple-minded systemsunder stable self-equivalenes, then in both ases, the number is 2.Aknowledgements. We would like to thank the referee for helpful suggestions.
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