
SIMPLE-MINDED SYSTEMS IN STABLE MODULE CATEGORIESSTEFFEN KOENIG AND YUMING LIU∗Abstra
t. Simple-minded systems in stable module 
ategories are de�ned by orthogonalityand generating properties so that the images of the simple modules under a stable equivalen
eform su
h a system. Simple-minded systems are shown to be invariant under stable equiva-len
es; thus the set of all simple-minded systems is an invariant of a stable module 
ategory.The simple-minded systems of several 
lasses of algebras are des
ribed and 
onne
tions tothe Auslander-Reiten 
onje
ture are pointed out.1. Introdu
tionThree 
ategories are usually asso
iated with a �nite dimensional algebra A: The module
ategory modA, whi
h is an abelian 
ategory, the derived 
ategory Db(modA), whi
h is trian-gulated, and the stable 
ategory modA, whi
h is also triangulated in 
ase A is self-inje
tive.The abelian 
ategory modA is generated by the set of simple modules and, in a di�erent sense,by ea
h progenerator, that is, by a full set of inde
omposable proje
tive modules. Equivalen
esof module 
ategories are des
ribed by Morita theory, in terms of images of proje
tive modulesor by progenerators. The triangulated 
ategory Db(modA) is also generated by the set ofsimple modules and alternatively by ea
h tilting 
omplex. Equivalen
es of derived 
ategoriesare des
ribed by Ri
kard's and Keller's versions of Morita theory, again in terms of images ofproje
tive modules. Ri
kard [21℄ has shown how to assign a tilting 
omplex to a set of obje
ts'behaving like simple modules', thus allowing to swit
h between the two kinds of generators.Rouquier [23℄ formalised a 
on
ept of generators of triangulated 
ategories and used it to de�nethe dimension of a triangulated 
ategory.The stable 
ategory modA is generated by the set of simple modules, too. But the proje
tivemodules are not visible in this 
ategory and there is no substitute known for progenerators.An analogue of Morita theory for stable 
ategories is missing. In parti
ular, it is not knownhow to 
hara
terize equivalen
es of stable 
ategories in terms of images of generators. In fa
t,it is not even known how to best de�ne 'generators' of stable 
ategories. This appears to be amajor obstru
tion to solve a fundamental problem on stable 
ategories, the Auslander-Reiten
onje
ture; this 
onje
ture states that stable equivalen
es preserve the number of isomorphisms
lasses of non-proje
tive simple modules.The aim of this arti
le is to suggest and to explore a new de�nition of generating sets of stable
ategories, whi
h in
ludes the set of (non-proje
tive) simple modules as an example.This suggestion is not the �rst one made. Pogorzaly [19, 20℄ introdu
ed what he 
alled maximalsystems of orthogonal stable bri
ks. He showed that these generate the stable Grothendie
k
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2 STEFFEN KOENIG AND YUMING LIU∗group, and he used his 
on
ept to prove the Auslander-Reiten 
onje
ture for self-inje
tivespe
ial biserial algebras.The main features of Pogorzaly's systems are mutual orthogonality and maximality. Theseproperties are 
learly invariant under stable equivalen
es, while it is a problem to show �nite-ness of the system in general. In 
ontrast to this, the generating systems we are introdu
inghere - the simple-minded systems - satisfy, in addition to the orthogonality properties, a gen-erating 
ondition that repla
es maximality. Simple-minded systems always are �nite (Propo-sition 2.7). Invarian
e under stable equivalen
es is not for free any more, but it is true; this isone of the main results we are going to prove (Theorem 3.2). The generating assumption weare using also provides a dire
t relation to the stable Grothendie
k group.We 
onsider simple-minded systems for triangular algebras and one-point extensions and forNakayama algebras, pointing out 
onne
tions with the Auslander-Reiten 
onje
ture. Moreover,we 
ompare the new 
on
ept with that of Pogorzaly and we use the results of this 
omparisonto de�ne the 
on
ept of stable Loewy length.2. Definition and basi
 propertiesLet R be a 
ommutative artin ring. Re
all from [4℄ that an R-algebra A is 
alled an artinalgebra if A is �nitely generated as a R-module. Important examples of artin algebras are�nite dimensional algebras over a �eld.Given an artin algebra A, we denote by modA the 
ategory of all �nitely generated left A-modules. For an A-module X, we denote by soc(X), top(X), and rad(X) its so
le, top andradi
al, respe
tively. We denote by modPA the full sub
ategory of modA 
onsisting of moduleswithout dire
t summands isomorphi
 to a proje
tive module. For an A-module X, there is amaximal summand (unique up to isomorphism) whi
h has no nonzero proje
tive summands.We 
all this summand the non-proje
tive part of the module X.The stable 
ategorymodA of A is de�ned as follows: The obje
ts ofmodA are the same as thoseof modA, and the morphisms between two obje
tsX and Y are given by the quotient R-moduleHomA(X,Y ) = HomA(X,Y )/P(X,Y ), where P(X,Y ) is the R-submodule of HomA(X,Y )
onsisting of those homomorphisms from X to Y whi
h fa
tor through a proje
tive A-module.Given two artin algebras A and B, we say that A and B are stably equivalent if their stable
ategories modA and modB are equivalent. The Auslander-Reiten translate τ = DTr over anartin algebra and the Heller fun
tor (i.e. the syzygy fun
tor) Ω over a self-inje
tive algebraare typi
al examples of stable self-equivalen
es. For basi
 material on stable equivalen
e, werefer the reader to [2℄, [3℄, [4℄.Let A be an artin algebra. In [3℄, Auslander and Reiten de�ned e(A) to be the full additivesub
ategory of modA whose inde
omposable obje
ts are the inde
omposable non-inje
tiveobje
ts X in modA, su
h that if 0 −→ X −→ Y −→ Z −→ 0 is an almost split sequen
e,then X or Y is proje
tive. Using the notion of node introdu
ed by Martinez-Villa (
f. [17℄),the inde
omposable obje
ts of e(A) 
onsist of pre
isely the following three 
lasses of modules:simple proje
tive modules, nodes, and inde
omposable non-simple non-inje
tive proje
tivemodules. Clearly e(A) has only a �nite number of inde
omposable modules. We denote by
e′(A) the full sub
ategory of e(A) whose inde
omposable obje
ts are simple proje
tive modulesand nodes.Let C be a 
lass of A-modules. We denote by 〈C〉 the full sub
ategory of modA 
onsisting ofmodules whi
h are dire
t summands of �nite dire
t sums of obje
ts in C. For two sub
ategories
C and D of modA, we denote by 〈C〉 ∗ 〈D〉 the 
lass of inde
omposable A-modules Y su
h thatthere is a short exa
t sequen
e of the following form

(†) 0 −→ X −→ Y ⊕ P −→ Z −→ 0,



SIMPLE-MINDED SYSTEMS 3where Z ∈ 〈D〉,X ∈ 〈C ∪ e(A)〉, and P is a proje
tive A-module. We put 〈C〉1 = 〈C〉 and wede�ne indu
tively 〈C〉n = 〈〈C〉n−1 ∗ 〈C〉〉 for n ≥ 2.De�nition 2.1. Let A be an artin algebra. A 
lass of obje
ts S in modPA is 
alled a simple-minded system (for short: s.m.s.) if the following two 
onditions are satis�ed:(1) (orthogonality 
ondition) For any S, T ∈ S,
HomA(S, T ) =

{

0 S 6= T,division ring, S=T.(2) (generating 
ondition) For any inde
omposable non-proje
tive A-module X, there existssome natural number n (depending on X) su
h that X ∈ 〈S〉n.Remark 2.2. (1) The de�nition of a simple-minded system formally depends on the 
hosenalgebra A. In Theorem 3.2 we will see that in fa
t a simple-minded system depends only onthe equivalen
e 
lass of the stable module 
ategory modA. Therefore, instead of talking of asimple-minded system over A we may then also talk of a simple-minded system in modA.
(2) By de�nition, there is no simple-minded system over a semisimple algebra. From now on,we assume that all algebras 
onsidered are non-semisimple.
(3) Let A = B×C be a dire
t produ
t of artin algebras. Then it is easy to see that the simple-minded systems over A are exa
tly of the forms S1 ∪ S2, where S1 is a simple-minded systemover B and S2 is a simple-minded system over C.
(4) When the algebra A is self-inje
tive, its stable module 
ategory is triangulated. In thissetup, parallel and independent work of Ri
kard and Rouquier [22℄ is dis
ussing the problem ofre
onstru
ting A from its stable module 
ategory. They are also using ([22℄, 3.2, hypothesis 1)the orthogonality and generating 
onditions satis�ed by the simple modules. Moreover, they areadding a splitting �eld assumption and a 
ondition using that there are no extensions betweensimple modules in negative degrees. To formulate the latter 
ondition needs the triangulatedstru
ture.The following lemma is an easy 
onsequen
e of our de�nition.Lemma 2.3. Let A be an artin algebra.
(1) Suppose that S is a simple-minded system over A. Then for any X ∈ S, X is an inde
om-posable non-proje
tive module. Moreover, the obje
ts in S are pairwise non-isomorphi
.
(2) Let S be a 
omplete set of non-isomorphi
 simple non-proje
tive A-modules. Then S is asimple-minded system over A.
(3) If S is a simple-minded system, then S generates the stable Grothendie
k group Gst

0 (A) of
A.Proof (1) is a dire
t 
onsequen
e of the orthogonality 
ondition. For (2), the orthogonality
ondition is 
lear. To prove the generating 
ondition, we use the natural exa
t sequen
e
0 −→ rad(X) −→ X −→ top(X) −→ 0 and indu
tion on the Loewy length ll(X) for aninde
omposable module X in modPA. (3) is an easy 
onsequen
e of the de�nition of Gst

0 (A)(refer to Remark 2.4) and the generating 
ondition on S.
�Remark 2.4. (1) Let A be an artin algebra. Re
all from [18℄ that the stable Grothendie
kgroup Gst

0 (A) is by de�nition the 
okernel of the Cartan map. In other words, there is thefollowing short exa
t sequen
e
K0(A)

CA→ G0(A)→ Gst
0 (A)→ 0,



4 STEFFEN KOENIG AND YUMING LIU∗where CA is the Cartan matrix of A and where K0(A) (respe
tively, G0(A)) is a free abeliangroup of �nite rank generated by isomorphism 
lasses of inde
omposable proje
tive modules(respe
tively, isomorphism 
lasses of simple modules). For our purpose, we shall use the fol-lowing equivalent de�nition of the stable Grothendie
k group (
f. [17℄): Gst
0 (A) is the quotientgroup L1/R1, where L1 is the free group generated by the isomorphism 
lasses [X] of mod-ules X in modPA, R1 is the subgroup generated by the following three 
lasses of elements: (i)

[Y ]− [X]− [Z], where 0 −→ X⊕Q −→ Y ⊕P −→ Z −→ 0 is an exa
t sequen
e su
h that Q,Pare proje
tive A-modules; (ii) [X]+ [Z], where 0 −→ X⊕Q −→ P −→ Z −→ 0 is an exa
t se-quen
e su
h that Q,P are proje
tive A-modules; (iii) [Z], where 0 −→ Q −→ P −→ Z −→ 0 isan exa
t sequen
e su
h that Q,P are proje
tive A-modules. In parti
ular, if A is a self-inje
tivealgebra, then Gst
0 (A) is the quotient group L1/R1, where L1 is the free group generated by theisomorphism 
lasses [X] of modules X in modPA, R1 is the subgroup generated by the elements

[Y ]− [X] − [Z] su
h that there is an exa
t sequen
e 0 −→ X −→ Y ⊕ P −→ Z −→ 0 with Pproje
tive.
(2) The statement (3) in Lemma 2.3 says that the simple-minded systems are just sets ofgenerators of the stable Grothendie
k group. For an artin algebra A of �nite global dimensionit 
an be easily proved that the stable Grothendie
k group is trivial, while on the other hand,there still may exist nontrivial stable equivalen
e related to A and su
h information will bere
orded in the simple-minded systems over A (see Theorem 3.2). This indi
ates that thesimple-minded system is a �ner notion than the stable Grothendie
k group.Before giving further properties of a simple-minded system, we prove the following lemma, tobe used frequently.Lemma 2.5. Let 0 −→ X −→ Y −→ Z −→ 0 be an exa
t sequen
e of A-modules and M an
A-module. If HomA(M,X) = HomA(M,Z) = 0, then HomA(M,Y ) = 0.Proof Applying the fun
tor HomA(−,M) to the above exa
t sequen
e and using theAuslander-Reiten formula, we get the following exa
t 
ommutative diagram

Ext1A(Z,M) −−−−→ Ext1A(Y,M) −−−−→ Ext1A(X,M)

≀




y
≀




y
≀




y

DHomA(τ
−1(M), Z) −−−−→ DHomA(τ

−1(M), Y ) −−−−→ DHomA(τ
−1(M),X),where D =Homk(−, k) denotes the usual duality and τ−1 = TrD is the inverse of theAuslander-Reiten translation. When M runs through modA, τ−1(M) runs through modPA.The lemma thus follows.

�Remark 2.6. For self-inje
tive algebras, the same result holds true for HomA(−,M) andboth results are spe
ial 
ases of [9, Lemma 1.4℄. However, Lemma 2.5 does not hold for
HomA(−,M) in general. For example, let A be a path algebra over a �eld given by the quiver

1

3

2

4

5

R
� R

�There is an exa
t sequen
e of A-modules 0 −→ 4 −→
3
4
−→ 3 −→ 0. Here, HomA(4,

3
4
) =

HomA(3,
3
4
) = 0, but HomA(

3
4
,
3
4
) 6= 0.The next proposition 
olle
ts some elementary fa
ts on a simple-minded system.



SIMPLE-MINDED SYSTEMS 5Proposition 2.7. Let A be an artin algebra and let S be a simple-minded system over A.Then we have the following.
(1) S 
ontains (up to isomorphism) any simple non-proje
tive inje
tive module.
(2) S 
ontains (up to isomorphism) any node.
(3) Assume that S1 and S2 are two 
lasses of obje
ts in modPA su
h that S1 $ S $ S2. Thenneither S1 nor S2 is a simple-minded system.
(4) The number of obje
ts in S is �nite, that is, the 
ardinality |S| <∞.Proof (1) Let S be a simple non-proje
tive inje
tive module. Suppose that S does not 
ontain
S. Then S 
an be generated by an exa
t sequen
e of the following form

0 −→ X −→ S ⊕ P −→ Z −→ 0,where X ∈ modA, Z ∈ 〈S〉 and P is a proje
tive A-module. Moreover, we 
an assume thatthe morphism S −→ Z in the above exa
t sequen
e is nonzero. But then S −→ Z splitsand therefore S is a dire
t summand of Z. This 
ontradi
ts the assumption that S does not
ontain S and (1) follows.(2) Similarly, suppose that S is a node and that S does not 
ontain S. Let S ∈ 〈S〉n \ 〈S〉n−1.Then S 
an be generated by an exa
t sequen
e of the following form
0 −→ X −→ S ⊕ P −→ Z −→ 0,where X ∈ 〈S〉n−1, Z ∈ 〈S〉 and P is a proje
tive A-module. Clearly neither X nor Z
ontains a summand isomorphi
 to S. Sin
e S is a node, we have an almost split sequen
e

0 −→ S −→ E −→ τ−1(S) −→ 0 with E proje
tive. Sin
e X 
ontains no summand isomorphi
to S, any homomorphism S −→ X must fa
tor through the left almost split homomorphism
S −→ E and therefore HomA(S,X) = 0. Similarly, HomA(S,Z) = 0. It follows from Lemma2.5 that HomA(S, S) = 0. This 
ontradi
tion shows that S is an obje
t in S.(3) We only need to prove the statement for S1. Suppose that S1 is a simple-minded system andthat X ∈ S \ S1. Then X is generated from obje
ts in 〈S1 ∪ e(A)〉. By (2) and the de�nitionof simple-minded systems, X is left orthogonal (in the stable 
ategory) to every obje
t in
〈S1 ∪ e(A)〉. It follows from Lemma 2.5 that HomA(X,X) = 0. This is a 
ontradi
tion andtherefore S1 is not a simple-minded system.(4) To generate all simple A-modules, we only need a �nite number of obje
ts in S, say,
X1, · · · ,Xn. We 
an assume that {X1, · · · ,Xn} 
ontains all nodes (otherwise, we just addthe nodes into this set). We shall prove that S = {X1, · · · ,Xn}. Suppose that there exists
X ∈ S \ {X1, · · · ,Xn}. Sin
e HomA(X,Xi) = 0 for all 1 ≤ i ≤ n, by Lemma 2.5, we havethat HomA(X,S) = 0 for any simple module S. This is 
learly a 
ontradi
tion and thereforeour 
on
lusion follows.

�For self-inje
tive algebras, any proje
tive summand of X in the generating sequen
e (†) 
anbe 
an
elled. Thus we get the following result.Corollary 2.8. Let A be a self-inje
tive algebra and let S be a simple-minded system over A.For any inde
omposable non-proje
tive A-module X, there is a proje
tive A-module P and a�ltration
X ⊕ P = X0 ⊇ X1 ⊇ · · · ⊇ Xm = 0with the subquotients in 〈S〉.The above 
orollary suggests the following de�nition.



6 STEFFEN KOENIG AND YUMING LIU∗De�nition 2.9. Let A be a self-inje
tive algebra and let S be a simple-minded system over A.For any inde
omposable non-proje
tive A-module X, we de�ne µ(X) as the minimum integer
m su
h that there is a proje
tive A-module P and a �ltration

X ⊕ P = X0 ⊇ X1 ⊇ · · · ⊇ Xm = 0with the subquotients in 〈S〉. For a general A-module X, we de�ne µ(X) = maxµ(Y ) where
Y runs through all the inde
omposable non-proje
tive summands of X.Proposition 2.10. Let A be a self-inje
tive algebra and let S be a simple-minded system over
A. Then the values µ 
an take are bounded above as follows: For any A-module X, there is aninequality µ(X) ≤ n0 · ll(A), where ll(A) denotes the usual Loewy length of the regular module
A and n0 = µ(A/radA).Proof The proof pro
eeds by indu
tion on the usual Loewy-length ll(X) of X. Withoutloss of generality, we 
an assume that X is an inde
omposable non-proje
tive A-module. If
ll(X) = 1, then X is a simple module and 
learly µ(X) ≤ n0. Now assume that ll(X) = n > 1.There is an exa
t sequen
e

0 −→ Y −→ X −→ Z −→ 0,where Y,Z ∈ modPA, ll(Y ) = n− 1 and Z is semisimple. By indu
tion, there is a proje
tivemodule P1 su
h that Y ⊕P1 has a 〈S〉-�ltration of length ≤ (n−1)n0, and there is a proje
tivemodule P2 su
h that Z ⊕ P2 has a 〈S〉-�ltration of length ≤ n0. It follows that the module
X ⊕ P1 ⊕ P2 has a 〈S〉-�ltration of length ≤ (n− 1)n0 + n0 = nn0 ≤ n0 · ll(A).

�3. Invarian
e under stable equivalen
esIn this se
tion, we shall prove that the simple-minded systems are preserved by any stableequivalen
e. First of all, we re
all some basi
 fa
ts on fun
tor 
ategories due to Auslander andReiten (
f. [2℄, [3℄).Let A be an artin algebra. We denote by mod(modA) the 
ategory of �nitely presented
ontravariant fun
tors F from modA to abelian groups. By de�nition, F ∈ mod(modA) if andonly if there is a morphism f : X −→ Y in modA su
h that F is the 
okernel of the morphism
(−, f) : (−,X) −→ (−, Y ),where HomA(−,X) = (−,X) and HomA(−, f) = (−, f). Moreover, we denote by mod(modA)the full sub
ategory of mod(modA) whose obje
ts are the fun
tors whi
h vanish on proje
tivemodules. The 
ategories mod(modA) and mod(modA) have enough proje
tive obje
ts andenough inje
tive obje
ts. There is a natural fun
tor modA −→ mod(modA) given by sending

X to (−,X), where (−,X)(Y ) = HomA(Y,X), whi
h indu
es an equivalen
e between modAand the full sub
ategory of proje
tive obje
ts in mod(modA). In parti
ular, we have that twoartin algebras A and B are stably equivalent if and only if the 
ategories mod(modA) and
mod(modA) are equivalent. Noti
e also that the inje
tive obje
ts in mod(modA) are of theform Ext1A(−,X) with X ∈ modA.The following lemma extends the result in [3, Lemma 3.4℄.Lemma 3.1. Let α : modA −→ modB be a stable equivalen
e and X be an inde
ompos-able non-inje
tive A-module. Denote also by α the indu
ed equivalen
e: mod(modA) −→
mod(modB). Then there is the following 
orresponden
e:

α(Ext1A(−,X)) ≃

{

Ext1B(−, α(X)) if X is not in e(A),
Ext1B(−, Y ) for some Y ∈ e(B) if X is in e(A).Moreover, if X is in e′(A), then we also have Y ∈ e′(B).



SIMPLE-MINDED SYSTEMS 7Proof Sin
e X is an inde
omposable non-inje
tive A-module, the fun
tor Ext1A(−,X) is aninde
omposable inje
tive obje
t in mod(modA). It follows that α(Ext1A(−,X)) is an inde-
omposable inje
tive obje
t in mod(modB). If X is not in e(A), by [3, Lemma 3.4℄, wehave that α(Ext1A(−,X)) ≃ Ext1B(−, α(X)) with α(X) not in e(B). If X ∈ e(A), then
α(Ext1A(−,X)) ≃ Ext1B(−, Y ) for some inde
omposable non-inje
tive B-module Y sin
e ev-ery inde
omposable inje
tive obje
t in mod(modB) has this form. We 
laim that Y ∈ e(B).Suppose that Y is not in e(B). Again by [3, Lemma 3.4℄, we know that X = α−1(Y ) is not in
e(A). This 
ontradi
tion shows that Y ∈ e(B).Now we suppose that X ∈ e′(A). Then there is an almost split sequen
e

0 −→ X
f
−→ P

g
−→ Z −→ 0with P a proje
tive A-module. By [3, Proposition 2.1℄, we have an exa
t sequen
e

0 −→ (−, Z) −→ Ext1A(−,X)in mod(modA) su
h that Ext1A(−,X) is an inje
tive envelope of (−, Z). We 
onsider thefollowing almost split sequen
e
0 −→ Y

f ′

−→ Q
g′

−→ α(Z) −→ 0,where Y,Q ∈ modB. We 
laim that Q is a proje
tive B-module and therefore Y ∈ e′(B).Otherwise, Q 
ontains a non-proje
tive dire
t summand and it follows from [4, Proposition1.3℄ that P 
ontains a non-proje
tive dire
t summand, whi
h is a 
ontradi
tion! Again by [3,Proposition 2.1℄, there is an exa
t sequen
e
0 −→ (−, α(Z)) −→ Ext1B(−, Y )in mod(modB) su
h that Ext1B(−, Y ) is an inje
tive envelope of (−, α(Z)). Sin
e under theequivalen
e α : mod(modA) −→ mod(modB), the fun
tor (−, Z) 
orresponds to (−, α(Z)), itfollows that α(Ext1A(−,X)) ≃ Ext1B(−, Y ).

�Theorem 3.2. Let α : modA −→ modB be a stable equivalen
e and S be a simple-mindedsystem over A. Then α(S) is a simple-minded system over B.Proof Obviously, α(S) is a 
lass of obje
ts in modPB and satis�es the orthogonality 
onditionin modB. It remains to prove that 〈α(S) ∪ e(B)〉 generates any module in modPB. First weprove the followingClaim: Let 0 −→ X
f
−→ Y ⊕ P

g
−→ Z −→ 0 be an exa
t sequen
e in modA whi
h 
ontainsno split exa
t summands, where X ∈ 〈modPA ∪ e(A)〉, Y and Z are non-zero, Z ∈ 〈S〉, Y ∈modPA and P is a proje
tive A-module. Then there is an exa
t sequen
e 0 −→ K

f ′

−→ α(Y )⊕

P ′ g′

−→ α(Z) −→ 0 in modB whi
h 
ontains no split exa
t summands, whereK ∈ 〈α(X)∪e(B)〉and P ′ is a proje
tive B-module.Proof of Claim: Sin
e 0 −→ X
f
−→ Y ⊕P

g
−→ Z −→ 0 is an exa
t sequen
e in modA with nosplit exa
t summands, by [3, Proposition 2.1℄, we know that

(−, Y )
(−,g)
−→ (−, Z) −→ F −→ 0is a minimal proje
tive presentation of F = Coker(−, g) in mod(modA), and that

0 −→ F −→ Ext1A(−,X)
Ext1

A
(−,f)
−→ Ext1A(−, Y )is a minimal inje
tive presentation of F = Coker(−, g) in mod(modA).



8 STEFFEN KOENIG AND YUMING LIU∗Sin
e α : modA −→ modB is a stable equivalen
e, we 
an 
hoose g′′ : α(Y ) −→ α(Z) su
hthat α(g) = g′′ and 
hoose t : P ′ −→ α(Z) su
h that P ′ −→ α(Z) −→ Cokerg′′ is a proje
tive
over. Let g′ = (g′′, t) : α(Y )⊕ P ′ −→ α(Z), and 
onsider the exa
t sequen
e
0 −→ K

f ′

−→ α(Y )⊕ P ′ g′

−→ α(Z) −→ 0.Clearly this sequen
e has no split exa
t summands. So, again by [3, Proposition 2.1℄, there isan exa
t sequen
e
(−, α(Y ))

(−,α(g))
−→ (−, α(Z)) −→ G −→ Ext1B(−,K)in mod(modB), where G = Coker(−, α(g)) = α(F ) and G −→ Ext1B(−,K) is an inje
tiveenvelope ofG. It follows that α(Ext1A(−,X)) ≃ Ext1B(−,K). Write down X = X1⊕· · ·⊕Xm⊕

Xm+1⊕· · ·⊕Xn, where ea
h Xi (1 ≤ i ≤ n) is an inde
omposable non-inje
tive A-module and
Xi is not in e(A) for 1 ≤ i ≤ m, Xi ∈ e(A) for m+1 ≤ i ≤ n. By Lemma 3.1, Ext1B(−,K) ≃
α(Ext1A(−,X)) ≃

⊕n
i=1 α(Ext1A(−,Xi)) = Ext1B(−, α(X1)) ⊕ · · · ⊕ Ext1B(−, α(Xm)) ⊕ · · · ⊕

Ext1B(−,Kn) for some Ki (m + 1 ≤ i ≤ n) ∈ e(B). Therefore K ≃ α(X1) ⊕ · · · ⊕ α(Xm) ⊕
Km+1 ⊕ · · · ⊕Kn ∈ 〈α(X) ∪ e(B)〉. This �nishes the proof of Claim.From the above 
laim, it is easy to see that α(〈S〉n) = 〈α(S)〉n for any natural number n. Itfollows that 〈α(S) ∪ e(B)〉 generates any module in modPB.

�The theorem shows that simple-minded systems are stably invariant. As an appli
ation, wedetermine the simple-minded systems over the 4-dimensional weakly symmetri
 lo
al k-algebra
At = k < x, y > /(x2, y2, xy − tyx), where k is an algebrai
ally 
losed �eld and t 6= 0 is anelement in k. If chark = 2 and t = 1, then At is isomorphi
 to the group algebra of the Klein4-group.Let S be the unique (up to isomorphism) simple At-module. The Auslander-Reiten quiver of
At is known to have a 
omponent C 
ontaining S and a P1(k)-family of homogenous tubes. Forany non-proje
tive module X in the 
omponent C, X is an image of S under some appropriate
omposition of the stable equivalen
e fun
tors DTr and Ω. It follows that ea
h non-proje
tive
At-module X ∈ C de�nes a simple-minded system over At. Conversely, every simple-mindedsystem over At is of this form. In fa
t, if there is another kind of simple-minded system S over
At, then by Proposition 2.7 (3), S should not 
ontain any module in C. So ea
h X ∈ S has evendimension. Sin
e the unique inde
omposable proje
tive At-module is also even-dimensional,
S 
an only generate even-dimensional modules, a 
ontradi
tion!The above argument works for all group algebras A of �nite p-groups if the 
hara
teristi
of the �eld k is the prime number p. Indeed, by a result of Carlson ([6℄), an A-module Msatis�es HomA(M,M) = k if and only if M is an endotrivial module. On the other hand,ea
h endotrivial module M indu
es a stable self-equivalen
e of Morita type over A su
h thatthe unique simple module k is mapped to M . Therefore every endotrivial module de�nes asimple-minded system and these are all simple-minded systems over A. Theorem 3.2 implies:Corollary 3.3. The Auslander-Reiten 
onje
ture holds true for two algebras (i.e. two algebrasrelated by a stable equivalen
e have the same number of non-proje
tive simple modules up toisomorphism) if one of the algebras is a group algebra of a �nite p-group in 
hara
teristi
 p.This result is due to Lin
kelmann ([11, Theorem 3.4℄).Clearly, in the above examples, ea
h simple-minded system 
an be obtained from the simplemodules by applying a suitable stable self-equivalen
e. However, the following example showsthat simple-minded systems over an artin algebra are in general not a
ted upon transitively bythe group of stable self-equivalen
es. It may be interesting to determine all the artin algebraswith transitive a
tion of the stable self-equivalen
es on the simple-minded systems.



SIMPLE-MINDED SYSTEMS 9Example 3.4. Let k be a �eld. Let A be a �nite dimensional k-algebra with the followingregular representation
A =

1′

2′

1′
⊕

2′

1′ 3′

2′
⊕

3′

2′

3′and let B be a �nite dimensional k-algebra with the following regular representation
B =

1
2
3
1
⊕

2
3
1
2
⊕

3
1
2
3 .Both A and B are representation-�nite and symmetri
, and there is a stable equivalen
e ofMorita type α between B and A su
h that α(1) = 1′, α(2) =

3′

2′
, α(3) =

2′

3′
(
f. [15, Se
tion6℄). By Theorem 3.2, {1′, 3′

2′
,
2′

3′
} is a simple-minded system. However, there is no stableself-equivalen
e β over A su
h that β({1′, 2′, 3′}) = {1′, 3′

2′
,
2′

3′
}. In fa
t, if β is su
h a stableself-equivalen
e then β must be a stable self-equivalen
e of Morita type (
f. [1℄). Therefore the
omposition β−1α is a stable equivalen
e of Morita type between B and A under whi
h ea
hsimple B-module 
orresponds to a simple A-module. It follows from Lin
kelmann's theorem([11, Theorem 2.1℄) that B and A are Morita equivalent, whi
h is 
learly a 
ontradi
tion.The next example shows that simple-minded systems over an artin algebra may even fail to bea
ted upon transitively by arbitrary stable equivalen
es. This is in 
ontrast with the situationfor derived 
ategories. Here, the main result of Ri
kard's work on derived equivalen
es forsymmetri
 algebras in [21, Theorem 5.1℄ shows transitivity.Example 3.5. Let k be a �eld. Let A be a �nite dimensional k-algebra with the followingregular representation

A =

1
2
1
2
1

⊕

2
1
2
1
2 .Suppose that B is another �nite dimensional k-algebra su
h that there is a stable equivalen
e

α between B and A. As in the above example, α is lifted to a stable equivalen
e of Moritatype. Sin
e A is an inde
omposable representation-�nite symmetri
 algebra, so is B (by [14℄).It follows easily that A and B are Morita equivalent. Without loss of generality we 
an identify
B and A and assume that α is a stable self-equivalen
e of Morita type over A. By Proposition6.2, one 
an verify that there are pre
isely four simple-minded systems over A:
S1 = {1, 2}; S2 = {1, 2

1
2
}; S3 = { 1

2
1
, 2}; S4 = { 1

2
1
2

,

2
1
2
1

}.Clearly α 
ommutes with the syzygy fun
tor Ω, and therefore α 
annot map the simple-mindedsystem S1 to S2.



10 STEFFEN KOENIG AND YUMING LIU∗4. Simple-minded systems and triangular algebrasIn this se
tion, we apply simple-minded systems to study triangular algebras and one-pointextension algebras.For simpli
ity, throughout this se
tion, we 
onsider (�nite dimensional) quiver algebras of theform kQ/I, where k is a �eld, Q is a quiver and I is an admissible ideal in kQ. Re
all that aquiver algebra kQ/I is said to be a triangular algebra if there is no oriented 
y
le in its quiver
Q.Proposition 4.1. If A = kQ/I is a triangular algebra, then A has only one simple-mindedsystem S = {simple non-proje
tive A-modules}.Proof Clearly we 
an assume that the quiver Q 
ontains no isolated verti
es. Suppose that
S is a simple-minded system. Then, by Proposition 2.7, S must 
ontain all simple inje
tive
A-modules, say, L11, · · · , L1i1 (whi
h 
orrespond to the sour
e verti
es in the quiver Q of A).By the orthogonal 
ondition, every other module in S has no 
omposition fa
tor isomorphi
 to
L1j (1 ≤ j ≤ i1). Let {L21, · · · , L2i2} be simple A-modules whi
h 
orrespond to su
h verti
es
vL that vL is not a sink vertex but is next to a sour
e vertex in the quiver Q. Take su
h asimple A-module L whi
h 
orresponds to a vertex vL, that is, we are in the following situation:

◦(some sour
e vertex)
◦ vL

· · ·

· · ·

R

	 R

	Then L 
an be generated by an exa
t sequen
e of the following form
0 −→ X −→ L⊕ P −→ Z −→ 0,where X ∈ modA, Z ∈ 〈S〉 and P is a proje
tive A-module. Thus there exists some S ∈ Ssu
h that L ⊆ soc(S). However, if L2j (1 ≤ j ≤ i2) is a 
omposition fa
tor of a module in

S, then L2j must o

ur in its top. It follows that L is also 
ontained in top(S). This for
es
L ≃ S by the inde
omposability property. We thus proved that S 
ontains the simple modules
L21, · · · , L2i2 . Observe that the modules other than the above two 
lasses of simple modules in
S have no 
omposition fa
tor isomorphi
 to su
h simple modules. Next we 
onsider the simplenon-proje
tive A-modules L31, · · · , L3i3 whi
h are �next� to simple modules L21, · · · , L2i2 .Continuing by this way, we 
an prove that S 
ontains all the simple non-proje
tive A-modulesand therefore S = {simple non-proje
tive A-modules}.

�Corollary 4.2. If α : modB −→ modA is a stable equivalen
e su
h that A is a triangular al-gebra, then α maps ea
h non-proje
tive simple B-module to a non-proje
tive simple A-module,and therefore A and B have the same number of non-proje
tive simple modules.Proof Sin
e S = {simple non-proje
tive B-modules} is a simple-minded system over B, α(S)is a simple-minded system. But S ′ = {simple non-proje
tive A-modules} is the only simple-minded system. It follows that α(S) = S ′, and A and B have the same number of non-proje
tive simple modules.
�The next result is a spe
ial 
ase of the result in [8, Theorem 4.3℄. Note that here we allow thealgebras have nodes. Given two �nite dimensional algebras A and B. Re
all that A and B aresaid to be stably equivalent of Morita type if there are two bimodules AMB and BNA whi
hare proje
tive as left modules and as right modules su
h that we have bimodule isomorphisms:

AM ⊗B NA ≃ AAA ⊕ APA, BN ⊗A MB ≃ BBB ⊕ BQB



SIMPLE-MINDED SYSTEMS 11where APA and BQB are proje
tive bimodules.Proposition 4.3. Let A and B be algebras over a �eld k. Suppose that A and B have nosemisimple summands and that their maximal semsimple quotient algebras are separable. Iftwo bimodules AMB and BNA de�ne a stable equivalen
e of Morita type between A and B su
hthat B is a triangular algebra, then A and B are Morita equivalent.To prove Proposition 4.3, we need the following lemma whi
h is a generalization of Lin
kel-mann's result in [11, Theorem 2.1(ii)℄ for self-inje
tive algebras.Lemma 4.4. Let A and B be two inde
omposable nonsimple algebras over a �eld k, whosemaximal semisimple quotient algebras are separable. If two inde
omposable bimodules AMBand BNA de�ne a stable equivalen
e of Morita type between A and B, then N ⊗A S is aninde
omposable B-module for ea
h simple A-module S.Proof Note that under the assumption of this lemma, by [8℄ we 
an assume that both (N⊗A−,
M ⊗B −) and (M ⊗B −, N ⊗A −) are adjoint pairs. In parti
ular, N ⊗A− and M ⊗B − mapproje
tive (inje
tive, respe
tively) modules to proje
tive (inje
tive, respe
tively) modules, and
P and Q are proje
tive-inje
tive bimodules. We �rst state two simple fa
ts.Fa
t 1: For any inde
omposable non-(proje
tive-inje
tive) A-module X, N ⊗A X is a non-(proje
tive-inje
tive) B-module; Similarly, we have the result for M ⊗B −.Otherwise, M ⊗BN ⊗AX ≃ X⊕P ⊗AX is a proje
tive-inje
tive A-module and so is X. Thiswill be a 
ontradi
tion!Fa
t 2: For any inde
omposable non-(proje
tive-inje
tive) A-module X, suppose that N ⊗A

X ≃ Y ⊕ E with Y an inde
omposable non-(proje
tive-inje
tive) B-module. Then E is aproje
tive-inje
tive B-module.Otherwise, let E = Z ⊕ E′ with Z an inde
omposable non-(proje
tive-inje
tive) B-module.Then M ⊗B N ⊗A X ≃ X ⊕ P ⊗A X ≃ M ⊗B Y ⊕M ⊗B Z ⊕M ⊗B E′. The left hand sideof this equality 
ontains only one inde
omposable non-(proje
tive-inje
tive) summand but theright hand side 
ontains at least two inde
omposable non-(proje
tive-inje
tive) summands. A
ontradi
tion!Now let S = Ae/radAe be a simple A-module. We want to show that N ⊗A S is an inde
om-posable B-module. There are two 
ases to be 
onsidered.Case 1. S = Ae/radAe is isomorphi
 to soc(e′A) as left A-module for some inde
omposableproje
tive-inje
tive right A-module (or equivalently, an inde
omposable proje
tive-inje
tive
Aop-module) e′A. (Note that soc(e′A) is an ideal in A sin
e e′A is proje
tive-inje
tive, see[7, Se
tion 9.2℄). Then, for any inde
omposable proje
tive-inje
tive B-module Bf , Bf ⊗k e

′Ais a proje
tive-inje
tive B ⊗k Aop-module and soc(Bf ⊗k e′A) ≃ soc(Bf) ⊗k soc(e′A) bythe separability assumption. Sin
e as a B ⊗k Aop-module, N has no proje
tive summands,
soc(Bf ⊗k e′A)N = 0. On the other hand, soc(Bf ⊗k e′A)N = soc(Bf)Nsoc(e′A) ≃
soc(Bf)(N ⊗A soc(e′A)) ≃ soc(Bf)(N ⊗A S) = 0. This implies that the B-module N ⊗A S
ontains no proje
tive-inje
tive summands and therefore N ⊗A S is inde
omposable by Fa
t 1and 2.Case 2. S = Ae/radAe is not isomorphi
 to soc(e′A) as left A-module for any inde
omposableproje
tive-inje
tive right A-module e′A. Sin
e P is a proje
tive bimodule, we have a de
ompo-sition of the following form: P =

⊕

i,j Aei⊗kejA where the ei's and the ej 's are some primitiveidempotents in A. Sin
e P is also an inje
tive bimodule, ea
h Aei and ea
h ejA are also inje
-tive modules. By [8, Theorem 4.3℄, for any su
h idempotent ej , Aej is proje
tive-inje
tive and
Aej/radAej is isomorphi
 to the so
le of some proje
tive-inje
tive A-module. Therefore theidempotent e is di�erent from any one of the above ej . It follows that ejA⊗A (Ae/radAe) = 0
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h ej and P⊗A(Ae/radAe) = 0. This implies thatM⊗BN⊗A(Ae/radAe) ≃ (Ae/radAe)and therefore N ⊗A (Ae/radAe) must be an inde
omposable B-module.
�Proof of Proposition 4.3. By [14℄, we 
an assume that both A and B are inde
omposable

k-algebras, and that AMB and BNA are inde
omposable bimodules. For any simple A-module
S, Lemma 4.4 implies that N ⊗A S is an inde
omposable B-module. We want to show that
N ⊗A S is simple. There are two 
ases to be 
onsidered.Case 1. S is non-proje
tive. In this 
ase, Corollary 4.2 implies that N ⊗A S is simple.Case 2. S is simple proje
tive. In this 
ase, by [13, Lemma 3.1℄, N⊗AS must 
ontain a simpleproje
tive summand and therefore is also simple.We have proved that N ⊗A− maps ea
h simple A-module to a simple B-module. By the gen-eralization of Lin
kelmann's theorem (see [12, Theorem 1.1℄), the fun
tor N ⊗A− : modA −→modB gives a Morita equivalen
e.

�Finally, we prove a general fa
t on simple-minded systems of one-point extension algebras.Proposition 4.5. Let B be a �nite dimensional algebra over a �eld k and let A =

(

B M
0 k

)be a one-point extension algebra of B by a B-module M .
(1) If S is a simple-minded system over B, then S ′ = S ∪ {L} is a simple-minded system over
A, where L is the simple inje
tive A-module with proje
tive 
over (

M
k

).
(2) Ea
h simple-minded system has the form S ′ = S ∪{L} where S is a simple-minded systemover B and L is as above.Proof (1) There is a 
anoni
al algebra epimorphism A −→ B given by (

b m
0 x

)

7→ b. Soevery B-module is automati
ally an A-module by this map. In parti
ular, B is a proje
tive
A-module and the embedding fun
tor AB⊗B− : modB −→modA indu
es a fun
tor AB⊗B− :
modB −→ modA. Note that AB ⊗B − : modB −→ modA is a fully faithful fun
tor, and that
e(A) ⊇ e(B).Clearly we have HomA(X,Y ) = 0 for any X,Y ∈ S. Sin
e every A-module in S has no
omposition fa
tor isomorphi
 to L, we also have HomA(X,L) = HomA(L,X) = 0 for any
X ∈ S. This proves the orthogonality 
ondition for S ′. Now let Y be any inde
omposablenon-proje
tive A-module. Noti
e that if L is a 
omposition fa
tor of Y , then L must o

ur inthe top of Y . We 
onsider two 
ases.Case 1. Y has no 
omposition fa
tor isomorphi
 to L. In this 
ase Y is a B-module and
an be generated by 〈S ∪ e(B)〉. Sin
e B ⊗B e(B) ⊂ e(A), we know that Y is generated by
〈S ′ ∪ e(A)〉.Case 2. Y 
ontains a 
omposition fa
tor isomorphi
 to L. We have an exa
t sequen
e

0 −→ X −→ Y −→ Lm −→ 0,where m is a natural number and X 
ontains no 
omposition fa
tor isomorphi
 to L. It isreadily seen that this 
ase is redu
ed to Case 1.(2) Suppose that S ′ is a simple-minded system. Then, by Proposition 2.7, S ′ must 
ontainthe simple inje
tive module L. So S ′ = S ∪ {L} with S a 
lass of obje
ts in modPA. Forany X ∈ S, X 
ontains no 
omposition fa
tor isomorphi
 to L: otherwise, L ∈ top(X) and
HomA(X,L) 6= 0. A 
ontradi
tion! Therefore S ⊆ modPB. We shall prove that S is a



SIMPLE-MINDED SYSTEMS 13simple-minded system over B. Obviously, S satis�es the orthogonality 
ondition in modBsin
e modB is a full sub
ategory of modA. Now let Y be an inde
omposable B-module inmodPB. Then without loss of generality we 
an assume that the last exa
t sequen
e in modAwhi
h generates Y has the following form:
0 −→ X −→ Y ⊕ P −→ Z −→ 0,where X ∈ modA, Z ∈ 〈S〉 and P is a proje
tive B-module. It follows that X is a B-moduleand therefore all the exa
t sequen
es involved in generating Y lie in modB. So Y is generatedby 〈S ∪ e(B)〉, and S is a simple-minded system over B.

�Remark 4.6. (1) Using the above proposition, we get a simple proof of Proposition 4.1 asfollows: without loss of generality we assume that A is an inde
omposable algebra. Therefore
A 
an be obtained by a �nite number of one-point extensions from a single point and the
on
lusion follows immediately from Proposition 4.5.
(2) The result in Proposition 4.5 
an not be generalized to triangular matrix algebras, i.e.algebras of the form Λ =

(

A M
0 B

), where A and B are arbitrary algebras. For example, let
k be an algebrai
ally 
losed �eld. Let A = B = k[x]/(x3) be two �nite dimensional algebras over
k and let M = k[x]/(x3) be the natural A-B-bimodule. Consider the triangular matrix algebra
Λ =

(

A M
0 B

)

≃ k(α � 1
β
←− 2 	 γ)/(α3, γ3, αβ − βγ). Clearly (x2)/(x3) is a simple-minded system whi
h 
orresponds to the simple Λ-module 1, and (x)/(x3) is a simple-mindedsystem over B whi
h 
orresponds to the Λ-module 2

2
. But {1, 2

2
} is not a simple-mindedsystem over Λ sin
e 2

2
is not self-orthogonal.5. Simple-minded systems and self-inje
tive algebrasIn this se
tion, we shall 
ompare the simple-minded systems with Pogorzaly's maximal systemsof stable orthogonal bri
ks over a self-inje
tive algebra. We simplify Pogorzaly's de�nitionand drop one 
ondition used by him to ex
lude a few trivial 
ases; in this way we arriveat 'weakly simple-minded system'. For representation �nite self-inje
tive algebras we showthese to 
oin
ide with the simple-minded systems de�ned before. Thus, for these algebrasPogarzaly's 
on
ept essentially 
oin
ides with ours. On
e this has been a
hieved, we introdu
ethe notion of stable Loewy length for modules in a stable 
ategory.Let A be a self-inje
tive algebra over an algebrai
ally 
losed �eld k. Re
all from [20, 19℄ that aninde
omposable A-module X in modA is said to be a stable A-bri
k if its stable endomorphismring EndA(X) is isomorphi
 to k. A family {Xi}i∈I of stable A-bri
ks is said to be a maximalsystem of orthogonal stable A-bri
ks if the following 
onditions are satis�ed:(1) τ(Xi) ≇ Xi for any i ∈ I;(2) HomA(Xi,Xj) = 0 for any i 6= j;(3) For any nonzero obje
t X ∈ modA, there exists some i ∈ I su
h that HomA(X,Xi) 6= 0and there exists some j ∈ I su
h that HomA(Xj ,X) 6= 0.Note that the above de�nition 
an be simpli�ed. Indeed, one half of the assumption in 
ondi-tion (3) is enough: the two 
onditions �For any nonzero obje
t X ∈ modA, there exists some

i ∈ I su
h that HomA(X,Xi) 6= 0� and �For any nonzero obje
t X ∈ modA, there exists some
j ∈ I su
h that HomA(Xj ,X) 6= 0� are equivalent. This 
an be seen from a general fa
t on
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ategories over a self-inje
tive algebra proved in [19℄. The general fa
t was presented inthe proof of [19, Proposition 1℄. For 
onvenien
e of the reader, we in
lude the proof here.Proposition 5.1. ([19, Proof of Proposition 1℄) Let A be a self-inje
tive artin algebra. Let
M be an inde
omposable non-proje
tive A-module and X be any inde
omposable A-module. Ifthere is a nonzero homomorphism f : X −→ M in modA, then there is a nonzero homomor-phism h : τ−1Ω(M) −→ X su
h that fh 6= 0 in modA.Proof If X ≃ M , then there is a nonsplit exa
t sequen
e in modA: 0 −→ Ω(M) −→
P (M) −→ M −→ 0, where P (M) −→ M is a proje
tive 
over of M . It follows from theAuslander-Reiten formula that HomA(τ

−1Ω(M),M) ≃ Ext1A(M,Ω(M)) 6= 0.Assume now that X ≇ M . Consider the following exa
t 
ommutative diagram
0 −−−−→ Ω(M) −−−−→ P (M)

l
−−−−→ M −−−−→ 0

j




y
i




y
1




y

0 −−−−→ Y −−−−→ X ⊕ P (M)
(f,l)
−−−−→ M −−−−→ 0,where f : X −→ M is a representative of f in modA, l : P (M) −→ M is a proje
tive 
over,

i is a 
anoni
al embedding and j is indu
ed from i. Applying the snake lemma we get thefollowing exa
t sequen
e of A-modules:
0 −→ Ω(M)

j
−→ Y

s
−→ X −→ 0.Note that j is not a split monomorphism sin
e otherwise s is a split epimorphism and therefore

f(X) = 0, a 
ontradi
tion! By the property of almost split sequen
e, we get the followingexa
t 
ommutative diagram
0 −−−−→ Ω(M) −−−−→ Z

r
−−−−→ τ−1Ω(M) −−−−→ 0

1




y
t




y
h




y

0 −−−−→ Ω(M)
j

−−−−→ Y
s

−−−−→ X −−−−→ 0,where the �rst row is an almost split sequen
e, h is indu
ed from t. We �rst note that h 6= 0sin
e otherwise r will be a split epimorphism, and this is 
learly a 
ontradi
tion! Next weshow that h 6= 0. Suppose that this is not the 
ase. We have the following exa
t 
ommutativediagram
0 - Ω(M) - Z

r′ r- τ−1Ω(M) - 0

0 - Ω(M)
j- Y s

- X - 0,

1
?

t
? ?

hP	

	 Rwhere h fa
tors through the proje
tive 
over P of X, the homomorphism P −→ Y is indu
edfrom the property of proje
tive modules, and we denote the 
omposition map τ−1Ω(M) −→
P −→ Y by u. We have that Im(t−ur) ⊆ j(Ω(M)) and that (t−ur)r′(Ω(M)) = tr′(Ω(M)) =
j(Ω(M)) ≃ Ω(M). Therefore r′ is a split monomorphism whi
h is 
learly a 
ontradi
tion.Finally, let us prove that fh 6= 0. Indeed, if fh fa
tors through P (M) then fh = lh′ for some
h′ : τ−1Ω(M) −→ P (M), and 
onsequently h fa
tors through Y by the following pullba
kdiagram
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Y

s- X

P (M)
l
- M.

? ?
f

τ−1Ω(M)

R j

W

h

h′

Hen
e there is h1 : τ−1Ω(M) −→ Y with h = sh1. Thus st = sh1r and Im(t− h1r) ⊆ Im(j).Then, as before, a 
ontradi
tion 
an be dedu
ed. This shows that fh 6= 0.
�Corollary 5.2. In the de�nition of maximal system of orthogonal bri
ks, the two 
onditions�For any nonzero obje
t X ∈ modA, there exists some i ∈ I su
h that HomA(X,Xi) 6= 0� and�For any nonzero obje
t X ∈ modA, there exists some j ∈ I su
h that HomA(Xj ,X) 6= 0� areequivalent.Proof It su�
es to prove it for X inde
omposable. Suppose that the 
ondition �For anynonzero obje
t X ∈ modA, there exists some i ∈ I su
h that HomA(X,Xi) 6= 0� is satis-�ed. By Proposition 5.1, HomA(Xi,Ω

−1τ(X)) ≃ HomA(τ
−1Ω(Xi),X) 6= 0. When X runsthrough the nonzero obje
ts in modA, so does Ω−1τ(X). Therefore we have proved the se
ond
ondition. The proof of the other dire
tion is similar.

�In order to 
ompare simple-minded systems with Pogorzaly's maximal systems of orthogo-nal bri
ks over a self-inje
tive algebra, we introdu
e the following de�nition (note that ourde�nition here applies in any artin algebra).De�nition 5.3. Let A be an artin algebra. A 
lass of obje
ts S in modPA is 
alled a weaklysimple-minded system if the following two 
onditions are satis�ed:(1) (orthogonality 
ondition) For any S, T ∈ S,
HomA(S, T ) =

{

0 S 6= T,division ring, S=T.(2) (weak generating 
ondition) For any inde
omposable non-proje
tive A-module X, thereexists some S ∈ S (depends on X) su
h that HomA(X,S) 6= 0.Remark 5.4. A

ording to Remark 2.6, for general artin algebras, the weak generating 
on-dition in De�nition 5.3 is not symmetri
, that is, "HomA(X,S) 6= 0" 
annot be repla
ed by"HomA(S,X) 6= 0".It is easy to see that every simple-minded system is a weakly simple-minded system. Thereason is as follows: Let A be an artin algebra and let S be a simple-minded system. Toshow that S is a weakly simple-minded system, we only need to prove the weak generating
ondition. Let 0 6= X ∈ modPA. Suppose that HomA(X,T ) = 0 for all T ∈ S. Then we havethat HomA(X,S) = 0 for any simple module S (
f. the proof of Lemma 2.5). This is 
learlya 
ontradi
tion and therefore S satis�es the weak generating 
ondition. Thus the questionarises: Is every weakly simple-minded system also a simple-minded system?At least for representation-�nite self-inje
tive �nite dimensional algebras, we 
an prove thatthe above question has a positive answer. First we need a lemma. Let A be a �nite dimensionalalgebra over a �eld k and let S = {M1, · · · ,Mn} be a weakly simple-minded system. Let X



16 STEFFEN KOENIG AND YUMING LIU∗be an A-module in modPA. Suppose that dimkHomA(X,Mi) = di for 1 ≤ i ≤ n. Following[19℄, we will say that ⊕n
i=1M

di
i is an s-top of X with respe
t to S. Of 
ourse, s-top(X) iswell-de�ned for X. We 
onsider the following exa
t sequen
e in modA:

(∗) 0 −→ X1
h=(h′,h′′)
−→ X ⊕ P

(f,g)
−→ s-top(X) −→ 0,where f : X −→ s-top(X) is su
h a morphism that the 
oordinates of f form a basis ofthe nonzero k-spa
e HomA(X, s-top(X)) and g : P −→ s-top(X) is su
h a morphism that

P −→ s-top(X) −→ Coker(f) is a proje
tive 
over.Lemma 5.5. Let X be an A-module in modPA. Up to isomorphism, the non-proje
tive partof the module X1 in the above sequen
e (∗) is independent of the 
hoi
e of the homomorphism
f : X −→ s-top(X).Proof First we note that if we repla
e g : P −→ s-top(X) in the above sequen
e (∗) by theproje
tive 
over g′ : Q −→ s-top(X), then ker(f, g′) and X1 have isomorphi
 non-proje
tivepart. Now we 
hoose another homomorphism f ′ : X −→ s-top(X) su
h that the 
oordinatesof f ′ still form a k-basis of HomA(X, s-top(X)). There 
learly is an A-module isomorphism
α : s-top(X) −→ s-top(X) su
h that αf − f ′ fa
tors through the proje
tive 
over q2 : P ′ −→s-top(X). More pre
isely, there is a homomorphism q1 : X −→ P ′ su
h that αf − f ′ = q2q1.Hen
e we get the following exa
t 
ommutative diagram

0 −−−−→ Y1 −−−−→ X ⊕ P ′
(f,α−1q2)
−−−−−−→ s-top(X) −−−−→ 0

d




y

(

1 0
q1 1

)





y
α




y

0 −−−−→ Y ′
1 −−−−→ X ⊕ P ′

(f ′,q2)
−−−−→ s-top(X) −−−−→ 0,where d is indu
ed from the isomorphism (

1 0
q1 1

). It follows that d is an isomorphism. Inparti
ular, Y1 and Y ′
1 have isomorphi
 non-proje
tive parts.

�Clearly, if A is a self-inje
tive algebra, X1 
ontains no proje
tive summands. However, ingeneral X1 may 
ontain proje
tive summands (although by our assumption, X 
ontains noproje
tive summands). A

ording to [19℄, we de�ne the s-radi
al of X with respe
t to Sto be the non-proje
tive part of X1 in the above sequen
e (∗). This is well-de�ned up toisomorphism, and we shall denote it by s-rad(X). Moreover, we denote s-rad(s-radi−1(X)) bys-radi(X).Theorem 5.6. Let A be a representation-�nite self-inje
tive �nite dimensional algebra overa �eld k and let S = {M1, · · · ,Mn} be a weakly simple-minded system. Then S even is asimple-minded system.Proof We only need to prove the generating 
ondition. Let X be an inde
omposable non-proje
tive A-module. Suppose that dimkHomA(X,Mi) = di for 1 ≤ i ≤ n. As before, we
onsider the following exa
t sequen
e in modA:
(∗) 0 −→ X1

h=(h′,h′′)
−→ X ⊕ P

(f,g)
−→ s-top(X) −→ 0,where f : X −→ s-top(X) is su
h a morphism that the 
oordinates of f form a basis ofthe nonzero k-spa
e HomA(X, s-top(X)) and g : P −→ s-top(X) is su
h a morphism that

P −→ s-top(X) −→ Coker(f) is a proje
tive 
over. Let M =
⊕n

i=1 Mi. Sin
e modA is atriangulated 
ategory (with translation fun
tor Ω−1 : modA −→ modA) and the above exa
tsequen
e indu
es a triangle
X1

h
−→ X

f
−→ s-top(X)

e
−→ Ω−1(X1)



SIMPLE-MINDED SYSTEMS 17in modA, after applying the 
ontravariant 
ohomologi
al fun
tor HomA(−,M) to the abovetriangle, we get the following long exa
t sequen
e of k-spa
es
· · · −→ (Ω

−1(X),M)
(Ω−1(h),M)
−→ (Ω

−1(X1),M)
(e,M)
−→ (s-top(X),M)

(f,M)
−→ (X,M) −→ · · · .We 
laim that (f,M) is an isomorphism. Indeed, the spa
es (s-top(X),M) and (X,M) havethe same k-dimension Σn

i=1di and the 
anoni
al basis elements of (s-top(X),M) map to the
oordinates of f whi
h form a basis of (X,M). It follows that (Ω−1(h),M) is an epimorphismand that dimkHomA(Ω
−1(X),M) ≥ dimkHomA(Ω

−1(X1),M). We 
an assume that X1 6= 0sin
e otherwise X ≃ s-top(X) ∈ 〈S〉 and we are done. Note also that X1 
ontains no proje
tivesummand. For any inde
omposable summand ofX1 (we still denote it by X1), we 
an similarlytake an exa
t sequen
e as (∗) in modA:
0 −→ X2

h1−→ X1 ⊕ P1
(f1,g1)
−→ s-top(X1) −→ 0.From this we also dedu
e a 
anoni
al epimorphism (Ω−1(h1),M) : (Ω

−1(X1),M) −→

(Ω
−1(X2),M) and get an inequality dimkHomA(Ω

−1(X1),M) ≥ dimkHomA(Ω
−1(X2),M).Continuing in this way, we obtain a sequen
e of epimorphisms between k-spa
es:

(Ω
−1(X),M)

(Ω−1(h),M)
−→ (Ω

−1(X1),M)
(Ω−1(h1),M)
−→ (Ω

−1(X2),M)
(Ω−1(h2),M)
−→ · · · .The above sequen
e is indu
ed from the following sequen
e

· · · −→ X3
h2

−→ X2
h1

−→ X1
h
−→ Xin modA and the latter one is again indu
ed from the following sequen
e

(∗∗) · · · −→ X3
h′

2−→ X2
h′

1−→ X1
h′

−→ Xin modA. To �nish our proof, it su�
es to prove the following 
on
lusion: there exists somenatural number m su
h that Xm = 0 (and 
onsequently Xi = 0 for all i ≥ m).By our assumption, all the modules in the above sequen
e (∗∗) are inde
omposable. We 
laimthat all homomorphisms in (∗∗) are non-isomorphisms. In fa
t, if in the original sequen
e (∗)the s-radi
al X1 
ontains an inde
omposable summand X ′
1 su
h that h′ : X ′

1 −→ X is an iso-morphism, then the inequality dimkHomA(Ω
−1(X),M) ≥ dimkHomA(Ω

−1(X1),M) impliesthat X1 
an not 
ontain any other summands, and therefore X1 must be isomorphi
 to X. Thiswould lead to the absurd 
on
lusion that the sequen
e (∗) splits and that X ≃ X ⊕ s-top(X).Similarly, one 
an show that all h′i(i ≥ 1) are non-isomorphisms. Sin
e A is representation-�nite and the modules in modA have bounded length, by [4, Corollary 1.3℄, for some large m(m ≤ 2b, where b denotes the least upper bound of the lengths of the inde
omposable mod-ules in modA), the 
omposition h′h′1 · · · h
′
m is zero in modA. It follows that the 
omposition

(Ω−1(hm),M) · · · (Ω−1(h1),M) (Ω−1(h),M) is zero. Sin
e all (Ω−1(hi),M) are epimorphisms,we know that HomA(Ω
−1(Xm),M) = 0. By the weak generating 
ondition, we know that

Ω−1(Xm) = 0. It follows that Xm = 0 sin
e Ω−1 : modA −→ modA is an equivalen
e.
�Remark 5.7. Suppose that A is any (not ne
essarily representation-�nite) self-inje
tive alge-bra over a �eld k. The above proof implies that for any inde
omposable non-proje
tive A-module

X, s-rad(X) 
annot 
ontain a dire
t summand isomorphi
 to X. Indeed, if this is the 
ase,we 
an take all Xi equal to X in the above proof, and �nally we get that X = 0, whi
h is a
ontradi
tion. Moreover, it is easy to see that all the modules in {s-radi(X)|i = 0, 1, 2, · · · }are pairwise disjoint, i.e. do not have isomorphi
 dire
t summands.It is well-known that the Loewy length is a very useful 
on
ept in the module 
ategory modA.It would be interesting to generalize this notion to the stable module 
ategory modA. Here,



18 STEFFEN KOENIG AND YUMING LIU∗we repla
e the simple modules by a simple-minded system. Indeed, Lemma 5.5 supplies a wayto de�ne the stable Loewy length of an obje
t in modA.De�nition 5.8. Let A be a �nite dimensional algebra over a �eld k and let S be a simple-minded system over A. For any inde
omposable non-proje
tive A-module X in modPA, wede�ne the stable Loewy length of X with respe
t to S (whi
h we denote by s-ll(X)) to be theleast number m su
h that s-radm(X) = 0. If there is no su
h m, then we de�ne s-ll(X) =∞.For a general module X ∈ modA, we de�ne s-ll(X) to be the stable Loewy length of its non-proje
tive part.Corollary 5.9. Let A be a representation-�nite self-inje
tive �nite dimensional algebra overa �eld k and let S be any simple-minded system. Then the stable Loewy length satis�es theinequality s-ll(X) ≤ 2b for any X ∈ modA, where b denotes the maximum of the lengths of theinde
omposable modules in modA.Proof This is an easy 
onsequen
e of the proof of Theorem 5.6.
�Example 5.10. Consider the algebra A in Example 3.5. Both S1 = {1, 2} and S2 = {1,

2
1
2
}are simple-minded systems over A. For any inde
omposable non-proje
tive A-module X, thestable Loewy length s-ll(X) with respe
t to S1 is equal to the usual Loewy length ll(X). However,the stable Loewy length s-ll(X) with respe
t to S2 is usually di�erent from ll(X). For example,the stable Loewy length of the A-module 1

2
1
2

with respe
t to S2 is equal to 2 while its usualLoewy length is 4. 6. Nakayama algebrasOne motivation to de�ne simple-minded systems is to explore the potential use of this 
on
eptfor the Auslander-Reiten 
onje
ture. This 
onje
ture says that two stably equivalent artinalgebras have the same number of non-isomorphi
 non-proje
tive simple modules. Based onthe observation in Theorem 3.2, we pose the following question.Question 6.1. Is the 
ardinality of ea
h simple-minded system over an artin algebra A equalto the number of non-isomorphi
 non-proje
tive simple A-modules?A positive answer to this question implies the Auslander-Reiten 
onje
ture. A
tually,Pogorzaly [20℄ used an analogous idea in his setup to prove the 
onje
ture for self-inje
tivespe
ial biserial algebras. We think that besides the relationship with Auslander-Reiten 
on-je
ture, Question 6.1 is interesting in itself. Proposition 4.1 shows that the answer is positivefor triangular algebras. The next proposition answers this question for Nakayama algebras.Proposition 6.2. Let A be a Nakayama algebra and let S be a simple-minded system. Thenthe 
ardinality of S is equal to the number of non-isomorphi
 non-proje
tive simple A-modules.Moreover, if we assume that S = {M1, · · · ,Mn} and that {S1, · · · , Sn} is a 
omplete set of non-isomorphi
 non-proje
tive simple A-modules, then both the set of tops top(M1), · · · , top(Mn)and the set of so
les soc(M1), · · · , soc(Mn) 
oin
ide, up to ordering, with the set of simplemodules S1, · · · , Sn.Proof First we remind the reader that every inde
omposable module over a Nakayama algebrais uniserial. Let S be any non-proje
tive simple A-module. Then there exists some Mi ∈ Ssu
h that S ≃ soc(Mi) by the weak generating 
ondition. This shows that ea
h non-proje
tive
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urs as a so
le of some Mi ∈ S. On the other hand, any two di�erent Miand Mj must have non-isomorphi
 so
les. Indeed, if Mi and Mj satisfy soc(Mi) ≃ soc(Mj),then there is a monomorphism from one module to another module, say, Mi →֒Mj . But 
learlyin this 
ase this homomorphism does not fa
tor through a proje
tive module and therefore
Mi ≃ Mj by the orthogonality 
ondition. We have proved that the 
ardinality of S is equalto the number of non-isomorphi
 non-proje
tive simple A-modules and that the so
le series
soc(M1), · · · , soc(Mn) is a rearrangement of S1, · · · , Sn. To prove the statement for top series,it su�
es to show that any two di�erent Mi and Mj must have non-isomorphi
 tops. In fa
t,if Mi and Mj satisfy top(Mi) ≃ top(Mj), then there is an epimorphism from one module toanother module, say, Mi ։ Mj . But 
learly this homomorphism does not fa
tor through aproje
tive module and therefore Mi ≃Mj by the orthogonality 
ondition.

�We now give an example to illustrate the above proposition.Example 6.3. We 
onsider the Nakayama algebra B in Example 3.4. First we display theAuslander-Reiten quiver of B as follows:
�

1

3
1

�

2
3
1

�

1
2
3
1
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�
3

2
3

�
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2
3

�

3
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3
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R

R

�
2

1
2

�

3
1
2

�

2
3
1
2

R

R

R

�
1

3
1

�

2
3
1

�

1
2
3
1

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

where the dotted lines indi
ate the Auslander-Reiten translation, and the same verti
es areidenti�ed. Clearly ea
h inde
omposable non-proje
tive B-module is self-orthogonal in modB.Using Proposition 6.2, it is not hard to verify that there are pre
isely �ve simple-minded systemsover B:
S1 = {1, 2, 3}; S2 = {1, 2

3
,
3
1
2
}; S3 = { 1

2
,
2
3
1
, 3}; S4 = { 1

2
3
, 2,

3
1
}; S5 = { 1

2
3
,
2
3
1
,
3
1
2
}.On the other hand, sin
e the algebra A in Example 3.4 is stably equivalent to B, there arealso �ve simple-minded systems over A. However, if we 
onsider the following quotient algebra(whi
h is still a Nakayama algebra but not self-inje
tive) of B

B′ =
1
2
3
⊕

2
3
1
2
⊕

3
1
2
3 ,then there are two simple-minded systems over B′:

S ′1 = {1, 2, 3}; S ′2 = {1, 2
3
,
3
1
2
}.This re�e
ts the fa
t that there are many more (non-trivial) stable equivalen
es related to Bthan related to B′. However, if we 
onsider the number of orbits of the simple-minded systemsunder stable self-equivalen
es, then in both 
ases, the number is 2.A
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