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Abstract. It is well known that Brauer graph algebras coincide with symmetric special biserial algebras and

there has been a lot of work on Brauer graph algebras and their representation theory. Given a Brauer graph

algebra A associated with a Brauer graph G, we denote by gr(A) the graded algebra associated with the
radical filtration of A. We give a criterion for gr(A) to be representation-finite in terms of the graded degrees

of vertices in G. Moreover, when gr(A) is representation-finite, we give the precise relationship between the

Auslander-Reiten quiver of A and the Auslander-Reiten quiver of gr(A).

1. Introduction

In representation theory of finite dimensional algebras, the graded algebras associated with the radical filtration
often play an important role. Let A be a finite dimensional algebra over a field, and let gr(A) be the graded
algebra associated with the radical filtration of A (see Definition 2.7). In [5], Cline, Parshall and Scott pointed
out that homological properties of the homological dual A! = Ext∗(A/radA,A/radA) of A (often called the
Yoneda algebra of A — another important graded algebra associated with A) are often reflected in terms of
properties of the graded algebra gr(A). In particular, they showed that for a quasi-hereditary algebra A, gr(A) is
sometimes isomorphic to the double dual A!! as graded algebras. However, if A has infinite global dimension (for
example, if A is a non-semisimple self-injective algebra), then the homological dual A! is not finite dimensional
and it is not known how to connect A! with the finite dimensional algebra gr(A). Much less is known for both
the ring theoretical properties and the representation theory of gr(A) in this case.

Recently, Rickard and Rouquier studied the reconstruction problem for stable equivalence in [9] (a reformula-
tion of this question is called the simple-image problem in [4]). When they tried to construct some self-injective
algebra A, they found that they could only construct the associated graded algebra gr(A), which is not self-
injective any more in general. This gives another reason to study the relationship between A and gr(A) under
the assumption that A is an arbitrary finite dimensional algebra.

This paper is a first attempt towards this direction: we focus our study on the relationship between Brauer
graph algebras and their associated graded algebras. Brauer graph algebras is a good class of algebras for our
aim since, on the one hand they are closely related to the modular representation theory of finite groups, and
on the other hand they coincide with symmetric special biserial algebras. A comprehensive survey on Brauer
graph algebras can be found in [10].

To study the associated graded algebra gr(A) of a Brauer graph algebra A, the first step should be to describe
gr(A) by quiver and relations. After this we will see that gr(A) is a special biserial algebra for any Brauer
graph algebra A. Using this point of view we can give a criterion for gr(A) to be representation-finite in terms
of the graded degrees of vertices in the associated Brauer graph G.

Definition. Let G be a Brauer graph. For each vertex v, we denote by m(v) the multiplicity of v and by
val(v) the valency of v, with the convention that a loop is counted twice in val(v). Moreover, if val(v) = 1,
we denote by v′ the unique vertex adjacent to v. For each vertex v in G, we define the graded degree grd(v)
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as follows. If G is the Brauer graph given by a single edge with both vertices v and v′ of multiplicity 1, then
grd(v) = grd(v′) = 1; otherwise

grd(v) =

{
m(v)val(v), if m(v)val(v) > 1,

grd(v′), if m(v)val(v) = 1.

We use the name of graded degrees since this notion seems an appropriate tool to study the associated graded
algebras of Brauer graph algebras. One of the main results in this paper is the following.

Theorem. Let A be a Brauer graph algebra associated with a Brauer graph G. Then the graded algebra gr(A)
associated with the radical filtration of A is of finite representation type if and only if the following two conditions
are satisfied:
(1) G is a Brauer tree with an exceptional vertex v0 of multiplicity m0;
(2) Denote by v1 the exceptional vertex v0 when m0 > 1 or one of the vertices with maximal graded degree when
m0 = 1. For any vertex vk in G, the walk v1 v2 · · · vk from v1 to vk satisfies grd(v1) ≥ grd(v2) ≥
· · · ≥ grd(vk).

As mentioned before, both a Brauer graph algebra A and its associated graded algebra gr(A) are special
biserial algebras. We can study the representation theory of A and gr(A) by considering two closely related

string algebras A and gr(A) (cf. Section 3). In particular, to describe the Auslander Reiten quivers of A and

gr(A), it is enough to describe the Auslander-Reiten quivers of A and gr(A). In case that gr(A) is representation-
finite we show a close connection between the Auslander-Reiten quiver of A and the Auslander-Reiten quiver
of gr(A). Roughly speaking, if gr(A) is representation-finite, then the Auslander-Reiten quiver of A can be

obtained from the Auslander-Reiten quiver of gr(A) by removing a special kind of mesh-closed subquivers called
diamonds. The representation-infinite case for gr(A) will be explored in future research.

This paper is organized as follows. In Section 2, we introduce the Brauer graph algebras and their associated
graded algebras. In Section 3, for a Brauer graph algebra A and its associated graded algebra gr(A), we study

them from the special biserial algebra point of view. We define the string algebras A and gr(A) closely related
to A and gr(A) respectively, and prove some technical lemmas on the properties of the strings and bands in A

and in gr(A). In Section 4, we present a criterion for gr(A) to be representation-finite. In Section 5, we study
the relationship between the Auslander-Reiten quiver of gr(A) and the Auslander-Reiten quiver of A in case
that gr(A) is representation-finite.

2. Brauer graph algebras and their associated graded algebras

Throughout this paper, we fix an algebraically closed field k. All algebras will be finite dimensional algebras
over k, all their modules will be finite dimensional left modules. For a module M , we denote by soc(M) and
rad(M) the socle and the radical of M , respectively; the length of the module M is denoted by `(M), it means
the number of composition factors in any composition series of M . We write a path p in a quiver from right to
left and denote by s(p) and t(p) the start and the end of p, respectively; the length of a path is defined in an
obvious way. By a simple cycle in a quiver we mean a cycle with no repeated arrows and no repeated vertices.
Finally, we will abbreviate Auslander-Reiten quiver to AR-quiver, etc.

In this section, we introduce the Brauer graph algebras and their associated graded algebras.

2.1. Brauer graph algebras. We first recall the definition and general properties of Brauer graph algebras
and then introduce the notion of graded degrees of vertices for any Brauer graph, which is directly related to
algebraic structure of the corresponding Brauer graph algebra. For more details on Brauer graph algebras, we
refer to [10], [7] and the references therein.

Definition 2.1. A Brauer graph G = (V (G), E(G)) is a finite (undirected) connected graph with vertex set
V (G) and edge set E(G) such that for each vertex v, there is a multiplicity m(v) ∈ Z>0 and a cyclic ordering
of the edges incident to v. We will always display G as a graph with the edges incident to each vertex appearing
in anticlockwise direction to reflect the cyclic ordering.
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A Brauer tree is a Brauer graph G such that (V (G), E(G)) is a tree and m(v) = 1 for all but at most one
v ∈ V (G). In this case we always choose a specified vertex v0 (if m(v) > 1 then we choose v0 = v), called the
exceptional vertex, whose multiplicity will be denoted by m0. A generalized Brauer tree is a Brauer graph G
such that (V (G), E(G)) is a tree with at least two vertices with multiplicity greater than one.

In a Brauer graph G = (V (G), E(G)), we denote by val(v) the valency or the ordinary degree of a vertex
v ∈ V (G); it is defined to be the number of edges in G incident to v, with the convention that a loop is
counted twice in val(v). An edge i ∈ E(G) is said to be truncated at a vertex v if i is incident to v such that
m(v)val(v) = 1.

Recall that any Brauer graph determines a finite dimensional basic symmetric k-algebra called Brauer graph
algebra. Given a Brauer graph G and let A be the Brauer graph algebra associated with G. Then there is
a quiver Q and an admissible ideal I such that A ∼= kQ/I. The quiver Q = (Q0, Q1) and the ideal I are
constructed as follows.

If G is the Brauer graph given by a single edge with both vertices of multiplicity 1, then the quiver Q is given
by one vertex and one loop and the corresponding Brauer graph algebra is isomorphic to k[x]/(x2). In the
following description, we exclude this special case. The set Q0 of vertices is given by the set of edges E(G) of
G, denoting the vertex in Q0 corresponding to the edge i in E(G) also by i. The set Q1 of arrows is given by
the cyclic ordering in G. Suppose that the cyclic ordering at a vertex v of G is given by i1 < i2 < · · · < in < i1;
note that we might have ij = ik for some j 6= k, if some of the edges are loops. We say that ij+1 is the successor
of ij for 1 ≤ j ≤ n− 1 and i1 is the successor of in. Note that if v is a vertex at edge i with val(v) = 1 and if
m(v) > 1 then i < i and the successor of i is i, if m(v) = 1 then i does not have a successor. If i and j are two
edges in E(G) incident to a common vertex v and such that j is a successor of i in the cyclic ordering of the
edges at v, then there is an arrow i→ j in Q1.

Since every arrow of Q starts and ends at an edge of G, there are at most two arrows starting and ending
at every vertex of Q. Every vertex v ∈ V (G) such that m(v)val(v) ≥ 2, gives rise to an oriented cycle Cv
in Q, which is unique up to cyclic permutation. We call Cv a special cycle at v. Note that if G contains no
loops (in particular, if G is a generalized Brauer tree or a Brauer tree), then any special cycle is a simple cycle.
Let Cv be such a special cycle at v. Then if Cv is a representative in its cyclic permutation class such that
t(Cv) = i = s(Cv), i ∈ Q0, we say that Cv is a special i-cycle at v. If a special i-cycle at v has starting arrow α,
then we denote this special i-cycle at v by Cv(α). Note that if i ∈ E(G) is not a loop, then the special i-cycle
at v is unique and we simply write Cv for this special i-cycle at v; if i ∈ E(G) is a loop at v, then there are
exactly two special i-cycles at v, an example of this kind is given in Example 2.3 (1).

We define the ideal I in the path algebra kQ generated by three types of relations. In the following we identify
the set of edges E(G) of a Brauer graph G with the set of vertices Q0 of the corresponding quiver Q.

Relation of the first type:

Cv(α)
m(v) − Cv′(α′)

m(v′)
,

for any i ∈ Q0 and for any special i-cycles Cv(α) and Cv′(α
′) at v and v′ respectively such that both v and v′

are not truncated.

Relation of the second type:

αCv(α)
m(v)

,

for any i ∈ Q0, any v ∈ V (G) and where Cv(α) is a special i-cycle at v with starting arrow α.

Relation of the third type:

βα,

for any α, β ∈ Q1 such that βα is not a subpath of any special cycle except if β = α is a loop associated with a
vertex v of valency one and multiplicity m(v) > 1.

We note that I is an admissible ideal and the relations generating I do not constitute a minimal set of relations.
Many of the relations, in particular many of the relations of the second type, are redundant.

The following theorem collects some general properties on Brauer graph algebras.
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Theorem 2.2. (cf. [10, Subsection 2.5]) (1) Given a Brauer graph G, the corresponding Brauer graph algebra
A ∼= kQ/I is finite dimensional, basic, indecomposable and symmetric.

(2) Brauer graph algebras are special biserial and of tame representation type.

(3) A Brauer graph algebra is of finite representation type if and only if it is a Brauer tree algebra.

Since Brauer graph algebras are special biserial (see the definition in Section 3), they are biserial and the
composition factors of the maximal uniserial submodules of the indecomposable projective modules can be read
from the Brauer graph. Let G be a Brauer graph and A the corresponding Brauer graph algebra. There is
a one-to-one correspondence between the edges i in G and the simple A-modules Si such that the projective
cover Pi of Si has the following structure. We have Pi/rad(Pi) ∼= soc(Pi) ∼= Si, and rad(Pi)/soc(Pi) is a
direct sum of two (possibly zero) uniserial modules Vv and Vw corresponding to the two vertices incident to
the edge i. Suppose that i is not truncated. Let i, i1, · · · , ival(v)−1 be the successor sequence for i at v, and
i, j1, · · · , jval(w)−1 the successor sequence for i at w. Then Vv and Vw have composition series

Si1 , · · · , Sival(v)−1
, Si, Si1 , · · · , Sival(v)−1

, · · · , Si, Si1 , · · · , Sival(v)−1

and

Sj1 , · · · , Sjval(w)−1
, Si, Sj1 , · · · , Sjval(w)−1

, · · · , Si, Sj1 , · · · , Sjval(w)−1

respectively, such that, for k = 1, · · · , val(v) − 1, the simple module Sik occurs precisely m(v) times, and, for
l = 1, · · · , val(w)−1, the simple module Sjl occurs precisely m(w) times. In the case where i is truncated, then
Pi is itself uniserial. Suppose that i is not truncated at v and is truncated at w. Then Pi has composition series

Si, Si1 , · · · , Sival(v)−1
, Si, Si1 , · · · , Sival(v)−1

, · · · , Si, Si1 , · · · , Sival(v)−1
, Si

where, for k = 1, · · · , val(v)− 1, the simple module Sik occurs precisely m(v) times.

Example 2.3. (1) Let G be the following Brauer graph

a1
2

3
b

4
c

with m(a) = m(b) = m(c) = 1. The cyclic ordering of the edges incident to vertex a is given by 1 < 1 < 3 <
2 < 1, to vertex b is given by 2 < 3 < 4 < 2 and to c is given by 4. We have val(a) = 4, val(b) = 3, val(c) = 1.
Note that the edge 4 is a truncated edge since the vertex c is such that m(c)val(c) = 1.

The quiver Q of the corresponding Brauer graph algebra:

3

α2

��

β2

��
1α0 ::

α1

@@

4

β3��
2

α3

^^ β1

OO

The special cycles in Q are the special 1-cycles at a corresponding to α3α2α1α0 and α0α3α2α1, the special 2-cycle
at a given by α2α1α0α3, the special 2-cycle at b given by β3β2β1, the special 3-cycle at a given by α1α0α3α2, the
special 3-cycle at b given by β1β3β2. Note that there are two distinct 1-cycles at the vertex a, namely α3α2α1α0

and α0α3α2α1.

Set of relations of the three types of the Brauer graph algebra:

The first type: α3α2α1α0 − α0α3α2α1, α2α1α0α3 − β3β2β1, α1α0α3α2 − β1β3β2.

The second type: α5, β4. (By abuse of notation, we write α5 for α0α3α2α1α0, etc.)

The third type: α0
2, α1α3, β1α2, α2β1, β2α1, α3β3.

The regular representation of the Brauer graph algebra is as follows:
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1

3

2

1

1

3

2

1

⊕

2

3

4

1

1

3

2

⊕

3

4

2

2

1

1

3

⊕

4

2

3

4

(2) Let G be the following Brauer tree

v0 a b c

d

1 3

2

4

with the multiplicity m0 of the exceptional vertex v0 is 2. The cyclic ordering of the edges incident to vertex v0

is given by 1 < 1, to vertex a is given by 1 < 2 < 3 < 1, to vertex b is given by 3 < 4 < 3, to c is given by 4 and
to d is given by 2. We have val(v0) = 1, val(a) = 3, val(b) = 2, val(c) = 1, val(d) = 1. The edges 4 and 2 are
truncated edges.

The quiver Q of the corresponding Brauer tree algebra:

2

α2

&&
3

β1

&&

α3uu

4

β2

ff

1α0 ::

α1

FF

The special cycles in Q are the special 1-cycle at v0 given by α0, the special 1-cycle at a given by α3α2α1, the
special 3-cycle at a given by α2α1α3, the special 3-cycle at b given by β2β1.

Set of relations of the three types of the Brauer tree algebra:

The first type: α0
2 − α3α2α1, α2α1α3 − β2β1.

The second type: α0
3, α1α3α2α1, α2α1α3α2, α3α2α1α3, β

3.

The third type: α1α0, α0α3, β1α2, α3β2.

The regular representation of the Brauer tree algebra is as follows:

1

2

3

1

1 ⊕

2

3

1

2

⊕

3

3

1

2
4 ⊕

4

3

4

We remark that in the Brauer tree case, the corresponding quiver Q consists of simple cycles, the simple cycles
are in one-to-one correspondence with the vertices v of G that has either more than one edge incident to v or
is an exceptional vertex with m(v) > 1 (we regard a loop as a simple cycle); moreover, any two simple cycles in
Q meet in at most one vertex and every vertex in Q belongs to two simple cycles at most. The simple cycle of
Q corresponding to the exceptional vertex v0 is called the exceptional cycle (cf. [2, Section 3]).

The following is a key notion in later presentations.

Definition 2.4. Let G be a Brauer graph. For each vertex v, we denote by m(v) the multiplicity of v and by
val(v) the valency of v, with the convention that a loop is counted twice in val(v). Moreover, if val(v) = 1,
we denote by v′ the unique vertex adjacent to v. For each vertex v in G, we define the graded degree grd(v)
as follows. If G is the Brauer graph given by a single edge with both vertices v and v′ of multiplicity 1, then
grd(v) = grd(v′) = 1; otherwise

grd(v) =

{
m(v)val(v), if m(v)val(v) > 1,

grd(v′), if m(v)val(v) = 1.
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Example 2.5. The graded degrees of vertices of the two Brauer graphs in Example 2.3 are as follows.

(1) grd(a) = m(a)val(a) = 4, grd(b) = m(b)val(b) = 3, grd(c) = grd(b) = 3 since m(c)val(c) = 1.

(2) grd(v0) = m(v0)val(v0) = 2, grd(a) = m(a)val(a) = 3, grd(b) = m(b)val(b) = 2, grd(c) = grd(b) = 2,
grd(d) = grd(a) = 3.

Let G be a Brauer graph and A = kQ/I the corresponding Brauer graph algebra. For any edge v i w in
G, we denote by Si the corresponding simple A-module. Suppose that the projective cover Pi of Si satisfies
rad(Pi) = Uv + Uw with `(Uv) ≤ `(Uw), where Uv and Uw are two uniserial modules with Uv ∩ Uw ∼= Si. Note
that if the edge i is a loop, then v = w but Uv � Uw. The following lemma shows that the graded degrees are
directly related to algebraic structure of the corresponding Brauer graph algebra.

Lemma 2.6. If Uv ∼= Si, then grd(v) = grd(w) = `(Uw); if Uv � Si, then grd(v) = `(Uv) and grd(w) = `(Uw).

Proof. If i is not truncated at both vertices v and w, then Uv � Si, and by the construction of Uv and Uw, we
have grd(v) = `(Uv) and grd(w) = `(Uw). If i is truncated at v but not truncated at w, then Uv ∼= Si, and
similarly we have grd(v) = grd(w) = `(Uw). If i is truncated at both vertices v and w, then G is the Brauer
graph given by a single edge which is truncated at both vertices and the conclusion clearly holds. �

2.2. Graded algebra associated with the radical filtration of an algebra. We recall the definition of
graded algebra associated with the radical filtration of a finite dimensional algebra.

Definition 2.7. (see, for example [8, Subsection 1.6]) Let A be a finite dimensional algebra. Denote by r the
radical rad(A) of A. Then the graded algebra gr(A) of A associated with the radical filtration is defined as
follows. As a graded vector space,

gr(A) = A/r ⊕ r/r2 ⊕ · · · ⊕ rt/rt+1 ⊕ · · · .

The multiplication of gr(A) is given as follows. For any two homogeneous elements:

x+ rm+1 ∈ rm/rm+1, y + rn+1 ∈ rn/rn+1,

we have

(x+ rm+1) · (y + rn+1) = xy + rm+n+1.

By the above definition, the dimension of the algebra gr(A) is equal to the dimension of A and the radical of
gr(A) is rad(gr(A)) = r/r2 ⊕ · · · ⊕ rt/rt+1 ⊕ · · · . So the semisimple algebras associated with gr(A) and
A are isomorphic: gr(A)/rad(gr(A)) ∼= A/r. It follows that A is a basic algebra if and only if gr(A) is a basic
algebra. In fact, we have the following general result.

Lemma 2.8. If two algebras A and B are Morita equivalent, then their associated graded algebras gr(A) and
gr(B) are Morita equivalent.

Proof. Without loss of generality, we may assume that B is the basic algebra of A and has the form B = eAe,
where e is an idempotent element inA with the property AeA = A. The radical of eAe is ere, the radical square of
eAe is er2e, and so on, where r is the radical of A. Then gr(eAe) = eAe/ere⊕ere/er2e ⊕ · · · ⊕ erte/ert+1e ⊕ · · · .
There is the following bijection for each t

erte/ert+1e −→ e(rt/rt+1)e,

eae 7−→ e · a · e,
where e = e+ r, a = a+ rt+1, eae = eae+ ert+1e, and · is the multiplication in gr(A). This induces an algebra
isomorphism between gr(eAe) and egr(A)e. Since the A-module Ae is a projective generator, we have that
the gr(A)-module gr(A)e is also a projective generator, and therefore the isomorphism gr(eAe) ∼= egr(A)e ∼=
Endgr(A)(gr(A)e)op implies that gr(A) and gr(eAe) are Morita equivalent. �

Although gr(A) is a graded algebra, in this paper we study gr(A) as an ungraded algebra. We will discuss
concrete examples of associated graded algebras of Brauer graph algebras in next subsection.
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2.3. The associated graded algebras of Brauer graph algebras. Now we describe the associated graded
algebras of Brauer graph algebras by quivers and relations. Let A be a Brauer graph algebra associated with a
Brauer graph G. Then we can assume that A = kQ/I where Q and I are described as in Subsection 2.1.

Lemma 2.9. Let A = kQ/I be a Brauer graph algebra where the quiver Q and the admissible ideal I are described
as in Subsection 2.1. The generating relations of the second and the third types in I are given by paths, and
relation of the first type is of the form ρ = p − q, where p and q are two paths with s(p) = t(p) = s(q) = t(q).
For any relation ρ = p− q of first type (suppose that the length of p is m and the length of q is n), we replace
it by

ρ′ =


ρ, m = n,

q, m > n,

p, m < n.

Then the associated graded algebra gr(A) is isomorphic to kQ/I ′, where Q is the same quiver as above and I ′

is an admissible ideal whose generating relations are obtained from that of I by replacing each ρ by ρ′.

Proof. Since gr(A) = A/r ⊕ r/r2 ⊕ · · · ⊕ rt/rt+1 ⊕ · · · , where r is the radical rad(A) of A. We have

rad(gr(A)) = r/r2 ⊕ · · · ⊕ rt/rt+1 ⊕ · · · ,

rad2(gr(A)) = r2/r3 ⊕ · · · ⊕ rt/rt+1 ⊕ · · · .

Therefore, gr(A)/rad(gr(A)) ∼= A/r and rad(gr(A))/rad2(gr(A)) ∼= r/r2. Thus we can assume that gr(A) has
the form kQ/I ′′ with the same quiver Q and with some admissible ideal I ′′. We observe that the path relations
and commutative relations of the form p− q (where p and q have the same length) in I are also relations in I ′′,
and that any commutative relation of the form ρ = p− q (where p and q have the different length) in I gives a
relation ρ′ in I ′′.

We now consider an algebra A′ = kQ/I ′, where the generating relations of I ′ are obtained from that of I by
replacing each ρ by ρ′. Since any generating relation in I ′ becomes zero in gr(A) by definition, we have I ′ ⊂ I ′′.
Since A and gr(A) have the same dimension as vector spaces, in order to show I ′′ = I ′, it is enough to show that
the algebras A′ and A have the same dimension. Since there is a bijection between indecomposable projective
modules over A and A′, it suffices to show that the dimensions of any indecomposable projective A-module
P and its corresponding indecomposable projective A′-module P ′ are the same. There are three cases to be
considered.

(1) P is a uniserial module. Then P ′ is a uniserial module with dimP ′ = dimP ;
(2) rad(P )/soc(P ) = V1 ⊕ V2 with `(V1) = `(V2), where V1 and V2 are two non-zero uniserial modules. Then

rad(P ′)/soc(P ′) = V ′1 ⊕ V ′2 with `(V ′1) = `(V ′2) = `(V1), where V ′1 and V ′2 are two uniserial modules. Since
both soc(P ) and soc(P ′) are simple modules, we also have dimP ′ = dimP ;

(3) rad(P )/soc(P ) = V1 ⊕ V2 with 0 < `(V1) < `(V2), where V1 and V2 are two uniserial modules. Then
rad(P ′) = V ′1 ⊕ V ′2 with `(V ′1) = `(V1) and `(V ′2) = `(V2) + 1, where V ′1 and V ′2 are two uniserial modules.
So we still have dimP ′ = dimP .

Note that in the first two cases, the A′-module P ′ is projective-injective, and in the third case P ′ is projective
but not injective. �

Remark 2.10. There is a bijection between indecomposable projective modules over A and gr(A). More pre-
cisely, if P is an indecomposable projective A-module, and if we identify gr(A) with the algebra A′ in the proof of
Lemma 2.9, then the corresponding indecomposable projective gr(A)-module is just the module P ′. As a result,
any two Brauer graph algebras are isomorphic if and only if their associated graded algebras are isomorphic.

Example 2.11. According to Lemma 2.9, we can describe the associated graded algebras of the two Brauer
graph algebras in Example 2.3. Note that in both examples, gr(A) is not a symmetric algebra any more.
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(1) gr(A) is given by the quiver Q

3

α2

��

β2

��
1α0 ::

α1

@@

4

β3��
2

α3

^^ β1

OO

and relations

α3α2α1α0 − α0α3α2α1, β3β2β1, β1β3β2, α3α2α1α0α3, α0
2, α1α3, β1α2, α2β1, β2α1, α3β3.

The regular representation of gr(A) is as follows:

1

3

2

1

1

3

2

1

⊕

2

3

4

1

1

3

2

⊕

3

4

2

2

1

1

3

⊕

4

2

3

4

(2) gr(A) is given by the quiver Q

2

α2

&&
3

β1

&&

α3uu

4

β2

ff

1α0 ::

α1

FF

and relations

α0
2, β2β1, α1α3α2α1, α2α1α3α2, α3α2α1α3, α1α0, α0α3, β1α2, α3β2.

The regular representation of gr(A) is as follows:

1

2

3

1

1 ⊕

2

3

1

2

⊕

3

3

1

2
4 ⊕

4

3

4

We are grateful to the referee who suggests the following inspiring notations.

Definition 2.12. Let G = (V (G), E(G)) be a Brauer graph with graded degree function grd and A = kQ/I the
corresponding Brauer graph algebra. We identify Q0 with E(G) by the natural bijection between them.

(1) We call an edge v1
i v2 in G with grd(v1) 6= grd(v2) an unbalanced edge, and denote the endpoints of i

by v
(i)
L , v

(i)
S with grd(v

(i)
L ) > grd(v

(i)
S ). Whenever the context is clear we will omit the superscript (i).

(2) For any unbalanced edge vS
i vL in G, there is a relation of the first type ρi = pi − qi in I, where

pi = C
m(vS)
vS , qi = C

m(vL)
vL are two paths with lengths grd(vS), grd(vL) respectively. Let ei be the corresponding

primitive idempotent in A. We define the following sets:

W = {i ∈ Q0|rad(Aei)/soc(Aei) = V1 ⊕ V2, V1 6= 0, V2 6= 0, `(V1) 6= `(V2)} ⊆ Q0, (2.1)

P =
⋃
i∈W
{ri|ri is the longer path between pi and qi}. (2.2)

Note that we can identify the set of unbalanced edges with W under the natural bijection between Q0 and E(G),
and that s(ri) = t(ri) = i for any ri in P.
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(3) If G is a Brauer tree and vS
i vL is an unbalanced edge, we write the subgraph of G by removing the

edge i as follows: G \ i = Gi,L
⋃
Gi,S, where Gi,L (resp. Gi,S) is the connected branch of G \ i containing the

vertex vL (resp. vS). Moreover, we denote the set of vertices in Gi,L (resp. Gi,S) by V (Gi,L) (resp. V (Gi,S)).

In some cases, a Brauer graph algebra A is isomorphic to its associated graded algebra gr(A). We give a
description for this situation in terms of the graded degrees.

Proposition 2.13. Let A = kQ/I be a Brauer graph algebra associated with a Brauer graph G and gr(A) the
associated graded algebra of A. Then there is a natural bijection between the elements in W and the elements
in P, and both W and P are mapped bijectively to the set of unbalanced edges in G. Moreover, the following
statements are equivalent.

(1) A is isomorphic to gr(A) as algebras.
(2) The vertices in the Brauer graph G have the same graded degree.
(3) W (resp. P) is an empty set.

Proof. The results follow easily from Lemma 2.9, Lemma 2.6 and the fact that G is a connected graph. �

Remark 2.14. In [2], Bogdanic introduced a notion of graded Brauer tree algebra. His definition of graded
Brauer tree algebra means a Brauer tree algebra equipped with grading induced by a certain specific choice of
gradings on the symmetric Nakayama algebra via a graded derived equivalence. In particular, the graded Brauer
tree algebra is always representation-finite and symmetric. However, the associated graded algebra of a Brauer
tree algebra is in general neither representation-finite nor symmetric.

3. Special biserial algebras and string algebras

3.1. From special biserial algebras to string algebras. We recall some notions on special biserial algebra
and string algebra. For more details, we refer to [6], [3] and [10].

Definition 3.1. A finite dimensional k-algebra A is called special biserial if there is a quiver Q and an admissible
ideal I in kQ such that A is Morita equivalent to kQ/I and such that kQ/I satisfies the following conditions:
(1) At every vertex v in Q there are at most two arrows starting at v and there are at most two arrows ending
at v;
(2) For every arrow α in Q, there exists at most one arrow β such that βα /∈ I and there exists at most one
arrow γ such that αγ /∈ I.

A special biserial algebra A is called a string algebra if the defining ideal I is generated by paths.

Given a special biserial algebra A = kQ/I, we can associate a string algebra Ā as follows. Set

L := {i ∈ Q0 | Aei is injective and not uniserial}, S0 :=
⊕
i∈L

soc(Aei).

Then S0 is an ideal of A and the quotient algebra Ā = A/S0 is a string algebra (cf. [6, Section II.1.3]). Note

that the operation (·) preserves representation-finiteness and we can reconstruct the AR-quiver of A from the
AR-quiver of A easily.

Suppose now that A = kQ/I is a string algebra. For an arrow β ∈ Q1, we denote by β−1 the formal inverse
of β and set s(β−1) = t(β), t(β−1) = s(β), (β−1)−1 = β. For convenience, the formal inverse of an arrow will
be called an inverse arrow. A word of length n is defined by a sequence cn . . . c2c1, where ci ∈ Q1 or c−1

i ∈ Q1,
and where t(ci) = s(ci+1) for 1 ≤ i ≤ n− 1. We define

s(cn . . . c2c1) = s(c1), t(cn . . . c2c1) = t(cn), and (cn . . . c2c1)−1 = c−1
1 c−1

2 . . . c−1
n .

For every vertex v in Q, there is an empty word 1v of length 0 such that t(1v) = s(1v) = v and 1−1
v = 1v.

Suppose that a word C := cn . . . c2c1 satisfies s(C) = t(C), we define a rotation of C as a word of the form
ci . . . c1cn . . . ci+1. The product of two words is defined by placing them next to each other, provided that the
resulting sequence is a word.
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A word C is called a string provided either C = 1v for some vertex v in Q or C = cn . . . c2c1 satisfying
ci+1 6= c−1

i for 1 ≤ i ≤ n− 1, and no subword (or its inverse) of C belongs to the ideal I. We say that a string
C = cn . . . c2c1 with n ≥ 1 is directed if all ci are arrows, and C is inverse if all ci are inverse arrows. A string
C of positive length is called a band if all powers of C are strings and C is not a power of a string of smaller
length.

On the set of words, we consider two equivalence relations. Firstly, ∼ denotes the relation which identifies C
and C−1; and secondly, we define ∼A to be the equivalence relation which identifies each word with its rotations
and their inverses. Let St(A) (or simply St) be a set of representatives of strings in A under ∼, and let Ba(A)
(or simply Ba) be the set of representatives of bands under ∼A. In the following, we call a subword of a string
a substring.

Example 3.2. Let A = kQ be the Kronecker algebra defined by the following quiver

1 2
-
-
α

β

Then A is a string algebra and we can choose St and Ba as follows.

St = {11, 12, α, β, αβ
−1, α−1β, βα−1β, αβ−1α, · · · },

Ba = {αβ−1} = {α−1β}.

We briefly recall the classification of indecomposable modules over a string algebra. Given a string algebra
A, for each element C in St(A), there is a unique indecomposable string A-module M(C) up to isomorphism,
and for each element b in Ba(A), there are infinitely many non-isomorphic indecomposable band A-modules
corresponding to b. Every module over a string algebra is defined either as a string module or as a band module.
For the representation type of string algebras, there is the following theorem.

Theorem 3.3. ([6, Lemma II.8.1]) A string algebra A is of finite representation type if and only if there is no
band in A.

3.2. String algebras associated with Brauer graph algebras. Since any Brauer graph algebra A = kQ/I
is special biserial, according to the description in Lemma 2.9, the associated graded algebra gr(A) = kQ/I ′ is

also special biserial. Thus we can reduce the study of A and gr(A) to some string algebras A and gr(A). The
string algebra A is defined by

A = A/
⊕
i∈L

soc(Aei), (3.1)

where

L = {i ∈ Q0|rad(Aei)/soc(Aei) = Vi,1 ⊕ Vi,2, Vi,1 6= 0, Vi,2 6= 0}.
Recall that for each i ∈ L, there is a relation ρi = pi−qi of the first type in I, where the length of pi is `(Vi,1)+1,

the length of qi is `(Vi,2) + 1. Therefore A can be described by the same quiver Q and an admissible ideal I1 in

kQ, where I1 is generated by the ideal I and new relations {pi, qi | i ∈ L}. Similarly, the string algebra gr(A)
is defined by

gr(A) = gr(A)/
⊕
i∈L′

soc(gr(A)ei), (3.2)

where

L′ = {i ∈ L|`(Vi,1) = `(Vi,2)}.
Note that for each i ∈ L′, there is a relation ρi = pi−qi in I ′ such that pi and qi have the same length. Therefore
gr(A) can be described by the same quiver Q and an admissible ideal I2 in kQ, where I2 is generated by the
ideal I ′ and new relations {pi, qi | i ∈ L′}.

By the definitions of A and gr(A), we have that A is a quotient algebra of gr(A), that is, A ∼= gr(A)/I3,
where the ideal I3 is the k-vector space with basis given by the paths in the set P (this set is defined in (2.2)).
Using notations from Subsection 2.3, we give displayed formulas of the ideals I, I ′, I1, I2, I3 in kQ:

R1 := {Relation of the first type in I}, I0 := 〈Relation of the second type or the third type in I〉;

I = I0 + 〈R1〉;
10



I ′ = I0 + 〈pi − qi ∈ R1 | i ∈ Q0, i /∈W〉+ 〈qi | i ∈W, pi − qi ∈ R1, qi is shorter than pi〉;
I1 = I0 + 〈pi, qi | i ∈ Q0, pi − qi ∈ R1〉;

I2 = I0 + 〈pi, qi | i ∈ Q0, i /∈W, pi − qi ∈ R1〉+ 〈qi | i ∈W, pi − qi ∈ R1, qi is shorter than pi〉;
I3 = 〈ri ∈ P | i ∈W, pi − qi ∈ R1〉 = k-vector space with basis {ri ∈ P | i ∈W}.

We remind the reader that the four concerned algebras have the same quiver and the following displayed
formulas:

A = kQ/I, A = kQ/I1, gr(A) = kQ/I ′, gr(A) = kQ/I2.

Now we prove some general facts concerning the strings and bands in the string algebra gr(A) = kQ/I2.

Lemma 3.4. Let gr(A) = kQ/I2. Suppose that the set P defined in (2.2) is non-empty. For any element C in

P and a word β of length 1, if βC is a string in gr(A), then β is an inverse arrow. Similarly, if Cβ is a string

in gr(A), then β is an inverse arrow. In particular, if C is an element in P, then C has no proper substring
lying in P.

Proof. Any element C in P is a power of special cycle at some vertex in Q. If β is an arrow in Q, then βC is
zero by relation of the second type or the third type, and so βC is not a string. Similarly, if β is an arrow in Q,
then Cβ is zero by relation of the second type or the third type, and so Cβ is not a string. �

Lemma 3.5. If C is a string in gr(A) and C is not a string in A, then C or C−1 has a substring lying in P.

Proof. Since A ∼= gr(A)/I3, where the ideal I3 is the k-vector space with basis given by the elements in P, we
have that the string C or its inverse C−1 has a substring lying in P. �

3.3. The case when A is a Brauer tree algebra. In this subsection we assume that A = kQ/I is a Brauer
tree algebra associated with a Brauer tree G. Under this assumption A is of finite representation type, so is the
string algebra A = kQ/I1, in particular, there is no band in A.

Lemma 3.6. Let gr(A) = kQ/I2 be defined in (3.2) such that A = kQ/I is a Brauer tree algebra and P defined

in (2.2). If there is a band b in gr(A), then b has a substring lying in P (possibly after rotation or taking inverse
of b).

Proof. First note that a band b contains both arrow and inverse arrow. We can assume that b is a string in A;
otherwise, the claim follows from Lemma 3.5.

Since A = kQ/I1 is representation-finite, there exists some integer m ≥ 2 chosen to be minimal such that bm

or its inverse has a substring lying in I1, and this substring is not in I2 since bm is a string in gr(A) = kQ/I2.
By Lemma 3.5, without loss of generality we may assume that this substring is an element of P. We denote this
element by e. If m ≥ 3, by the minimality of m, then e has a substring b or b−1, this contradicts the fact that
b contains both arrow and inverse arrow. Thus we have m = 2 and e is a substring of b2 or of its inverse. Since
e is a directed string, it follows that e is a substring of b (possibly after rotation or taking inverse of b). �

A concrete example of a band in gr(A) which is also a string in A is given by α1α0
−1α3α2 in Example 2.11 (2),

where the rotation of α1α0
−1α3α2 has a substring α3α2α1 ∈ P. Clearly the existence of such a string implies

that gr(A) is representation-infinite (although A is representation-finite).

Note that since A = kQ/I is a Brauer tree algebra, the quiver Q consists of simple cycles such that any two
simple cycles in Q meet in at most one vertex and every vertex in Q belongs to two simple cycles at most, so
any path βα is a relation of the third type where α and β belong to distinct simple cycles. It follows that if
cn . . . c2c1 is a directed string in gr(A) or in A, then all arrows ci for 1 ≤ i ≤ n are in the same simple cycle of
the quiver Q.

In the following, we define a special kind of strings in gr(A) which are closely related to walks in the Brauer
tree G. We first introduce the notion of walk.
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Definition 3.7. Let v, w be two distinct vertices in a Brauer tree G. We define a walk from v to w to be a
sequence [v1, a1, v2, a2, v3, . . . , vk−1, ak−1, vk] of vertices and edges, where v1 = v, vk = w, ai is an edge incident
to the vertices vi and vi+1 for each 1 ≤ i ≤ k− 1 and all edges are pairwise distinct. We often simply write this
walk by [a1, . . . , ak−1] and call it walk from edge a1 to edge ak−1. We define the length of a walk from v to w to
be the number of edges in this walk; it will be denoted by dG(v, w).

Lemma 3.8. Let gr(A) = kQ/I2 such that A = kQ/I is a Brauer tree algebra. For any i, j ∈ Q0 where i 6= j,

there exists a string C = cn . . . c2c1 in gr(A) with s(C) = i and t(C) = j such that all s(ck) are pairwise distinct
and t(cn) is different from s(ck) for each 1 ≤ k ≤ n.

Proof. The two vertices i and j in Q correspond to two distinct edges in the associated Brauer tree G which
we denote by ai and aj , respectively. There is a walk [ai1 , . . . , aik ] from ai to aj in G, where ai1 = ai, aik = aj ,

and all ail are pairwise distinct for 1 ≤ l ≤ k. We construct a string C in gr(A) with s(C) = i and t(C) = j
as follows. First take a directed string C1 with s(C1) = i1 and t(C1) = i2 such that C1 lies in a simple cycle,
next take an inverse string C2 with s(C2) = i2 and t(C2) = i3 such that C2

−1 lies in a simple cycle, then
take a directed string C3 with s(C3) = i3 and t(C3) = i4 such that C3 lies in a simple cycle, and so on. Put

C = Ck−1 . . . C2C1. Then C is a string in gr(A) with s(C) = i and t(C) = j and satisfies the desired properties.
Alternatively, we can construct C by first taking an inverse string, next taking a directed string, and so on. �

Definition 3.9. Let gr(A) = kQ/I2 such that A = kQ/I is a Brauer tree algebra. Let cn . . . c1 be a string in

gr(A). We say that cn . . . c1 is a simple string in gr(A) from s(c1) to t(cn) if all s(ck) are pairwise distinct and
t(cn) is different from s(ck) for each 1 ≤ k ≤ n.

Note that the proof of Lemma 3.8 shows how we get two simple strings in gr(A) from any walk (of length ≥ 2)

in G. For example, there are two simple strings from 1 to 4 in gr(A) of Example 2.11 (2), namely β2
−1α2α1

and β1α3
−1; both simple strings are constructed using the walk [1, 3, 4] from edge 1 to edge 4 in G.

Conversely, for a simple string C = cn . . . c1 in gr(A) with s(c1) = i, t(cn) = j, there is a (unique) walk in G
such that C is one of the simple strings constructed from this walk as in the proof of Lemma 3.8. If cn . . . c1
is a directed string or an inverse string, then [i, j] is the desired walk. Otherwise, there exists 1 ≤ k1 ≤ n − 1
such that ck1 . . . c1 is a directed substring (resp. an inverse substring) and ck1+1 is an inverse arrow (resp. an
arrow), where t(ck1) = i1, and we get a walk [i, i1] from the simple substring ck1 . . . c1. For the simple substring
cn . . . ck1+1, by an inductive argument we can get a walk [i1, . . . , j]. Putting them together we get the desired
walk [i, i1, . . . , j].

Lemma 3.10. Let gr(A) = kQ/I2 such that A = kQ/I is a Brauer tree algebra. If there is a string C =

cn . . . c2c1 satisfying s(C) = t(C) in gr(A), then C has a substring C1 such that s(C1) = t(C1) and that C1 or
C1
−1 is a directed string.

Proof. If C contains a proper substring C ′ with positive length such that s(C ′) = t(C ′), then it is enough to
prove the statement for C ′. Therefore, we can assume that C does not contain any proper substring C ′ with
positive length such that s(C ′) = t(C ′). We claim that under this assumption C is a directed or an inverse
string and thus the statement is obviously true. Otherwise, the string C contains both arrow and inverse arrow,
and without loss of generality we may assume that c1 is an arrow. Then C has a substring cs . . . c1 (1 ≤ s < n)
such that all ci for 1 ≤ i ≤ s are arrows and cs+1 is an inverse arrow. Since any path βα is a relation of the
third type where α and β belong to distinct simple cycles in Q, all arrows ci for 1 ≤ i ≤ s lie in the same simple
cycle of Q and the arrow c−1

s+1 lies in another simple cycle. By assumption, the string C = cn . . . c2c1 contains
some substring cn . . . ct (s+ 1 < t ≤ n) satisfying the following conditions:

(1) cn . . . ct (or its inverse) is a directed string and all ci for t ≤ i ≤ n (or all ci
−1 for t ≤ i ≤ n) lie in the

same simple cycle of Q;

(2) The two substrings cs . . . c1 and cn . . . ct do not intersect except at s(C) = t(C), which is the start of
cs . . . c1 and the end of cn . . . ct.

The existence of such a string C will produce an undirected cycle in the associated Brauer tree G, which is
clearly wrong. �
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Lemma 3.11. Let gr(A) = kQ/I2 such that A = kQ/I is a Brauer tree algebra, and let C = cn . . . c2c1 be a

string in gr(A). If C has no substring C1 such that s(C1) = t(C1) and that C1 or C1
−1 is directed, then all

s(ck) are pairwise distinct and t(cn) is different from s(ck) for each 1 ≤ k ≤ n, that is, C is a simple string.

Proof. Suppose that s(ck) = s(cl) for some 1 ≤ k < l ≤ n. Then C contains a substring C ′ := cl−1 . . . ck such
that s(C ′) = t(C ′). By Lemma 3.10, C ′ contains a substring C1 such that s(C1) = t(C1) and that C1 or C1

−1

is directed, which is a contradiction to our assumption. It follows similarly as above that t(cn) is different from
s(ck) for all k. �

4. Finite representation type

In this section, we continue to use the notations in last section: A = kQ/I is a Brauer graph algebra
associated with a Brauer graph G and gr(A) = kQ/I ′ is the associated graded algebra. The related string

algebras A = kQ/I1 and gr(A) = kQ/I2 are defined in (3.1) and (3.2), respectively. We will freely use the
notation for the sets W and P as defined in (2.1) and (2.2), respectively. For a Brauer tree G, we denote the
exceptional vertex by v0 and its multiplicity by m0.

Our aim in this section is to determine when gr(A) is representation-finite. This is equivalent to determine

when gr(A) is representation-finite. If there is no unbalanced edge in G, then by Proposition 2.13, gr(A) is
isomorphic to A, and so gr(A) is representation-finite if and only if A is a Brauer tree algebra if and only if G
is a Brauer tree. From now on we assume that G contains some unbalanced edges.

Lemma 4.1. Let gr(A) = kQ/I2. Suppose that v1
i v2 is an edge in the associated Brauer graph G such

that Cv1(α1) and Cv2(α2) are the special i-cycles at v1 and v2, respectively. If Cv1(α1)
m(v1)

is a string in gr(A)

(that is, Cv1(α1)
m(v1)

is not in the ideal I2), then grd(v1) > grd(v2).

Proof. By Lemma 2.9, our assumption shows that the indecomposable projective gr(A)-module Qi satisfies the
following conditions: rad(Qi) = U1⊕U2, U1 6= 0, U2 6= 0, `(U1) > `(U2)+1, `(U1) = grd(v1), `(U2) = grd(v2)−1.
Therefore grd(v1) > grd(v2). �

Now let G be a Brauer tree. Recall from Definition 2.12 that for an unbalanced edge vS
i vL in G, we

can write the subgraph of G by removing the edge i as follows: G \ i = Gi,L
⋃
Gi,S ; V (Gi,L) (resp. V (Gi,S))

denotes the set of vertices in Gi,L (resp. Gi,S). Recall also from Definition 3.7 that for two distinct vertices
v, w in G, the length of the walk from v to w is denoted by dG(v, w).

Lemma 4.2. Suppose that G is a Brauer tree with an exceptional vertex v0 and satisfies the following condition:

for any unbalanced edge vS
i vL, the set V (Gi,S) does not contain the exceptional vertex v0. Then, for any

unbalanced edge vS
i vL and for any adjacent vertices v and w in V (Gi,S) satisfying dG(v, vS)+1 = dG(w, vS),

we have grd(v) ≥ grd(w).

Proof. Suppose that there is an unbalanced edge vS
i vL and that there are two adjacent vertices v and w

in V (Gi,S) satisfying the following conditions: dG(v, vS) + 1 = dG(w, vS) and grd(v) < grd(w). We denote by j
the edge incident to the vertices v and w, it is obvious that j 6= i. Then, by the assumption, j is an unbalanced
edge and V (Gj,S) does not contain the exceptional vertex v0. Moreover, we observe that V (Gj,L) is a subset of
V (Gi,S) and therefore V (Gj,L) also does not contain the exceptional vertex v0. This contradicts the fact that
the subgraph G \ j is a union of Gj,S and Gj,L. �

We associate some properties of Brauer tree G with strings in gr(A) in the following two lemmas.

Lemma 4.3. Let G be a Brauer tree and gr(A) = kQ/I2. Suppose that C = cn . . . cl . . . c1 is a string in gr(A)
satisfying l < n and that cl . . . c1 or c−1

1 . . . c−1
l is an element of P, where s(c1) = t(cl) = t(cn) = i. We denote

by vS
i vL the corresponding unbalanced edge in G. Then at least one of the following holds.

(1) The set V (Gi,S) contains the exceptional vertex v0 with m0 greater than 1.
(2) There are some adjacent vertices v, w in V (Gi,S), such that dG(v, vS)+1 = dG(w, vS) and grd(v) < grd(w).
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Proof. Without loss of generality, we may assume that c−1
1 . . . c−1

l is an element in P. By Lemma 3.4, cl+1 is an
arrow in Q.

If n = l + 1, then cl+1 is a loop in Q and vS is the exceptional vertex v0 with m0 greater than 1.

If n > l+ 1, without loss of generality, we may assume that t(ck) 6= i for each l+ 1 ≤ k ≤ n− 1 and t(cn) = i.
Then t(ck) is a vertex in Q corresponding to an edge in Gi,S for l + 1 ≤ k ≤ n− 1.

For the string cn . . . cl+1, since t(cn) = s(cl+1), by Lemma 3.10, cn . . . cl+1 or c−1
l+1 . . . c

−1
n has a directed

substring cn1
. . . cl1 satisfying s(cl1) = t(cn1

) such that cn1−1 . . . cl+1 or c−1
l+1 . . . c

−1
n1−1 has no directed substring

whose source and target are the same. There are two cases to be considered.

Case 1. If l1 = l + 1, then vS is the exceptional vertex v0 with m0 greater than 1.

Case 2. If l1 > l + 1, for the string cl1−1 . . . cl+1, by Lemma 3.11, all s(ck) are pairwise distinct and t(cl1−1)
is different from s(ck) for l+ 1 ≤ k ≤ l1 − 1 and j := s(cl1) 6= i. In particular, cl1−1 . . . cl+1 is a simple string in

gr(A) which gives rise to a walk from i to j in G. We denote by v j w the edge in Gi,S corresponding to j,
where dG(v, vS) + 1 = dG(w, vS). The above discussion shows that the special j-cycle Cw at w in G does not
lie in the ideal I2. Then w is the exceptional vertex v0 with m0 greater than 1 or grd(v) < grd(w) by Lemma
4.1. �

Lemma 4.4. Let G be a Brauer tree and gr(A) = kQ/I2. Suppose that G satisfies the following condition:

when m0 > 1, there is an unbalanced edge vS
i vL such that V (Gi,S) contains the exceptional vertex v0;

when m0 = 1, there is an unbalanced edge vS
i vL and some adjacent vertices v, w in V (Gi,S), such that

dG(v, vS) + 1 = dG(w, vS) and grd(v) < grd(w).

Then there is a band in gr(A).

Proof. In either case, we have an unbalanced edge vS
i vL with s := grd(vS) and t := grd(vL). Then we

have that the vertex i in Q is the intersection of two simple cycles. We consider the two cases separately.

The first case. m0 > 1, and V (Gi,S) contains the exceptional vertex v0.

If v0 = vS , then s = m0s1, where s1 = val(vS). Therefore Q contains the following subquiver:

·
αs1 ��

·
α′2

��. . .

11

i

α′1

22

α1

rr

. . .

qq·
α2

UU

·
α′t

SS

.

We have that α−1
1 . . . α−1

s1 α
′
t . . . α

′
1 is a band in gr(A).

If v0 6= vS , then Q contains the following subquiver

·
αs
��

·
α′2

��. . .

11

i

α′1

22

α1

rr

. . .

qq·
α2

UU

·
α′t

SS

and Gi,S contains some edge v j w with w = v0 and dG(v, vS)+1 = dG(w, vS). Then Q contains the following
subquiver

·
γs2 ��

·
γ′2

��. . .

22

j

γ′1

22

γ1

rr

. . .

rr·
γ2

TT

·

γ′
t′2

TT

,
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where grd(v) = s2, grd(v0) = m0t
′
2, t
′
2 = val(v0), and γ′t′2

. . . γ′1 is not in I2.

By Lemma 3.8, there exists a simple string ck1 . . . c1 satisfying c1 = α−1
s and t(ck1) = j. Note that the arrows

γ′1, . . . , γ
′
t′2

and their inverse arrows do not belong to the simple string ck1 . . . c1, and ck1 . . . c1α
′
t . . . α

′
1 is a string.

(i) If ck1 is an inverse arrow (in other words, ck1 = γ−1
1 ), then γ′t′2

. . . γ′1ck1 . . . c1α
′
t . . . α

′
1 is also a string. By

Lemma 3.8, there exists a simple string c′k2 . . . c
′
1 satisfying c′1 = γ−1

s2 and t(c′k2) = i. Then

b := c′k2 . . . c
′
1γ
′
t′2
. . . γ′1ck1 . . . c1α

′
t . . . α

′
1

is a band with source i in gr(A).

(ii) If ck1 is an arrow (in other words, ck1 = γs2), then γ′1
−1
. . . γ′t′2

−1
ck1 . . . c1α

′
t . . . α

′
1 is also a string. In this

situation we can similarly get a band in gr(A) as in (i).

The second case. m0 = 1, and there are two adjacent vertices v and w in V (Gi,S) satisfying the following
conditions: dG(v, vS) + 1 = dG(w, vS) and grd(v) < grd(w). Denote by j the edge in G incident to the vertices
v and w and note that j 6= i. Then Q contains the following subquiver

·
β′t1 ��

·
β2

��. . .

22

j

β1

33

β′1

ss

. . .

rr·

β′2

TT

·

βs1

TT . . . . . .

·
αs

��

·
α′2

��. . .

22

i

α′1

33

α1

ss

. . .

rr·
α2

TT

·

α′t

SS

,

where s1 = grd(v), t1 = grd(w), α′t . . . α
′
1 and β′t1 . . . β

′
1 are not in I2.

By Lemma 3.8, there exists a simple string ck1 . . . c1 satisfying c1 = α−1
s and t(ck1) = j. Note that the arrows

β′1, . . . , β
′
t1 and their inverse arrows do not belong to the simple string ck1 . . . c1, and ck1 . . . c1α

′
t . . . α

′
1 is a string.

(i) If ck1 is an inverse arrow (in other words, ck1 = β−1
1 ), then β′t1 . . . β

′
1ck1 . . . c1α

′
t · · ·α′1 is also a string. By

Lemma 3.8, there exists a simple string c′k2 . . . c
′
1 satisfying c′1 = β−1

s1 and t(c′k2) = i. Then

b := c′k2 . . . c
′
1β
′
t1 . . . β

′
1ck1 . . . c1α

′
t . . . α

′
1

is a band with source i in gr(A).

(ii) If ck1 is an arrow (in other words, ck1 = βs1), then (β′1)
−1
. . . (β′t1)

−1
ck1 . . . c1 α

′
t . . . α

′
1 is also a string. In

this situation we can similarly get a band in gr(A) as in (i). �

We are now ready to give a description of the representation-finiteness for gr(A) in terms of the graded degrees.

Theorem 4.5. Let A = kQ/I be a Brauer graph algebra associated with a Brauer graph G. Assume that G
contains some unbalanced edges. Then the following three conditions are equivalent.

(a) The graded algebra gr(A) = kQ/I ′ associated with the radical filtration of A is of finite representation type.
(b) The Brauer graph G satisfies the following combinatorial conditions:

(1) G is a Brauer tree with an exceptional vertex v0 of multiplicity m0;

(2) If m0 > 1, then for any unbalanced edge vS
i vL, the set V (Gi,S) does not contain the exceptional

vertex v0;

(3) If m0 = 1, then for any unbalanced edge vS
i vL and for any adjacent vertices v, w in V (Gi,S), the

condition dG(v, vS) + 1 = dG(w, vS) implies grd(v) ≥ grd(w).
(c) The Brauer graph G satisfies the following combinatorial conditions:

(1) G is a Brauer tree with an exceptional vertex v0 of multiplicity m0;
(2) Denote by v1 the exceptional vertex v0 when m0 > 1 or one of the vertices with maximal graded degree

when m0 = 1. For any vertex vk in G, the walk [v1, a1, v2, a2, v3, . . . , vk−1, ak−1, vk] from v1 to vk
satisfies grd(v1) ≥ grd(v2) ≥ · · · ≥ grd(vk).

Proof. Since gr(A) = kQ/I ′ is representation-finite if and only if so is the associated string algebra gr(A) =

kQ/I2, we can replace gr(A) by gr(A) in our statement, and in the following proof, a string (resp. a band)
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means a string (resp. a band) in the string algebra gr(A) unless otherwise specified. By Theorem 3.3, gr(A) is

of finite representation type if and only if there is no band in gr(A).

(a) =⇒ (c) Suppose that gr(A) is of finite representation type, that is, there is no band in gr(A). Since A is a

quotient algebra of gr(A) (cf. Subsection 3.2), we know that A and A are also of finite representation type. By
Theorem 2.2, A is a Brauer tree algebra and G is a Brauer tree with an exceptional vertex v0 of multiplicity m0.
This verifies the condition (1) in (c). In order to verify the condition (2) in (c), we suppose, on the contrary
that, there exists a vertex vk in G such that the walk [v1, a1, v2, . . . , vk−1, ak−1, vk] from v1 to vk does not satisfy
grd(v1) ≥ grd(v2) ≥ · · · ≥ grd(vk), where ai is an edge incident to vertices vi and vi+1 for each 1 ≤ i ≤ k − 1.
In other words, there exists an unbalanced edge vi

ai vi+1 for some 1 ≤ i ≤ k − 1 with grd(vi) < grd(vi+1).
There are two cases to be considered.

Case 1. If m0 > 1, then v1 = v0. In this case, ai is an unbalanced edge such that V (Gai,S) contains v0.

Case 2. If m0 = 1, then v1 is one of the vertices with maximal graded degree. Observe that in this case

we may find some unbalanced edge w1
i w2 with grd(w1) < grd(w2) and some adjacent vertices w3, w4 in

V (Gi,S), such that dG(w3, w1) + 1 = dG(w4, w1) and grd(w3) < grd(w4).

In either case the condition of Lemma 4.4 is satisfied and we can construct a band in gr(A), which is clearly
a contradiction.

(c) =⇒ (b) The condition (1) in (b) clearly holds. To verify the conditions (2) and (3) in (b), We consider two
cases by contradiction.

Case 1. m0 > 1. Suppose that there is an unbalanced edge w1
a w2 with grd(w1) < grd(w2) such that v0

is in V (Ga,S). Since v1 = v0 in this case, and since there is a walk [v1, a1, v2, . . . , w1, a, w2] from v1 to w2, we
have grd(w1) ≥ grd(w2) by condition (2) in (c), which is clearly a contradiction. This verifies the condition (2)
in (b).

Case 2. m0 = 1. Suppose that there is an unbalanced edge w1
a w2 with grd(w1) < grd(w2) such that

there are adjacent vertices u and v in V (Ga,S) satisfying dG(u,w1)+1 = dG(v, w1) and grd(u) < grd(v). Denote
by a′ the edge in G incident to the vertices u and v. Let [v1, a1, v2, . . . , v] be the walk from v1 to v satisfying
grd(v1) ≥ · · · ≥ grd(v). Since grd(u) < grd(v), we must have dG(u, v1) = dG(v, v1) + 1. It follows that we have
a walk [v1, a1, v2, . . . , v, a

′, u, . . . , w1, a, w2] from v1 to w2, and therefore grd(w1) ≥ grd(w2) by condition (2) in
(c), which is again a contradiction. This verifies the condition (3) in (b).

(b) =⇒ (a) Suppose that gr(A) is of infinite representation type under the conditions (1), (2) and (3) in

(b). Then we have a band b in gr(A). By Lemma 3.6, b has a substring lying in P (possibly after rotation
or taking inverse of b). Without loss of generality we may assume that b has a substring lying in P and such

a substring is given by α′t . . . α
′
1 with s(α′1) = t(α′t) = i. Denote by v1

i v2 the corresponding edge in G,
then grd(v1) 6= grd(v2). Without loss of generality we assume grd(v1) < grd(v2), where grd(v2) = t. By the
condition (2) in (b), when m0 > 1, the vertex v1 is not the exceptional vertex v0. Thus regardless of m0 > 1 or
m0 = 1, Q contains the following subquiver

·
αs

��

·
α′2

��. . .

22

i

α′1

33

α1

ss

. . .

rr·
α2

TT

·

α′
t′

SS

,

where s = grd(v1), t′ = val(v2). Note that in this situation if v0 6= v2, then α′t . . . α
′
1 = α′t′ . . . α

′
1, and if v0 = v2,

then α′t . . . α
′
1 = (α′t′ . . . α

′
1)m0 .

Since b contains both arrow and inverse arrow, we have b 6= α′t . . . α
′
1. Up to a rotation of b, we can assume

that b = cn . . . c1α
′
t . . . α

′
1. By Lemma 3.4, c1 is an inverse arrow and c−1

1 = αs. Since t(cn) = s(α′1) = i,
by Lemma 4.3, the set V (Gi,S) contains the exceptional vertex v0 with m0 greater than 1 or there are some
adjacent vertices v3, v4 in V (Gi,S), such that dG(v3, v1) + 1 = dG(v4, v1) and grd(v3) < grd(v4). If the set
V (Gi,S) contains the exceptional vertex v0 with m0 greater than 1, we get a contradiction to the condition (2)
in (b). Otherwise, we further consider two subcases: if m0 = 1, then we get a contradiction to the condition
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(3) in (b); if m0 > 1, then by the condition (2) in (b) and Lemma 4.2 we again get a contradiction. Hence, (b)

implies that gr(A) is of finite representation type. �

We note that our main result has an immediate consequence: if G is a Brauer tree with non-trivial multiplicity,
then gr(A) being representation-finite implies that the exceptional vertex has the maximal graded degree. The
following corollary is easy to verify and we omit the proof.

Corollary 4.6. Let G be a Brauer tree with n edges. Let A be a Brauer tree algebra associated with G and
gr(A) its associated graded algebra. Then we have the following.

(1) If n = 1, then gr(A) is of finite representation type.
(2) If n = 2, then gr(A) is of finite representation type.
(3) If n = 3, then gr(A) is of infinite representation type if and only if the Brauer tree G is isomorphic to the

following tree
v1· ·

1 v2 ·v3
2

·
3

v4

where v0 = v1, m0 = 2.

Corollary 4.7. For any pair (n,m) of positive integers with n ≥ 4 and m ≥ 2, there is a Brauer tree such that
the associated graded algebra is of infinite representation type.

Proof. Let G be the following Brauer tree
v1· ·

1 v2 · . . . . . . · ·
n− 1 vnv3

2

·
n

vn+1

where v0 = vn and m0 = m. Let A be the Brauer tree algebra associated with G. If m0 ≥ 2, then the walk
[vn, n− 1, vn−1, . . . , v3, 2, v2] from vn to v2 satisfies grd(v3) < grd(v2), where grd(v3) = 2 and grd(v2) = 3. By
Theorem 4.5, the associated graded algebra gr(A) is of infinite representation type for any m0 ≥ 2. �

5. The Auslander-Reiten quivers

In this section, we assume that A = kQ/I is a Brauer tree algebra associated with a Brauer tree G and

that gr(A) is its associated graded algebra. Let A = kQ/I1 and gr(A) = kQ/I2 be defined in (3.1) and (3.2),

respectively. Throughout this section we assume that gr(A) is of finite representation type. The main result of
this section is Theorem 5.13, which describes the relationship between the AR-quiver of A and the AR-quiver
of gr(A).

According to the descriptions of string algebras A and gr(A) in Subsection 3.2, we have A ∼= gr(A)/I3, where
the ideal I3 is the k-vector space with basis given by the paths in the set P (see Equation (2.2)). If P is empty,

then by Proposition 2.13, A ∼= gr(A) and A ∼= gr(A). Therefore A and gr(A) have the isomorphic AR-quiver.
Throughout this section, we assume that P is not empty.

5.1. The indecomposable gr(A)-modules. In this subsection, we count the number of non-isomorphic in-

decomposable gr(A)-modules. The string algebra gr(A) is of finite representation type and there is a bijection

between the isoclasses of indecomposable gr(A)-modules and the strings in St(gr(A)) (cf. [6, Section II.3]), so

we can just count the strings in St(gr(A)). For any string C in gr(A), we denote by M(C) the indecomposable

gr(A)-module corresponding to the string C. For a detailed explanation of M(C), we refer the reader to [3,

p.160]. Note that C and C−1 define the same indecomposable gr(A)-module.

For any string C in gr(A) that is not a string in A, we have the following lemma. For the notion of unbalanced
edge, we refer to Definition 2.12.
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Lemma 5.1. Let gr(A) = kQ/I2. Suppose that C = cn . . . cl . . . c1 is a string in gr(A) satisfying l < n and

that cl . . . c1 or c−1
1 . . . c−1

l is an element of P, where s(c1) = t(cl) = i. Denote by vS
i vL the corresponding

unbalanced edge in G. Then cn . . . cl+1 is a simple substring of C such that t(ck) is in Gi,S for each l+1 ≤ k ≤ n.

Proof. To show that t(ck) is in Gi,S for l+ 1 ≤ k ≤ n, it is equivalent to prove that t(ck) 6= i for l+ 1 ≤ k ≤ n.
Suppose on the contrary that there exists l+1 ≤ m ≤ n such that t(cm) = i and t(ck) 6= i for l+1 ≤ k ≤ m−1.
For the substring cm . . . cl . . . c1, by Lemma 4.3, the set V (Gi,S) contains the exceptional vertex v0 with m0

greater than 1, or there are some adjacent vertices v, w in V (Gi,S), such that dG(v, vS) + 1 = dG(w, vS) and
grd(v) < grd(w). If the set V (Gi,S) contains the exceptional vertex v0 with m0 greater than 1, we get a
contradiction to the condition (2) in Theorem 4.5 (b). Otherwise, we further consider two subcases: if m0 = 1,
then we get a contradiction to the condition (3) in Theorem 4.5 (b); if m0 > 1, then by the condition (2) in
Theorem 4.5 (b) and Lemma 4.2 we again get a contradiction.

It remains to show that cn . . . cl+1 is a simple string. It suffices to show that all t(ck) are pairwise distinct for
l ≤ k ≤ n. Suppose that there exist k and t satisfying l ≤ t < k ≤ n such that t(ck) = t(ct) = s(ct+1) and that
t(cm) is different from t(cs) for each l ≤ m < k and l ≤ s < m. Repeating the similar proof as in the proof
of Lemma 4.3, we get that the set V (Gi,S) contains the exceptional vertex v0 with m0 greater than 1 or there
are some adjacent vertices v, w in V (Gi,S), such that dG(v, vS) + 1 = dG(w, vS) and grd(v) < grd(w). Again
repeating the proof in the previous paragraph, we get a contradiction. �

Lemma 5.2. If C is a string in gr(A), then C or C−1 has at most one substring lying in P.

Proof. Let C be a string in gr(A). By Lemma 3.5, either C is a string in A or C has a substring lying in P up to
inverting C. Without loss of generality, we may assume that the string C has the form cn . . . cl . . . c1c0 . . . c−m
such that l < n, 0 ≤ m and that cl . . . c1 is an element of P. By Lemma 3.4 and Lemma 5.1, cn . . . cl+1 is a
simple substring of C such that cl+1 is an inverse arrow. Similarly, by Lemma 3.4 and a dual result of Lemma
5.1, c0 . . . c−m is a simple string such that c0 is an inverse arrow. Now our conclusion follows from the following
general fact: P consists of pairwise distinct cycles (in the corresponding quiver Q) and every cycle in P is not a
substring of any other cycle in P. �

Remark 5.3. Combining Lemma 5.2 and Lemma 3.6 we can get a necessary and sufficient condition for gr(A)

to be representation-finite in case that G is a Brauer tree: for any string C in gr(A), there is at most one
subword of C whose underlying path is in P. Note that for general Brauer graph G, the above condition is not
sufficient for the representation-finiteness of gr(A); for example, if A is a representation-infinite Brauer graph

algebra and isomorphic to gr(A), then gr(A) clearly satisfies the above condition since P is empty.

In the following, we identify the set of unbalanced edges in G with the set W (see Definition 2.12). For an

unbalanced edge vS
i vL in G, we define

ni = the number of edges in Gi,S . (5.1)

Proposition 5.4. The number of strings C in St(gr(A)) that are not strings in A is
∑
i∈W

(ni + 1)2.

Proof. By Lemma 3.5 and Lemma 5.2, such a string C or C−1 has exactly one substring lying in P. Since
C = C−1 in St, without loss of generality, we may assume that C has a substring cl . . . c1 lying in P. Suppose

that s(cl . . . c1) = i, and we denote by vS
i vL the corresponding unbalanced edge in G. Note that cl . . . c1

is a string in gr(A) and is not a string in A. We count the number of strings C having the substring cl . . . c1.
There are four cases to be considered.

Case 1. C = cl . . . c1.

Case 2. C has the form cn . . . cl+1cl . . . c1, where cl+1 is an inverse arrow. The number of strings C of this
form is ni − 1. In fact, by Lemma 5.1, the substring cn . . . cl+1 of C is a simple string starting at i and is
uniquely determined by its ending vertex in Q, or equivalently, is uniquely determined by an edge in Gi,S . So
the number of strings C of the form cn . . . cl . . . c1 is ni.
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Case 3. C has the form cl . . . c1c0 . . . c−n, where c0 is an inverse arrow. By a similar result as Lemma 5.1, the
substring c0 . . . c−n of C is a simple string ending at i and is uniquely determined by its starting vertex in Q,
or equivalently, is uniquely determined by an edge in Gi,S . Therefore the number of strings C of this form is
again ni.

Case 4. C has the form cn . . . cl+1cl . . . c1c0 . . . c−m, where both c0 and cl+1 are inverse arrows. By a similar
consideration, we know that the number of strings C of this form is (ni)

2.

Hence the number of strings having the substring cl . . . c1 is (ni)
2 + 2(ni) + 1 = (ni + 1)2. �

Since each indecomposable gr(A)-module either can be identified as an indecomposable A-module or is of the

form M(C), where M(C) is an indecomposable gr(A)-module corresponding to a string C in St(gr(A)) which
is not a string in A, we have the following direct consequence.

Corollary 5.5. The number of non-isomorphic indecomposable gr(A)-modules is NA+
∑
i∈W

(ni+ 1)2, where NA

is the number of non-isomorphic indecomposable A-modules, and ni is defined in (5.1).

By [1, Section X.3], we have that the Brauer tree algebra A is stably equivalent to a symmetric Nakayama
algebra Anm0

n , where n is the number of edges in Brauer tree G, m0 is the multiplicity of the exceptional vertex
v0 in Brauer tree G and nm0 + 1 is the Loewy length of regular Anm0

n -module. It follows from the stable
equivalence that the number of non-isomorphic indecomposable A-modules is (nm0 + 1)n, and by the definition
of A, the number of non-isomorphic indecomposable A-modules is (nm0 + 1)n−n+m, where m is the number
of non-isomorphic indecomposable uniserial projective A-modules. So we have the following result.

Corollary 5.6. The number of non-isomorphic indecomposable gr(A)-modules is n2m0 + m +
∑
i∈W

(ni + 1)2,

where n is the number of edges in the Brauer tree G, and m is the number of non-isomorphic indecomposable
uniserial projective A-modules, and ni is defined in (5.1).

5.2. The AR-quiver of gr(A). In this subsection, we study the AR-quiver of gr(A). For general Auslander-
Reiten theory we refer the reader to [1]. The irreducible maps and the AR-sequences over a string algebra are
described in [3], and there is a brief introduction to the results in [6]. We denote by τ the AR-translation. Let
us first recall from [6, Section II.5] some definitions and notations about strings, which are used to determine
irreducible maps between indecomposable modules over a string algebra.

We say that a string C starts on a peak (resp. starts in a deep) provided there is no arrow β such that Cβ
(resp. Cβ−1) is a string. Dually, a string C ends on a peak (resp. ends in a deep) provided there is no arrow β
such that β−1C (resp. βC) is a string.

Let C be a string, if string C, not starting on a peak (resp. not ending on a peak), say Cβ (resp. β−1C) is a
string for some arrow β, then there is a unique (if exists) directed string D such that CβD−1 (resp. Dβ−1C)
is a string starting in a deep (resp. ending in a deep). When D is either a directed string or 1s(β), we denote

CβD−1 (resp. Dβ−1C) by Ch (resp. by hC). If string C, not starting in a deep (resp. not ending in a deep),
say Cβ−1 (resp. βC) is a string for some arrow β, then there is a unique (if exists) directed string D such that
Cβ−1D (resp. D−1βC) is a string starting on a peak (resp. ending on a peak). When D is either a directed
string or 1t(β), we denote Cβ−1D (resp. D−1βC) by Cc (resp. by cC).

Proposition 5.7. ([6, Section II.5, II.6]) The canonical embeddings M(C) −→ M(Ch), M(C) −→ M(hC),
and the canonical projections M(Cc) −→ M(C), M(cC) −→ M(C) are irreducible maps. All irreducible maps
ending at string modules are of these forms.

Lemma 5.8. Let M be the set of all isoclasses of indecomposable gr(A)-module. For an unbalanced edge

vS
i vL in G, let ri ∈ P. Then∑

N∈M

dimkIrr(N,M(ri)) = 1,
∑
N∈M

dimkIrr(M(ri), N) = 1,

where M(ri) is the indecomposable gr(A)-module corresponding to the string ri, Irr(N,M(ri)) and Irr(M(ri), N)
are the k-vector spaces of irreducible morphisms from N and to N respectively.
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Proof. For an unbalanced edge vS
i vL in G with s := grd(vS) and t := grd(vL), the quiver Q contains the

following subquiver
is−1

αs

��

·
α′2

��. . .

44

i

α′1

33

α1

ss

. . .

ssi1

α2

WW

·

α′
t′

SS

,

where t = t′ when v0 6= vL and t = t′m0 when v0 = vL. By the definition of ri, we have ri = (α′t′ . . . α
′
1)m, where

m = 1 when v0 6= vL and m = m0 when v0 = vL. Then M(ri) ∼= gr(A)ei/gr(A)α1, where ei is the primitive
idempotent corresponding to i. By [6, II.6.2], there exists an AR-sequence

0 −→M(D) −→M(riα
−1
1 D) −→M(ri) −→ 0,

where D is a string such that riα
−1
1 D = (ri)c. Therefore

∑
N∈M

dimkIrr(N,M(ri)) = 1.

When the vertex is−1 in Q belongs to two simple cycles in Q (resp. is−1 belongs to one simple cycle in Q),

there exists a directed string D (resp. a string D of length 0) such that M(D) ∼= gr(A)eis−1
/gr(A)αs, where

eis−1
is the primitive idempotent corresponding to is−1. Again by [6, II.6.2], there exists an AR-sequence

0 −→M(ri) −→M(Dα−1
s ri) −→M(D) −→ 0.

Therefore
∑

N∈M

dimkIrr(M(ri), N) = 1. �

Let Λ be a string algebra and ΓΛ the AR-quiver of Λ. We define a diamond of length n in ΓΛ to be a connected
subquiver of the following form

M0,n

''
M0,n−1

&&

88

M1,n

. . .

M0,1

. .
.

%%

M1,n−1

. . .

77

Mn−1,n

%%
M0,0

$$

::

M1,1

. . .

. .
.

Mn−1,n−1

77

''

Mn,n

M1,0

99

. . .

Mn−1,1

''

. .
.

Mn,n−1

99

Mn−1,0

&&

88

Mn,1

. .
.

Mn,0

77

,

oo oo

oo

oo

where the dashed arrows indicate the AR-translations, n ≥ 1, all modules in the subquiver are pairwise non-
isomorphic, and there exists the following AR-sequence for each pair (p, q) satisfying 0 ≤ p, q ≤ n− 1:

0 −→Mp,q −→Mp,q+1 ⊕Mp+1,q −→Mp+1,q+1 −→ 0.

We remark that according to the terminology in [11, Section XVIII.2.13], a diamond in ΓΛ is a mesh-closed
subquiver. It would be interesting to know whether the full subcategory of Λ-mod consisting of all modules in
a diamond has some good categorical properties.

Lemma 5.9. Let ri ∈ P. If C is a simple string in gr(A) such that riC is a string in gr(A), then there are an
irreducible map M(riC) −→M(riC

′) and an AR-sequence as follows:

0 −→M(riC) −→M(h(riC))⊕M(riC
′) −→M(h(riC

′)) −→ 0,

where C ′ is either a simple string in gr(A) or 1i. In particular, we have τ(M(h(riC
′))) = M(riC).

20



Proof. For an unbalanced edge vS
i vL in G with s := grd(vS) < grd(vL) =: t, the quiver Q contains the

following subquiver

is−1

αs

��

·
α′2

��. . .

44

i

α′1

33

α1

ss

. . .

ssi1

α2

WW

·

α′
t′

SS

,

where t = t′ when v0 6= vL and t = t′m0 when v0 = vL. Note that αs . . . α1 is in the ideal I2. By the definition
of ri, we have ri = (α′t′ . . . α

′
1)m, where m = 1 when v0 6= vL and m = m0 when v0 = vL.

Since C is a simple string in gr(A) such that riC is a string in gr(A), by Lemma 3.4, C = α−1
1 c1, where c1 is

either a simple string in gr(A) or 1i1 . Note that the string riC does not end on a peak. There are two cases as
follows.

If riC does not start on a peak, by [6, II.6.2], then there is the following AR-sequence:

0 −→M(riC) −→M(h(riC))⊕M(riC
′) −→M(h(riC

′)) −→ 0,

where C ′ = Ch is a simple string in gr(A).

If riC starts on a peak, by [6, II.6.2], then there is the following AR-sequence:

0 −→M(riC) −→M(h(riC))⊕M(riC
′) −→M(h(riC

′)) −→ 0,

where (C ′)c = C. In this case C ′ is either a simple string in gr(A) or 1i.

In both cases, we have an AR-sequence of the form 0→M(riC)→M(h(riC))⊕M(riC
′)→M(h(riC

′))→ 0,

where C ′ is either a simple string in gr(A) or 1i. �

Proposition 5.10. Let ni be defined in (5.1) and ri ∈ P. Then the indecomposable gr(A)-modules corresponding

to the strings having the substring ri form the following diamond Di of length ni in the AR-quiver of gr(A):

M(D0,ni)

((
M(D0,ni−1)

''

77

M(D1,n)

. . .

M(D0,1)

. .
.

''

M(D1,ni−1)

. . .

66

M(Dni−1,n)

''
M(D0,0)

&&

99

M(D1,1)

. . .

. .
.

M(Dni−1,ni−1)

66

((

M(Dni,ni)

M(D1,0)

77

. . .

M(Dni−1,1)

((

. .
.

M(Dni,ni−1)

77

M(Dni−1,0)

''

77

M(Dni,1)

. .
.

M(Dni,0)

66

,

oo oo

oo

oo

where M(Dp,q) is a string module corresponding to some properly defined string dqricp for 0 ≤ p, q ≤ ni, and
cni = d0 = 1i. In particular, M(D0,0) (resp. M(Dni,ni)) is the projective cover (resp. injective hull) of the

simple gr(A)-module Si, M(Dni,0) = M(ri), and M(D0,ni) = M(dniric0).
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Proof. Recall that gr(A) = kQ/I2. For an unbalanced edge vS
i vL in G with s := grd(vS) < grd(vL) =: t,

the quiver Q contains the following subquiver

is−1

αs

��

·
α′2

��. . .

44

i

α′1

33

α1

ss

. . .

ssi1

α2

WW

·

α′
t′

SS

,

where t = t′ when v0 6= vL and t = t′m0 when v0 = vL. Note that αs . . . α1 is in the ideal I2. By the definition
of ri, we have ri = (α′t′ . . . α

′
1)m, where m = 1 when v0 6= vL and m = m0 when v0 = vL. By Proposition 5.4,

there are (ni + 1)2 indecomposable gr(A)-modules corresponding to the strings having the substring ri. We are

going to show that these modules form a diamond of length ni in the AR-quiver Γ of gr(A). The proof will be
divided into several steps. First we recall that a path x0 → x1 → · · · → xn in Γ is said to be sectional provided
xi−1 6= τ(xi+1) for all 1 ≤ i < n.

(1) There is a sectional path of length ni in Γ, starting at the projective module gr(A)ei and ending at M(ri),
where ei is the primitive idempotent corresponding to i. Every module on this sectional path is of the form
M(ric), where c is either 1i or a simple string ending at i and starting at a vertex in Q which corresponds to
an edge in the subgraph Gi,S of the Brauer tree G.

In fact, we have gr(A)ei ∼= M(ric0) with c0 = α−1
1 . . . α−1

s−1 =: α−1
1 c′0. By Lemma 5.9, there exist a unique

string of the form ric1, an irreducible map M(ric0) −→M(ric1) and an AR-sequence:

0 −→M(ric0) −→M(h(ric0))⊕M(ric1) −→M(h(ric1)) −→ 0,

where c1 is either 1i or a simple string ending at i. If c1 6= 1i, then we can apply Lemma 5.9 repeatedly to
get a unique path M(ric0) −→ M(ric1) −→ · · · in Γ, where every cp is either a simple string ending at i or 1i
and τ(M(h(ricp))) = M(ricp−1) for p ≥ 1. Moreover, if cp = 1i for some p, then we stop the above procedure.
We claim that all the modules appearing in the above path are pairwise distinct. Otherwise, suppose that
M(ricp) = M(ricp′) with p < p′, then by the construction of AR-sequences, we have M(ricp−1) = M(ricp′−1),
M(ricp−2) = M(ricp′−2), and so on. Without loss of generality, we may assume that M(ric0) = M(ricq) for
some q > 0. It follows that M(ricq−1) = τ(M(h(ricq))) = τ(M(h(ric0))). On the other hand, by the following
AR-sequence:

0 −→M(C) −→M(hC)⊕M(ric0) −→M(h(ric0)) −→ 0,

where Cα′1 = ri, we can see that τ(M(h(ric0))) is a string module M(C), where C contains no substring of the
form ri or r−1

i . Therefore, M(ricq−1) = τ(M(h(ric0))) is a contradiction.

Since τ(M(h(ricp))) = M(ricp−1) for p ≥ 1, the path M(ric0) −→M(ric1) −→ · · · is sectional in Γ. Moreover,

since gr(A) is representation-finite, the above path must have finite length and end at M(ri). We claim that
every module of the form M(ric) appears in the above sectional path and therefore this path is of length ni,
where c is either 1i or a simple string ending at i.

Otherwise, suppose that M(ric) does not appear in the above path, then we can use Lemma 5.9 to get
a unique sectional path from M(ric) to M(ri) such that every module in this path is of the form M(ric

′).
By the uniqueness, we know that M(ric) must appear in the path M(ric0) −→ M(ric1) −→ · · · , which is a
contradiction. Hence we get a sectional path

(0S) M(ric0) −→M(ric1) −→ · · · −→M(ricni
)

in Γ, where c0 = α−1
1 . . . α−1

s−1, cni = 1i, cq = α−1
1 c′q is a simple string ending at i and c′q is a simple string or 1i1

for each 0 ≤ q ≤ ni− 1. We rename the modules along the sectional path by M(D0,0),M(D1,0), · · · ,M(Dni,0),
respectively. Note that if we denote 1i by d0, then every string Dp,0 has the form d0ricp for 0 ≤ p ≤ ni.

(2) As a consequence of (1), for every module M(Dp,0) = M(ricp), where 0 ≤ p ≤ ni−1, we have the following
AR-sequence:

0 −→M(ricp) −→M(h(ricp))⊕M(ricp+1) −→M(h(ricp+1)) −→ 0,
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where the string h(ricp) has the form d1ricp for 0 ≤ p ≤ ni and d1 is a simple string starting at i. Therefore we
also have a sectional path of length ni in Γ as follows:

(1S) M(d1ric0) −→M(d1ric1) −→ · · · −→M(d1ricni
),

where c0, · · · , cni and d1 are defined as in (1). We rename the modules along this sectional path by M(D0,1),
M(D1,1), · · · , M(Dni,1), respectively. Note that for every pair (p, 0), where 0 ≤ p ≤ ni − 1, there exists the
following AR-sequence:

0 −→M(Dp,0) −→M(Dp+1,0)⊕M(Dp,1) −→M(Dp+1,1) −→ 0.

(3) By similar arguments as in (1) and (2), for every q ≥ 0, as long as dq 6= α−1
2 . . . α−1

s , we can construct a
sectional path of length ni in Γ as follows:

(q+1S) M(dq+1ric0) −→M(dq+1ric1) −→ · · · −→M(dq+1ricni
),

where c0, · · · , cni are defined as in (1) and dq+1 is a simple string starting at i. We rename the modules along
the sectional path (q+1S) by M(D0,q+1), M(D1,q+1), · · · , M(Dni,q+1), respectively. Note that for every pair
(p, q), where 0 ≤ p, q ≤ ni − 1, there exists the following AR-sequence:

0 −→M(Dp,q) −→M(Dp+1,q)⊕M(Dp,q+1) −→M(Dp+1,q+1) −→ 0.

(4) We claim that the sequence d0, d1, · · · is a finite sequence and stops at dni
= α−1

2 . . . α−1
s . Indeed, if we

start with the module M(ri) = M(d0ri) and use the same method as in (1), we can construct a sectional path
of length ni in Γ:

M(d0ri) −→M(d1ri) −→ · · · −→M(dni
ri).

Note that M(dni
ri) is the injective module corresponding to i, and that every string dq has the form d′qα

−1
s

with d′q a simple string or 1is−1
for each 0 < q ≤ ni. Moreover, for each 0 < q < ni, there exists the following

AR-sequence:

0 −→M(Dni,q) −→M(Dni,q+1)⊕M(d′q) −→M(d′q+1) −→ 0.

(5) Summarizing the above discussion, we know that M(Dp,q) are exactly the modules corresponding to the
strings having the substring ri for 0 ≤ p, q ≤ ni and they form a diamond of length ni in Γ, which we denote
by Di. �

Definition 5.11. Let i be an unbalanced edge and ri ∈ P. We call the diamond Di described in Proposition
5.10 is the diamond associated with i. Note that the indecomposable gr(A)-modules M(Dp,q) (0 ≤ p, q ≤ ni) in
Di correspond precisely to the strings having the substring ri.

Proposition 5.10 together with Corollary 5.5 implies that the indecomposable gr(A)-modules that do not

belong to the union of all diamonds Di in the AR-quiver of gr(A) can be identified as indecomposable A-

modules. In order to describe the relationship between the AR-quiver of gr(A) and the AR-quiver of A, we
next construct the AR-sequences around the diamond Di associated with an unbalanced edge i.

We keep all the notations in Proposition 5.10 and in its proof. When c1 6= 1i, for the string c′0 = α−1
2 . . . α−1

s−1,

since c′0 does not end on a peak and it starts on a peak if and only if D0,0 = riα
−1
1 c′0 starts on a peak. By [6,

II.6.2], there exists the following AR-sequence:

0 −→M(c′0) −→M(D0,0)⊕M(c′1) −→M(D1,0) −→ 0.

We can repeat the above discussion for M(c′0) and get the following AR-sequence for each 1 ≤ p ≤ ni − 2:

0 −→M(c′p) −→M(Dp,0)⊕M(c′p+1) −→M(Dp+1,0) −→ 0.

Moreover, by the proofs of Lemma 5.8 and Proposition 5.10, we have the following AR-sequences:

0 −→M(c′ni−1) −→M(Dni−1,0) −→M(Dni,0) −→ 0;

0 −→M(C) −→M(d′1α
−1
s C)⊕M(D0,0) −→M(D0,1) −→ 0.
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For the string d′1α
−1
s C, it does not start on a peak. It is easy to see that d′1α

−1
s C ends on a peak if and only

if d′1α
−1
s ends on a peak. Again by [6, II.6.2], we have the following AR-sequence:

0 −→M(d′1α
−1
s C) −→M(D0,1)⊕M(d′2α

−1
s C) −→M(D0,2) −→ 0,

where M(D0,2) = M(d′2α
−1
s riα

−1
1 c′0) and d′2α

−1
s riα

−1
1 c′0 = (d′2α

−1
s C)h.

By the similar discussion as above, for each 2 ≤ q ≤ ni − 1, there exists the following AR-sequence:

0 −→M(d′qα
−1
s C) −→M(D0,q)⊕M(d′q+1α

−1
s C) −→M(D0,q+1) −→ 0,

where M(D0,q+1) = M(d′q+1α
−1
s riα

−1
1 c′0) and d′q+1α

−1
s riα

−1
1 c′0 = (d′q+1α

−1
s C)h.

For the string C, we define a string e such that C = α′t′e. Consider the string α−1
2 . . . α−1

s C = d′ni
α−1
s C, we

have that it ends on a peak and it does not start on a peak. Note that α−1
2 . . . α−1

s C = α−1
2 . . . α−1

s α′t′e = c(e)
and (d′ni

α−1
s C)h = D0,ni . Then there exists an AR-sequence as follows:

0 −→M(d′ni
α−1
s C) −→M(D0,ni

)⊕M(e) −→M(eh) −→ 0,

where eh = eα′1α
−1
1 . . . α−1

s−1 = eα′1α
−1
1 c′0 and c′0 = α−1

2 . . . α−1
s−1 = d′ni

.

For the string D0,ni
= d′ni

α−1
s riα

−1
1 c′0, we have that it starts on a peak if and only if α−1

1 c′0 starts on a peak.

Note that the string D0,ni ends on a peak and d′ni
α−1
s riα

−1
1 c′0 = c(eα

′
1α
−1
1 c′0). By [6, II.6.2], there exists an

AR-sequence as follows:

0 −→M(D0,ni
) −→M(D1,ni

)⊕M(eα′1α
−1
1 c′0) −→M(eα′1α

−1
1 c′1) −→ 0.

Similarly, for each 1 ≤ p ≤ ni − 2, there exists an AR-sequence as follows:

0 −→M(Dp,ni
) −→M(Dp+1,ni

)⊕M(eα′1α
−1
1 c′p) −→M(e0α

′
1α
−1
1 c′p+1) −→ 0.

Finally, for the string Dni−1,ni
= d′ni

α−1
s riα

−1
1 c′ni−1, we have that it starts on a peak and ends on a peak.

Note that d′ni
α−1
s riα

−1
1 c′ni−1 = (d′ni

α−1
s Cα′1)c = (d′ni

α−1
s α′teα

′
1)c = c(eα

′
1)c. By [6, II.6.2], there exists an

AR-sequence as follows:

0 −→M(Dni−1,ni
) −→M(Dni,ni

)⊕M(eα′1α
−1
1 c′ni

) −→M(eα′1) −→ 0.

The above discussion shows that there is the following subquiver (which we denote by D̃i) of the AR-quiver

of gr(A):

M(e)

''
M(d′ni

α−1
s C)

''

77

M(eα′1α
−1
1 c′0)

((
M(d′ni−1α

−1
s C)

55

((

M(D0,ni)

77

''

M(eα′1α
−1
1 c′1)

. . .

M(d′1α
−1
s C)

. .
.

((

·

77

M(D1,ni)

66

·

&&
M(C)

&&

88

M(D0,1)

))

·
((

66

M(eα′1)

M(D0,0)

66

((

M(D1,1) M(Dni,ni)

&&

88

M(c′0)

&&

88

M(D1,0)

55

·

''

M(Dni,ni−1)

66

((

M(d′ni
)

M(c′1)
. . .

66

M(Dni−1,0)

''

77

M(Dni,1)

((

·

88

M(c′ni−1)

55

M(Dni,0)

77

M(d′1)
. .
.

,

oo

oo

oo oo

oo oo

oo

oo

oo

oooo

where the modules M(c′0) and M(d′ni
) are identified.
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From the above discussions, we have the following result.

Corollary 5.12. Let ni be defined in (5.1) and ri ∈ P. Then τni(Ii) ∼= Pi, where Pi is the projective cover

of simple gr(A)-module Si corresponding to i, Ii is the injective hull of Si. Moreover, we have the following
AR-sequence:

0 −→M(d′ni
α−1
s C) −→M(D0,ni

)⊕M(e) −→M(eh) −→ 0,

where the modules M(d′ni
α−1
s C), M(eh), M(D0,ni

), M(e) are described as before. Note that the module M(eh)

(resp. M(d′ni
α−1
s C)) viewed as a A-module is the projective cover (resp. the injective hull) of the simple

A-module corresponding to i.

We are now ready to prove the main result of this section.

Theorem 5.13. Let Γ be the AR-quiver of gr(A). For each unbalanced edge i, let ni be defined in (5.1) and
Di the diamond associated with i. Then the AR-quiver of A can be obtained from Γ by applying the following
operations for all unbalanced edges i:

(1) Remove the diamond Di and the related arrows to Di;
(2) Add the following 2ni irreducible maps:

M(d′qα
−1
s C) −→M(d′q),M(c′p) −→M(eα′1α

−1
1 c′p),

where 1 ≤ q ≤ ni, 0 ≤ p ≤ ni − 1;
(3) Add the following 2ni AR-translations:

M(d′q−1α
−1
s C) L99M(d′q),M(C) L99M(d′1),

M(c′p−1) L99M(eα′1α
−1
1 c′p),M(c′ni−2) L99M(eα′1),

where 2 ≤ q ≤ ni, 0 ≤ p ≤ ni − 1;
(4) Remove the AR-translation M(d′ni

α−1
s C) L99M(eh).

Remark 5.14. By inverting the process in Theorem 5.13, we can construct Γ from the AR-quiver Γ1 of A by
inserting the diamonds Di’s. The inserting process of Di can be illustrated as follows. First we look for the
injective hull I(i) and the projective cover P (i) of the simple A-module S(i) in Γ1, which are easy to find, since
they correspond to an “empty mesh” in Γ1:

•
((

I(i)

''

66

P (i)

M(c′0)

77

W

,

where the triangular part W denotes the wing with peak M(c′0) in Γ1. Here a wing with peak M0,n (where n ≥ 0)
in the AR-quiver means a mesh-closed subquiver of the following form (possibly after removing some uniserial
projective-injective modules):

M0,n

''
M0,n−1

&&

88

M1,n

. . .

M0,1

. .
.

%%

M1,n−1

. . .

77

Mn−1,n

%%
M0,0

::

M1,1

. .
.

. . . Mn−1,n−1

77

Mn,n.oo oo

oo
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Note that the bottom line in W lies on the one of the mouths of Γ1. Next we insert the diamond Di into the
above empty mesh and get the following diagram (viewed as a subquiver of the AR-quiver Γ of gr(A)):

•
))

I(i)

((

55

P (i)

M(dniric0)

66

Pi Di Ii

M(c′0) M(c′0)

W

%%

W::

M(ri) ,

oo

88
&&

oo oo

where the two triangular parts W are identified in Γ, and Pi (resp. Ii) is the projective cover (resp. injective

hull) of the simple gr(A)-module Si. Note that the bottom vertex M(ri) of Di together with the bottom line in
W lies on the one of the mouths of Γ. Note also that the empty mesh between I(i) and P (i) in Γ1 becomes a
real mesh in Γ.

Proof of Theorem 5.13. We denote by Γ0 the translation quiver obtained from Γ after the operations (1)—(4),
and by Γ1 the AR-quiver of A. Then Proposition 5.10 together with Corollary 5.5 implies that the vertices of
Γ0 are in one-to-one correspondence with the vertices of Γ1. Since both gr(A) and A are string algebras, for
any vertex X in Γ or in Γ1, there are at most two arrows from X and at most two arrows to X. We are going
to show that Γ0 and Γ1 are isomorphic as translation quivers, where in both cases the translation is given by
the AR-translation τ .

First we note that in an AR-quiver, vertices correspond to indecomposable modules, arrows correspond to
irreducible maps, and meshes (with dashed arrow inside) correspond to AR-sequences. Observe from the quiver

D̃i before Corollary 5.12 that, if X is a module in diamond Di and Y is a module in a distinct diamond Dj , then

X and Y can not appear simultaneously in an AR-sequence. For any two indecomposable A-modules X and Y ,
by the relationship between strings and modules, an arrow X −→ Y in Γ0 corresponds to an arrow X −→ Y in
Γ1, and vice versa; if exactly one of X and Y belongs to some diamond Di, then an arrow X −→ Y in Γ would
be destroyed when passing to Γ0, but there will be some new arrow in Γ0 (one of the maps in the operation
(2)) and this new arrow corresponds to an arrow in Γ1. It is easy to check that an arrow in Γ1 is either coming
from an arrow in Γ or coming from an operation in (2), and so Γ0 and Γ1 are isomorphic as ordinary quivers.
Similarly, a mesh in which all vertices do not belong to any diamond Di in Γ0 corresponds to a mesh in Γ1, and
vice versa; if some of vertices of a mesh in Γ belong to some diamond Di, then it will be destroyed when passing
to Γ0, but there will be some new mesh in Γ0 (one of the AR-sequences implicated in the operation (3)) and
this new mesh corresponds to a mesh in Γ1.

Moreover, by Corollary 5.12, for each unbalanced edge i, if we view the two gr(A)-modules M(eh) and

M(d′ni
α−1
s C) as A-modules, where the gr(A)-modules M(eh) and M(d′ni

α−1
s C) are neither projective nor in-

jective, then they are the projective cover and the injective hull of the simple A-module corresponding to i,
respectively. So in order to pass from Γ to Γ1, we should remove the dashed arrow from M(eh) to M(d′ni

α−1
s C)

in Γ (the AR-translation in the operation (4)). Now it is easy to check that there is a bijection between the
meshes in Γ0 and the meshes in Γ1, and therefore they are isomorphic as translation quivers. �

Corollary 5.15. The gr(A)-module M(ri) in the diamond Di satisfies τni+1(M(ri)) ∼= M(ri).

Proof. First of all, τ(M(ri)) is the module M(c′ni−1) appearing in the quiver D̃i before Corollary 5.12, and there

is only one irreducible map from τ(M(ri)) in the AR-quiver of gr(A). We next show that there is no projective
module in the τ -orbit of M(ri).
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Otherwise, suppose that there is a projective gr(A)-module P in the τ -orbit of M(ri). Then P is not uniserial;
otherwise, P is also injective and therefore projective-injective, this contradicts the fact that P lies in a τ -orbit.
Moreover, P must have the following form: rad(P ) = U1 ⊕ U2, where U1 and U2 are two non-zero uniserial
modules with the same length. It follows that there are two irreducible maps to P and also two irreducible
maps from P in the AR-quiver of gr(A). Both P and τ(M(ri)) can be identified as indecomposable A-modules,

according to the relationship between AR-quiver of gr(A) and the AR-quiver Γ1 of A (see Theorem 5.13), P
and τ(M(ri)) lie in the same τ -orbit in Γ1, there are also two irreducible maps from P and only one irreducible
map from τ(M(ri)). This contradicts the shape of the stable AR-quiver of the Brauer tree algebra A, it is of
the form ZAnm0

/τn, where n is the number of non-isomorphic simple A-modules, m0 is the multiplicity of the
exceptional vertex of the associated Brauer tree, and Anm0 is the Dynkin quiver of type Anm0 ; in particular, P
has two direct predecessors.

Therefore there is no projective module in the τ -orbit of M(ri) in the AR-quiver of gr(A). Since gr(A) is of
finite representation type, there exists some natural number m such that τm(M(ri)) ∼= M(ri). Now it is easy

to see from the quiver D̃i before Corollary 5.12 that m = ni + 1, note that the modules M(c′0) and M(d′n) are
identified in this quiver. �

Finally, we give an example to illustrate the above results.

Example 5.16. Let G be the following Brauer tree

v0
· ·

1
·

2
,

where the multiplicity m0 of the exceptional vertex v0 is 3. Then the Brauer tree algebra A = kQ/I associated
with the Brauer tree G is given by the following quiver Q

1α0 ::

β0
((
2

β1

hh

with relations

α0β1, β0α0, α
4
0, β0β1β0, β1β0β1, α

3
0 − β1β0.

By Lemma 2.9, the associated graded algebra gr(A) can be described as the same quiver Q with relations

α0β1, β0α0, α
4
0, β0β1β0, β1β0β1, β1β0.

By the definitions of A and gr(A), we have A = A/soc(Ae1) and gr(A) = gr(A).

Let S(i) be the simple A-module corresponding to i and P (i) (resp. I(i)) is the projective cover (resp. injective
hull) of S(i) for i = 1, 2. The AR-quiver of A is the following:

P (2)

((
rad(P (2))

77

''

P (2)/soc(P (2))

((

rad(P (2))

M(β−1
1 α0β

−1
0 )

''

77

S(1)

((

66

M(β−1
1 α0β

−1
0 )

77

M(α0β
−1
0 )

''

77

M(α−1
0 β1)

''

77

M(β−1
1 α0β

−1
0 )

66

M(β−1
1 α2

0β
−1
0 )

77

''

M(α0)

''

77

M(β−1
1 α2

0β
−1
0 )

66

P (1)

::

$$

I(1)

''

77

P (1)

77

S(2)

CC

M(α2
0)

77

S(2)

77

oo oo

oo oo

oo oo

oo oo

oo

oo oo
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For the algebra gr(A), by Proposition 5.10, its AR-quiver contains the diamond D1 associated with 1:

M(β−1
1 α3

0β
−1
0 )

$$
M(α3

0β
−1
0 )

$$

::

M(β−1
1 α3

0)

M(α3
0)

::
oo

where M(α3
0β
−1
0 ) is the projective cover of simple gr(A)-module S1 corresponding to 1, M(β−1

1 α3
0) is the injective

hull of S1.

We have known that any A-module is also a gr(A)-module. Using the above notations, by Theorem 5.13, the

AR-quiver of gr(A) can be obtained from that of A by inserting the diamond D1:

P (2)

''
rad(P (2))

%%

88

P2/soc(P (2))

''

rad(P (2))

M(β−1
1 α0β

−1
0 )

%%

99

S(1)

&&

88

M(β−1
1 α0β

−1
0 )

99

M(α0β
−1
0 )

%%

99

M(α−1
0 β1)

%%

99

M(α0β
−1
0 )

88

M(β−1
1 α2

0β
−1
0 )

%%

99

M(α0)

%%

99

M(β−1
1 α2

0β
−1
0 )

88

P (1)

%%

99

I(1)

%%

99

P (1)

99

M(β−1
1 α3

0β
−1
0 )

99

%%

M(α2
0)

%%

99

M(β−1
1 α3

0β
−1
0 )

99

M(α3
0β
−1
0 )

99

%%

M(β−1
1 α3

0)

%%

99

M(α3
0β
−1
0 )

99

S(2)

BB

M(α3
0)

99

S(2)

99

oo oo

oo oo

oo oo

oo oo

oo oo

oo oo

oo

oo oo
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