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Abstract. Let A be a representation-finite self-injective algebra over an algebraically closed field k. We
give a new characterization for an orthogonal system in the stable module category A-mod to be a simple-

minded system. As a by-product, we show that every Nakayama-stable orthogonal system in A-mod

extends to a simple-minded system.

1. Introduction

As an attempt towards a tilting theory for stable equivalences between finite dimensional algebras,
Koenig and Liu [20] introduced simple-minded systems in the stable module category A-mod of any finite
dimensional algebra A. Roughly speaking, a simple-minded system over A is a family of objects in A-mod
which satisfies orthogonality and a generating condition. Later, Dugas [12] defined simple-minded systems
in any Hom-finite Krull-Schmidt triangulated category. The two definitions are equivalent in the stable
module category of a self-injective algebra (cf. [8, Section 2.1]). In [9], Coelho Simões introduced d-simple-
minded systems in (−d)-Calabi-Yau triangulated categories for any positive integer d. There is a recent
rise of interests in studying d-simple-minded systems (see, for example, [10, 11, 16]).

On the other hand, Chan, Koenig and Liu [7] noticed that for a representation-finite self-injective
algebra A, the simple-minded systems in A-mod correspond exactly to the combinatorial configurations
in the Auslander-Reiten quiver of A, a key notion introduced by Riedtmann ([24, 26, 25]) in the 1980’s
in her famous work on classification of representation-finite self-injective algebras. A similar notion in
(−d)-Calabi-Yau triangulated categories is called (−d)-Riedtmann configuration (see [10]) or (−d)-Calabi-
Yau configuration (see [18]) for a positive integer d. The connection between simple-minded systems and
combinatorial configurations is quite useful since the combinatorial configurations are often easier to handle.

In general, it is hard to check the two conditions in the definition of a simple-minded system. So it
is important to find easier characterizations of simple-minded systems. In this paper, we will give such a
characterization of simple-minded systems over representation-finite self-injective algebras. Before stating
our result, we recall some notations and results from [7]. Let A be an RFS algebra (that is, indecomposable,
basic representation-finite self-injective algebra (� k) over an algebraically closed field k) and S a simple-
minded system in A-mod. Then, according to [7], S is an orthogonal system (see Definition 2.1) in A-mod
(orthogonality condition), the cardinality of S is equal to the number of non-isomorphic simple A-modules
(cardinality condition), and the Nakayama functor on A-mod permutes the objects of S (Nakayama-stable
condition). The main result in this paper says that the above three conditions are also sufficient for a
family of objects in A-mod to be a simple-minded system.

Theorem 1.1. Let A be an RFS algebra and S a family of objects in A-mod. Then S is a simple-minded
system if and only if S satisfies the following three conditions.

(1) S is an orthogonal system in A-mod.
(2) The cardinality of S is equal to the number of non-isomorphic simple A-modules.
(3) S is Nakayama-stable, that is, the Nakayama functor on A-mod permutes the objects of S.

There are two main ingredients in the proof of the above theorem. One is the torsion pair theory studied
by Iyama-Yoshino [17] and by Dugas [12]. The other one is the covering theory developed by Riedtmann
[24] and by Bongartz-Gabriel [4]. From the proof of Theorem 1.1, we also deduce some new properties of
orthogonal systems in A-mod. In particular, we prove the following extendible property of Nakayama-stable
orthogonal systems in A-mod.
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Theorem 1.2. Let A be an RFS algebra. Then every Nakayama-stable orthogonal system S in A-mod
extends to a simple-minded system.

This paper is organized as follows. In Section 2, we recall some notions and facts on torsion pair theory,
covering theory and simple-minded systems. In Subsection 3.1, we prove our main result Theorem 1.1 and
give some applications. Our proof here is based on three technical lemmas: Lemma 2.5, Lemma 3.3, and
Lemma 3.8. The first two lemmas come from torsion pair theory and the last one relies on several interesting
orthogonality properties in the stable module categories of several classes of RFS algebras (Lemma 3.5 to
Lemma 3.7). In Subsection 3.2, we prove Theorem 1.2 and its corollary.
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2. Preliminaries

Throughout this paper, k denotes an algebraically closed field, all algebras are assumed to be finite
dimensional k-algebras with 1. For an algebra A, we denote by A-mod the category of finite dimensional
left A-modules, and by A-mod the stable category of A-mod, that is, the category with the same class of
objects but with morphism spaces HomA(X,Y ) being the quotient of the ordinary one HomA(X,Y ) by
maps factoring through projective modules.

2.1. Torsion pair theory. We briefly recall the torsion pair theory on a Hom-finite Krull-Schmidt trian-
gulated k-category in the sense of Dugas [12]. Let T be a Hom-finite Krull-Schmidt triangulated k-category
with suspension functor [1]. For any families S1,S2 of objects in T , we define a family of objects

S1 ∗ S2 := {X ∈ T | There is a distinguished triangle S1 −→ X −→ S2 −→ S1[1], S1 ∈ S1, S2 ∈ S2}.
Using the octahedral axiom, it is easy to show that (S1 ∗ S2) ∗ S3 = S1 ∗ (S2 ∗ S3) for S1,S2,S3 ⊆ T .
For a family S of objects in T , we denote (S)0 = {0}, and for any positive integer n, we inductively
define (S)n = (S)n−1 ∗ (S ∪ {0}). (S)n ∗ (S)m = (S)n+m for any non-negative integers m and n (cf. [12,
Lemma 2.3]). Similarly, one can define n(S), and we have (S)n=n(S). We say that S is extension-closed,
if S ∗ S ⊆ S. One denotes the extension closure of a family S of objects in T as

F(S) :=
⋃
n≥0

(S)n,

which is the smallest extension closed full subcategory of T containing S. Notice that we identify S with
the corresponding full (usually not triangulated) subcategory of T .

Definition 2.1. An object M in T is a stable brick if T (M,M) ∼= k. Moreover, a family S of stable bricks
in T is an orthogonal system if T (M,N) = 0 for all distinct M,N in S.

Lemma 2.2. ([12, Lemma 2.7]) If S ⊆ T is an orthogonal system, then (S)n is closed under direct
summands for each positive integer n ≥ 1. In particular, F(S) is closed under direct summands.

For any family S of objects in T , we set

S⊥ := {Y ∈ T | T (X,Y ) = 0,∀X ∈ S},
⊥S := {Y ∈ T | T (Y,X) = 0,∀X ∈ S}.

We know that both S⊥ and ⊥S are extension closed subcategories of T as well as closed under direct
summands. We shall denote S⊥ ∩ ⊥S by ⊥S⊥.

Definition 2.3. ([12, Definition 3.1]) A pair (X ,Y) of full, additive subcategories of T , which are closed
under direct summands, forms a torsion pair if the following conditions hold :

(1) T (X ,Y) = 0.
(2) T = X ∗ Y, that is, for each T ∈ T , there exists a distinguished triangle

X
f
// T

g
// Y // X[1] ,

where X ∈ X , Y ∈ Y.
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The above distinguished triangle in (2) is called a (X ,Y)-triangle of T . It is easy to show that for any
(X ,Y)-triangle of T , f is a right X -approximation and g is a left Y-approximation. It is true that for a
(X ,Y)-triangle, f is a minimal right X -approximation if and only if g is a minimal left Y-approximation
(cf. [12, Lemma 3.2]). Furthermore, we can choose a right minimal version of f and this resulting triangle
is unique up to isomorphism, we call it the minimal (X ,Y)-triangle.

In the present paper, we will apply the above torsion pair theory in a special case where T is the stable
category A-mod of a self-injective algebra A. In this case, the suspension functor is the cosyzygy functor
Ω−1 (sometimes still denoted by [1] if there is no confusion) and the distinguished triangles in A-mod are
induced by short exact sequences in A-mod (see [15]). Notice that A-mod has Serre functor νΩ = ν[−1], that
is, for all M,N ∈ A-mod, we have the natural k-linear isomorphisms: HomA(M,N) ∼= DHomA(N, νΩM),
where D = Homk(−, k) is the usual k-dual functor and ν = DHomA(−, A) is the Nakayama functor (see
[22]). We remind the reader that the Nakayama functor defines a self-equivalence on A-mod (hence on
A-mod).

Now we take an orthogonal system S in A-mod with ν(S) = S and assume that both (⊥S,F(S)) and
(F(S),S⊥) are torsion pairs in A-mod. Let X be an object in A-mod. We define operators a : T −→
⊥S,b, c : T −→ F(S) and d : T −→ S⊥ via the minimal triangles

aX −→ X −→ bX −→ and cX −→ X −→ dX −→
corresponding to these two torsion pairs respectively. Notice that in general these operators are not functors,
see [12, Section 3] for more information.

Lemma 2.4. ([12, Lemma 4.3]) Assume that S is an orthogonal system in A-mod with ν(S) = S. Then
ν(F(S)) = F(S). Furthermore, ν(aX) ∼= a(νX) and ν(bX) ∼= b(νX) for all X ∈ A-mod, and similarly
for c and d.

Lemma 2.5. ([12, Lemma 4.6]) Let S be as in Lemma 2.4. For any minimal (⊥S,F(S))-triangle aY
f−→

Y
g−→ bY −→ and any X ∈ S, we have the following.

(1) The map HomA(g,X) : HomA(bY,X) −→ HomA(Y,X) is an isomorphism.
(2) The map HomA(X, f) : HomA(X,aY ) −→ HomA(X,Y ) is a monomorphism.
(3) If Y ∈ S⊥, then aY ∈ ⊥S⊥.

2.2. Covering theory. The covering of translation quivers was introduced by Riedtmann ([23]), and it
was extended to covering functors between k-categories by Bongartz and Gabriel ([4]). We refer to a brief
introduction on some covering theory from [7].

Following Asashiba [1], we abbreviate (indecomposable, basic) representation-finite self-injective algebra
(� k) over an algebraically closed field k by RFS algebra. Let A be an RFS algebra, and let sΓA be the
stable Auslander-Reiten quiver of A. It is known that sΓA has the form Z∆/〈στ−r〉, where ∆ is a Dynkin
quiver, Z∆ is the stable translation quiver associated to ∆, τ is the translation of Z∆ and σ is some
automorphism of the quiver Z∆ with a fixed vertex. Notice that τ coincides with the AR-translate DTr.
According to [2], the type tpy(A) of an RFS algebra A is defined by tpy(A) := (∆, f, t), where f := r/m∆

and t is the order of σ. Here m∆ = n, 2n − 3, 11, 17 or 29 for ∆ = An, Dn, E6, E7 or E8, respectively.
Notice that if n is the number of vertices of ∆, then nf is the number of isoclasses of simple A-modules.
We remark that m∆ has the following categorical interpretation (cf. [5, Section 1.1]) : any path of length
greater than or equal to m4 is zero in the mesh category k(Z∆).

Proposition 2.6. ([2, Proposition 1.1]) The set of all types of representation-finite self-injective algebras
(� k) is equal to the disjoint union of the following sets.

(a) {(An, s/n, 1) | n, s ∈ N}.
(b) {(A2p+1, s, 2) | p, s ∈ N}.
(c) {(Dn, s, 1) | n, s ∈ N, n ≥ 4}.
(d) {(D3m, s/3, 1) | m, s ∈ N,m ≥ 2, 3 - s}.
(e) {(Dn, s, 2) | n, s ∈ N, n ≥ 4}.
(f) {(D4, s, 3) | s ∈ N}.
(g) {(En, s, 1) | n = 6, 7, 8, s ∈ N}.
(h) {(E6, s, 2) | s ∈ N}.

Recall from [4] and [5] that a representation-finite k-algebra is called standard if A-ind ∼= k(ΓA), where
k(ΓA) is the mesh category of the Auslander-Reiten quiver ΓA of A and A-ind is the full subcategory of
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A-mod whose objects are the representatives of the isoclasses of indecomposable modules. Non-standard
algebras are algebras which are not standard.

Remark 2.7. (cf. [1, 2] and [7, Section 4]) Standard RFS algebras appear in all types and non-standard
RFS algebras appear only in type (D3m, 1/3, 1) for some m ≥ 2. For every non-standard RFS algebra
A, there is a standard RFS algebra of the same type, which is denoted by As and called the standard
counterpart of A. The RFS algebras which correspond to symmetric algebras are of types {(An, s/n, 1) |
s ∈ N, s|n}, {(D3m, 1/3, 1)}, {(Dn, 1, 1) | n ∈ N, n ≥ 4}, {(En, 1, 1) | n = 6, 7, 8}.

Recall from [25, 1] that if A is standard, then we have that A-ind ∼= k(sΓA), where k(sΓA) is the mesh
category of the stable Auslander-Reiten quiver sΓA and A-ind is the full subcategory of A-mod whose
objects are objects in A-ind. Moreover, there is a covering functor F : k(Z∆) −→ A-mod. In particular,
for e, f, h ∈ Z∆, there are the following bijections :⊕

Fh=Ff

Homk(Z∆)(e, h) ∼= Homk(sΓA)(Fe, Ff),
⊕

Fh=Ff

Homk(Z∆)(e, h) ∼= HomA(Fe, Ff),

⊕
Fe=Fh

Homk(Z∆)(e, f) ∼= Homk(sΓA)(Fh, Ff),
⊕

Fe=Fh

Homk(Z∆)(e, f) ∼= HomA(Fh, Ff).

In the following two lemmas, we recall the well-known properties on homomorphism spaces in the mesh
category of the stable translation quiver Z∆, where ∆ = An or ∆ = Dn. We use the following enumeration
on the vertices of ∆:

1 // 2 // · · · // n (An),

(2.1)

n

1 // 2 // · · · // n− 2

OO

// n− 1 (Dn).

It is often convenient to write a vertex of Z∆ as its coordinate (p, q), where p, q are integers, 1 ≤ q ≤ n and
n is the number of vertices of ∆.

Lemma 2.8. ([24, Lemma 2.6.1]) For any vertices (p, q) and (r, s) in ZA`, we have

dimk(Homk(ZA`)((p, q), (r, s))) ≤ 1.

In particular, dimk(Homk(ZA`)((p, q), (r, s))) = 1 if and only if p ≤ r < p+ q ≤ r + s ≤ p+ `.
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Given a category C and a functor F : C −→ k-mod, we set Supp(F ) := {X ∈ C | X is indecomposable and
F (X) 6= 0}. According to [26, Section 2], for the vertices of ZDn, we call a vertex (p, q) low, if q ≤ n− 2,
and high, otherwise. Notice that these terminologies are still valid for Auslander-Reiten quivers of type
{(Dn, s, 1) | n, s ∈ N, n ≥ 4} and type {(D3m, s/3, 1) | m, s ∈ N,m ≥ 2, 3 - s}.

Lemma 2.9. ([26, Proposition 2.1]) Let (p, q) be a vertex of ZDn.

(a) If (p, q) is low, we have Supp(Homk(ZDn)((p, q),−)) = {(x, y) : p ≤ x ≤ p+q−1 < x+y}∪{(x, y) : x <
p+ n− 1 ≤ x+min{y, n− 1} ≤ p+ q + n− 2}.
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(b) If (p, q) is high, we have Supp(Homk(ZDn)((p, q),−)) = {(x, y) : y ≤ n − 2, x ≤ p + n − 2 < x + y} ∪
{(x, y) : y ≥ n− 1, p ≤ x ≤ p+ n− 2, x+ y ≡ p+ q mod 2}.
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Remark 2.10. (1) According to [26, Proposition 2.1], we have the following.

Supp(Homk(ZDn)(−, (p+ n− 2, q))) = Supp(Homk(ZDn)((p, q),−)),

Supp(Homk(ZDn)(−, (p+ n− 2, n− 1))) = Supp(Homk(ZDn)((p, n− 1),−)) for n even,

Supp(Homk(ZDn)(−, (p+ n− 2, n))) = Supp(Homk(ZDn)((p, n− 1),−)) for n odd.

(2) The second part of the union in Lemma 2.9 (b) means that if (p, q) is high, then high vertex (x, y) is in
Supp(Homk(ZDn)((p, q),−)) when x+ y and p+ q have the same parity.

We remark that the mesh category of ZAn (resp. ZDn) can be identified with Db(kAn)-ind (resp.
Db(kDn)-ind), where Db(kAn) (resp. Db(kDn)) denotes the bounded derived category of the path algebra
kAn (resp. kDn). From this point of view, Lemma 2.8 and Lemma 2.9 describe the homomorphism spaces
in Db(kAn) and in Db(kDn) respectively, and Remark 2.10 (1) is an explicit description of Serre duality in
Db(kDn) (cf. [15]).

2.3. Simple-minded system.

Definition 2.11. (cf. [12, Definition 2.4, 2.5]) Let A be a self-injective algebra over an algebraically closed
field k. A family of objects S in A-mod is a simple-minded system (sms for short) if the following two
conditions are satisfied :

(1) (Orthogonality) For any S, T ∈ S, HomA(S, T ) ∼=
ß

0 (S 6= T ),
k (S = T ).

(2) (Generating condition) F(S) = A-mod.

Remark 2.12. Let A be an RFS algebra and S an orthogonal system in A-mod. Then according to [20, The-
orem 5.6], the generating condition in an sms can be replaced by the following weak-generating condition : for
any indecomposable non-projective A-module X, there exists some S ∈ S such that HomA(X,S) 6= 0.
Indeed, this fact gives the direct connection between sms’s and combinatorial configurations at least for
standard RFS algebras (cf. [7]).

Recall from [7, Section 2, Section 4] that for an RFS algebra A, if S is an sms in A-mod, then S satisfies
the following three conditions.

(1) S is an orthogonal system in A-mod.
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(2) The cardinality of the set S is equal to the number of non-isomorphic simple A-modules.
(3) S is Nakayama-stable, that is, the Nakayama functor ν permutes the elements of S.

Notice that the above condition (1) is obvious, but (2) and (3) are highly nontrivial. In fact, they are
consequences of the following Liftability theorem (cf. [7] Theorem 4.1) : if S is an sms over RFS algebra A,
then there is another RFS algebra B and a derived equivalence F : Db(B)→ Db(A) such that the induced

stable equivalence ‹F : B-mod→ A-mod maps simple B-modules into S.
As a comparison, we would like to mention two interesting facts on combinatorial configurations for

a general self-injective algebraA : any combinatorial configuration is Nakayama-stable (cf. [18, Theorem
6.2]); a combinatorial configuration C is a simple-minded system if and only if F(C) is functorially finite in
A-mod (cf. [10, Proposition 2.13]).

3. A new characterization for an orthogonal system to be an sms

3.1. Main result and its proof. In this subsection, we show that the three conditions (1), (2) and (3)
in last subsection are sufficient for S to be an sms. That is, we prove the following theorem.

Theorem 3.1. Let A be an RFS algebra and S a family of objects in A-mod. Then S is an sms if and
only if S satisfies the following three conditions.

(1) S is an orthogonal system in A-mod.
(2) The cardinality of S is equal to the number of non-isomorphic simple A-modules.
(3) S is Nakayama-stable, that is, the Nakayama functor ν permutes the objects of S.

The proof of Theorem 3.1 will be given after we prove a technical lemma on orthogonality in A-mod
(Lemma 3.8).

Remark 3.2. (a) We cannot delete any condition from (1), (2), (3). A counterexample for deleting (3)
comes from the self-injective Nakayama algebra A, where A = kQ/I is given by the following quiver Q

1

��

2

uu

4

55

3

UU

with admissible ideal I = rad4(kQ). It is easy to check that S =

1,
2
3
4
, 3,

4
1
2

 satisfies (1), (2) but not

(3), and S is not an sms.
(b) In general, Theorem 3.1 does not hold for representation-infinite self-injective algebras. A counterex-

ample is given by the algebra k[x, y]/(x2, y2). It is a 4-dimensional symmetric local algebra and its
Auslander-Reiten quiver consists of a component containing the simple module and a P1(k)-family of
homogenous tubes. We take a module X on the mouth of a homogenous tube, notice that any homoge-
nous tube has only one indecomposable module on its mouth. Let S = {X}. It is easy to check that S
satisfies the above three conditions. However, S is not an sms since F(S) is the additive closure of all
the modules in the homogenous tube which contains X.

(c) It would be interesting to know whether Theorem 3.1 is false for every representation-infinite algebra.

The main tools in proving Theorem 3.1 are torsion pair theory and covering theory. One result we need
from torsion pair theory is the following lemma, which is a special case of [17, Proposition 2.3 (1)].

Lemma 3.3. Let A be a self-injective algebra and S an orthogonal system in A-mod. If the subcategory
F(S) is functorially finite in A-mod, then both (⊥S,F(S)) and (F(S),S⊥) are torsion pairs in A-mod.

Remark 3.4. The condition that F(S) is functorially finite in Hom-finite, Krull-Schmidt triangulated
k-categories is very useful and applied in a number of recent works (cf. [10, 11, 19]). The condition that
F(S) is functorially finite in A-mod clearly holds for RFS algebras. It would also be interesting to find
applications of Lemma 3.3 for representation-infinite algebras.

We now prove three lemmas (Lemma 3.5 to Lemma 3.7) on orthogonality properties in the stable
categories of several classes of RFS algebras, based on the description of supports in mesh categories of
ZAn,ZDn and the covering theory in [5], [24], [26] and [25]. We shall freely switch between nonzero
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indecomposable modules over RFS algebras and vertices in the corresponding mesh category k(Z∆), where
∆ is a Dynkin quiver.

Lemma 3.5. Let A be an RFS algebra of type (A2p+1, s, 2), Dn or En (except type (D3m, 1/3, 1) for some
m ≥ 2). Then every indecomposable module X is a stable brick in A-mod.

Proof. Recall that under our assumptions all algebras are standard and we can identify A-ind with k(sΓA) ∼=
k(Z∆)/〈στ−m∆f 〉. Let X be an indecomposable module in A-mod and G the infinite cyclic group generated
by στ−m∆f . From covering theory we know that

HomA(X,X) = Homk(sΓA)(X,X) ∼=
⊕

g(E)=X,g∈G

Homk(Z∆)(E, Y ).

Let `(X,X) be the minimal length of all the nontrivial paths from E to X in k(Z∆), where E varies in
Z∆ and satisfies g(E) = X for some g ∈ G. For a given vertex X, in the proof below we will see that the
vertex E corresponding to the minimal length is unique. We claim that `(X,X) is greater than m∆ and
therefore Homk(Z∆n)(E,X) = 0.

We first consider the case {(D3m, s/3, 1) | m, s ∈ N,m, s ≥ 2, 3 - s}. In this case f = s/3 and
k(sΓA) ∼= k(ZD3m)/〈τ−s(mD3m

)/3〉 = k(ZD3m)/〈τ−s(2m−1)〉. It follows that any E with g(E) = X for some
g ∈ G has the form τ−sz(2m−1)(X) for some integer z. Now it is easy to see that `(X,X) is 2s(2m− 1) and
it is greater than mD3m

= 2× (3m)− 3, where s ≥ 2.
For the other cases, f is always a positive integer and k(sΓA) ∼= k(Z∆)/〈στ−m∆f 〉. By [2, Proposition

2.1], for type An, Dn or En, the automorphism σ of Z∆ is induced from some automorphism of
−→
∆ (under

the choice of orientation on ∆ given in [2, Section 2]). For the convenience of the reader, we list the
orientation on ∆ used in [2, Section 2] according to the type of ∆.

1 2oo · · ·oo poo p+ 1oo // p+ 2 // · · · // n (
−→
An, n = 2p+ 1, p ∈ Z),

n

1 2oo · · ·oo n− 2oo //

OO

n− 1 (
−→
Dn, n ≥ 4),

n

1 2oo 3 //oo

OO

· · · // n− 1 (
−→
En, n = 6, 7, 8).

We define a
−→
∆-line to be a set of vertices of the form τz(

−→
∆) in Z∆ for some z ∈ Z. Therefore στ−m∆f (E)

is in the same
−→
∆-line with τ−m∆f (E) in k(Z∆). For a given X in a

−→
∆-line

−→
∆, the unique vertex E

corresponding to the minimal length lies in
−→
∆-line τm∆f (

−→
∆). It is easy to check case by case that the

length of any path from a vertex in τm∆f (
−→
∆) to X is greater than or equal to 2fm∆ − (n − 1), which is

again greater than m∆. We illustrate the result with the case {(A2p+1, s, 2) | p, s ∈ N} in the picture below.
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(−p, 1) (0, 1)

(0, 2p+ 1)

(−(2p+ 1)s, 1)

(−(2p+ 1)s, 2p+ 1)

((2p+ 1)s, 1) (2(2p+ 1)s, 1)((2p+ 1)s− p, 1)

((2p+ 1)s, p+ 1)(0, p+ 1)

((2p+ 1)s, 2p+ 1)
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We only need to show that HomA((0, i), (0, i)) ∼= k for vertex (0, i) for each 1 ≤ i ≤ 2p + 1, since any
other vertex can be obtained by the power of self-equivalence τ of A-mod. If we assume that (0, i) is in
−→
∆-line for 1 ≤ i ≤ 2p + 1, then στm∆f ((0, i)) = (−(2p + 1)s, 2p + 2 − i) and the vertex in στm∆f (

−→
∆)-

line is of the form (−(2p + 1)s, j) for 1 ≤ j ≤ 2p + 1. It is easy to see that `((0, i), (0, i)) is the length
of path from (−(2p + 1)s, 2p + 2 − i) to (0, i) in k(ZA2p+1), it is greater than or equal to the length of
path from (−(2p + 1)s, 2p + 2 − i) to (0, p + 1) in k(ZA2p+1), which is 2(2p + 1)s − |p + 1 − i|. Since
2(2p+ 1)s− |p+ 1− i| ≥ 2(2p+ 1)s− 2p > 2p+ 1, `((0, i), (0, i)) > 2p+ 1, where |a| is the absolute value
of a number a.

Summarizing the above discussion, in all cases we have HomA(X,X) ∼= Homk(Z∆)(X,X) ∼= k. �

Lemma 3.6. Let A be an RFS algebra of type (A2p+1, s, 2), Dn or En (except type {(D3m, s/3, 1) | m, s ∈
N,m ≥ 2, 3 - s}). Then the ν-orbit Oν(X) of any indecomposable module X is an orthogonal system in
A-mod.

Proof. We first note that k(sΓA) ∼= k(Z∆)/〈στ−m∆f 〉. Let X, Y be indecomposable modules in A-mod
and G the infinite cyclic group generated by στ−m∆f . From covering theory, we have

HomA(X,Y ) = Homk(sΓA)(X,Y ) ∼=
⊕

g(E)=X,g∈G

Homk(Z∆)(E, Y ).

Let `(X,Y ) be the minimal length of all the nontrivial paths from E to Y in k(Z∆), where E varies in Z∆
and satisfies g(E) = X for some g ∈ G. According to the result in [6, Proposition 1.5 and 1.6], we know
that the Nakayama functor ν ∼= τ−m∆ in k(Z∆) . It follows that ν(X) ∼= τ−m∆(X) in k(Z∆)/〈στ−m∆f 〉.
Any E with g(E) = ν(X) has the form σzτ−m∆(zf+1)(X) for some integer z, notice that στ = τσ in k(Z∆).

Under the above notations, we now show that the ν-orbit Oν(X) of X is an orthogonal system in A-
mod. There are two cases to be considered. For the case of symmetric algebras, we know that ν ∼= id,
by Lemma 3.5, the ν-orbit Oν(X) of X is an orthogonal system. For the other cases, we show that
HomA(νi(X), νj(X)) = 0 for integers i, j, where i 6= j, 0 ≤ i, j < m and m is the order of ν for X. It is easy
to see that `(νi(X), νj(X)) = 2(j − i)m∆ for i 6= j, which is greater than m∆, where j − i ≡ j − i mod n.
Therefore HomA(νi(X), νj(X)) = 0. It follows that the ν-orbit Oν(X) of any indecomposable module X is
an orthogonal system in A-mod.

We illustrate the above result through the case {(Dn, s, 2) | n, s ∈ N, s ≥ 2, n > 4} in the picture below.
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((0, n− 1)

(0, n)

(0, 1)

((2n− 3)i, n− 1)

((2n− 3)i, n)

((2n− 3)i, 1)

((2n− 3)j, n− 1)

((2n− 3)j, n)

((2n− 3)j, 1)

((2n− 3)s, n− 1)

((2n− 3)s, n)

((2n− 3)s, 1)

We only need to show that the ν-orbit Oν((0, p)) of any indecomposable module (0, p) is an orthogonal
system in A-mod for all 1 ≤ p ≤ n, since any other vertex can be obtained by the power of self-equivalence
τ of A-mod. If 1 ≤ p ≤ n − 2, then στ−mDnf (0, p) = ((2n − 3)s, p), στ−mDnf (0, n) = ((2n − 3)s, n − 1)
and στ−mDnf (0, n − 1) = ((2n − 3)s, n). It is also clear that νq((0, p)) = ((2n − 3)q, p) for 1 ≤ p ≤ n
and q ∈ Z, σνs((0, n)) = ((2n − 3)s, n − 1) and σνs((0, n − 1)) = ((2n − 3)s, n). We can see that
`(νi((0, p)), νj((0, p))) = 2(j − i)(2n−3) for i 6= j, 0 ≤ i, j < s and 1 ≤ p ≤ n, which is greater than 2n−3.
Therefore HomA(νi((0, p)), νj(0, p))) = 0, it follows that the ν-orbit Oν((0, p)) is an orthogonal system in
A-mod. �

Lemma 3.7. Let A be a standard RFS algebra of type {(D3m, s/3, 1) | m, s ∈ N,m ≥ 2, 3 - s} and let
X = (p, q) be a vertex in sΓA for some integers p, q, where 1 ≤ q ≤ 3m. Then we have the following.

(1) If 1 ≤ q < m or q ≥ 3m− 1, then X is a stable brick.
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(2) If 1 ≤ q < m or q ≥ 3m− 1, then the ν-orbit Oν(X) of X is an orthogonal system.
(3) If m ≤ q < 3m− 1, then the ν-orbit Oν(X) of X is not an orthogonal system.

Proof. Let G be the infinite cyclic group generated by τs(2m−1). Note that k(sΓA) ∼= k(ZD3m)/〈τ−s(2m−1)〉.
Let Y be a vertex in sΓA. From covering theory, we have

HomA(X,Y ) = Homk(sΓA)(X,Y ) ∼=
⊕

g(E)=X,g∈G

Homk(ZD3m)(E, Y ).

Let `(X,Y ) be the minimal length of all the nontrivial paths from E to Y in k(ZD3m), where E varies in
ZD3m and satisfies g(E) = X for some g ∈ G.

(1) There are two cases to be considered. For the case {(D3m, s/3, 1) | m, s ∈ N,m, s ≥ 2, 3 - s}, by
Lemma 3.5, X is a stable brick in sΓA for all 1 ≤ q ≤ 3m.

For the other case {(D3m, 1/3, 1)} for some m ≥ 2. We first assume that q ≥ 3m − 1, that is, X is a
high vertex, which is denoted by (p, 3m− 1) (resp. (p, 3m)) for some integer p. It is sufficient to show that
except the trivial path from X to X, any path from the above E to X is zero in k(ZD3m). Since s = 1,
we know that the above E is of the form τz(2m−1)(X) for some integer z. There are three subcases to be
considered.
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(0, 3m− 1)

(0, 3m)

(0, 1)

X = (0,m− 1) (2m− 1,m)

(2m− 1, 3m− 1)

(2m− 1, 3m)

(2m− 1, 1)

(2(2m− 1), 3m)

(2(2m− 1), 3m− 1)

(2(2m− 1), 1)

(−(2m− 1), 3m− 1)

(−(2m− 1), 3m)

(−(2m− 1), 1)

(i) If z is a negative integer, it is clear that Homk(ZD3m)(E,X) = 0.
(ii) If z ≥ 2, then `(X,X) is greater than or equal to 4(2m−1), which is greater than mD3m

= 2×(3m)−3.
It follows that Homk(ZD3m)(E,X) = 0.

(iii) If z = 1, then E = (−2m + 1 + p, 3m − 1) (resp. (−2m + 1 + p, 3m)). Since p and −2m + 1 + p do
not have the same parity and by the description of support of a high vertex, Homk(ZD3m)(E,X) = 0.

Then we assume that 1 ≤ q < m. From the description of the support of a low vertex, it is easy to
see that τz(2m−1)(X) is not in Supp(Homk(ZD3m)(−, (p, q))) for any nonzero integer z. It follows that
HomA(X,X) ∼= Homk(ZD3m)(X,X) ∼= k.

(2) According to the result in [6, Proposition 1.5 and 1.6], we know that the Nakayama functor ν ∼= τ−m∆

in k(Z∆), where ∆ means Dynkin quiver An, Dn or En. Since k(sΓA) ∼= k(ZD3m)/〈τ−s(2m−1)〉, ν(X) ∼=
τ−mD3m (X) ∼= τ (zs−3)mD3m

/3(X) = τ (zs−3)(2m−1)(X) in k(ZD3m)/〈τ−s(2m−1)〉 for all integers z. Moreover,
since 3 - s, there is a smallest positive integer e such that νe ∼= τ−(2m−1) in k(ZD3m)/〈τ−s(2m−1)〉. It follows
that Oν(X) = {X, νe(X), · · · , ν(s−1)e(X)} = {X, τ−(2m−1)(X), · · · , τ−(s−1)(2m−1)(X)}.

There are two cases as follows. For the case {(D3m, 1/3, 1)} for some m ≥ 2, A is a symmetric algebra
and ν ∼= id. Since X is stable brick for 1 ≤ q < m and q ≥ 3m−1, the ν-orbit Oν(X) of X is an orthogonal
system in sΓA.

For the other case {(D3m, s/3, 1) | m, s ∈ N,m, s ≥ 2, 3 - s}. We show that HomA(νi(X), νj(X)) = 0 for
any i 6= j, where 0 ≤ i, j < s. There are two subcases to be considered.

(i) Let R1 := {(i, j)|i 6= j, `(νi(X), νj(X)) = 2(2m − 1)}. Since νe ∼= τ−(2m−1), R1 is not an empty
set. Similarly to the proof of (1) of the case {(D3m, 1/3, 1)} for some m ≥ 2, we know that
HomA(νi(X), νj(X)) = 0 for any (i, j) in R1.

(ii) Let R := {(i, j) | i, j integers, i 6= j, 0 ≤ i, j < s} and R′=R\R1. It is easy to see that `(νi(X), νj(X))
≥ 4(2m−1) for any (i, j) in R′, which is greater than 6m−3. It follows that HomA(νi(X), νj(X)) = 0
for any (i, j) in R′.
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(3) From the description of the support of a low vertex, if m ≤ q < 3m−1, then νe(X) = τ−(2m−1)(X) =
(2m − 1 + p, q) ∈ Supp(Homk(ZD3m)((p, q),−)). It follows that X is not a stable brick for the case
{(D3m, 1/3, 1)} and HomA(X, νe(X)) � 0 for the case {(D3m, s/3, 1) | m, s ∈ N,m, s ≥ 2, 3 - s}. �

We now use the above three lemmas to prove the following result, which plays a key role in proving
Theorem 3.1.

Lemma 3.8. Let A be an RFS algebra and S a family of objects in A-mod. If S satisfies the three
conditions in Theorem 3.1, then ⊥S⊥ = {0}.

Proof. First we choose a
−→
∆-line in Z∆ for ∆ of types An and Dn as the figure (2.1) in Subsection 2.2.

Notice that the above
−→
∆-lines are different from the

−→
∆-lines in Lemma 3.5. Let TX be the set of modules in

the
−→
∆-line containing X in stable Auslander-Reiten quiver sΓA, and let TC=∪c∈C Tc for a set C of objects

in A-ind. Given a set C of modules and an indecomposable module Y in A-mod, we say that C labels TY
if any object of TY is not in ⊥C⊥, moreover, a module X in A-mod labels TY if any object of TY is not in
⊥X⊥. There are four cases to be considered.

Case 1. Type (An, s/n, 1) for n, s ∈ N.
Notice that A is a self-injective Nakayama algebra in this case. The stable Auslander-Reiten quiver

sΓA is of the form ZAn/〈τ−s〉 for type (An, s/n, 1) for n, s ∈ N. Notice that s is the number of simple

modules. We know that the set of vertices in sΓA is the union of s
−→
An-lines. From the description of

support of any indecomposable module in A-mod (see Lemma 2.8), for an object X in S, any object of TX
is in Supp(HomA(X,−)) ∪ Supp(HomA(−, X)). Since S is an orthogonal system, the s objects in S label s

different
−→
An-lines, it follows that TS covers the whole stable Auslander-Reiten quiver of A, then ⊥S⊥ = {0}

for this type.
Case 2. Type (D3m, s/3, 1) for m, s ∈ N,m ≥ 2, 3 - s.
We note that the stable Auslander-Reiten quiver sΓA is of the form ZD3m/〈τ−(2m−1)s〉 for the type

{(D3m, s/3, 1) | m, s ∈ N,m ≥ 2, 3 - s}, so the set of vertices in sΓA is the union of (2m − 1)s different
−−→
D3m-lines. We have the following claim.

Claim : There is precisely one ν-orbit of a high vertex in S. (F)
Indeed, by Lemma 3.7, any low vertex (p, q) with m ≤ q < 3m− 1 is not in S. Suppose that all objects

in S are not high vertices. Therefore any vertex Z is of the form (p, q) with p, q integers, 1 ≤ q < m. For
a vertex Z = (p, q) with 1 ≤ q < m, from the description of support of a low vertex, we know that TZ and
TZ1

are in Supp(HomA(−, Z)) ∪ Supp(HomA(Z,−)), where Z1 = (p+q−3m+1, 1) (see the picture below).
Therefore the vertex Z labels TZ and TZ1

. Since 2m − 1 - p − (p + q − 3m + 1), TZ and TZ1
are different

−−→
D3m-lines in sΓA. And since S is an orthogonal system, ms objects in S label 2ms different

−−→
D3m-lines in

sΓA. It contradicts the fact that sΓA only has (2m − 1)s different
−−→
D3m-lines. Therefore by Lemma 3.7,

there is at least one ν-orbit of high vertex in S.
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TTZ = (p, q)

Z1 = (p+ q + 1− 3m, 1)

We assume that one of the high vertices is given by X = (p, 3m − 1) (resp. (p, 3m)) for some inte-
ger p. From the proof of Lemma 3.7, there is a smallest positive integer e such that νe ∼= τ−(2m−1),
therefore νe(X) = (2m − 1 + p, 3m − 1) (resp. (2m − 1 + p, 3m)). Since p and 2m − 1 + p do not
have the same parity and by the description of support of a high vertex, any high vertex between X
and νe(X) in sΓA, which is (k, 3m − 1) or (k, 3m) with p < k < 2m− 1 + p for some integer k, is in
Supp(HomA(X,−)) ∪ Supp(HomA(−, νe(X))). Suppose now that there is a ν-orbit Oν(W ) of a high ver-
tex W in S\Oν(X). Then there is a high vertex W ′ in Oν(W ) which is between X and νe(X) in sΓA. It
is a contradiction. Hence there is precisely one ν-orbit of a high vertex in S.
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Now we show that ⊥S⊥ = {0}. It suffices to show that the ms objects in S label (2m − 1)s different
−−→
D3m-lines in sΓA. Let Oν(X) be the only ν-orbit for high vertex X = (p, 3m) (resp. (p, 3m− 1)) for some
integer p in S. Since the number of elements in Oν(X) is s, the number of low vertices in S is (m − 1)s.
From the proof of the first half part of (F), (m − 1)s low vertices label 2(m − 1)s different D3m-lines in

sΓA. From the proof of the second half part of (F), we have HomA(X ′, νe(X)) 6= 0 by the covering theory
and the description of support of a high vertex, where X ′ = (p, 3m) (resp. (p, 3m − 1)). Therefore X ′ ∈
Supp(HomA(−, νe(X))), and Oν(X) labels TX , we can see that the s objects in Oν(X) label s different
−−→
D3m-lines in sΓA. Since S is an orthogonal system, the s

−−→
D3m-lines corresponding to the ν-orbit for a high

vertex X and the 2(m− 1)s
−−→
D3m-lines corresponding to low vertices are different. Therefore ⊥S⊥ = {0}.

Case 3. For the other types in standard case.
We assume that ⊥S⊥ 6= {0}. Take a nonzero indecomposable module M ∈ ⊥S⊥, and let S1 := S ∪

{Oν(M)}. By Lemma 3.6, S1 is a Nakayama-stable orthogonal system in A-mod. If ⊥S1
⊥ 6= {0}, then

we repeat the above step. Since A is of finite representation type, there is a positive integer p such that
⊥S⊥p = {0}. In particular, Sp is a Nakayama-stable orthogonal system containing S properly in A-mod. By

Lemma 3.3, both (⊥Sp,F(Sp)) and (F(Sp),S⊥p ) are torsion pairs. Let Y be an object in A-mod. Consider

a minimal (⊥Sp,F(Sp))-triangle,
aY −→ Y −→ bY −→ aY [1].

Suppose that 0 6= Y ∈ S⊥p , by Lemma 2.5, aY ∈ ⊥S⊥p = {0}. Therefore aY = 0 and Y ∼= bY ∈ F(Sp).
Since Y ∈ S⊥p , HomA(Y, Y ) = 0, then Y = 0, it is a contradiction. Since (F(Sp), S⊥p ) is a torsion pair,
F(Sp) = A-mod and Sp is an sms. By the necessary conditions on S to be an sms from Subsection 2.3,
the number of objects of Sp must be the number of non-isomorphic simple modules. Then Sp = S and it
contradicts our assumption Sp ) S. Hence ⊥S⊥ = 0.

Case 4. Type (D3m, 1/3, 1) (m ≥ 2) in non-standard case.
By Remark 2.7, for a non-standard RFS algebra A of type (D3m, 1/3, 1), there is a standard counterpart

As with the same type. Recall from [4, Proposition 5.1] that since A is representation-finite, there is an
isomorphism F : k(ΓA)→ Gr(A-ind) which is the identity on the objects, where Gr(A-ind) is the associated
graded category (cf. [4, Section 5]) of A-ind. Notice that by the construction of Hom-space over Gr(A-ind),
it is clear that for M,N ∈ A-ind,

dimk HomA-ind(M,N) = dimk HomGr(A-ind)(M,N).

Let P (resp. Q) be the full subcategory of k(ΓA) (resp. Gr(A-ind)) consisting of projective objects.
Since F preserves projective objects, the induced functor from P to Q is an isomorphism. We can deduce
that k(ΓA)/P = k(sΓA) → Gr(A-ind) = Gr(A-ind)/Q induced by F is an isomorphism. Since sΓAs is
isomorphic to sΓA as translation quiver, k(sΓAs) ∼= k(sΓA). Thus

As-ind ∼= k(sΓAs
) ∼= k(sΓA) ∼= Gr(A-ind),

therefore Hom-space of any two objects in As-ind is isomorphic to the corresponding Hom-space in Gr(A-
ind). Notice that for X,Y ∈ A-ind,

dimk HomA-ind(X,Y ) = dimk HomGr(A-ind)(X,Y ).

It follows that there is a one to one correspondence between orthogonal systems in A-ind and As-ind. Hence
⊥S⊥ = {0}.

�

Proof of Theorem 3.1. Necessity is clear from Subsection 2.3, so now we assume that S satisfies the
conditions (1), (2) and (3). Since S is an orthogonal system, by Lemma 3.3, both (⊥S,F(S)) and (F(S),S⊥)
are torsion pairs. Let Y be an object in A-mod. Consider a minimal (⊥S,F(S))-triangle,

aY −→ Y −→ bY −→ aY [1].

Suppose that 0 6= Y ∈ S⊥, by Lemma 2.5, aY ∈ ⊥S⊥. According to Lemma 3.8, aY = 0 and Y ∼= bY ∈
F(S). Since Y ∈ S⊥, this implies that HomA(Y, Y ) = 0, and so Y = 0, it is a contradiction, therefore
S⊥ = {0}. Since (F(S), S⊥) is a torsion pair, we have F(S) = A-mod and therefore S is an sms. �

We have the following immediate consequence from the proof of Theorem 3.1.

Corollary 3.9. Let A be an RFS algebra and S a Nakayama-stable orthogonal system in A-mod. If
⊥S⊥ = {0}, then S is an sms.
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3.2. Extendible Nakayama-stable orthogonal systems. In this subsection, we prove the following
extendible property of Nakayama-stable orthogonal systems for RFS algebras.

Theorem 3.10. Let A be an RFS algebra. Then every Nakayama-stable orthogonal system S in A-mod
extends to an sms.

Proof This is a consequence of the following three lemmas: 3.11, 3.12, 3.13.

�

Lemma 3.11. Let A be an RFS algebra of type (A2p+1, s, 2), Dn (except {(D3m, s/3, 1) with m, s ∈ N,m ≥
2, 3 - s}) or En. Then every Nakayama-stable orthogonal system S in A-mod extends to an sms.

Proof. By Corollary 3.9, if ⊥S⊥ = {0}, then S is an sms. Otherwise ⊥S⊥ 6= {0}, take a nonzero indecom-
posable module M ∈ ⊥S⊥. Let S1 := S ∪ {Oν(M)}. By Lemma 3.6, S1 is a Nakayama-stable orthogonal

system in A-mod. If ⊥S1
⊥ = {0}, then S1 is an sms. Otherwise ⊥S1

⊥ 6= {0}, and we can similarly get
a Nakayama-stable orthogonal system S2 containing S1 properly. Repeat the above process, since A is of
finite representation type, there is a positive integer q such that ⊥Sq⊥ = {0}, and Sq is an sms. �

The next lemma deals with RFS algebras of type {(An, s/n, 1) | n, s ∈ N}, that is, the self-injective
Nakayama algebras. We first recall some notations and results on self-injective Nakayama algebras (cf. [3,
Section V]).

The self-injective Nakayama algebra A with s simple modules and Loewy length n+ 1 is defined by the
following quiver Q

1

��

2

ww

s

55

· · ·

UU

with admissible ideal I = radn+1(kQ). Notice that if A is symmetric Nakayama, then n = ms for some
positive integer m. Let X1, X2, · · · , Xs be all the simple A-modules. Then τXi = Xi+1, where τ is the

AR-translate and i+ 1 denotes the positive integer in {1, . . . , s} with i + 1 ≡ i+ 1 mod s. Notice that
any indecomposable A-module M is uniserial and completely determined up to isomorphism by its socle
soc(M) and its Loewy length `(M). We denote an indecomposable A-module M by Xi(m), if soc(M) is
isomorphic to Xi and `(M) is m. We set Xi(0) = 0 for all 1 ≤ i ≤ s. It is easy to verify that if A is
symmetric Nakayama, then M is a stable brick in A-mod if and only if `(M) ≤ s or n+ 1− s ≤ `(M) ≤ n,
where the second inequality n + 1 − s ≤ `(M) ≤ n is a consequence of the corresponding homomorphism
in A-mod factoring through a projective-injective module.

From the picture of the AR-quiver ΓA of the above self-injective Nakayama algebra A (∼= ZAn+1/〈τ−s〉),
we can easily read the following short exact sequence in A-mod (for 1 ≤ i ≤ s, 0 < k ≤ r ≤ n and
1 ≤ j ≤ n+ 1− r) :

(1) 0→ Xi(r)

Å
ε1
π1

ã
−−−−→ Xi(r + j)⊕ τ−k(Xi(r − k))

(
π2, ε2

)
−−−−−−→ τ−k(Xi(r − k + j))→ 0,

where εm, πm for m ∈ {1, 2} are the compositions of irreducible maps in the sectional paths of ΓA. The
sequence (3.1) induces the following non-split triangle in A-mod:

(2) Xi(r)

Å
ε1
π1

ã
−−−−→ Xi(r + j)⊕ τ−k(Xi(r − k))

(
π2, ε2

)
−−−−−−→ τ−k(Xi(r − k + j))→ Ω−1(Xi(r)).

Notice that in the above triangle, the Loewy lengths of all modules are less than or equal to n+ 1, and we
treat Xi(n+ 1) = 0 in A-mod for each i since Xi(n+ 1) is an indecomposable projective-injective module.

Lemma 3.12. Let A be an RFS algebra of type {(An, s/n, 1) | n, s ∈ N} (that is, A is a self-injective
Nakayama algebra with s simple modules and Loewy length n + 1) and S a Nakayama-stable orthogonal
system in A-mod. Then S extends to an sms.
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Proof. Let A be as above and B be the symmetric Nakayama algebra with e simple modules and Loewy
length n+1, where e is the greatest common divisor of s and n. Then there is a covering of stable translation
quivers π : sΓA −→ sΓB ∼= sΓA/〈ν〉 (where ν is the Nakayama automorphism of sΓA), which induces a
covering functor F : A-mod −→ B-mod (cf. [14, Lemma 4.15]). Consequently, if S is an orthogonal system
in B-mod, then S is an sms of B-mod if and only if F−1(S) is an sms of A-mod (cf. [14, Lemma 4.15]).
Therefore, without loss of generality, we can assume that A is a symmetric Nakayama algebra and n = ms.
If m = 2, then all indecomposable modules are stable bricks. By the proof of Corollary 3.11, S extends to
an sms. Therefore we can assume that m > 2.

If ⊥S⊥ = {0}, then by Corollary 3.9, S is an sms.
Otherwise ⊥S⊥ 6= {0}, we can take a nonzero indecomposable module Xi(as + b) ∈ ⊥S⊥ for some

positive integers 0 ≤ a ≤ m− 1 and 1 ≤ b ≤ s. If Xi(as+ b) is a stable brick, that is, a = 0 and 1 ≤ b ≤ s
(or a = m− 1 and 1 ≤ b ≤ s), then let S1 := S ∪ {Xi(as+ b)}.

If Xi(as + b) is not a stable brick, then 1 ≤ a ≤ m − 2 and 1 ≤ b ≤ s, and there are two cases to be
considered.

Case 1. n ≥ 2as+ b. Consider the following triangle

(3) Xi(as+ b)

Å
ε1
π1

ã
−−−−→ Xi(2as+ b)⊕Xi(b)

(
π2, ε2

)
−−−−−−→ Xi(as+ b)→ Ω−1(Xi(as+ b))

by taking r = as+ b, k = as and j = as in (2). We know that Xi(b) is a stable brick. Apply HomA(S,−)
and HomA(−, S) for all S ∈ S to the triangle (3), we get that Xi(b) ∈ ⊥S⊥. Let S1 := S ∪ {Xi(b)}.

Case 2. n < 2as+ b. Consider the following triangle

Xi(as+ b)

Å
ε1
π1

ã
−−−−→ Xi(n− s+ b)⊕Xi((2a+ 1)s− n+ b)

(
π2, ε2

)
−−−−−−→ Xi(as+ b)→ Ω−1(Xi(as+ b))

by taking r = as + b, k = n− (a + 1)s and j = n− (a + 1)s in (2). Notice that (2a + 1)s− n + b > s + 1
when n < 2as+ b. Similarly to Case 1, we get that Xi(n− s+ b) is a stable brick and Xi(n− s+ b) ∈ ⊥S⊥.
Let S1 := S ∪ {Xi(n− s+ b)}.

From the above discussion, in any case we get a Nakayama-stable orthogonal system S1 containing S
properly. Repeat the above process, since A is of finite representation type, there is a positive integer q
such that ⊥Sq⊥ = {0}. By Corollary 3.9, Sq is an sms. �

The last lemma deals with the remaining RFS algebras, that is, the RFS algebras of type (D3m, s/3, 1)
with m ≥ 2, 3 - s.

Lemma 3.13. Let A be an RFS algebra of type {(D3m, s/3, 1) | m ≥ 2, 3 - s} and S a Nakayama-stable
orthogonal system in A-mod. Then S extends to an sms.

Proof. By covering theory and the standard-non-standard correspondence (cf. [7, Section 4] and the proof
of Lemma 3.8), we only need to consider the standard RFS algebras of type (D3m, 1/3, 1). Notice that in
this case the algebras are symmetric and the orthogonal systems in A-mod are automatically Nakayama-
stable. Now suppose that A is an RFS algebras of type (D3m, 1/3, 1) and S is an orthogonal system in
A-mod. Then the stable AR-quiver sΓA has the form ZD3m/〈τ−(2m−1)〉 and the stable category A-mod is
determined by the mesh category k(sΓA).

In the following proof, we often identify the indecomposable objects in A-mod with vertices in sΓA. We
first show that if S contains a high vertex S0, then S extends to an sms. Without loss of generality, let
S0 = (1, 3m) be a high vertex in S. By the description of support of a high vertex in k(ZD3m),

⊥S⊥0 = {(i, j) | m+ 1 ≤ i ≤ 2m− 1, i+ j ≤ 2m} ∪ {(i, j) | 2 ≤ i ≤ m− 1, i+ j ≤ m}.
It follows that if X = (i, j) is in ⊥S⊥0 , then we have 1 ≤ j < m. By Lemma 3.7, all objects in ⊥S⊥0 are
stable bricks, it follows that all objects in ⊥S⊥ are all stable bricks. Similarly to the proof of Lemma 3.11,
S extends to an sms.

Next we claim that any orthogonal system S in A-mod extends to an orthogonal system which contains
a high vertex. We can assume that S does not contain any high vertex. If ⊥S⊥ = {0}, by Corollary 3.9,
then S is an sms. By Case 2 of Lemma 3.8, S contains a unique high vertex, which is a contradiction.
Therefore ⊥S⊥ 6= {0} and we consider two cases.
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Case 1. All indecomposable objects in ⊥S⊥ are stable bricks. Similarly to the proof of Lemma 3.11, we
can extend S to an sms with a unique high vertex.

Case 2. There is an indecomposable object X in ⊥S⊥ which is not a stable brick. Without loss of
generality, we can assume that X = (1, t) for some m ≤ t < 3m−1. By the description of support of vertex
in k(ZD3m), there are three subcases to be considered (where S0 = (1, 3m)) :

(i) If m + 1 ≤ t ≤ 2m − 1, then ⊥X⊥ = ⊥S⊥0 \ ({(i, j) | t + 1 ≤ i + j ≤ 2m,m + 1 ≤ i ≤ t} ∪ {(i, j) |
t−m+ 2 ≤ i+ j ≤ m, 2 ≤ i ≤ t−m+ 1}).

(ii) If 2m+1 ≤ t ≤ 3m−2, then ⊥X⊥ = ⊥S⊥0 \({(i, j) | t−2m+2 ≤ i+j ≤ m, 2 ≤ i ≤ t−2m+1}∪{(i, j) |
t−m+ 2 ≤ i+ j ≤ 2m,m+ 1 ≤ i ≤ t−m+ 1}).

(iii) If t = m or 2m, then ⊥X⊥ = ⊥S⊥0 .

Therefore, S ⊆ ⊥X⊥ ⊆ ⊥S⊥0 and S0 ∈ ⊥S⊥. This shows that we can add the high vertex S0 to S and
reduce the proof to Case 1. �

Finally, we assume that A is a representation-finite symmetric algebra. For any idempotent element e
in A, eAe is also a representation-finite symmetric algebra and the idempotent embedding functor ι : eAe-
mod ↪→ A-mod is fully faithful (see [21, Page 12]). Thus we get the following corollary of Theorem 3.10.

Corollary 3.14. Let A be a representation-finite symmetric algebra and e an idempotent element of A. If
S is an sms in eAe-mod, then ι(S) extends to an sms in A-mod.
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