
ON SIMPLE-MINDED SYSTEM AND τ-INVARIANT MODULES

AARON CHAN∗ AND YUMING LIU

Abstract. For a finite-dimensional self-injective algebra A over an algebraically closed
field, we show that modules in the homogeneous tubes of its Auslander-Reiten quiver
do not belong to any simple-minded system - a notion of homological generator - of its
stable module category. In particular, for most self-injective algebras, their simple-minded
systems are also maximal systems of orthogonal stable bricks.

1. Results and Consequences

Let k be a commutative artin ring, and A an artin k-algebra. We denote by modA
the category of all finitely generated left A-modules, and by modA the stable category of
modA, that is, the category with the same class of objects but with morphism spaces being
quotiented out by maps factoring through projective modules. Although most definitions
and the problem we consider in this paper can be discussed in this more general setting, we
only concentrate, for technical reasons, on the case when k is an algebraically closed field
and A is a finite-dimensional self-injective k-algebra.

Let S be a class of A-modules. The full subcategory 〈S〉 of modA is the additive closure
of S. Denote by 〈S〉 ∗ 〈S ′〉 the class of indecomposable A-modules Y such that there is a
short exact sequence 0→ X → Y ⊕P → Z → 0 with X ∈ 〈S〉, Z ∈ 〈S ′〉, and P projective.
Define 〈S〉1 := 〈S〉 and 〈S〉n := 〈〈S〉n−1 ∗ 〈S〉〉 for n > 1.

Without loss of generality, we further assume the following throughout the article: A
is indecomposable non-simple and contains no nodes (see [10]). Under such setting, the
definition of simple-minded systems introduced in [10] can be simplified as follows.

Definition 1.1. ([10]) Let A be a self-injective algebra over an algebraically closed field. A
class of objects S in modA is called a simple-minded system (sms) over A if the following
conditions are satisfied:

(1) (orthogonality condition) For any S, T ∈ S, HomA(S, T ) =

{
0 (S 6= T ),
k (S = T ).

(2) (generating condition) For each indecomposable non-projective A-module X, there
exists some natural number n (depending on X) such that X ∈ 〈S〉n.

It has been shown in [10] that each sms has finite cardinality and the sms’s are invari-
ant under stable equivalences. One of the basic problems about sms is the simple-image
problem: Given an sms S of A, is this the image of the simple modules under some stable
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equivalence modB → modA? This has been positively answered in [3] for representation-
finite self-injective algebras.

Since simple-minded systems are modelled after the homological behaviour of the set of
isomorphism classes of simple modules, it is desirable to show that the special properties
of such a set also hold for simple-minded systems as well. In this note, we prove that this
is true for one of such properties. Let us be more precise here.

Recall that the Auslander-Reiten quiver ΓA of A is a valued translation quiver where
vertices are the isomorphism classes of indecomposable (finitely generated) A-modules,
arrows are the irreducible maps valued by their multiplicities, and translation is given by
the Auslander-Reiten translate τ = DTr (see [1]). A (connected) component C of ΓA is a
homogeneous tube if it is of the form ZA∞/〈τ〉 (see [12]). In particular, all modules in a
homogeneous tube of sΓA are of τ -period 1 (or τ -invariant for short). Note that none of
the simple modules of a self-injective algebra lie in a homogeneous tube.

More generally, recall from Erdmann and Kerner [7] that a component C of ΓA stably
quasi-serial of rank n if its stable part (i.e. the full subquiver obtained by removing all
the projective-injective modules) is of the form ZA∞/〈τn〉. In particular, using a result of
Hoshino (see the Proof of Corollary 1.5), a stably quasi-serial component of rank 1 is the
same as a homogeneous tube of ΓA for a self-injective algebra A. The following is our main
result.

Theorem 1.2. Let A be a self-injective algebra over an algebraically closed field. Then
none of the objects in an sms of A lie in the homogeneous tubes of the Auslander-Reiten
quiver of A.

According to a result of Crawley-Boevey [4], if A is tame, then almost all modules (that
is, for each d > 0, all but a finite number of isomorphism classes of indecomposable A-
modules of dimension d) lie in homogeneous tubes. Therefore, our result excludes most of
the modules of a tame self-injective algebra from forming an sms.

We remark that it is possible for modules lying in a stably quasi-serial component of
higher rank to form an sms in general. For example, let A be the group algebra of the
alternating group A4 over a field of characteristic 2. It is known that A is a symmetric
special biserial algebra, and its Auslander-Reiten quiver ΓA of A is fully described in [6,
p.62-63]. There are three simple A-modules (up to isomorphism) which we denote by k, 1, 2
respectively. It is well-known that there is a stable equivalence between A and the principal
block B of the group algebra of A5, given by the induction and restriction functor. The
set of isomorphism-class-representatives of simple B-modules is sent to S = {k, 1

2,
2
1} under

this stable equivalence. So, S is an sms of A with the modules 1
2 and 2

1 lying in the stably
quasi-serial components of rank 3.

In fact, there are many self-injective algebras whose Auslander-Reiten quiver consists
only of stably quasi-serial components (see, for example, [2]). In such situations, it follows
from our result that any member of an sms lies in some stably quasi-serial component of
rank bigger than 1.

While it is possible to have indecomposable modules in a stably quasi-serial component
of higher rank forming an sms, we know from [7] that the quasi-lengths of such modules
are not more than the rank (see Lemma 2.1). In fact, this is the first step of our proof of
the main theorem.



ON SIMPLE-MINDED SYSTEM AND τ -INVARIANT MODULES 3

1.1. Relations between generators of stable module categories. In [5], Dugas de-
fines simple-minded systems in a more general setting: Hom-finite Krull-Schmidt triangu-
lated k-category T . We now recall his definition in the case when T is the stable category
modA of a self-injective algebra A. For two classes of objects S,S ′ in modA, we set

S ∗4 S ′ = {Y ∈ modA| there is a triangle X → Y → Z with X ∈ S, Z ∈ S ′}.
It is shown in [5, Lemma 2.1] that ∗4 satisfies the associative law. Define (S)0 := {0} and
(S)n := (S)n−1 ∗4 (S ∪ {0}) for n ≥ 1. It can be shown that (S)n ∗4 (S)m = (S)n+m for all
n,m ≥ 0 (see [5, Lemma 2.3]).

Definition 1.3. ([5]) Let A be a self-injective algebra over an algebraically closed field. A
class of objects S in modA is called a simple-minded system (sms) over A if the following
conditions are satisfied:

(1) (orthogonality condition) For any S, T ∈ S, HomA(S, T ) =

{
0 (S 6= T ),
k (S = T ).

(2) (generating condition) For each object X in modA, there exists some natural number
n (depending on X) such that X ∈ (S)n.

We first remark on the relation between the two definitions of sms’s. The main difference
is the “speed” they generate modA: If X ∈ S and n ≥ 1, then Xn := X⊕n ∈ (S)n \ (S)n−1,
while Xn ∈ 〈S〉m for any m ≥ 1. In spite of this, Definition 1.1 and Definition 1.3 are
equivalent; the reason is as follows. It is clear from the definitions that (S)n ⊆ 〈S〉n for
any n ≥ 1. Therefore, a class S which satisfies Definition 1.3 also satisfies Definition 1.1.
Conversely, one can see that by induction on n that for each X ∈ 〈S〉n, there is some n′ � n
with X ∈ (S)n′ , and the claim follows.

The problem we consider in this paper can be generalised as follows. If a Hom-finite
Krull-Schmidt k-linear triangulated category exhibits Auslander-Reiten triangles, is there
a simple-minded system which contains object(s) lying in the homogeneous tube(s)? We
will remark on the difficulty of this problem at the end of this introduction.

In [10], a weaker version of sms has also been introduced, and it has been shown that
when A is representation-finite self-injective, the following system is sufficient for defining
(hence equivalent to) an sms.

Definition 1.4. ([10]) Let A be a self-injective algebra over an algebraically closed field. A
class of objects S in modA is called a weakly simple-minded system (wsms) if the following
two conditions are satisfied:

(a) (orthogonality condition) For any S, T ∈ S, HomA(S, T ) =

{
0 (S 6= T ),
k (S = T ).

(b) (weak generating condition) For any indecomposable non-projective A-module X, there
exists some S ∈ S (depends on X) such that HomA(X,S) 6= 0.

In general, we do not know if there exists a wsms which is not an sms. The generating
condition in sms is much stronger as it encodes the homological structure of modA. Hence,
it is more effective in proving various results. For example, the fact that each sms is of finite
cardinality follows easily from this generating condition ([10, Proposition 2.7]). Another
note-worthy example is that we can easily determine the sms’s of an infinite series of 4-
dimensional weakly symmetric local algebras (see the discussion before [10, Corollary 3.3]),
but to determine the wsms’s over them is a much more complicating task.
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Closely related to wsms is Pogorzaly’s maximal system of orthogonal stable bricks [11].
Simply put, it is a wsms with an extra condition: no objects in the system is τ -invariant.

While it is easy to see that any sms is a wsms, there is no apparent relations between
sms’s and maximal systems of orthogonal stable bricks, that is, it is not clear if an object
in an sms can be τ -invariant. It follows easily from Theorem 1.2 that the implication
from being an sms to being a wsms actually “factors through” being a maximal system of
orthogonal stable bricks, for almost all self-injective algebras.

Corollary 1.5. Let A be a self-injective algebra over an algebraically closed field which is
not a local Nakayama algebra. Any simple-minded system of A is a maximal system of
orthogonal stable bricks.

Proof. We have already mentioned that modules in a homogeneous tube are τ -invariant.
Here we only need an almost converse of this proved by Hoshino in [9, Theorem 1]. His
result asserts that for a basic (indecomposable) artin algebra Λ over an algebraically closed
field, if there is an indecomposable τ -invariant module M , then either Λ is a local Nakayama
algebra, or M lies in a component of ΓA which consists only of τ -invariant modules, i.e. a
homogeneous tube. The claim now follows from applying this result to Theorem 1.2. �

Our proof of Theorem 1.2 relies heavily on known results of the Auslander-Reiten theory
of finite dimensional self-injective algebras from [7, 9], and a few from [10]. The lemmas
needed and derived from these articles will be presented in the next section. We will
present the core part of the proof of Theorem 1.2 in the final section. We remark finally
that the need of these strong results in our proof shows some major obstacles in generalising
Theorem 1.2 and Corollary 1.5 to simple-minded systems of Hom-finite Krull-Schmidt k-
linear triangulated categories.

2. Technical Lemmas

For general properties of stable categories for self-injective algebras and of Auslander-
Reiten theory we refer to [1, 6, 12]. It is well-known that the stable category of a self-injective
algebra is triangulated, with the suspension functor given by the inverse syzygy functor Ω−1

(see [8]). We will freely use the properties of this triangulated structure.
As in Section 1, A will always be an indecomposable non-simple self-injective algebra.
For completeness, we now recall various notations and discussions in [7, Section 2]. Let C

be a stably quasi-serial component of rank n ≥ 1 of the stable Auslander-Reiten quiver of A.
We use the same notations for specifying modules in C. Namely, if X is an indecomposable
non-projective module lying at the end (i.e. the mouth of C, then for any natural number
r ≥ 1, there is a unique infinite sectional path

X = X(1)→ X(2)→ · · · → X(r)→ X(r + 1)→ · · · ,
and dually, there is a unique infinite sectional path in C with

· · · → [r + 1]X → [r]X → · · · → [2]X → [1]X = X.

We say that X(r) (resp. [r]X) is of quasi-length r. For notational convenience, we treat
X(0) = [0]X = 0. Note that if C is homogeneous, then X(r) = [r]X for all r ≥ 1.

Lemma 2.1. ([7, Lemma 3.5.1]) Suppose X = X(1) is an indecomposable non-projective
module lying on the mouth of a stably quasi-serial component of ΓA of rank n. Then we



ON SIMPLE-MINDED SYSTEM AND τ -INVARIANT MODULES 5

have dim EndA(X(mn + s)) > m for any integer m ≥ 0 and s ∈ {1, . . . , n}. In particular,
by the orthogonality condition, if X(r) belongs to an sms of modA, then r ≤ n.

This result follows from some special properties of the function dim HomA(W,−) on the
modules in certain Auslander-Reiten sequences, and we recommend the interested reader
to consult [7, Section 2] for the details.

We do not know if a module of quasi-length n can belong to an sms in general. It follows
from Theorem 1.2 that this is not the case when n = 1. On the other hand, it is possible
for a module in an sms of A to have quasi-length n − 1. For example, we can define the
following quiver Q for any integer n ≥ 2.

Q : 1
α
((
2

α
**

β

hh · · ·
β

ii

α
--
n− 1

β

kk

γ
%%

n+ 1
γ
oo

δ

ww
n

γ

OO

δ

[[

Let A be the bounded path algebra of Q with relations α2 = β2 = 0, αγ = γβ = 0,
δγ = γδ = 0, αβ = βα, βα = γ3, and δ2 = γ3, whenever they make sense. Then A is a
(tame) symmetric special biserial algebra, where the simple module corresponding to the
vertex n− 1 is a module of quasi-length n− 1 lying on a stably quasi-serial tube of rank n.

From now on, we concentrate only on the case when C is a stably quasi-serial component
of rank 1. We fix the notation X as the unique (non-projective) indecomposable module
lying at the end of C.

As explained in the proof of Corollary 1.5, C contains only τ -invariant modules, i.e. it
contains no projective module and is a homogeneous tube. Consequently, any τ -invariant
module in an sms of A will lies at the end of a homogeneous tube by Lemma 2.1. Using [7,
Proposition 2.3, Lemma 2.3.1], we obtain the following short exact sequence

(1) 0→ X(i)
ε−→ X(i+ j)

π−→ X(j)→ 0

for any i, j > 0, where ε (resp. π) is given by the composition of the irreducible maps
on the sectional path starting from X(i) (resp. X(i + j)) and ending at X(i + j) (resp.
X(j)). Since a monomorphism (resp. an epimorphism) between non-injective (resp. non-
projective) indecomposable modules does not factor through an (resp. a projective) injective
module, the corresponding morphisms ε and π in modA are non-zero.

Lemma 2.2. If S is a non-projective indecomposable module with HomA(X,S) = 0, then
HomA(X(r), S) = 0 for all r ≥ 1. Dually, if HomA(S,X) = 0, then so is HomA(S,X(r))
for all r ≥ 1.

Proof We prove by induction on r. For r = 1, X(r) = X and the claim follows by the
assumption that, HomA(X,S) = 0. Now HomA(X(r), S) = 0 follows from applying [10,
Lemma 2.5] using the induction hypothesis on the sequence:

(2) 0→ X(r − 1)
εr−→ X(r)

πr−→ X → 0,

obtained from (1) with i = r − 1 and j = 1. The claim on HomA(S,X(r)) can be proved
dually.

�
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Let ν := DHomA(−, A) denote the Nakayama functor. Then using Auslander-Reiten
duality and the well-known fact that τ ∼= νΩ2, we have the following k-space isomorphisms
for all M,N ∈ modA:

(3) HomA(M,N) ∼= DExt1A(N, τM) ∼= DHomA(N, νΩM).

In other words, there is a Serre duality in the triangulated category modA with Serre
functor νΩ.

Lemma 2.3. If S is a non-projective indecomposable module with HomA(S,X) = 0, then
HomA(Ω(X(r)), S) = 0 for all r ≥ 1.

Proof Take M,N as Ω(X(r)), S respectively in (3), then we get

dim HomA(Ω(X(r)), S) = dim HomA(S, νΩ(ΩX(r))).

Since νΩ2X(r) ∼= τX(r) ∼= X(r), the later space is just HomA(S,X(r)), which is zero by
Lemma 2.2.

�

Lemma 2.4. If dim EndA(X) = 1, then for all r ≥ 1, the following vector spaces have
dimension 1:

(i) HomA(X(r), X), (i’) HomA(X,X(r)), (ii) HomA(Ω(X(r)), X).

In particular, if X belongs to an sms S of modA, then Ω(X(r)) /∈ S \ {X} for all r ≥ 1.

Proof (i): We proceed by induction on r. For r = 1 this is trivial. Suppose that r > 1.
Applying Hom(−, X) to (2), we obtain an exact sequence

Hom(X,X)
πr∗−−→ Hom(X(r), X)

εr∗−→ Hom(X(r − 1), X).

Since dim Hom(X,X) = 1, and πr
∗(idX) = πr 6= 0, πr

∗ is injective. By the induction
hypothesis, Hom(X(r−1), X) ∼= k. By the exactness of the above sequence, this means that
Hom(X(r), X) is a k-space of dimension one or two. Since Hom(X(r), X) has dimension
2 is equivalent to εr

∗ being surjective, which in turn is equivalent to Hom(εr, X) being
surjective by standard argumenta. It suffices to show that πr does not factor through εr to
finish the proof. Suppose the contrary. Then there is a non-zero map t : X(r) → X with
the commutative diagram:

X(r − 1)

πr
$$

εr
// X(r)

t
||

X

Using the short exact sequence (1) again, we can quotient out ker(πr) ∼= X(r − 2) in the
top row and obtain new commutative diagram:

X

idX ��

ε2
// X(2)

t||

X

This means that the identity map factors through an irreducible map ε2, a contradiction.
(i’): This is dual to (i).

aHom(εr, X) being surjective is equivalent to Hom(Ω(πr), X) ∼= Ext1(πr, X) being injective, which is
again equivalent to Hom(εr, X) being surjective.
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(ii): Take M,N as Ω(X(r)), X respectively in (3). The claim now follows from (i’), using
similar argument as in Lemma 2.3.

The final statement follows immediately from the orthogonality condition of S.

�

Lemma 2.5. For every positive integer r ≥ 1, there is a non-split triangle in modA:

(4) Ω(X(r + 1))→ Ω(X(r))→ X → .

Proof Take (1) with i = 1 and j = r, we obtain the non-split triangle

X
ε−→ X(r + 1)

π−→ X(r)→,
which can be rotated to form a triangle with terms agreeing to those in (4). So it remains
to show that the connecting morphism Ω(X(r)) → X of the above triangle is non-zero.
Suppose the contrary, then the cone of the zero connecting morphism will be X(r)⊕X �
X(r + 1), hence a contradiction.

�

Lemma 2.6. If Ω(X) ∼= X, then dim EndA(X) 6= 1. In particular, an sms of modA does
not contain X with τX ∼= X and Ω(X) ∼= X.

Proof. By the previous Lemma 2.5, for any r ≥ 1 we have triangle Ω(X(r))
f
−→ X →

X(r + 1) → for some non-zero morphism f ∈ HomA(Ω(X(r)), X). On the other hand, by

taking (i, j) = (r − 1, 1) in (1), we obtain another triangle X(r)
π−→ X → Ω−1(X(r − 1))

where π is non-zero. Note that in the case r = 1, we regard X(r − 1) = 0.
Since Ω is a triangulated auto-equivalence commuting with τ , Ω(C) is also a homogeneous

tube and the quasi-length is invariant under Ω. In particular, Ω(X) ∼= X implies that
Ω±(X(r)) ∼= X(r) in modA, and the two triangles above can be rewritten as:

X(r)
f
// X // X(r + 1) //

X(r)
π
// X // X(r − 1) //

If dim EndA(X) = 1, then by Lemma 2.4, dim HomA(Ω(X(r)), X) = 1. Therefore, π is a
scalar multiple of f , and we have X(r + 1) ∼= X(r − 1), which is absurd. �

We are now going to prove our main result Theorem 1.2.

3. Proof of Theorem 1.2

Let S be an sms of modA for a non-simple indecomposable basic self-injective algebra
A. Suppose on the contrary that S contains an A-module X which lies in a homogeneous
tube C of ΓA. By Lemma 2.1, X must lie at the end of C, and the component C consists of
modules X = X(1), X(2), · · · . Moreover, by Lemma 2.6, we have Ω(X) � X.

We prove the theorem by showing that there is no positive integer n such that the non-
projective indecomposable module Ω(X) is in 〈S〉n. Hence, contradicting the generating
condition of the sms S.

For all positive integer r ≥ 1, we have by Lemma 2.4 (and Ω(X) � X) that Ω(X(r)) /∈ S,
hence not in 〈S〉1. By Lemma 2.3 and the orthogonality condition of S, there is no non-zero
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morphism from Ω(X(r)) to any S in S \ {X}. Combining with Lemma 2.4 (ii), the last
step in generating Ω(X(r)) from S is then given by the following triangle in modA:

(5) Y → Ω(X(r))
f
→ X l →

for some non-zero object Y . We can assume that no direct summand of Y is isomor-
phic to Ω(X(r)); otherwise, the triangle (5) does not generate Ω(X(r)), contradicting the
construction.

Lemma 2.4 (ii) implies that the map f is of the form

f = (a1f0, a2f0, · · · , alf0)t,

where f0 spans HomA(Ω(X(r)), X), and a1, a2, · · · , al are scalars in k. Note that not all
ai’s are zero, otherwise there is a direct summand of Y isomorphic to Ω(X(r)). Without
loss of generality, we may assume that a1 6= 0. Then we have the following commutative
diagram

Ω(X(r))

idΩ(X(r))

��

f
// X l

θ
��

Ω(X(r))
(f0,0,...,0)t

// X l,

where θ is the matrix of maps
a−1

1 idX 0 · · · 0
a2a

−1
1 idX idX 0
...

. . .

ala
−1
1 idX 0 idX

 .

Clearly, idΩ(X(r)) and θ are isomorphisms. By the axioms of triangulated categories, we

obtain an isomorphism between the triangle (5) and the direct sum of the following two
triangles:

Y ′ −→ Ω(X(r))
f0−→ X →

and
Ω(X l−1)→ 0→ X l−1 → .

This implies that Y ∼= Y ′ ⊕ Ω(X l−1) ∼= Y ′ ⊕ Ω(X)l−1 as objects in modA. Note that if
r = 1, then l = 1 as there is no direct summand of Y isomorphic to Ω(X(r)). Also, it
follows from Lemma 2.5, and f0 being the unique (up to scalar) non-zero morphism in
HomA(Ω(X(r)), X), that Y ′ ∼= Ω(X(r + 1)) in modA.

Since S is an sms, there is a positive integer nr such thatX(r) ∈ 〈S〉nr andX(r) /∈ 〈S〉nr−1

for each r ≥ 1. The conclusion from the above argument is that, using the description of
Y , we have n1 > n2, and nr > max{nr+1, n1} ≥ nr+1 for all r > 1. In particular, we have a
strictly decreasing chain of infinitely many positive integers n1 > n2 > n3 > · · · , which is
absurd. This ends the proof of Theorem 1.2.
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