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Abstract. Let A be a finite-dimensional self-injective algebra over an algebraically closed
field, C a stably quasi-serial component (i.e. its stable part is a tube) of rank n of the
Auslander-Reiten quiver of A, and S be a simple-minded system of the stable module
category modA. We show that the intersection S ∩ C is of size strictly less than n, and
consists only of modules with quasi-length strictly less than n. In particular, all modules
in the homogeneous tubes of the Auslander-Reiten quiver of A cannot be in any simple-
minded system.

1. Statements of the main results

Let k be a commutative artin ring, and A an artin k-algebra. We denote by modA
the category of all finitely generated left A-modules, and by modA the stable category
of modA, that is, the category with the same class of objects but with morphism spaces
HomA(X, Y ) being the quotient of the ordinary one HomA(X, Y ) by maps factoring through
projective modules. Although most definitions and the problem we consider in this paper
can be discussed in this more general setting, we only concentrate, for technical reasons, on
the case when k is an algebraically closed field and A is a finite-dimensional self-injective
k-algebra. We also further assume, without loss of generality, that A is ring-indecomposable
and non-simple throughout the article.

Definition 1.1. An A-module M is a stable brick if EndA(M) ∼= k.
A set S of A-modules is a stable semibrick if it consists of pairwise orthogonal stable

bricks, i.e. every X ∈ S is a stable brick and HomA(X, Y ) = 0 for all distinct X, Y ∈ S.

Consider the following way of reconstructing objects of modA. Let S be a class of
A-modules. The full subcategory 〈S〉 of modA is the additive closure of S. Denote by
〈S〉∗〈S ′〉 the class of indecomposable A-modules Y such that there is a short exact sequence
0→ X → Y ⊕ P → Z → 0 with X ∈ 〈S〉, Z ∈ 〈S ′〉, and P projective. Define 〈S〉1 := 〈S〉
and 〈S〉n := 〈〈S〉n−1 ∗ 〈S〉〉 for n > 1.

Under our assumption on A, we can simplify the original definition (from [15]) of the
main subject of interest as follows.
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Definition 1.2. ([15]) Let A be a self-injective algebra over an algebraically closed field.
A set S of objects in modA is called a simple-minded system (or s.m.s. for short) if the
following conditions are satisfied:

(1) (orthogonality) S is a stable semibrick.
(2) (finite filtration) For each indecomposable non-projective A-module X, there exists

some natural number n (depending on X) such that X ∈ 〈S〉n.

It is clear that the set of (isoclass representatives of) simple modules is an example of
s.m.s. It has been shown in [15] that each s.m.s. has finite cardinality and the s.m.s.’s are
invariant under stable equivalences. One of the fundamental questions concerning s.m.s.’s
is the following “simple-image problem”. Namely, given an s.m.s. S of A, is this the image
of the simple modules under some stable equivalence modB → modA? It is shown in [3]
that the answer to this question is true for representation-finite self-injective algebras.

As a generalisation of the notion of simple modules, we are interested in finding how far
one can generalise various properties of simple modules to that of s.m.s.’s. In this note, we
prove one of such properties. Let us be more specific now.

Recall that the Auslander-Reiten quiver (AR-quiver) ΓA of A is a translation quiver whose
vertices are the isomorphism classes of indecomposable (finitely generated) A-modules,
arrows are the irreducible maps valued by their multiplicities, and whose translation is the
Auslander-Reiten translate τ (see [1]). A (connected) component C of ΓA is a homogeneous
tube if it is of the form ZA∞/〈τ〉 (see [18]). In particular, all modules in a homogeneous
tube of ΓA are of τ -period 1. Note that none of the simple modules of a self-injective algebra
lie in a homogeneous tube.

More generally, following Erdmann and Kerner [10], we call a component C of ΓA stably
quasi-serial of rank n if its stable part (that is, the full subquiver obtained by removing
all vertices corresponding to indecomposable projective-injective modules) is of the form
ZA∞/〈τn〉. It is known that a stably quasi-serial component of rank n contains at most
n− 1 simple modules (see [16]). Our first main result generalizes this result to any s.m.s.

Theorem 1.3. Let A be a self-injective algebra over an algebraically closed field and C a
stably quasi-serial component of rank n. Then the number of elements in an s.m.s. of A
lying in C is strictly less than n. In particular, none of the indecomposable module in an
s.m.s. of A lie in the homogeneous tubes of the AR-quiver ΓA of A.

According to a result of Crawley-Boevey [4], if A is tame, then “almost all modules” (or
precisely, for each d > 0, all but a finite number of isomorphism classes of indecomposable
A-modules of dimension d) lie in homogeneous tubes. Therefore, our result excludes most
of the modules of a tame self-injective algebra from forming an s.m.s.

Remark 1.4. We remark that the bound given in Theorem 1.3 is the best possible. See
Example 6.1.

While it is possible to have modules in a stably quasi-serial component of higher rank
belonging to an s.m.s., one can deduce easily from results in [10] (see Lemma 4.1) that the
quasi-lengths (that is, the positions in an infinite sectional path A∞ = (1 → 2 → 3 →
· · · ) ⊂ ZA∞/〈τn〉 in the stable part of the component) of such modules are not more than
the rank n. Our second main result shows that the quasi-lengths of such modules are always
less than the rank.
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Theorem 1.5. Let A be a self-injective algebra over an algebraically closed field and C a
stably quasi-serial component of rank n. Then no object of C with quasi-length ≥ n belongs
to an s.m.s.

Remark 1.6. We note that a module of quasi-length l for any 1 ≤ l < n in a stably
quasi-serial component of rank n can be in an s.m.s. of modA. See Example 6.2.

This article is structured as follows. In the first subsection of Section 2, we will explain
the core strategy in the proof of the two main theorems, and give some brief comments of
our results in the more general setting of Hom-finite Krull-Schmidt triangulated categories.
In the second subsection, we will present some easy consequences of the main theorems.

The remaining part will then be devoted to proving the main theorems. We will recall
some known results of the Auslander-Reiten theory of finite dimensional self-injective al-
gebras from [10] in Section 3, for which our proofs rely heavily on. The succeeding two
sections are devoted solely to proving Theorem 1.3 and Theorem 1.5 respectively. Finally
in Section 6, we give some details on the examples involved in Remark 1.4 and 1.6.

2. Strategy and Consequences

From now on, A will always be a ring-indecomposable non-simple self-injective algebra.
Recall that the stable category of a self-injective algebra has a triangulated structure, with
suspension functor being the cosyzygy functor Ω−1 (see, for example, [12]). We will freely
use the properties of this triangulated structure. We will often use (X, Y ) in place of

HomA(X, Y ) for a cleaner presentation of various exact sequences. For f : X → Y an
A-module map, we denote by f the image in the quotient HomA(X, Y ).

2.1. Strategy of proof. Let us first remark that the proof we use is completely different
from that of [16]. The method in [16] relies on looking at the (composition) length of the
projective modules in the component Ω(C); whereas our method is, roughly speaking, to
show that, when an s.m.s. S contains undesired modules in C, then there are modules have
infinite “length with respect to S”, which is a contradiction to the definition of s.m.s. Let
us be more precise about this.

In [7], Dugas defines s.m.s.’s in a more general setting: Hom-finite Krull-Schmidt trian-
gulated k-category T . The definition he uses is not just replacing the short exact sequences
used to define 〈S〉n by triangles, but the following.

Define for any two classes of objects S,S ′ in modA

S ∗4 S ′ := {Y ∈ T | there is a triangle X → Y → Z with X ∈ S, Z ∈ S ′}.
Then we can define (S)0 := {0} and (S)n := (S)n−1 ∗4 (S ∪ {0}) for n ≥ 1. Now, a set
S of A-modules in modA, with A self-injective and over an algebraically closed field, is an
s.m.s. (in the sense of Dugas [7]) if S is a stable semibrick such that for all X ∈ modA, we
have X ∈ (S)n for some natural number n.

It is not difficult to see that this definition is equivalent to the one in Definition 1.2.
Indeed, since (S)n is closed under direct summand when S is a stable semibrick [7, Lemma
2.7], so one can show that, by induction on n, X ∈ 〈S〉n if, and only if, there is some m ≥ n
such that X ∈ (S)m.

The main difference of Dugas’ definition and the original one in [15] is equivalent to the
difference of filtering a module by its Loewy layer and by its composition factors. Indeed,
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for a stable semibrick S and a non-projective indecomposable module X, we can define

LLS(X) := inf{n ≥ 1 | X ∈ 〈S〉n}, and `S(X) := inf{n ≥ 1 | X ∈ (S)n}.
Then these should be viewed, respectively, as the Loewy length and composition length
of X with respect to S - it is clear that when S is the set of simple modules, then this
coincides with the classical notion. Now, Koenig-Liu’s (resp. Dugas’) definitions of s.m.s.’s
can be rephrased as a stable semibrick S such that every X ∈ modA has LLS(X) < ∞
(resp. `S(X) <∞).

The strategy that we will use to prove both Theorem 1.3 and 1.5 can now be more
precisely stated as follows.

Proposition 2.1. Let S be a stable semibrick. If there is a sequence (Mi)i≥1 of pairwise
non-isomorphic indecomposable non-projective A-module such that for all i ≥ 1, we have

(i) Mi � S for all S ∈ S;
(ii) for any S ∈ S and any non-split triangle N → Mi → S →, every indecomposable

direct summand of N is isomorphic (in modA) to Mj for some j > i,

then `S(Mi) =∞ for all i ≥ 1. In particular, S cannot be an s.m.s. of modA.

Proof Suppose the contrary. Then there is some i ≥ 1 with Mi ∈ (S)r \ (S)r−1 for some
positive integer r. In other words, we have a filtration of Mi by elements of S:

Sr // Nr−1

ww

// Nr−2

ww

N2
// Mi,

yy

Sr−1



ff

Sr−2
�

gg

S1
�

ee

where Sj ∈ S for all j and every triangle in the picture is a triangle in modA (with X � //Y
denote the connecting morphism X → Ω−1(Y ) in a triangle). It follows from (ii) that every
indecomposable direct summand of N2 is of the form Mj with j > i, and so all of these
Mj’s are in (S)r−1. Repeat this argument down the filtration, we have that Sr ∼= Mj for
some j > i, which contradicts (i).

�
When the conditions of the proposition hold, then by the equivalence of Koenig-Liu’s

and Dugas’ definitions of s.m.s., we also have LLS(X) =∞. Indeed, if one prefers working
in Koenig-Liu’s setting instead, then one can modify (ii) to have S ∈ 〈S〉 and allows the
triangle there to contain direct summands given by “trivial triangles” Ω−1(S ′)→ 0→ S ′ →.
Since this is slightly more fiddly to work with, in this article, we will use the version
presented above.

Finally, we remark that the investigation carried out in this note can also be discussed in
the setting of Hom-finite Krull-Schmidt k-linear (with k algebraically closed) triangulated
category T that admits Auslander-Reiten theory (hence, Serre duality), i.e.

• Does an s.m.s. of T always contain less than n objects in a rank n tube ZA∞/〈τn〉?
• For an s.m.s. of T containing an object in a tube, is the quasi-length of such an

object always strictly less than the rank of the tube?

While our argument can be applied in such a setting, the caveat is that one needs to
check that all the results we took from [10] hold in the above setting - a careful reader can
soon see that, as the proofs of these results come down to the defining property of almost
split sequences, there is no danger to transfer all the arguments and results to the above
setting.
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Since s.m.s. was introduced as a mean of tackling Auslander-Reiten conjecture on sta-
ble equivalences, c.f. [15], we chose to focus this article in the setting of stable module
categories. Nevertheless, since there is a recent rise of interests [5, 6, 14] in studying a
more suitable replacement of s.m.s., called d-s.m.s., for (−d)-Calabi-Yau triangulated cate-
gories, it may be interesting to investigate the ‘d-analogues’ of the two questions presented.
We note also that a 1-s.m.s. is the same as an s.m.s. in our sense, and that modA is
(−1)-Calabi-Yau when A is symmetric.

2.2. Consequence of the main results. The first consequence of our results is on the
relation between three different notions of simple-like generators. Let us start by recalling
the following one from [15].

Definition 2.2. ([15]) Let A be a self-injective algebra over an algebraically closed field. A
set S of A-modules is said to spans modA if for all indecomposable non-projective A-module
X, HomA(X,S) 6= 0. A weakly simple-minded system (or w.s.m.s. for short) of modA is
a stable semibrick which spans modA.

It has been shown [15, Theorem 5.6] that when A is representation-finite self-injective,
w.s.m.s. is sufficient for (hence, equivalent to) defining an s.m.s. In fact, the proof of this
result is closely related to Proposition 2.1, namely, any indecomposable A-module has finite
Loewy length with respect to a w.s.m.s. S; hence, it must also be an s.m.s. of modA.

In this respect, the proofs of Theorem 1.3 and 1.5 reflects how difficult (if not impossible)
it is to modify [15, Theorem 5.6] to the representation-infinite case. Having said that, we
do not know any example of w.s.m.s. that is not an s.m.s.

In [17], Pogorzaly investigated another candidate, called maximal system of orthogonal
stable bricks, of simple-like generators of stable module categories. Simply put, such a
system is just a w.s.m.s. with an extra condition: every indecomposable module X in the
system must satisfy τX � X.

While it is easy to see that any s.m.s. is an w.s.m.s., there is no apparent relations
between s.m.s.’s and maximal systems of orthogonal stable bricks, that is, it is not clear if
every indecomposable module X in an s.m.s. must satisfies τX � X. Thanks to Theorem
1.3, we can now see that the implication from s.m.s. to w.s.m.s. actually factors through
maximal system of orthogonal stable bricks, for (almost) all self-injective algebras.

Corollary 2.3. Let A be a self-injective algebra over an algebraically closed field which is
not a local Nakayama algebra. Any s.m.s. of A is a maximal system of orthogonal stable
bricks.

Proof. We have already mentioned that modules in a homogeneous tube are τ -periodic of
period 1. Here we only need an almost converse of this proved by Hoshino in [13, Theorem
1]. His result asserts that for a basic (indecomposable) artin algebra Λ over algebraically
closed field, if there is an (indecomposable) module M with τM ∼= M , then either Λ is a
local Nakayama algebra, or M lies in a homogeneous tube. The claim now follows from
applying this result to Theorem 1.3. �

We list two other immediate consequences of our main results. The following one can
be regarded as a generalisation of the property of simple modules being string modules for
special biseral algebras.

Corollary 2.4. Let A be a self-injective special biserial algebra over an algebraically closed
field. Then no band A-module can be in an s.m.s. of A.
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Proof. It is well-known that any indecomposable module (possibly except for a few inde-
composable projective modules) over a special biserial algebra can be described either as
a string module or as a band module, and that band modules lie in homogeneous tubes of
ΓA (see [9, Chapter II]). The result now follows from Theorem 1.3. �

The following consequence of Theorem 1.5 seems new.

Corollary 2.5. Let A be a self-injective algebra over an algebraically closed field and C a
stably quasi-serial component of rank n. Then any simple module lying in C has quasi-length
less than n.

3. Reminders on stably quasi-serial component

For general properties of stable categories for self-injective algebras and of Auslander-
Reiten theory we refer to [1, 9, 18].

In this section, we recall various notations and results from [10, Section 2], as well as
some of their elementary implications that are not stated explicitly in [10].

Let us fix a stably quasi-serial component C of rank n ≥ 1 of the AR-quiver of A, i.e.
removing projective modules in C yields a stable translation quiver ZA∞/〈τn〉.

Following [10], we can specify modules in C as follows. Recall that a sectional path is a
path · · ·Mi → Mi+1 → Mi+2 → · · · in the AR-quiver such that Mi � τ(Mi+2). If X is an
indecomposable non-projective module lying at the end of C, that is, a quasi-simple of C,
then for any natural number r ≥ 1, there is a unique infinite sectional path starting at X

X = X(1)→ X(2)→ · · · → X(r)→ X(r + 1)→ · · · ;

dually, there is a unique infinite sectional path in C ending at X:

· · · → [r + 1]X → [r]X → · · · → [2]X → [1]X = X.

A non-projective module in C is of quasi-length r if it is of the form X(r) for some quasi-
simple X of C. For notational convenience, we treat X(0) = [0]X = 0. Note that if C is
homogeneous, then X(r) = [r]X for all r ≥ 1; otherwise, X(r) ∼= [r](τ−(r−1)X).

For any integer i, we denote by ī the positive integer in {1, . . . , n} with i ≡ ī mod n.
For convenience, we fix the notation {Xi | i = 1, . . . , n} with τXi = Xi−1 for i ∈ {1, . . . , n}
as the set of (non-projective) quasi-simple modules in C. By [10, Proposition 2.3, Lemma
2.3.1], there is a triangle in modA of the form

(3.1) Xi(l)
ε−→ Xi(l + j)

π−→ τ−l(Xi(j))→ Ω−1(Xi(l))

for any l, j > 0, i ∈ {1, . . . , n}, where ε (resp. π) is given by the composition of the
irreducible maps on the sectional path starting from Xi(l) (resp. Xi(l + j)) and ending at
Xi(l + j) (resp. τ−l(Xi(j))). The positions of the modules in C in the first three terms of
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(3.1) can be visualised as follows

Xi(l + j)

��

τ−l(Xi(j))

��

Xi+l+j−1

Xi+l−1(2)
��

Xi+l

??

Xi(l)

??

��

Xi+l−1

??

Xi

??

where the dashed arrows represent sequence of irreducible morphism in the sectional paths.
Note also that τ−l(Xi(j)) ∼= Xi+l(j).

Moreover, the following lemma tells us that both ε and π of (3.1) are non-zero in modA.

Lemma 3.1. ([10, Lemma 2.6]) The composition π : [r]Xi → [s]Xi (ε : τ r−s[s]Xi → [r]Xi,
respectively) of the chain of irreducible maps in a sectional path for r > s ≥ 1 does not factor
through a projective module. In particular, HomA([r]Xi, [s]Xi) and HomA(τ r−s[s]Xi, [r]Xi)
are both non-zero.

Remark 3.2. Take Xj to be the quasi-simple with Xj(r) = [r]Xi, then the above compo-
sitions can also be presented as ε : Xj(s)→ Xj(r) and π : Xj(r)→ τ s−rXj(s) respectively.
In particular, we have HomA(Xj(s), Xj(r)) 6= 0 for any 1 ≤ s < r and any j.

We have the following generalisation of the triangle (3.1).

Lemma 3.3. Consider Xi(r) with r ≥ 1 and i ∈ {1, 2, . . . , n}. Then there are non-split
triangles

(3.2) Xi(r)

(
ε1
π1

)
−−−→ Xi(r + j)⊕ τ−l(Xi(r − l))

(π2, ε2)
−−−−→ τ−l(Xi(r − l + j))→ Ω−1(Xi(r))

with 1 ≤ l ≤ r and j ≥ 1, and εm, πm for m ∈ {1, 2} are the compositions of irreducible
maps in the sectional paths.

Proof This is a straightforward generalisation of the proof in [10, Lemma 2.3].

�
Note that the triangle (3.1) is the special case of (3.2) for l = r. Let us also visualize the

position of modules in (3.2):
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Xi(r + j)

��

τ−l(Xi(r − l + j))

Xi(r)

��

??

Xi(r − l)

??

τ−l(Xi(r − l))

??

Note also that τ−l(Xi(r − l)) ∼= Xi+l(r − l), τ−l(Xi(r − l + j)) ∼= Xi+l(r − l + j).

Lemma 3.4. For r ≥ 1 and i ∈ {1, 2, . . . , n}, if EndA(Xi(r)) ∼= k, then the composition
π2ε1 ∈ HomA(Xi(r), τ

−l(Xi(r − l + j))) of the maps in the sequence (3.2) is non-zero in
modA for 0 < l < r and j ≥ 1.

We remark that when l = r, the module τ−l(Xi(r − l)) is zero and so the composition
π2ε1 is zero as we can see from the sequence (3.1).

Proof Applying HomA(Xi(r),−) to the triangle (3.2) yields a long exact sequence

· · · → (Xi(r), Xi(r))
(ε1,π1)t∗−−−−→ (Xi(r), Xi(r + j)⊕Xi+l(r − l))

(π2,ε2)∗−−−−→ (Xi(r), Xi+l(r − l + j))→ · · · .

Consider the map α := (ε1, 0)t : Xi(r)→ Xi(r+j)⊕Xi+l(r−l). Then we have (π2, ε2)∗
(
α
)

=
(π2, ε2)(ε1, 0)t = π2ε1. Suppose on the contrary that π2ε1 = 0. It then follows from the
exactness of the above long exact sequence that there is some γ ∈ EndA(Xi(r)) such that
(ε1, π1)

tγ = (ε1, 0)t. Since EndA(Xi(r)) ∼= k, γ is an isomorphism. This means that π1 = 0
in modA, which contradicts Lemma 3.1.

�

4. Proving Theorem 1.3

We start by showing two easy implications of the results from the previous sections.
These will give strong restrictions on the modules of C that lie in an s.m.s. S, where C is a
stably quasi-serial component of rank n as before. This in turn will give us some ideas on
what sequence of modules we should consider to apply Proposition 2.1. Then the remaining
of the section will be devoted to showing the candidate sequence satisfies the conditions of
Proposition 2.1.

Lemma 4.1. Xi(r) is not a stable brick for all r > n. In particular, such a module cannot
be a member of an s.m.s. of modA.

Proof The first statement is a direct consequence of [10, Lemma 3.5.1], but we can also
present the proof easily as follows. Consider r > n and assume EndA(Xi(r)) ∼= k. By taking
(l, j) = (n, n) in Lemma 3.4, implies that map π2ε1 (with notation as in Lemma 3.4) is a
non-zero endomorphism of Xi(r) in modA. By Lemma 3.1, π2, ε1 are non-zero morphisms
in the radical of modA, π2ε1 cannot be the identity; this contradicts the assumption that
EndA(Xi(r)) ∼= k.
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�

Lemma 4.2. If Xi(r) belongs to some stable semibrick S of modA for some i ∈ {1, . . . , n}
and r > 1, then the cardinality of S ∩ C is strictly less than n.

Proof Suppose we have Xi(r) ∈ S with S a stable semibrick of modA and r > 1. It follows
from Lemma 4.1 that we can assume r ≤ n.

On one hand, taking l = r − 1 in Lemma 3.4 we get (together with Lemma 3.1) that
HomA(Xi(r), Xi+r−1(j+1)) is non-zero for all j ≥ 0. Hence, by the orthogonality condition,
none of the modules in the sectional path starting from Xi+r−1 can be in S.

On the other hand, by Lemma 3.1, it follows from orthogonality condition that each
sectional path starting at Xk with k ∈ {1, . . . , n} can only have at most one module in S.
In particular, Xi(s) cannot be in S for all s 6= r.

The assumption of r ≤ n implies that i+ r − 1 6= i, so the previous paragraphs amount
to say that modules in C ∩ (S \ {Xi(r)}) must come from the n− 2 sectional paths starting
at Xj for j 6= i, i+ r − 1, each of which has at most one module in S; that is, |C ∩ S| ≤
n− 2 + 1 = n− 1, as required.

�
It now follows from Lemma 4.2 that we only need to consider

a stable semibrick S that contains all the quasi-simples {X1, X2, . . . , Xn} of C.

Example 4.3. Note that for any n ≥ 1, there are abundance of examples where the set
of quasi-simples form a stable semibrick. For example, for n = 1, take A to be the trivial
extension algebra of the Kronecker algebra K := k(2 //

//1) and an indecomposable module
M of length 2 to be the regular K-module (regarded as an A-module) with parameter
(1 : 0) ∈ P1k - this is clearly a stable brick lying at the end of a homogeneous tube. For
n > 1, we can take A to be the algebra in Example 6.1. Then one can consider the stably
quasi-serial component containing the simple module S1. In which case, the quasi-simples
are Si with i ∈ {1, 2, . . . , n− 1} and a length 2 module with top Sn+1 and socle Sn; hence,
one can see immediately that this forms a stable semibrick.

In view of the conditions of Proposition 2.1, we want to find a sequence of indecomposable
non-projective modules such that each one of them have a non-zero morphism in modA to
one of the quasi-simples. The following lemma gives us one possible candidate.

Lemma 4.4. For every positive integer r ≥ 1 and i ∈ {1, . . . , n}, there is a non-split
triangle in modA:

(4.1) Ω(Xi(r + 1))→ Ω(Xi+1(r))→ Xi → .

Proof Taking (l, j) = (r, 1) in the non-split triangle (3.1) yields

Xi
ε−→ Xi(r + 1)

π−→ Xi+1(r)→ Ω−1(Xi),

which can then be rotated to form a non-split triangle with terms agreeing those in the trian-
gle (4.1) of the claim. So it remains to show that the connecting morphism Ω(Xi+1(r))→ Xi

of the above triangle is non-zero. Suppose the contrary, then the cone of the zero connecting
morphism will be Xi+1(r)⊕Xi � Xi(r + 1), hence a contradiction.

�
This means that our candidate sequence should be

(Mr)r≥1 with Mr := Ω(Xi−r(r + 1)),(4.2)
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for any fixed i ∈ {1, 2, . . . , n}.
Lemma 4.5. The sequence (4.2) satisfies condition (i) of Proposition 2.1.

Proof From the triangle (4.1) of Lemma 4.4, we see that HomA(Ω(Xi−r(r)), Xi−r−1) 6= 0,
so Ω(Xi−r(r)) can not be isomorphic to any S ∈ S \ {X1, X2, . . . , Xn}.

Moreover, by the difference in quasi-lengths, this sequence is clearly pairwise non-isomorphic,
and none of them is isomorphic to the quasi-simples X1, X2, . . . , Xn of C.

�
The remaining of this subsection is devoted to showing that the sequence (4.2) satisfies

the condition (ii) in Proposition 2.1, namely, to showing that the triangle obtained in (4.1
are the only ones we need. For this purpose, we first observe the following behaviour.

Lemma 4.6. Consider the set {Xi | i = 1, 2, . . . , n} of quasi-simples of C. If S is a
non-projective indecomposable module, then we have the following.

(a) If HomA(Xi, S) = 0 for all i ∈ {1, . . . , n}, then HomA(Xi(r), S) = HomA([r]Xi, S) = 0
for all r ≥ 1, i ∈ {1, . . . , n}.

(b) If HomA(S,Xi) = 0 for all i ∈ {1, . . . , n}, then HomA(S,Xi(r)) = HomA(S, [r]Xi) = 0
for all r ≥ 1, i ∈ {1, . . . , n}.

Proof We only prove (a), since (b) is dual. We prove it by induction on r. Fix some i
in {1, . . . , n}. For r = 1, Xi(r) = Xi and the statement follows by the assumption that
HomA(Xi, S) = 0. Taking (l, j) = (r − 1, 1) in the sequence (3.1) yields

(4.3) Xi(r − 1) −→ Xi(r) −→ τ−(r−1)Xi −→ Ω−1(Xi(r − 1)),

and we obtain a long exact sequence by applying HomA(−, S) to it. By induction hypothesis
we have HomA(Xi(r − 1), S) = 0. Since τ−(r−1)Xi = Xi+r−1 by definition, it follows from

the assumption that HomA(τ−(r−1)Xi, S) = 0. Hence, HomA(Xi(r), S) = 0 follows from
the exactness of the long exact sequence. The proof for the statement on HomA([r]Xi, S)
is similar.

�
Let ν = DHomA(−, A) denote the Nakayama functor. Then we have for allM,N ∈ modA

the bifunctorial isomorphisms:

(4.4) HomA(M,N) ∼= DExt1A(N, τM) ∼= DHomA(N, νΩM),

where the first isomorphism is just the Auslander-Reiten duality and the second isomor-
phism follows from the well-known fact that τ ∼= νΩ2. Note that this shows that we have
Serre duality in the triangulated category modA, where the Serre functor is νΩ.

Lemma 4.7. If S is a non-projective indecomposable module with HomA(S,Xi) = 0 for all
i ∈ {1, . . . , n}, then HomA(Ω(Xi(r)), S) = 0 for all r ≥ 1 and for all i ∈ {1, . . . , n}. In
particular, any triangle of the form N →Mr → S → splits for all S ∈ S\{X1, X2, . . . , Xn}.
Proof Take M,N as Ω(Xi(r)), S respectively in (4.4), then we get that

dim HomA(Ω(Xi(r)), S) = dim HomA(S, νΩ(ΩXi(r))).

Since νΩ2Xi(r) ∼= τXi(r) ∼= Xi−1(r), the later space is just HomA(S,Xi−1(r)), which is zero
by Lemma 4.6.

�
Now, it remains to show that the triangles (4.1) are the only ones induced by a morphism

in modA from Mr to the quasi-simples of C (hence, to the elements of S).
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Lemma 4.8. Suppose that the quasi-simples {Xi | i = 1, . . . , n} in C is a stable semibrick.
For all i, j ∈ {1, . . . , n} and for all r ≥ 1, we have the following.

(i) HomA(Xj, Xi(r)) ∼= kδi,j and HomA([r]Xi, Xj) ∼= kδi,j;
(ii) HomA(Ω(Xi+1(r)), Xj) ∼= kδi,j,

where kδi,j = k if i = j, zero otherwise.

Proof (i) We only prove HomA(Xj, Xi(r)) ∼= kδi,j, the other one can be proved dually.
Fix an i ∈ {1, . . . , n}. For ease of exposition, denote by εs : X(s − 1) → X(s) the

irreducible map that induces the triangle (4.3), and θs := εsεs−1 · · · ε1 the composition of
them.

We now proof the claim by induction on r. For r = 1, this is trivial. Suppose that r > 1.
Applying Hom(Xj,−) to the triangle (4.3), we obtain an exact sequence

(Xj , Xi(r − 1))
εr∗−−→ (Xj , Xi(r))

πr∗−−→ (Xj , Xi+r−1)
ρr∗
−−→ (Xj ,Ω

−1(Xi(r − 1))).

By the induction hypothesis, we have HomA(Xj, Xi(r − 1)) ∼= kδi,j.
Let us consider the case when i = j. Recall from Lemma 3.1 and Remark 3.2 that θs is

always non-zero. Therefore, we have a non-zero map

εr∗(θr−1) = εrθr−1 = θr.

So HomA(Xj, Xi(r − 1)) being one-dimensional implies that εr∗ is injective.

Regardless of whether i = j, we consider the relation between j and i+ r − 1.
(a) If j 6= i+ r − 1, then HomA(Xj, Xi+r−1) = 0 by the assumption on the orthogonality

of the quasi-simples. Hence, it follows that HomA(Xj, Xi(r)) ∼= kδi,j.
(b) If j = i+ r − 1, then HomA(Xj, Xi+r−1) is one-dimensional and spanned by the

identity map id. Since the triangle (3.1) is non-split, the morphism ρr is non-zero. By the
following simple calclation,

ρr∗(id) = ρrid = ρr,

we see that ρr∗ is non-zero, and so one-dimenionality of HomA(Xi, Xi+r−1) implies that it

is injective. It now follows that HomA(Xj, Xi(r)) ∼= HomA(Xj, Xi(r − 1)) ∼= kδi,j.
This completes the proof.
(ii) Follows from (i) by applying Serre duality (4.4):

HomA(Ω(Xi+1(r)), Xj) ∼= DHomA(Xj, νΩ2(Xi+1(r)))
∼= DHomA(Xj, Xi(r)).

�

It should be clear now that Theorem 1.3 follows. For clarity, let us recap the argument
of this proof.

Proof of Theorem 1.3 By Lemma 4.2, it suffices to show that if a stable semibrick S
contains all the quasi-simples {X1, X2, . . . , Xn} of C, then it cannot be an s.m.s. of modA.
By showing that the sequence (4.2) satisfies conditions (i) and (ii) of Proposition 2.1, such
a claim is just an immediate consequence of Proposition 2.1.

We have already explained in Lemma 4.5 why condition (i) holds. For condition (ii), it
follows from Lemma 4.7 that there is no non-split triangle of the form N → Mr → S →
with S ∈ S not isomorphic to a quasi-simple of C. So it remains to look at triangles of the
form

N → Ω(Xi−r(r + 1))→ Xj,
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for r ≥ 1. By Lemma 4.8 (ii), this triangle must split when j 6= i− r − 1; otherwise, it is
isomorphic to the one given in (4.1). This shows that condition (ii) of Proposition 2.1 is
satisfied; hence completing the proof of Theorem 1.3.

�

5. Proving Theorem 1.5

As before, we fix A to be a ring-indecomposable non-simple self-injective algebra, C to be
a stably quasi-serial component of rank n ≥ 1 of the AR-quiver of A, and {Xi | i = 1, . . . , n}
the set of quasi-simples of C with Xi+1

∼= τ−1(Xi).
In order to prove Theorem 1.5, it follows from Lemma 4.1 that it suffices to show that

none of the Xi(n)’s belong to an s.m.s. Recall that Ω±1 are stable auto-equivalences, so they
map stably quasi-serial components to stably quasi-serial components and, in particular,
they preserve the quasi-lengths of modules. We will first show that the assumption of Xi(n)
being a stable brick implies that Ω±1 cannot fix C. This helps to determine the dimensions
of various stable Hom-spaces between certain modules in C. At the end, we will use these
stable Hom-spaces to show that a certain sequence (Definition 5.7) of modules in Ω(C)
satisfies the condition of Proposition 2.1, and so proving Theorem 1.5.

Let us start by recalling the following terminology from [10].

Definition 5.1. Let j, l be positive integers. The wing of Xj(l) is the set of isoclasses of
indecomposable non-projective modules in C given by

Wj,l := {Xj+d(h) | d ≥ 0, h ≥ 1, 1 ≤ d+ h ≤ l}.

For example, in the case when n = 5, the members of the wing of X3(4) form a subquiver
in C as follows:

X3(4)

((

X3(3)

66

((

X4(3)

((

X3(2)

66

((

X4(2)

66

((

X5(2)

((

X3(1)

66

X4(1)

66

X5(1)

66

X1(1)

The following will be crucial to our calculation of the dimension of the stable Hom-spaces.

Lemma 5.2. Consider an indecomposable non-projective module M .

(i) [10, 2.2] If M,Ω−1(M) /∈ Wi+1,r−1, then

dim HomA(M,Xi(r)) =
r−1∑
j=0

dim HomA(M,Xi+j).

(ii) If M,Ω(M) /∈ Wi,r−1, then

dim HomA(Xi(r),M) =
r−1∑
j=0

dim HomA(Xi+j,M).

While [10] did not state Lemma 5.2 (ii), its proof is completely dual to that of [10, 2.2].

Lemma 5.3. The following are equivalent.
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(i) Xj(n) is a stable brick for some j ∈ {1, 2, . . . , n}.
(ii) Xj(n) is a stable brick for all j ∈ {1, 2, . . . , n}.

(iii) HomA(Xl, Xj(n)) ∼= kδj,l for all j, l ∈ {1, 2, . . . , n}.
(iii’) HomA([n]Xl, Xj) ∼= kδj,l for all j, l ∈ {1, 2, . . . , n}.
Proof (i) ⇔ (ii): The if direction is trivial. The converse follows from the fact that τ is
an auto-equivalence of modA.

(ii) ⇔ (iii): The quasi-length of M = Xj(n) and Ω(M) is clearly larger than any member

of Wj,n−1, so we can apply Lemma 5.2 (ii) and get that

dim HomA(Xj(n), Xj(n)) =
n−1∑
h=0

dim HomA(Xj+h, Xj(n)).

By Remark 3.2, we have HomA(Xj, Xj(n)) 6= 0, so the claimed equivalence follows from the
displayed equality.

(ii) ⇔ (iii’): Similar to the previous one (but use Lemma 5.2 (i) and Lemma 3.1 instead).

�
This allows us to exclude the situation when (co)syzygy sends non-projective indecom-

posable modules in C to C.
Lemma 5.4. If Xi(n) is a stable brick, then Ω−1(Xi) � Xj for any j, i.e. Ω−1(C) 6= C.

Proof Suppose on the contrary that Ω−1(Xi) ∼= Xi+d for some 1 ≤ d ≤ n. Since Ω±

are auto-equivalences on modA that commute with the Auslander-Reiten translation, the
assumption of Ω−1(Xi) ∼= Xi+d means that we have Ω−1(Xj−d(r))

∼= Xj(r) for all j, r. In
particular, we have the following isomorphisms.

HomA(Xi, Xj(n)) ∼= HomA(Xi,Ω
−1(Xj−d(n))) ∼= HomA(Ω(Xi), Xj−d(n))

∼= DHomA(Xj−d(n), Xi−1)
∼= DHomA([n]Xj−d−1, Xi−1),

where the third isomorphism comes from Serre duality and the last isomorphism follows
from the fact that Xa(b) ∼= [b]Xa+b−1.

By Lemma 5.3 (iii), the first space in the formula above is given by kδi,j, whereas Lemma
5.3 (iii’) says that the last space in the formula above is kδj,i+d. Hence, we must have

i = i+ d, meaning that Ω(Xi(n)) ∼= Xi(n).
Consider the non-split triangle (3.1) with (l, j) = (n,mn). Since every term the triangle

is indecomposable, non-splitness implies that the connecting morphism Ω(Xi(n))→ Xi(n)
is non-zero. Moreover, it cannot be an isomorphism; otherwise, we have Xi(2n) ∼= 0, which
is absurd. Hence, the EndA(Xi(n)) ∼= HomA(Ω(Xi(n)), Xi(n)) is at least two-dimensional;
a contradiction.

�
From now on, we will assume the following unless otherwise stated:

Assumption 5.5. S is a stable semibrick containing Xi(n) for some fixed i ∈ {1, 2, . . . , n}.
Note that by Lemma 5.4, we have in particular that Ω(C) 6= C.

Lemma 5.6. There is a sequence of integers n = j0 > j1 > · · · > ja ≥ 1 such that S
contains

St := Ω(Xi+jt(jt−1 − jt)) = [jt−1 − jt]Ω(Xi+jt−1)

for all 1 ≤ t ≤ a, and a ≥ 0 is the maximum non-negative integer such that this property
holds, i.e. Ω(Xi+j(ja − j)) = [ja − j]Ω(Xi+ja−1) /∈ S for all 1 ≤ j < ja.
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Proof We show that the sequence j0 > j1 > · · · ja > 0 is uniquely defined. Indeed, since
Lemma 3.1 along with Remark 3.2 says that each infinite sectional path contains only at
most one module, S1 is given by the unique module in the infinite sectional path ending
at Ω(Xi−1) and in the wing of Ω(Xi(n)). Thus, j1 is well-defined and unique if such an
S1 exists. Moreover, inductively, the existence of St for 1 ≤ t < a uniquely determines
St+1 = [jt − jt+1]Ω(Xi+jt−1), if t + 1 ≤ a, since St+1 is the only member of S lying on the
infinite sectional path ending at Ω(Xi+jt−1) (and in the wing of Ω(Xi(n))). Thus, jt+1 is
uniquely determined by jt. The uniqueness of the sequence now follows from the uniqueness
of each jt and the maximality of a.

�
Let us show an example of the positions of St’s in Ω(C) below for the case where a = 3.

(0,j0)

S1

(−1,1)��

(0,j1)

S2 ??

��

(0,j2)

S3

??

��

(0,j3)

??

(0,1)

Here, we label Ω(Xi+j(r)) by (j, r) and use dotted lines to represent (segments of) sectional
paths for typographical clarity. Note that the solid arrows are irreducible morphisms.

Definition 5.7. For a non-negative integer l ∈ Z≥0, we write l = (a+1)m+t with m ∈ Z≥0
and 0 ≤ t ≤ a. We define a sequence (Ml)l≥0 of indecomposable non-projective modules by

Ml := Ω(Xi(mn+ jt)).

The previous picture will be helpful to see the relation between M0,M1, . . . ,Ma and
S1, S2, . . . , Sa; c.f. picture of the triangle (3.1).

Of course we have deliberately picked the notation so that our goal is to show that
the sequence (Ml)l≥0 satisfies the conditions of Proposition 2.1. From the experience of
proving Theorem 1.3, one probably could guess that the sequence (Ω(Xi(rn)))r≥1 may be
suitable to prove Theorem 1.5. Although this is true in certain cases (namely, the case
when a = 0 in the notation of Lemma 5.6), this sequence will not be sufficient in general,
as there could be other non-split triangles induced by non-zero morphisms from Ω(Xi(rn))
to other modules in Ω(C). Indeed, by comparing the picture above with that of the triangle
(3.1), one may already be able to see why (Ml)l≥0 is the natural sequence to consider. The
following lemma, which lists all the triangles needed for Proposition 2.1, is the first step in
showing that this sequence is really what we need.
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Lemma 5.8. We have the following two non-split triangles for any integer m ≥ 0.

(a) Ω(Xi((m+ 1)n+ jt))→ Ω(Xi(mn+ jt))→Xi(n)→ for all 0 ≤ t ≤ a.

(b) Ω(Xi(mn+ jt+1)) → Ω(Xi(mn+ jt))→ St+1 → for all 0 ≤ t < a.

Proof Same argument as in Lemma 4.4 works. Here, the triangle (a) is obtained by rotating
the non-split triangle (3.1) with (l, j) = (n,mn + jt); whereas the triangle (b) is obtained
by rotating the non-split triangle (3.1) with (l, j) = (mn+ jt+1, jt − jt+1).

�
If any non-split triangle N → Ml → S → with S ∈ S and l ≥ 0 is isomorphic to one

of the forms in Lemma 5.8, then condition (ii) of Proposition 2.1 is also satisfied. For this
purpose, we need to show that dim HomA(Ml, S) for S ∈ S must be either zero or one, with
one appearing precisely as described in Lemma 5.8. We will devote the remaining of this
section (up to the proof of Theorem 1.5) to prove this.

We start with a strengthened version of Lemma 5.3.

Lemma 5.9. The following are equivalent.

(i) Xj(n) is a stable brick for some j ∈ {1, 2, . . . , n}.
(ii) Xj(n) is a stable brick for all j ∈ {1, 2, . . . , n}.

(iii) HomA(Xl, Xj(n)) ∼= kδj,l for all j, l ∈ {1, 2, . . . , n}.
(iii’) HomA([n]Xl, Xj) ∼= kδj,l for all j, l ∈ {1, 2, . . . , n}.
(iv) HomA(Xl, Xj(r)) ∼= kδj,l for all j, l ∈ {1, 2, . . . , n} and r ≥ 1.

(iv’) HomA([r]Xl, Xj) ∼= kδj,l for all j, l ∈ {1, 2, . . . , n} and r ≥ 1.
(v) {Xj | j = 1, 2, . . . , n} is a stable semibrick.

Proof The equivalences between (i), (ii), (iii), and (iii’) are already shown in Lemma 5.3.
The remaining equivalences will be shown in the following way:

(iv) ⇒ (iii) ⇒ (v) ⇒ (iv)

and an analogous one where (iii’) and (iv’) are replaced by (iii’) and (iv’); we will omit the
arguments in this analogous setting as they are similar to the one above.

(iv) ⇒ (iii): Trivial.

(iii) ⇒ (v): Take any j ∈ {1, 2, . . . , n} and M = Xj. Any quasi-simple inWj+1,n−1 (resp.

Wj,n−1) is of the form Xj+h for some h ∈ {1, 2, . . . , n−1}, so it cannot be isomorphic to M .

Since (iii) is equivalent to (i), it follows from Lemma 5.4 that Ω−1(M) lies in a component
distinct from C, so it cannot be in Wj+1,n. Now we can apply Lemma 5.2 (i) and get that

1 = dim HomA(Xj, Xj(n)) =
n−1∑
h=0

dim HomA(Xj, Xj+h).

Since EndA(Xj(n)) 6= 0, it follows from the above equation that HomA(Xj, Xl) ∼= kδj,l.
(v) ⇒ (iv): This is just Lemma 4.8 (i).

�
We can now show that any triangle N → Ml → S → splits for any S � Xi(n) in S but

not in Ω(Wi+1,n−1).

Lemma 5.10. Suppose S is a non-projective indecomposable module such that

HomA(Xi(n), S) = 0 = HomA(S,Xi(n)) and S /∈ Ω(Wi+1,n−1).

Then HomA(Ω(Xj(r)), S) = 0 for all r ≥ 1 and any j ∈ {1, . . . , n}.
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Proof First, we consider the case when S is not in Wi+1,n−1. Combining with the assump-

tion that Ω−1(S) /∈ Wi+1,n−1, it follows from Lemma 5.2 (i) that HomA(S,Xj) = 0 for any
quasi-simple Xj. By Lemma 4.7, we have HomA(Ω(Xj(r)), S) = 0 for any j ∈ {1, . . . , n}
and r ≥ 1.

Next, we consider the case when S = Xi+j(s) ∈ Wi+1,n−1.
If j + s = n (i.e. S /∈ Wi+1,n−2), then S = Xi+j(s) = [s]Xi−1 lies in the sectional path

that contains Xi(n) = [n]Xi−1 and ends at Xi−1. For such S, it follows from Lemma 3.1
that HomA(Xi(n), S) 6= 0, which contradicts the assumption on S.

We can now assume that S ∈ Wi+1,n−2. For any r ≥ 1, Serre duality says that

HomA(Ω(Xi(r)), Xi+j(s))
∼= DHomA(Xi+j(s), Xi−1(r)),

so it suffices to show that HomA(Xi+j(s), Xi−1(r)) = 0.
Taking M = Xi−1(r), then we have M /∈ Wi+1,n−2. We also have Ω(M) /∈ C by Assump-

tion 5.5 and Lemma 5.4. Now we can apply Lemma 5.2 (ii) and get that

dim HomA(Xi+j(s), Xi−1(r)) =
s−1∑
h=0

dim HomA(Xi+j+h, Xi−1(r)).

Since Xi(n) is a stable brick, it follows from Lemma 5.9 (v) that the right-hand side is
non-zero if and only if there is some h ∈ {0, 1, . . . , s − 1} with i+ j + h = i− 1. But the
condition j + s < n implies that j + h < n− 1, and so this is impossible.

�
Now we consider the stable Hom-spaces from Ml’s to modules in Ω(Wi+1,n−1).

Lemma 5.11. The following holds for any r ≥ 1 and Xi+j(s) ∈ Wi+1,n−1:

HomA(Xi(r), Xi+j(s))
∼=

{
k, if j ≤ r − 1 < j + s (or equivalently, Xi+r−1 ∈ Wi+j,s);

0, otherwise.

Proof Taking M = Xi(r) means that M /∈ Wi+j+1,s−1. Assumption 5.5 and Lemma 5.4

implies that Ω−1(M) /∈ Wi+j+1,s−1. So we can apply Lemma 5.2 (i) and get that

dim HomA(Xi(r), Xi+j(s)) =
s−1∑
h=0

dim HomA(Xi(r), Xi+j+h)

=
s−1∑
h=0

dim HomA([r]Xi+r−1, Xi+j+h),(5.1)

where the second equality follows from the fact that Xa(b) ∼= [b]Xa+b−1 for all a, b.

Since j + s ≤ n, if there is h ∈ {0, 1, . . . , s − 1} such that j + h = r − 1 (equivalently,
r − 1 ∈ {j, j + 1, . . . , j + s − 1}), then it is unique. As Xi(n) is a stable brick, by using
Lemma 5.9 (v’), we can see that every term in (5.1) is 0 when there is no h ∈ {0, 1, . . . , s−1}
with j + h = r − 1; otherwise, all but one term is 0 with the remaining one being 1. This
completes the proof.

�
Note that since τ is an auto-equivalence on modA, we can freely shift both modules

simultaneously in the formula of Lemma 5.11 in the “τ -direction”, i.e. replace i by any
other i′ ∈ {1, 2, . . . , n} everywhere in the statement.
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Lemma 5.12. The following holds for any 1 ≤ t ≤ a and Xi+j(s) ∈ Wi+1,n−1:

HomA(Xi+j(s), Xi+jt(jt−1 − jt)) ∼=

{
kδt,b, if jb < s+ j ≤ jb−1 for some 1 ≤ b ≤ a;

0, otherwise.

Proof Take i′ := i+ j, then Xi+jt(jt−1 − jt) ∈ Wi′+1,n−1, so it follows from Lemma 5.11
says that HomA(Xi′(s), Xi′+jt−j(jt−1 − jt)) is non-zero (in which case, is of dimension 1) if
and only if

jt − j ≤ s− 1 < jt−1 − jt + jt − j = jt−1 − j,
holds. This condition is equivalent to jt + 1 ≤ s+ j < jt−1 + 1, so the claim follows.

�

Lemma 5.13. If S ∈ S ∩ Ω(C), then S satisfies one of the following (mutually exclusive)
conditions.

(i) S ∼= St for some 1 ≤ t ≤ a.
(ii) S ∈ Ω(Wi+jt+1,jt−1−jt−2) for some 1 ≤ t ≤ a.

(iii) S ∈ Ω(Wi+1,ja−2).

Proof For arbitrary module Xi+l(r) ∈ C, it follows from Serre duality and Lemma 3.4 that
the space

HomA(Ω(Xi+l(r)), Xi(n)) ∼= DHomA(Xi(n), τ(Xi+l(r)))

is non-zero if τ(Xi+l(r)) /∈ Wi,n−1. Thus, S being in the stable semibrick S implies that
S ∈ Ω(Wi+1,n−1).

We claim that such an S = Ω(Xi+j(s)) satisfies only one of the three possibilities:

(a) HomA(S, St) ∼= k for some 1 ≤ t ≤ a;
(b) j + s = ja;
(c) S lies in one of the a+ 1 wings described in (ii) and (iii);

Hence, S being a stable semibrick and S satisfying (a) implies that S ∼= St, whereas S
satisfying (b) cannot be in S by Lemma 5.6, and so the claim of the lemma follows.

Indeed, if 1 ≤ j ≤ ja, then S /∈ Ω(Wi+1,ja−2) (hence, does not satisfy (c)) implies that it
either satisfies (b) or does not lies in Ω(Wi+1,ja−1). In the later case, we then have j+s > ja,
and so there must be some 0 ≤ t ≤ a with jt < j + s ≤ jt−1. Now it follows from Lemma
5.12 that HomA(S, St−1) ∼= k, i.e S satisfies (a).

Similarly, if S /∈ Ω(Wi+jt+1,jt−1−jt−2) and jt < j < jt−1 for some 1 ≤ t ≤ a, then Lemma
5.12 implies that HomA(S, St′) ∼= k for some 0 ≤ t′ ≤ t.

�

Lemma 5.14. We have the following isomorphisms of stable Hom-spaces.

(i) For any 0 ≤ t ≤ a and m ≥ 0, we have

HomA(Ω(Xi(mn+ jt)), Xi(n)) ∼= k.

(ii) If S ∈ S \ {Xi(n)}, then for any 0 ≤ t ≤ a and m ≥ 0, we have

HomA(Ω(Xi(mn+ jt)), S) ∼=

{
k, if S ∼= St+1 and t < a;

0, otherwise.
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Proof (i) By Serre duality, it suffices to show that dim HomA(Xi(n), Xi−1(mn + jt)) = 1.
For m = 0, since n− 1 ≤ n− 1 < n− 1 + jt always hold, we get the required dimension by
Lemma 5.11. For m > 0, we can apply Lemma 5.2 to get that

dim HomA(Xi(n), Xi−1(mn+ jt)) =
n−1∑
h=0

dim HomA(Xi+h, Xi−1(mn+ jt)).

Since i+ h runs through all 1, 2, . . . , n exactly once, it follows from Lemma 5.9 (v) that
there is only one non-zero number, which is 1, in the summation.

(ii) Let us consider first the case when S /∈ S ∩ Ω(C). Then S satisfies the conditions of
Lemma 5.10, and so (taking r = mn+ jt) we get the vanishing of the stable Hom-space as
claimed.

Up to the end of the proof, we assume that S ∈ S ∩ Ω(C). Note that this means that
S � Xi(n) by Lemma 5.4. By Lemma 5.13, we only need to consider the case when (a)
S ∼= Sr for some 1 ≤ r ≤ a, or (b) when S lies in one of the wings shown in Lemma 5.13
(ii) and (iii).

Case (a): It follows from Lemma 5.12 that HomA(Ω(Xi(mn+ jt)), Sr) is one-dimensional
if r = t+ 1 and t < a; zero, otherwise.

Case (b): By Lemma 5.11, HomA(Ω(Xi(mn + jt)), S) = 0 if the quasi-simple M :=
Xi+jt−1 lies inWi+j,s, so it suffices to show that this is impossible. Indeed, the quasi-simples
not contained by the union the wings stated in Lemma 5.13 (ii) and (iii) are precisely Xi+jt−1
for all 1 ≤ t ≤ a. The claim now follows.

�
We have gathered all the ingredients to prove Theorem 1.5.

Proof of Theorem 1.5 We will assume the setting of Assumption 5.5, and aim to prove
that the sequence (Ml)l≥0 in Lemma 5.6 satisfies the conditions of Proposition 2.1. In
particular, the claim of the theorem is just an immediate consequence of Proposition 2.1.

Condition (i): For any l ≥ 0, Lemma 5.14 (i) and the orthogonality of S says that Ml

can be in S unless it is isomorphic to Xi(n). The difference in quasi-lengths implies that
Ml � Xi(n) for all l > 0 and Lemma 5.4 says that M0 = Ω(Xi(n)) � Xi(n), too.

Condition (ii): By Lemma 5.14, a triangle of the form N → Ω(Xi(mn + jt)) → S → is

non-split only when S = Xi(n) or S = Ω(Xi(jt+1)), where the later case does not appear
when t = a. Moreover, these triangles are unique up to isomorphism as HomA(Ω(Xi(mn+
jt)), S) ∼= k. Hence, they must be the ones given in Lemma 5.8. Now it follows from the
description of these triangles that we have N = Ml′ with l′ > l, as required.

�

6. Fineness of the results

In this section, we give concrete examples that justify Remark 1.4 and 1.6.
Both examples here are symmetric special biserial algebras, a.k.a. Brauer graph algebras.

These algebras are tame - in fact, the examples we are going to present are (2-)domestic.
The classification of their stable Auslander-Reiten components is already known from [11]
- this is the essential information we need to find the desired properties. More in-depth
investigation on stably quasi-serial components can be found [8], where one can also find
explicit algorithm to calculate modules in the stably quasi-serial components of a symmetric
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special biserial algebra. A concise summary on results in these two articles can be found in
the survey [19, Section 5].

Suppose from now on that A = kQ/I is a symmetric special biserial algebra. We will also
assume A is representation-infinite; otherwise, there is no stably quasi-serial component.
Using [11, Theorem 2.1, 2.2], we know that any periodic τ -orbit always lies in a stably
quasi-serial component. There are two types of stably quasi-serial components. One type
arises from 1-parameter families of modules and so consists only of homogeneous tubes,
i.e. quasi-serial component of rank 1. For a stably quasi-serial component belonging to the
other type, its stable part is often called an exceptional tube in the literature.

For an exceptional tube, its associated set of quasi-simples consists only of the so-called
maximal uniserial modules, i.e. modules that are isomorphic to either A/αA for some arrow
α ∈ Q1, or the quotient of an indecomposable uniserial projective module Pi by its socle.
Note that as A is symmetric, the AR-translation is naturally isomorphic to the second
syzygy functor.

Example 6.1. We show that the bound in Theorem 1.3 is the best possible, i.e. it is
possible to have a stably quasi-serial component of rank n which contains n − 1 members
of a simple-minded system for any integer n > 1. In fact, the simple-minded system we
consider is just the set of (isoclass representatives of) simple modules.

Let A = kQ/I be a symmetric special biserial algebra whose quiver Q is given by

Q : 1

α
��

n+ 1
α

oo

γ

��

2 α
// · · · α

// n

α

II

γ

UU

and I is generated by αγ, γα, and αn+1 − γ2, whenever these compositions make sense.
A has two stably quasi-serial components of rank n. Indeed, the indecomposable uniserial

projective module Pi := eiA for 1 ≤ i < n are uniserial, and so the simple top Si of Pi is a
quasi-simple of some exceptional tube. In fact, by calculating the second syzygy repeatedly,
we can see that these Si’s belong to the same component:

τ(Si) ∼= Ω2(Si) ∼= Si+1 for 1 ≤ i < n− 1

τ(Sn−1) ∼= Pn+1/αPn+1,

τ(Pn+1/αPn+1) ∼= S1.

The claim is now clear.

Although unrelated to our claim, we note that the other stably quasi-serial component
in the above example is the syzygy of the one we considered. Also, the other two simple
modules Sn, Sn+1 lie in distinct Euclidean components of the stable AR-quiver.

Example 6.2. We now show that Theorem 1.5 is also the best possible, i.e. it is possible to
have a module of quasi-length n−1 in a simple-minded system for any integer n > 1. As in
the previous example, the simple-minded system we consider is the set of simple modules.

Let A = KQ/I be a symmetric special biserial algebra whose quiver Q is given by

Q : 1
α
((
2

β

hh

α
** · · ·

β

ii

α
--
n− 1

β

kk

γ
%%

n+ 1
γ
oo

δ

��

n

γ

OO

δ

UU
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and I is generated by

α2, β2, αγ, γβ, δγ, γδ, αβ − βα, βα− γ3, δ2 − γ3,
whenever these compositions make sense.

As before, denote by Pi and Si the indecomposable projective module and simple module
associated to a vertex i ∈ Q0. Firstly, as S1

∼= P1/αP1, the simple mdoule S1 is quasi-
simple. Secondly, for the projective module Pi with 1 ≤ i < n− 1 has Loewy length 3 with
radPi/socPi ∼= Si−1 ⊕ Si+1, and both its top and socle are Si. By the following canonical
almost split sequence for self-injective algebras

0→ radPi → radPi/socPi ⊕ Pi → Pi/socPi → 0,

we obtain the following portions of the exceptional tubes:

S2r

��

N2r−1

· · ·

M2r−1

??

��

S2r−2
��

??

N2r−3

· · ·

· · ·

M2r−3

??

N3

· · ·

· · ·

M3

��

S2

��

??

N1

· · ·

M1

??

(S2r+1)
��

(N2r)

· · ·

(M2r)

??

��

S2r−1
��

??

N2r−2

· · ·

· · ·

M2r−2

??

N2

��

P2/βP2

· · ·

M2

��

S1

??

P3/αP3

??

Here, r is the maximal integer so that 2r < n (so all simple modules but Sn, Sn+1 appear),
Mi = radPi and Ni = Pi/socPi for all 1 ≤ i < n, and the bracket terms needs to be replaced
by some different indecomposable modules when n is odd.

In any case, we have that Sn−1 is a module of quasi-length n− 1, so it remains to justify
that an exceptional tube containing any of these two sets of modules is of rank n. To
this end, we consider the τ -orbits of M1 and S1. For typographical clarity, we denote by
Uω
i := Pi/ωPi with ω ∈ Q1. Then we have:

n M τ(M) τ 2(M) · · · τn−1(M) τn(M)

even Uγ
n+1 Uβ

n−2 Uβ
n−4 · · · Uβ

3 , M1, U
α
2 , U

α
4 , · · · Uα

n−1 Uγ
n+1

U δ
n Uβ

n−1 Uβ
n−3 · · · Uβ

2 , S1, U
α
3 , U

α
5 , · · · Uα

n−2 U δ
n

odd Uγ
n+1 Uβ

n−2 Uβ
n−4 · · · Uβ

2 , S1, U
α
3 , U

α
5 , · · · Uα

n−1 Uγ
n+1

U δ
n Uβ

n−1 Uβ
n−3 · · · Uβ

3 , M1, U
α
2 , U

α
4 , · · · Uα

n−2 U δ
n

This shows that the two pictures shown above are subquivers of distinct exceptional tubes,
both of which are of rank n.

Although unrelated to our claim, we note that the remaining two simple modules belong
to two distinct Euclidean components as in Example 6.1. In fact, for each n > 1, the algebra
considered in Example 6.1 is derived (hence, stably) equivalent to the algebra considered
in Example 6.2.
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