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Abstract. Simple-minded systems of objects in a stable module category are defined
by common properties with the set of simple modules, whose images under stable equiva-
lences do form simple-minded systems. Over a representation-finite self-injective algebra, it
is shown that all simple-minded systems are images of simple modules under stable equiva-
lences of Morita type, and that all simple-minded systems can be lifted to Nakayama-stable
simple-minded collections in the derived category. In particular, all simple-minded systems
can be obtained algorithmically using mutations.

1. Introduction

Module categories contain two kinds of especially important objects: From simple mod-
ules other objects can be produced by iteratively forming extensions. From projective
modules other objects can be produced by considering presentations or resolutions. More-
over, by Morita theory, projective objects control equivalences of module categories. The
role of projective modules can in derived categories be taken over by appropriate generalisa-
tions (“projective-minded” objects satisfying certain homological conditions) such as tilting
complexes, which still control equivalences of such categories. In stable categories, no sub-
stitutes of projective objects are known and stable equivalences are, in general, not known
to be controlled by particular objects. It is not even known whether equivalences of sta-
ble module categories of finite dimensional algebras preserve the number of non-projective
simple modules (up to isomorphism); the Auslander-Reiten conjecture – which appears to
be wide open – predicts a positive answer to this question.

The images of simple modules under a stable equivalence do keep some of the properties
of simple objects such as their endomorphism ring being a skew-field and every non-zero
homomorphism between them being an isomorphism. Moreover, they still generate the
stable category. Such systems of objects in a stable module category have been called
simple-minded systems in [16]. Analogous systems of objects in a derived module category
(defined in a slightly different way) have been called cohomologically Schurian collections
in [3] and simple-minded collections in [17].
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Any information on simple-minded systems for an algebra can help to describe the still
rather mysterious stable module category and in particular equivalences between stable
categories. The following two problems appear to be crucial:

The simple-image problem: Is every simple-minded system the image of the set of simples
of some algebra under some stable equivalence?

The liftability problem: Is there a connection between the simple-minded systems in the
stable category of a self-injective algebra and the simple-minded collections in its derived
module category? More precisely, are the simple-minded systems images of simple-minded
collections under the quotient functor from the derived to the stable category?

Note that when the algebra is self-injective, its stable module category is a quotient of
its derived module category.

On a numerical level, a positive answer to the question if all simple-minded systems of an
algebra have the same cardinality implies validity of the Auslander-Reiten conjecture. The
information we are looking for is stronger and is part of an attempt to better understand
the structure of stable categories and stable equivalences.

Expecting positive answers to these questions appears to be rather optimistic. In this arti-
cle we do, however, provide positive answers to both problems for the class of representation-
finite self-injective algebras, which includes for instance all the blocks of cyclic defect of
group algebras of finite groups over fields of arbitrary characteristic.

Before stating our main result Theorem A, we remark that Riedtmann et al essentially
answered the simple-image problem for standard representation-finite self-injective algebras
in the 1980’s, using the notion of configurations instead of simple-minded systems, and that
Asashiba and Dugas have recently resolved the liftability problem in this case (see Section
3 and 4 for details). So essentially the new part of the following theorem is the case of the
non-standard representation-finite self-injective algebras.

Theorem A (4.1 and 4.2): Let A be self-injective of finite representation type over an
algebraically closed field. Then every simple-minded system is the image of simples under
a stable equivalence of Morita type that lifts to a derived equivalence.

A main tool for answering the simple-image problem is a combinatorial description of
simple-minded systems over a representation-finite self-injective algebra A: there is a bijec-
tion between simple-minded systems in modA and Riedtmann’s configurations in the stable
AR-quiver of A. Again this result was already known by Riedtmann et. al. for the standard
representation-finite self-injective algebras (see Section 3 for the details). Using covering
theory we can solve this problem both in the standard case and in the non-standard case
simultaneously (see 3.6).

Note that all stable equivalences between standard algebras are liftable stable equiva-
lences of Morita type, that is, they can be lifted to standard derived equivalences. This
yields an unexpected property of simple-minded systems in this case; they are all Nakayama-
stable. This stability appears to be a crucial property that is potentially useful in other
situations, too. Moreover, combining mutation theory of simple-minded systems and the
identification with configurations, we can show that some stable self-equivalences of the
non-standard representation-finite self-injective algebras are liftable. This provides the
main step in complementing the known cases for Theorem A (see 4.10). In fact, the same
proof also gives an alternative proof for Dugas’ result [15] on the liftability of stable equiv-
alences between particular representation-finite self-injective algebras.
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Simple-minded systems may be compared with other concepts that arise for instance in
cluster theory or in the emerging generalisation of tilting to silting. These concepts also
come with a theory of mutation. Therefore, it makes sense to ask for the phenomena which
replicate in different situations. In this context, we will prove the following result, that is
formally independent of simple-minded systems, but intrinsically related to our approach:

Theorem B (5.5): Let A be a self-injective algebra of finite representation type over
an algebraically closed field. Then the homotopy catgory Kb(projA) is strongly tilting con-
nected.

Combining this with other results, we show an analogous result for the stable module
category. In particular, we get that all simple-minded systems in this case can be obtained
by iterative left irreducible mutations starting from simple modules (see 5.8).

The proofs use a variety of rather strong results and methods from the literature, in-
cluding covering theory, Riedtmann’s description of configurations of representation finite
self-injective algebras, Asashiba’s classification results on stable and derived equivalences,
Asashiba’s and Dugas’ results on liftability of stable equivalences, and various mutation
theories.

This article is organised as follows. Section 2 contains some general statements on sms’s
over self-injective algebras: their connection with smc’s; the relationship between the orbits
of sms’s under stable Picard group and the Morita equivalence classes of stably equivalent
algebras. We shall formulate the basic problems about sms: simple-image problem and
liftability problem.

From Section 3, we restrict our discussion to representation-finite self-injective algebras
over an algebraically closed field. Section 3 gives the correspondence between configura-
tions and sms’s. As a consequence, we can solve the simple-image problem of sms’s for
representation-finite self-injective algebras.

Based on the results in previous sections and on a lifting theorem for stable equivalences
between representation-finite self-injective algebras, we give the proof of Theorem A in
Section 4.

In Section 5 we discuss some aspects of the various mutations of different objects: tilting
complex, smc, and sms. We will show that the sms’s of a representation-finite self-injective
algebra can be obtained by iterative mutations. As a by-product of our point of view we
obtain Theorem B.

2. Statement of problems, and their motivations

Let k be a field and A a finite dimensional self-injective k-algebra.

We denote by modA the category of all finitely generated left A-modules, by modPA
the full subcategory of modA whose objects have no nonzero projective direct summand,
and by modA the stable category of modA modulo projective modules. Let S be a class
of A-modules. The full subcategory 〈S〉 of modA is the additive closure of S. Denote by
〈S〉∗〈S ′〉 the class of indecomposable A-modules Y such that there is a short exact sequence
0→ X → Y ⊕ P → Z → 0 with X ∈ 〈S〉, Z ∈ 〈S ′〉, and P projective. Define 〈S〉1 := 〈S〉
and 〈S〉n := 〈〈S〉n−1 ∗ 〈S〉〉 for n > 1.

To study sms’s over A, without loss of generality, we may assume the following throughout
the article: A is indecomposable non-simple and contains no nodes (see [16]). We can then
simplify the definition of sms from [16] as follows.
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Definition 2.1. ([16]) Let A be as above. A class of objects S in modPA is called a simple-
minded system (sms) over A if the following conditions are satisfied:

(1) (orthogonality condition) For any S, T ∈ S, HomA(S, T ) =

{
0 (S 6= T ),
division ring (S = T ).

(2) (generating condition) For each indecomposable non-projective A-module X, there
exists some natural number n (depending on X) such that X ∈ 〈S〉n.

It has been shown in [16] that each sms has finite cardinality and the sms’s are invariant
under stable equivalence, i.e. the image of an sms under a stable equivalence is also an sms.
Note that the set of simple A-modules clearly forms an sms. We are going to present two
fundamental problems, as noted in the introduction, on the study of sms, and we provide
motivations for them. To state these problems, we first introduce a special class of stable
equivalences — stable equivalences of Morita type, which occur frequently in representation
theory of finite groups, and more generally, in representation theory of finite dimensional
algebras (see, for example, [10], [25], [18], [19], [21]).

Let A and B be two algebras. Following Broué [10], we say that there is a stable equiv-
alence of Morita type (StM) φ : modA → modB if there are two left-right projective
bimodules AMB and BNA such that the following two conditions are satisfied:

(1) AM ⊗B NA ' AAA ⊕ APA, BN ⊗AMB ' BBB ⊕ BQB,
where APA and BQB are some projective bimodules;

(2) φ is a stable equivalence which lifts to the functor N ⊗A −, that is, the diagram

modA
N⊗A−

//

πA
��

modB

πB
��

modA
φ
// modB

commutes up to natural isomorphism, where πA and πB are the natural quotient
functors.

The first one is the simple-image problem:

Problem 2.2. Simple-image problem:

(1) Given an sms S of A, is this the image of the simple modules under a stable equiv-
alence? (When this is true, we say S is a simple-image sms, or shorter, it is
simple-image.)

(2) Is every sms of A simple-image?
(3) Given an sms S of A, is this the image of the simple modules under a stable equiv-

alence of Morita type? (When this is true, we say S is a strong simple-image sms,
or shorter, it is strong simple-image.)

(4) Is every sms of A strong simple-image?

(3) and (4) are the strong versions of (1) and (2), respectively. Our aim is to solve the
strong simple-image problem in the case of representation-finite self-injective algebras over
algebraically closed fields.

In [16], a weaker version of sms has been introduced, and it has been shown that when
A is representation-finite self-injective, the following system is sufficient (hence equivalent)
for defining an sms.

Definition 2.3. ([16]) Let A be as in Definition 2.1. A class of objects S in modPA is
called a weakly simple-minded system (wsms) if the following two conditions are satisfied:
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(1) (orthogonality condition) For any S, T ∈ S, HomA(S, T ) =

{
0 (S 6= T ),
division ring (S = T ).

(2) (weak generating condition) For any indecomposable non-projective A-module X,
there exists some S ∈ S (depends on X) such that HomA(X,S) 6= 0.

A similar concept used for derived module categories is the simple-minded collection
(smc) of [17], which coincides with the cohomologically Schurian collection of Al-Nofayee
[3].

Definition 2.4. ([17]) A collection X1, · · · , Xr of objects in a triangulated category T is
simple-minded if for i, j = 1, · · · , r, the following conditions are satisfied:

(1) (orthogonality) Hom(Xi, Xj) =

{
division ring if i = j,

0 otherwise;

(2) (generating) T = thick(X1 ⊕ · · · ⊕Xr);
(3) (silting/tilting) Hom(Xi, Xj[m]) = 0 for any m < 0.

For any (finite dimensional) k-algebra A, the simple A-modules form a simple-minded
collection of the bounded derived category Db(modA). Simple-minded collections ap-
peared already in the work of Rickard [26], who constructed tilting complexes inducing
equivalences of derived categories that send a simple-minded collection for a symmet-
ric algebra to the simple modules of another symmetric algebra. Al-Nofayee [3] gener-
alised Rickard’s work to self-injective algebras, requiring an smc to satisfy the following
Nakayama-stability condition. Recall that for a self-injective algebra A, the Nakayama
functor νA = Homk(A, k)⊗A− : modA→ modA is an exact self-equivalence and therefore
induces a self-equivalence of Db(modA) which will also be denoted by νA. By Rickard [25],
if φ : Db(modA) → Db(modB) is a derived equivalence between two self-injective alge-
bras A and B, then φνA(X) ' νBφ(X) for any object X ∈ Db(modA). We shall say an
smc X1, · · · , Xr of Db(modA) is Nakayama-stable if the Nakayama functor νA permutes
X1, · · · , Xr. In particular, any derived equivalence φ : Db(modA) → Db(modB) sends
simple modules to a Nakayama-stable smc.

We will frequently use the following two well-known results of Rickard and Linckelmann.
The former says that for a self-injective A, the embedding functor modA → Db(modA)
induces an equivalence modA → Db(modA)/Kb(projA). So there is a natural quotient
functor ηA : Db(modA)→ modA of triangulated categories. A standard derived equivalence
between two self-injective algebras induces a StM (here a standard derived equivalence means
that it is isomorphic to the functor given by tensoring with a two-sided tilting complex,
see [24, 25, 5] for more details). Linckelmann [18] showed that a StM between two self-
injective algebras lifts to a Morita equivalence if and only if it sends simple modules to
simple modules.

We then have the following observation.

Proposition 2.5. Let A be a self-injective algebra. Then every Nakayama-stable smc of
Db(modA) determines an sms of modA under the natural functor ηA : Db(modA)→ modA.
Conversely, if S is a simple-image sms of modA under a stable equivalence φ :modB →
modA, and if φ can be lifted to a derived equivalence, then S lifts to a Nakayama-stable smc
of Db(modA).

Proof This is straightforward by results of Al-Nofayee.

�
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The second fundamental problem asks how a sms is related to Nakayama-stable smc:

Problem 2.6. The liftability problem:
Is a given sms S of modA isomorphic to the image of a Nakayama-stable smc of Db(modA)

under ηA?

According to Proposition 2.5, given a simple-image sms S of modA under a StM φ :modB →
modA, if φ can be lifted to a derived equivalence, then S is isomorphic to the image of
a Nakayama-stable smc of Db(modA) under ηA. In such situation, we simply say S is a
liftable simple-image sms.

Next we recall the notion of stable Picard group from [19, 5]. Let A be an algebra.
The more conventional notion of Picard group Pic(A) of A is defined to be the set of
natural isomorphism classes of Morita self-equivalences over A. The set StPic(A) of natural
isomorphism classes [φ] of StM φ : modA→ modA form a group under the composition of
functors, which is called the stable Picard group of A. Notice that the definitions for stable
Picard group used by Linckelmann [19] and by Asashiba [5] are different even in the case of
representation-finite self-injective algebras. Linckelmann used the isomorphism classes of
bimodules which define StM, while Asashiba used the isomorphism classes of all stable self-
equivalences. We use the one closer to Linckelmann’s version of stable Picard group in the
propositions to follow. In Section 4 we will specify the link between the two versions when
A is representation-finite. Similarly we define the derived Picard group DPic(A) of A as
the set of natural isomorphism classes of standard derived self-equivalences of the bounded
derived category Db(modA). Clearly each Morita equivalence: modA → modA induces a
StM: modA → modA. We denote the image of the canonical homomorphism Pic(A) →
StPic(A) by Pic′(A). Note that two non-isomorphic bimodules may induce isomorphic StM,
which is the reason why we use Pic′(A) here. This distinction will become important in
Section 4.

Let A be an algebra. In the following, we will identify two sms’s of A, S1 = {X1, · · · , Xr}
and S2 = {X ′1, · · · , X ′s}, if r = s and Xi ' X ′i for all 1 ≤ i ≤ r up to a permutation. We
use the same convention for smc’s. We use calligraphic font (e.g. S) and bold font (e.g. S)
for sms’s and smc’s respectively to distinguish the two. Now we fix some notations:
SA = {isomorphism classes of simpleA-modules};
StMAlg(A) = {the Morita equivalence classes of algebras which are StM to A};
sms(A)/StPic(A) = {the orbits of sms’s of modA under StPic(A)};
smc(A)/DPic(A) = {the orbits of Nakayama-stable smc’s of Db(modA) under DPic(A)}.

Proposition 2.7. Let A be a self-injective algebra. Let StMAlg(A) and sms(A)/StPic(A)
be as above. Then:

(1) There is a well-defined map from StMAlg(A) to sms(A)/StPic(A).
(2) This map is injective. It is a bijection if and only if every sms of A is simple-image

of Morita type.

Proof This is straightforward by Linckelmann’s results in [18, Theorem 2.1].

�

Remark 2.8. (1) We will see in Section 4 that the above map is a bijection in case that A
is a representation-finite self-injective algebra.

(2) We do not know whether there is an example with a non-bijective map. Note that the
algebra A in Example 3.5 of [16] is in fact not a counterexample to the strong simple-image
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problem (despite a misleading formulation in [16]), where A is given by the following regular
representation

A =

1
2
1
2
1

⊕

2
1
2
1
2 .

There is a StM from A to the following Brauer tree algebraB such that the sms S2 = {1,
2
1
2
}

over A is mapped to simple B-modules:

B=
1
2
1
⊕

2
1 2

2 .
(3) This proposition is true for any finite dimensional algebra once we replace the simple
modules by non-projective simple modules in the argument, due to Linckelmann’s results
in [18, Theorem 2.1] being valid for general finite dimensional algebras (see [20] and [17,
Section 4]).

(4) Uniqueness is false if we replace StM by general stable equivalence, even the involved
algebras are indecomposable and have no nodes. For example, let A be a k-algebra without
oriented cycles in its ordinary quiver and DA = Homk(A, k). Using a 2-cocycle α : A×A→
DA one can construct the Hochschild extension algebra A nα DA. When α = 0, this is
just the trivial extension algebra AnDA. Yamagata showed that Anα DA and AnDA
are related by a socle equivalence which naturally induces a stable equivalence. This stable
equivalence maps simples to simples. However, when k is not algebraically closed, there
exists some A nα DA which is indecomposable and self-injective, but not symmetric (see
[23]). In this case, A nα DA and A n DA are not Morita equivalent since A n DA is
symmetric.

Proposition 2.9. Let A be a self-injective algebra. Let smc(A)/DPic(A) and sms(A)/StPic(A)
be as above. Then there is an injective map from smc(A)/DPic(A) to sms(A)/StPic(A).
This map is a bijection if every sms S of A is a liftable simple-image.

Proof This is straightforward by Linckelmann’s results in [18, Theorem 2.1].

�

Remark 2.10. (1) We will see in Section 4 that every sms of A is a liftable simple-image
in case that A is a representation-finite self-injective algebra, and therefore the above map
is a bijection in this case.

(2) The map in Proposition 2.9 could be a bijection without every sms of A being liftable.
We are grateful to the referee for pointing this out and for suggesting the following example.
Let P be a finite p-group and A = kP be the group algebra, where k is a field of char-
acteristic p. Since A is local, smc(A)/DPic(A) will be trivial (the only tilting complexes
are isomorphic to A[n] for an integer n). Since A is a p-group algebra any sms consists
of endotrivial modules by [11]. A single endotrivial module M is already an sms as it is
the image of the trivial module k under the stable equivalence M ⊗k − : modA → modA
of Morita type. So an sms is the same thing as an endotrivial module here, and all such
modules are in the same StPic(A)-orbit. However, if there is an endotrivial module not of
the form Ωn(k), then it is an sms of A that is not liftable.
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(3) In the representation-infinite case, there exists simple-image sms S of Morita type
under a non-liftable StM. For example, let A and B be the principal blocks of the Suzuki
group Sz(8) and of the normalizer of a Sylow 2-subgroup of Sz(8) over a field k of charac-
teristic 2. Then A and B are stably equivalent of Morita type, say under φ, but not derived
equivalent by [10]. Obviously, S = φ(SB) is a simple-image sms of Morita type over A. If
there is another algebra C so that ψ : modC → modA is a stable equivalence sending SC
to S and ψ liftable, then φ−1ψ(SC) = SB. By Linckelmann’s results in [18, Theorem 2.1],
C and B are Morita equivalent, as A and C are derived equivalent. This implies that A
and B also are derived equivalent, which is a contradiction. Therefore, we have an example
of a simple-image sms of Morita type which is never liftable.

3. Sms’s and configurations

In this section we are going to address the simple-image problem. Following Asashiba
[4], we abbreviate (indecomposable, basic) representation-finite self-injective algebra over
an algebraically closed field k (not isomorphic to the underlying field k) by RFS algebra.

Theorem 3.1. Let A be an RFS algebra over an algebraically closed field, and S an sms
of A. Then there is an RFS algebra B and a stable equivalence from modB to modA such
that the set of simple B-modules is mapped to S under the stable equivalence, i.e. S is a
simple-image sms.

Remark 3.2. (1) We will see in Section 4 that, for an RFS algebra A, all sms’s of A
are in fact simple-image of Morita type.

(2) The classification theorem of RFS algebras, first proved in the 80’s, does already
imply implicitly that B is determined uniquely up to Morita equivalence.

The main tools in proving Theorem 3.1 come from Riedtmann’s work on RFS algebras
and their AR-quivers, and from Asashiba’s stable equivalence classification of RFS algebras.
We use standard definitions of AR theory without explanations; see [6, 7, 8] for details. In
the following we recall the definitions of configurations and combinatorial configurations,
and see how these notions are translated into the setting of sms’s. Throughout this section
Q denotes a Dynkin quiver of type An, Dn, E6, E7 or E8; and ZQ is the corresponding
translation quiver with translation denoted as τ . For a translation quiver Γ, we let k(Γ) be
its mesh category, that is, the path category whose objects are the vertices of Γ; morphisms
are generated by arrows of Γ quotiented out by the mesh relations. Riedtmann showed in
[27] that for an RFS algebra over an algebraically closed field, the stable AR-quiver is of the
form ZQ/Π for some admissible group Π. Consequently we say such algebra is of tree class
Q and has admissible group Π. Note that we always assume the RFS algebras considered
to be indecomposable, basic and not isomorphic to the underlying field k.

Definition 3.3. ([9]) A configuration of ZQ is a subset C of vertices of ZQ such that the
quiver ZQC is a representable translation quiver. ZQC is constructed by adding one vertex
c∗ for each c ∈ C on ZQ; adding arrows c→ c∗ → τ−1c; and letting the translation of c∗ be
undefined.

Here, the following notation is used: A translation quiver is representable if and only if
its mesh category is an Auslander category. We do not go through the technicalities of these
definitions; the reader can bear in mind that the mesh category of the Auslander-Reiten
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quiver (or its universal cover) of an representation-finite algebra is an Auslander category
(see [8]). The idea is that for Π-stable configuration C, ZQ/Π is the stable AR-quiver of an
RFS algebra and ZQC/Π is the AR-quiver of the algebra, where the extra (projective) ver-
tices c∗ are the vertices representing the (isoclasses of) indecomposable projective modules
of the algebra. In particular, the set {rad(P )|P an (isoclass of) indecomposable projective}
of an RFS algebra is a configuration.

Definition 3.4. ([28]) Let ∆ be a stable translation quiver. A combinatorial configuration
C is a set of vertices of ∆ which satisfy the following conditions:

(1) For any e, f ∈ C, Homk(∆)(e, f) =

{
0 (e 6= f),
k (e = f).

(2) For any e ∈ ∆0, there exists some f ∈ C such that Homk(∆)(e, f) 6= 0.

We also note the following fact in [28, Proposition 2.3]: if π : ∆→ Γ is a covering, then
C is a combinatorial configuration of Γ if and only if π−1C is a combinatorial configuration
of ∆. When applied to the universal cover of stable AR-quiver of RFS algebra A, this
translates to the following statement: C is a combinatorial configuration of the stable AR-
quiver ZQ/Π if and only if π−1C is a Π-stable combinatorial configuration of the universal
cover ZQ.

Combinatorial configurations have been defined by Riedtmann when studying self-injective
algebras [28]. At first this is a generalisation of configuration. It is often easier to study
and compute than a configuration as it suffices to look ‘combinatorially’ at sectional paths
of the translation quiver ZQ rather than checking whether k(ZQC) can be realised as an
Auslander category. Therefore, it is interesting to know if these two concepts coincide. In
the case of RFS algebras, this is true. As mentioned in the sketch previously, a configu-
ration represents a set {rad(P )|P an (isoclass of) indecomposable projective}. Applying
the inverse Heller operator Ω−1, which is an auto-equivalence of the stable category of an
RFS algebra, the above set is mapped to the set of simples of the RFS algebra. Indeed, in
[28, 29, 9] it has been shown that Π-stable configuration of ZQ and combinatorial configu-
ration of ZQ/Π do coincide. Thus in the following, for an RFS algebra A, we can identify
the configurations and combinatorial configurations of the stable AR-quiver sΓA.

In [28, 29, 9], it was also shown that the isoclasses of Π-stable ZQ configurations (two
configurations C and C ′ of ZQ are called isomorphic if C is mapped onto C ′ under an auto-
morphism of ZQ) correspond bijectively to isoclasses of RFS algebras of tree class Q with
admissible group Π, except in the case of Q = D3m with underlying field having character-
istic 2. In such a case, each configuration corresponds to two (isoclasses of) RFS algebras;
both are symmetric algebras, one of which is standard, while the other one is non-standard.
Here, a representation-finite k-algebra A is called standard if k(ΓA) is equivalent to indA,
where ΓA is the AR-quiver of A and indA is the full subcategory of modA whose objects are
specific representatives of the isoclasses of indecomposable modules. This implies that any
other standard RFS algebras with AR-quiver isomorphic to ΓA is isomorphic to A. Non-
standard algebras are algebras which are not standard. The non-standard algebras also have
been studied by Waschbüsch in [31]. Note that when A is standard, then k(sΓA) ' indA,
where indA is the full subcategory of modA whose objects are objects in indA. In this
case, it immediately follows that combinatorial configurations of k(sΓA) correspond exactly
to (weakly) sms’s of modA. While in case that A is non-standard, ksΓA/J ' indA, where
ksΓA is the path category of sΓA and the ideal J is defined by some modified mesh relations
(see [30, 4]).
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One interesting phenomenon is that combinatorial configurations of k(sΓA) also corre-
spond to sms’s of modA in the non-standard case. In fact, using covering theory, we can
prove this fact both in the standard case and in the non-standard case simultaneously. We
begin with recalling some results from [8, 9, 27, 28, 30].

Definition 3.5. ([27, 28]) Let π : ∆→ Γ be a covering where Γ is the AR-quiver (or stable
AR-quiver) of A. A k-linear functor F : k(∆)→ indA (or indA) is said to be well-behaved
if and only if

(1) For any e ∈ ∆0 with πe = ei, we have Fe = Mi where Mi is the indecomposable
A-module corresponding to ei;

(2) For any e
α→ f in ∆1, Fα is an irreducible map.

By [8, Example 3.1b], for any RFS algebra A (whenever A is standard or non-standard),

there is a well-behaved functor F : k(Γ̃A)→ indA such that F coincides with π on objects,

where π : Γ̃A → ΓA is the universal covering of the AR-quiver ΓA. By [27, Section 2.3], a
well-behaved functor is a covering functor and therefore there is a bijection⊕

Fh=Ff

Homk(Γ̃A)(e, h) ' HomA(Fe, Ff)

for any e, f, h ∈ (Γ̃A)0. Since an irreducible morphism between non-projective indecom-
posable remains irreducible under the restriction indA → indA, the well-behaved functor

F : k(Γ̃A)→ indA restricts to a well-behaved functor F : k(sΓ̃A)→ indA, where sΓ̃A is the

stable part of the translation quiver Γ̃A. Note that the restriction π : sΓ̃A → sΓA is also a
covering of the stable AR-quiver sΓA. It follows that there are bijections:⊕

Fh=Ff

Homk(sΓ̃A)(e, h) ' HomA(Fe, Ff);

⊕
πh=πf

Homk(sΓ̃A)(e, h) ' Homk(sΓA)(πe, πf).

This implies:

Proposition 3.6. Let A be an RFS algebra over an algebraically closed field. Then there
is a bijection:

{Configurations of sΓA} ↔ {sms’s of modA}

C 7→ Fπ−1(C)
where π−1 denotes the inverse of the restriction map, and F : k(sΓ̃A) → indA is the well-
behaved functor.

Remark 3.7. (1) This proposition shows that all sms’s of an RFS algebra A can be
determined from the stable AR-quiver sΓA, even in non-standard case.

(2) This proposition also shows that sΓA determines sms(B) for all indecomposable self-
injective algebra B such that sΓB ' sΓA. In fact, such phenomenon also appears in the
following tame case: There is an infinite series of 4-dimensional weakly symmetric local
algebras k〈x, y〉/〈xy − qyx〉 for q ∈ k× which have isomorphic stable AR-quivers, and
are not stably equivalent to each other. Their respective sms’s are located in the same
positions in the stable AR-quivers of these algebras, namely, each sms contains exactly one
indecomposable module lying in the unique stable AR-component ZÃ1 (see the paragraphs
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before [16, Cor 3.3]). It would be interesting to know whether we can “locate” sms’s using
just the stable AR-quiver in general.

Now we recall briefly Asashiba’s stable equivalence classification of RFS algebras. First
we need to define the type of an RFS algebra A. If A is as above, by a theorem of Riedtmann
[27], Π has the form 〈ζτ−r〉 where ζ is some automorphism of Q and τ is the translation. We
also recall the Coxeter numbers of Q = An, Dn, E6, E7, E8 are hQ = n+ 1, 2n− 2, 12, 18, 30
respectively. The frequency of A is defined to be fA = r/(hQ − 1) and the torsion order tA
of A is defined as the order of ζ. The type of A is defined as the triple (Q, fA, tA). Note
that the number of isoclasses of simple A-modules is equal to nfA.

Theorem 3.8. ([4, 5]) Let A and B be RFS k-algebras for k algebraically closed.

(1) If A is standard and B is non-standard, then A and B are not stably equivalent,
and hence not derived equivalent.

(2) If both A and B are standard, or both non-standard, the following are equivalent:
(a) A,B are derived equivalent;
(b) A,B are stably equivalent of Morita type;
(c) A,B are stably equivalent;
(d) A,B have the same stable AR-quiver;
(e) A,B have the same type.

(3) The types of standard RFS algebras are the following:
(a) {(An, s/n, 1)|n, s ∈ N},
(b) {(A2p+1, s, 2)|p, s ∈ N},
(c) {(Dn, s, 1)|n, s ∈ N, n ≥ 4},
(d) {(D3m, s/3, 1)|m, s ∈ N,m ≥ 2, 3 - s},
(e) {(Dn, s, 2)|n, s ∈ N, n ≥ 4},
(f) {(D4, s, 3)|s ∈ N},
(g) {(En, s, 1)|n = 6, 7, 8; s ∈ N},
(h) {(E6, s, 2)|s ∈ N}.

Non-standard RFS algebras are of type (D3m, 1/3, 1) for some m ≥ 2.

Remark 3.9. (1) By the classification of RFS algebras of Riedtmann et. al., for a fixed
standard (resp. non-standard) algebra A, the isoclasses of configurations on sΓA are in
bijection with the isoclasses of standard (resp. non-standard) RFS algebras B with sΓB '
sΓA. Combining this fact with (1) and (2) of the above theorem we get a bijection between
the set Conf(sΓA)/Aut(sΓA) and the set of Morita equivalence classes of algebras stably
equivalent (of Morita type) to A.

(2) The RFS types which correspond to symmetric algebras are {(An, s/n, 1)|s ∈ N, s |
n}, {(D3m, 1/3, 1)|m ≥ 2}, {(Dn, 1, 1)|n ∈ N, n ≥ 4} and {(En, 1, 1)|n = 6, 7, 8}.

Proof of Theorem 3.1. Let S be an sms of A. Then, by Proposition 3.6, S corresponds
to a configuration C in the stable AR-quiver sΓA. This configuration C represents the set
{rad(P )|P an (isoclass of) indecomposable projective B-module} for some RFS algebra B
with sΓB ' sΓA. It follows from Theorem 3.8 that B is stably equivalent to A (say, via
φ) and they are both standard/non-standard. Since for any pair of isomorphic configu-
rations on sΓA, the associated automorphism induces self-equivalence on category k(sΓA)
or ksΓA/J , we can take φ as a stable equivalence sending {rad(P )} to S. In particular,
φΩB : modB → modA is a stable equivalence sending simple B-modules to S. �
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As a by-product of using configurations, we can pick out the RFS algebras for which the
transitivity problem raised in [16] has a positive answer. That is, we can decide whether
given two sms’s of an algebra there always is a stable self-equivalence sending the first sms
to the second one.

Proposition 3.10. If A is an RFS algebra in the following list, then for any pair of sms’s
S,S ′ of A, there is a stable self-equivalence φ : modA → modA such that φ(S) = S ′. The
list consists of {(A2, s/2, 1)|s ≥ 1}, {(An, s/n, 1)|n ≥ 1, gcd(s, n) = 1}, {(A3, s, 2)|s ≥ 1},
{(D6, s/3, 1)|s ≥ 1, 3 - s}, {(D4, s, 3)|s ≥ 1}.

Proof. A is an RFS algebra satisfying the condition stated if and only if the set of its sms’s
modulo the action of stable self-equivalences (i.e. the set of orbits of sms’s under stable
self-equivalences) is of size 1. Every stable self-equivalence induces an automorphism of the
stable AR-quiver sΓA = ZQ/Π of A. Conversely, any automorphism of sΓA induces a self-
equivalence of k(sΓA) or of ksΓA/J , depending on A being standard or not. Hence it induces
stable self-equivalences of indA, and consequently of modA. Therefore, identifying an sms
with a configuration using Proposition 3.6, the algebras A we are looking for are those
whose set Conf(sΓA)/Aut(sΓA) has just one element (c.f. Remark 3.9 (1)). Here Conf(sΓA)
is the set of configurations of sΓA. We now look at the number of Aut(sΓA)-orbits case by
case.

For En cases, one can count explicitly from the list of configurations in [9] that the
number of Aut(sΓA)-orbits are always greater than 1.

Now consider class (An, s/n, 1), sΓA = ZAn/〈τ s〉. Note that configurations of ZAn are
τnZ-stable, so any configuration of (An, s/n, 1) are τ dZ-stable with d = gcd(s, n). Let s = ld
and n = md. The above implies configurations of (An, l/m, 1) are the same as configurations
of (An, 1/m, 1). But the number of the configurations of (An, 1/m, 1) is equal to the number
of Brauer trees with d edges and multiplicity m, which is equal to 1 if and only if the pair
(d,m) = (2, 1) or d = 1. Therefore, (d,m) = (2, 1) gives {(A2, 1, 1)}, and d = 1 yields the
family {(Am, 1/m, 1)}.

Let n = 2p+ 1. For the class (An, s, 2), sΓA = ZAn/〈ζτ sn〉. A configuration of (An, s, 2)
is τnZ-stable as it is also a configuration of ZAn. So we only need to consider the case
s = 1. Recall from [30, Lemma 2.5] that there is a map which takes configurations of ZAn
to configurations of ZAn+1, so the numbers of orbits of (An, 1, 2)-configurations form an
increasing sequence. Therefore, we can just count the orbits explicitly. (A3, 1, 2) has one
orbit of configurations given by the representative {(0, 1), (1, 2), (2, 3)}, whereas (A5, 1, 2)
has two orbits. This completes the An cases.

Note that configuration of ZDn is τ (2n−3)Z-stable, so similar to An case we can reduce
to the cases (Dn, 1, 1), (Dn, 1, 2), (D4, 1, 3), and (D3m, 1/3, 1). We make full use of the
main theorem in [29] combining with our result in the An cases. Part (a) of the theorem
implies that (Dn, 1, 1) and (Dn, 1, 2) with n ≥ 5 all have more than one orbits. Part (c)
of the theorem implies that (D4, 1, 1) and (D4, 1, 2) has two orbits, with representatives
{(0, 1), (1, 1), (3, 3), (3, 4)} and {(0, 2), (3, 3), (3, 4), (4, 1)}. Since the latter is the only orbit
which is stable under the order 3 automorphism of ZD4, implying {(D4, s, 3)|s ≥ 1} is
on our required list. Finally, for (D3m, 1/3, 1) case, we use the description of this class of
algebras from [31], which says that such class of algebra can be constructed via Brauer
tree with m edges and multiplicity 1 with a chosen extremal vertex. Therefore, the only m
with a single isomorphism class of stably equivalent algebra is when m = 2, hence giving
us {(D6, s/3, 1)|s ≥ 1, 3 - s}. �
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4. Sms’s and Nakayama-stable smc’s

Our aim in this section is to prove that for an RFS algebra A, every sms of A lifts to
a Nakayama-stable smc of Db(modA), i.e. all sms of A are liftable simple-image. We first
state the results and some consequences; the second part of this section then provides the
proof of the following result:

Theorem 4.1. Let A be an RFS k-algebra over k algebraically closed. Then every sms S
of A is simple-image of Morita type under a liftable StM.

Corollary 4.2. Let A be an RFS algebra over k algebraically closed. Then every sms S of A
lifts to a Nakayama-stable smc of Db(modA). In particular, the map from smc(A)/DPic(A)
to sms(A)/StPic(A) in Proposition 2.9 is a bijection.

Proof By Proposition 2.9, it is enough to show that every sms S of modA is a liftable
simple-image: There exists an algebra B and a StM φ : modB → modA such that φ
sends simple B-modules onto S and that φ lifts to a derived equivalence φ : Db(modB)→
Db(modA). But this follows from Theorem 3.1 and Theorem 4.1.

�

Corollary 4.3. Let A be an RFS algebra. The map StMAlg(A) →sms(A)/StPic(A) con-
structed in Theorem 2.7 is a bijection. In particular, the number of Morita equivalence
classes of algebras which are StM to A is the same as the number of the orbits of sms’s of
modA under the action of the stable Picard group of A.

Combining Theorem 4.1 with Proposition 2.9 implies the following result which was not
expected from the definition of sms’s.

Corollary 4.4. Let A be an RFS algebra over k algebraically closed. Then every sms
X1, · · · , Xr over A is Nakayama-stable, that is, the Nakayama functor νA permutes X1, · · · , Xr.

Proof An sms S = {X1, · · · , Xr} over an RFS algebra A can be lifted to a Nakayama-stable
smc of Db(modA).

�
In [16, Section 6], the following question has been posed: Is the cardinality of each sms

over an artin algebra A equal to the number of non-isomorphic non-projective simple A-
modules? A positive answer of this question implies the Auslander-Reiten conjecture for
any stable equivalence related to A. We answer this question positively for RFS algebras.

Corollary 4.5. Let A be an RFS algebra over k algebraically closed. Then the cardinality
of each sms over A is equal to the number of non-isomorphic simple A-modules.

Proof By Corollary 4.2, every sms S of modA lifts to a Nakayama-stable smc of Db(modA),
and the cardinality of a Nakayama-stable smc must be equal to the number of (isoclasses
of) simple modules by Rickard’s or Al-Nofayee’s result (cf. the proof of Theorem 2.9).

Alternatively, using Proposition 3.6, all sms’s of A correspond to configurations, which
are all finite and have the same cardinality, equal to the number of isoclasses of simple
A-modules (cf. [9]).

�
Validity of the Auslander-Reiten conjecture in this case first has been shown in [9]. By

results of Martinez-Villa [22] the conjecture is valid for all representation finite algebras.
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The proof of Theorem 4.1 adopts the idea from our alternative proof of Dugas’ liftability
result [15, Section 5], which uses the mutation theory of sms’s. The definition of mutation
we use in this article is a variation of Dugas’s original one by shifting the objects by Ω±1, so
that the mutations “align” with the mutation for smc defined in [17] (see [13] Remark under
Definition 4.1, [17] and Section 5 for more details). We restrict to the stable category of a
self-injective algebra, although the original definition works for more general triangulated
categories. For the definitions of left/right approximations see for example [1, 2, 17, 14].

Definition 4.6. ([13, Definition 4.1 and Remark]) Let A be a finite-dimensional self-
injective algebra and S = {X1, . . . , Xr} an sms of A. Suppose that X ⊆ S is a Nakayama-
stable subset: νA(X ) = X . Denote by F(X ) the smallest extension-closed subcategory
of modA containing X . The left mutation of the sms S with respect to X is the set
µ+
X (S) = {Y1, . . . , Yr} such that

(1) Yj = Ω−1(Xj), if Xj ∈ X
(2) Otherwise, Yj is defined by the following distinguished triangle

Ω(Xj)→ X → Yj,

where the first map is a minimal left F(X )-approximation of Ω(Xj).

The right mutation µ−X (S) of S is defined similarly.

It has been shown in [13] that the above defined sets µ+
X (S) and µ−X (S) are again sms’s.

This definition works for all self-injective algebras as long as ν(X ) = X , which is automat-
ically true for weakly symmetric algebras. Mutation of sms is designed to keep track of the
images of simple modules (which form an sms) under (liftable) StM. It is interesting to ask
if all sms’s can be obtained just by mutations; this will be considered in Section 5.

Example 4.7. Let A be a symmetric Nakayama algebra with 4 simples and Loewy length
5. The canonical sms is the set of simple A-modules {1, 2, 3, 4}. The left mutation of S at
X = {2, 3} is

µ+
X ({1, 2, 3, 4}) = {1

2
3
,

2
3
4
1
,

3
4
1
2
, 4}.

4.1. Proof of Theorem 4.1. It will be subdivided in a first part dealing with standard
RFS algebras, and a second part dealing with the non-standard case.

The standard case.

For standard RFS algebras, Asashiba [5] and Dugas [15, Section 5] already solved this
problem. For convenience of the reader, we give a brief account for the main steps. We
first recall Asashiba’s description of stable Picard groups for standard RFS algebras.

Theorem 4.8. ([5]) Let A be a standard RFS algebra. If A is not of type (D3m, s/3, 1) with
m ≥ 2, 3 - s, then StP ic(A) = Pic′(A)〈[ΩA]〉. If A is of type (D3m, s/3, 1) with m ≥ 2, 3 - s,
then

StP ic(A) = (Pic′(A)〈[ΩA]〉) ∪ (Pic′(A)〈[ΩA]〉)[H],

where H is a stable self-equivalence of A induced from an automorphism of the quiver D3m

by swapping the two high vertices; it satisfies [H]2 ∈ Pic′(A).

Remark 4.9. See [30] and [9] for an explanation of the concept of high vertices. Note
that the stable Picard group here, by definition, contains all stable self-equivalences, rather
than as usual only the stable self-equivalences of Morita type. Nevertheless, such different
choice of the stable Picard group does not matter here, as all elements are in fact liftable
(see below), hence of Morita type.
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Clearly elements in Pic′(A) and the Heller functor ΩA can be lifted to a standard derived
equivalence. In [15], Dugas used mutation theory to prove that H is also liftable. On the
level of configurations, when combining liftability of StP ic(A) with Asashiba’s construc-
tion of derived equivalences in [4], this means that every automorphism on sΓA sending a
configuration to another can be realised by a liftable StM. Statement of Theorem 4.1 in the
standard case now follows.

The non-standard case.

Now we prove Theorem 4.1 in the non-standard case. Let A be a non-standard RFS
algebra of type (D3m, 1/3, 1) and let As be its standard counterpart, that is, the standard
RFS algebra such that SAs and SA are the same set when regarded as a τ (2m−1)Z-stable
configuration of ZD3m. First we recall some facts:

(1) (standard-non-standard correspondence): There is a bijection ind(A) ↔ ind(As)
between the set of indecomposable objects and irreducible morphisms, which is
compatible with the position on the stable AR-quiver Γ = ZD3m/〈τ 2m−1〉. In par-
ticular, when A is the representative of non-standard RFS algebra, whose quiver is
given in Figure Q(D3m, 1/3), then Waschbüsch [31] described the AR-quiver of A
using that of As by replacing every part of the Loewy diagram:

1m−1 1m−1

v1 to v1

v1 v1

11 11

The position of the indecomposable modules are presented in [31].
(2) There is one-to-one correspondence between the following three sets:

sms(A)↔ Conf(Γ)↔ sms(As)

where the first is the set of sms’s of A, the second is the set of configurations of Γ,
and the third is the set of sms’s of As.

(3) If B is another non-standard RFS algebra of type (D3m, 1/3, 1), then there is a
liftable StM φ : modA→ modB (see Theorem 3.8).

Therefore, by (3), we can assume A is the representative of the class of algebras of type
(D3m, 1/3, 1), whose quiver is also given in Figure Q(D3m, 1/3) and the path relations can
be found in [31] where A is denoted as B(Tm, S, 1).

1m−1αm

xx

αm−1
oo ······· ·······

v1

α1 &&

β
66

11 α2

// ·······

Figure Q(D3m, 1/3)
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◦

α
(2)
2
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◦
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··
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m
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··
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··
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1
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α
(2)
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◦

α
(3)
2
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····
····

···
···
···
···
··· ◦ α

(2)
m
//◦

α
(4)
1
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β4

**

◦

β6
??

α
(6)
1

//◦ α
(6)
2

??

◦

α
(4)
2

��

◦

β5
44

α
(5)
1

��

◦
α
(4)
m

OO

α
(3)
m−1

//◦
α
(3)
m

??

◦
α
(5)
2

//

····

··············· α
(4)
m−1

??

Figure (Q(D3m, s/3), s ≥ 2)

Lemma 4.10. There is a (standard) derived self-equivalence of A which restricts to H on
the modA, with the same effect on the objects as the functor H in Theorem 4.8 on modAs
under the standard-non-standard correspondence.

Proof Consider the set SA of simple A-modules, which corresponds to the configuration
C = {(0, 3m), (2m − 1 − j, 1)|j = 1, . . . ,m − 1}. More specifically, the vertex (0, 3m)
corresponds to the simple A-modules which can be identified with v1 on Q(D3m, 1/3),
whereas the vertices (2m − 1 − j, 0) correspond to the simple A-modules 1j. Perform sms
mutation at 11, then we obtain

µ+
11

(SA) = {v111,

11
...

1m−1
v1
v1

, 1j|j = 2, . . . ,m− 1}.

One checks the position of indecomposable A-modules from [31], which gives (2m−2, 3m−1)
for the first indecomposable, and (m − 1, 1) for the second one (which is Ω−1(11)). Let
S = τ−1µ+

11
(SA), then the configuration corresponding to S is the same as applying H

(regarded as automorphism of sΓA) on C.
Combining with Dugas’ result [13, Section 5], we obtain a derived equivalence φ :

Db(modB) → Db(modA), which restricts to a stable equivalence φ sending SB to S. In
particular, vertices in sΓB corresponding to SB lies in HC. But HC and C are isomorphic
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configurations so by Remark 3.9 B is isomorphic to A. The statement follows by taking
H = φ.

�

Remark 4.11. The same proof works for the standard RFS algebra As. In fact, this proof
can be extended to showing the liftability of H for the standard RFS algebras of type
(D3m, s/3, 1) with 3 - s ≥ 2 and m ≥ 2 by covering theory. We show the data that are
changed in such a proof, and leave the details as an exercise:

(1) The quiver of A is shown in Figure (Q(D3m, s/3), s ≥ 2) (c.f. [5, Appendix 2]),
(2) v1 is to be replaced by vi’s with i ∈ {1, . . . , s} (vertices appearing in the inner cycle

βs . . . β1),
(3) 11, . . . , 1m−1 will be replaced by ij with i ∈ {1, . . . , s} and j ∈ {1, . . . ,m − 1}

(vertices on the path α
(i)
m−1 · · ·α

(i)
2 ),

(4) configuration C (corresponding to SA) replaced by {((2m − 1)i, 3m), ((2m − 1)i −
j, 1)|i = 1, . . . , s; j = 1, . . . ,m− 1}

(5) mutation to be performed with respect to X = {11, . . . , s1}, which results in the
mutated sms:

µ+
X (SA) = {vii1,

i1
...

im−1
vi+2
vi+3

, 1j|i = 1, . . . , s; j = 2, . . . ,m− 1}.

This gives an alternative proof to Dugas liftability result in [15]; it also avoid the calculation
of the algebra Bs, an advantage of regarding sms’s as configurations.

Lemma 4.12. Every stable self-equivalence φs ∈ StP ic(As) has a non-standard counterpart
φ ∈ StP ic(A) such that, if φs maps the set SAs of simple As-modules to Ss, then φ(SA) = S
where S corresponds to Ss in the above correspondence. Moreover, φ is a liftable StM.

Proof By Asashiba’s description, StP ic(As) = Pic′(As)〈Ω〉[H]. If φs ∈ Pic′(As), then it
must permute the m − 1 simple modules on the mouth of the stable tube and fixes the
remaining one in a high vertex. It follows from the description of the stable AR-quiver of
As that φs fixes SAs and induces the identity map Conf(Γ)→ Conf(Γ). Therefore we can
simply pick the (liftable StM) identity functor for φ. If φs = Ωn

As
for some n ∈ Z, then by

standard-non-standard correspondence, picking φ to be the Heller shift Ωn
A of A will do the

trick. This is obviously a liftable StM. The case φs = H follows from the previous lemma
4.10.

�
Now let S be an sms of A. We know by Theorem 3.1 that S is simple-image, so there

is some stable equivalence ψ : modB → modA with ψ(SB) = S. By the above fact (3),
there is a liftable StM φ1 : modB → modA. Let S ′ = φ1(SB). If S ′ = S, then we are done.
Otherwise, their corresponding sms’s Ss and S ′s of As are also not equal. But they belong
to the same StP ic(As)-orbit, since φ1 induces an automorphism on the stable AR-quiver of
A or As, so there is some stable equivalence φs : modAs → modAs sending S ′s to Ss. This
gives a liftable StM φ2 : modA → modA by Lemma 4.12, and it maps S ′ to S. Now we
have a liftable StM φ = φ2φ1 : modB → modA with φ(SB) = S.

This finishes the proof of Theorem 4.1.
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5. Sms’s and mutations

In this section, we discuss connections with mutations and with tilting quivers and how to
use these concepts for sms. A main result is Theorem 5.5, which states that the homotopy
category T = Kb(projA) is strongly tilting-connected when A is an RFS algebra. This
result is formally independent of sms, but it fits well with the point of view taken in this
paper.

The first connection we consider here comes from the aforementioned result of Dugas
[13], which opens up a new and efficient way to study (and compute) simple-image sms’s
of Morita type and their liftability, as demonstrated in the previous section.

We have seen how mutation of sms and Nakayama-stable smc are connected. We remind
the reader of the main result of [17], which in particular gives a bijection between smc and
silting objects as well as compatibility of the respective mutations. Since we have already
established a connection between sms and smc, we can now exploit the connection with
silting / tilting objects.

First we briefly recall some information on silting theory developed by Aihara and Iyama
[2]. Throughout this section, A is an indecomposable non-simple self-injective algebra over
an algebraically closed field. We use T to denote the (triangulated) homotopy category
Kb(projA) of bounded complexes of projective A-modules; the suspension functor in this
category is denoted by [1], and by [n] we mean [1]n.

Definition 5.1. ([2])

(1) Let T ∈ T . Then T is a silting (resp. tilting) object if:
(a) HomT (T, T [i]) = 0 for any i > 0 (resp. i 6= 0)
(b) The smallest thick subcategory of T containing T is T itself.

(2) Let T = X1 ⊕ · · · ⊕ Xr be a silting object (where each Xi is indecomposable) and
X ⊂ {1, . . . , r}. A left silting mutation of T with respect to X , denoted by µ+

X (T ) =
Y1 ⊕ · · · ⊕ Yr satisfies by definition that the indecomposable summands Yi are given
as follows:
(a) Yi = Xi for i /∈ X
(b) For i ∈ X :

Yj := cone(minimal left add(
⊕
i/∈X

Xi)-approximation of Xj)

A right silting mutation µ−X is defined similarly using right approximation. A silting
mutation is said to be irreducible if X = {i} for some i.

Note that tilting objects in T (i.e. one-sided tilting complexes) are exactly the silting
objects that are stable under Nakayama functor (see, for example, [1, Theorem A.4]).
As we have hinted throughout the whole article, Nakayama-stability plays a vital role in
the study of sms’s, at least for sms’s which are liftable and simple-image of Morita type.
For convenience, we denote the Nakayama functor ν = νA when the algebra A under
consideration is clear, and we assume every tilting object is basic, i.e. its indecomposable
summands are pairwise non-isomorphic.

Lemma 5.2. Let A, T be as above and C a full subcategory of T with νC = C. If X ∈ T
and f : X → Y is a (minimal) left C-approximation of X, then νA(f) : νX → νY is a
(minimal) left C-approximation of νX. In particular, if νX = X, then νY = Y .

Proof. This is just a routine check. �
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By this lemma, a mutation of a tilting object (i.e. a Nakayama-stable silting object)
is a tilting object if we mutate at a Nakayama-stable summand. For convenience, we say
that a Nakayama-stable mutation of a tilting complex is a tilting mutation. An irreducible
silting mutation mutates with respect to an indecomposable summand. By thinking of this
as mutating with respect to a “minimal” Nakayama-stable summand, we can make sense
of “irreducibility” for tilting mutation for general self-injective algebras (rather than just
weakly symmetric algebras).

Definition 5.3. (Compare to [1]) (1) Let T = T1⊕ · · ·⊕Tr be a basic tilting object in T =
Kb(projA). If X is a Nakayama-stable summand of T such that for any Nakayama-stable
summand Y of X, we have Y = X, then we call X a minimal Nakayama-stable summand.
A (left) tilting mutation µ+

X(T ) is said to be irreducible if X is minimal. Similarly for right
tilting mutation µ−X(T ).

(2) Let T, U be basic tilting objects in T . We say that U is tilting-connected (respectively,
left tilting-connected) to T if U can be obtained from T by iterative irreducible (respectively,
left) tilting mutations.

(3) T is tilting-connected if all its basic tilting objects are tilting-connected to each
other. We say that T is strongly tilting-connected if for any basic tilting objects T, U with
HomT (T, U [i]) = 0 for all i > 0, U is left tilting-connected to T .

Remark 5.4. (1) Note that the irreducible tilting mutation just defined is different from an
irreducible silting mutation when A is self-injective non-weakly symmetric, even though it is
itself a silting mutation as well. We will emphasise irreducible tilting mutation throughout
to distinguish between our notion and irreducible silting mutation.

(2) We can define the analogous notion of (left or right) irreducible sms mutation similar
to irreducible tilting mutation above. More precisely, for an sms S = {X1, . . . , Xr} as in
Definition 4.6, its irreducible mutation means that we mutate at a Nakayama-stable subset
X = {Xi1 , . . . , Xim} which is minimal in the obvious sense.

(3) For any tilting complex T , there exists a tilting complex P (e.g. A[l] for l >> 0) such
that HomT (T, P [i]) = 0 for all i > 0.

(4) Strongly tilting-connected implies tilting-connected. This follows from (3) and the
fact that left and right mutations are inverse operations to each other, i.e. µ−Y µ

+
X(T ) = T =

µ+
Zµ
−
X(T ) where T = X ⊕M , µ+

X(T ) = Y ⊕M , and µ−X(T ) = Z ⊕M .

We can now reformulate a question asked in [2] and [1, Question 3.2]: Is T = Kb(projA)
tilting-connected for self-injective algebra A? By reproving the Nakayama-stable analogue
of the results in [2] and [1], we can answer this question positively for RFS algebras A.
These proofs are not directly related to the simple-minded theories and are really about
modifying the proofs of Aihara and of Aihara and Iyama in an appropriate way.

Theorem 5.5. Let A be an RFS algebra. Then the homotopy category T = Kb(projA) is
strongly tilting-connected.

The proof will occupy a separate subsection below.
Recall the silting quiver as defined in [2] and [1]. Again we can define a “Nakayama-stable

version” and the sms’s version of this combinatorial gadget.

Definition 5.6. (Compare to [1, 2]) Let A be a self-injective algebra.
(1) Let tilt(A) be the class of all tilting objects in T = Kb(projA) up to homotopy

equivalence. The tilting quiver of T is a quiver Qtilt(A) such that the set of vertices is the
class of basic tilting objects of T ; and for T, U tilting objects, T → U is an arrow in the
quiver if U is an irreducible left tilting mutation of T .
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(2) Let sms(A) denote the class of all sms’s of A. The mutation quiver of sms(A) is a
quiver Qsms(A) such that the set of vertices is sms(A); and for two sms’s S,S ′, S → S ′ is
an arrow in the quiver if S ′ is an irreducible left mutation of S.

Remark 5.7. (1) Long before the work of [2], the term tilting quiver has been used for
a graph whose vertices are tilting modules over a finite dimensional algebra. The tilting
quiver here is a specialisation of the silting quiver of [2], whose vertices are objects in a
triangulated category.

(2) Combinatorially (i.e. ignoring the “labeling” of the vertices), Qtilt(A) = Qtilt(B)
(respectively Qsms(A) = Qsms(B)) if A and B are derived (resp. stably) equivalent.

Proposition 5.8. Suppose A is an RFS algebra. Then there is a surjective quiver mor-
phism Qtilt(A) → Qsms(A). In particular, every sms of A can be obtained by iterative left
irreducible mutation starting from the simple A-modules.

Proof. Define a map

{tilting complexes of A} → sms(A)
T 7→ φ−1(SB)

where φ is the induced stable equivalence of Morita type given by restricting the derived
equivalence associated to T . This induces a quiver morphism as correspondence between
tilting complexes and Nakayama-stable smc’s respect mutation [17], and restricting simple-
image smc’s to sms’s also respects mutation by the proof of [13, Proposition 5.3]. Now
surjectivity on the set of vertices follows from the proof of Theorem 4.1, which asserts that
every sms of A is liftable simple-image. For the last statement, let S be an sms of A, then
S is liftable to a Nakayama-stable smc S, which corresponds to a tilting object T . By
Theorem 5.5, we can obtain T by iterative tilting mutations starting from A. The bijection
in [17] then implies that S can be obtained by iterative smc mutations starting from simple
A-modules. The statement now follows from the surjective quiver morphism. �

Since the sms’s of an RFS algebra are in general not acted upon transitively by the stable
Picard group, this result shows that a mutation of sms’s usually cannot be realized by a
stable self-equivalence.

This result can also be compared with Proposition 2.9, where we formed the quotient of
the class of all smc’s (respectively sms’s) by the derived (respectively stable) Picard group,
obtaining an injection regardless of representation-finiteness. On the other hand, these
quivers visualise how we can “track” simple-image sms’s of Morita type, and they contain
more structure than the sets considered in Proposition 2.9. Yet it is still unclear how these
links between smc’s (hence tilting complexes) and sms’s can be used to extract information
about derived and/or stable Picard groups.

Another connection of this kind, with two-term tilting complexes, will be discussed in
[12].

5.1. Proof of Theorem 5.5 à la Aihara. We use the notation T = Kb(projA) with
A an RFS algebra over a field. The term tilting object refers to objects in T , that is, to
complexes. Recall the following notation from [2] and [1].

Definition 5.9. Let T, U be tilting objects of T , write T ≥ U if HomT (T, U [i]) = 0 for all
i > 0.
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Note this defines a partial order on the class of silting (and hence, tilting) objects of T .
Applying Lemma 5.2 to [2, Prop 2.24] yields:

Proposition 5.10. Let T, U be tilting objects of a self-injective algebra, and U0 = U = νU
such that T ≥ U , then there are triangles

U1
g1
// T0

f0
// U0

// U1[1],

· · · ,

U`
g`
// T`−1

f`−1
// U`−1

// U`[1],

0
g`+1

// T`
f`

// U` // 0,

for some ` ≥ 0 such that fi is a minimal right addT -approximation, gi+1 belongs to the
Jacobson radical JT , νUi = Ui and νTi = Ti, for any 0 ≤ i ≤ `.

Proof. The only difference of the proof here and the one in [2] is to use Lemma 5.2 on the
triangles in the proof. Apply Nakayama functor to the triangle in the proof:

νU1
νg1−−→ νM0

νf0−−→ νN0 → νN1[1]

and applying Lemma 5.2 again, this triangle becomes

νU1
νg1−−→M0

f0−→ N0 → νN1[1]

and by the axioms of triangulated category, νU1
∼= U1. Now the proof continues as in

[2]. �

This can be used to deduce the Nakayama-stable analogue of [2, Theorem 2.35, Prop
2.36]:

Theorem 5.11. Let T, U be tilting objects of a self-injective algebra. Then

(1) If T > U , then there exists an irreducible left tilting mutation P of T such that
T > P ≥ U .

(2) The following are equivalent:
(a) U is an irreducible left tilting mutation of T ;
(b) T is an irreducible right tilting mutation of U ;
(c) T > U and there is no P tilting such that T > P > U .

Proof. Proof of (1) is the same as the proof of [1, Prop 2.12], except that now we take a
minimal ν-stable summand of T` instead of an indecomposable summand. Proof of (2) is
the same as the proof of [2, Theorem 2.35], without any change. �

We modify the proof of Aihara in [1] to show that any tilting object of an RFS algebra
can be obtained through iterative irreducible tilting mutation.

The proof of Theorem 5.5 is based on the following key proposition:

Proposition 5.12. [1, Prop 5.1] T is tilting-connected if, for any algebra B derived equiv-
alent to A, the following conditions are satisfied:

(A1): Let T be a basic tilting object in Kb(projB) with B[−1] ≥ T ≥ B. Then T is
tilting-connected to both B[−1] and B.

(A2): Let P be a basic tilting object in Kb(projB) with B[−`] ≥ P ≥ B for a positive
integer `. Then there exists a basic tilting object T in Kb(projB) satisfying B[−1] ≥
T ≥ B such that T [−`+ 1] ≥ P ≥ T .
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Since we are only interested in tilting-connectedness rather than silting-connectedness,
the original condition (A3), which says that any silting object is connected to a tilting
object, is discarded.

(A2) is known to be true from [1, Lemma 5.4]. Therefore, what is left is to look carefully
at the arguments and results that are used by Aihara in the proof of (A1).

Lemma 5.13. [1, Lemma 5.3] Condition (A1) holds for all RFS algebras A.

Proof. The original proof relies on [1, Prop 2.9] and [1, Theorem 3.5]. Proposition 2.9 is true
regardless of what kind of algebra A is. We are left to show the analogue of [1, Theorem
3.5] is true, i.e. If there exist only finitely many tilting objects P such that T ≥ P ≥ U for
any basic tilting objects T, U in T , then U is left tilting-connected to T .

Looking at the proof of [1, Theorem 3.5], it depends on [1, Theorem 2.17] and [2, Theorem
2.35, Proposition 2.36]. The proof of [1, Theorem 2.17] can be translated word-by-word
in our setting by replacing the relying proposition to Theorem 5.11; the analogue of [2,
Theorem 2.35, Proposition 2.36] is just Theorem 5.11 as mentioned. �
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