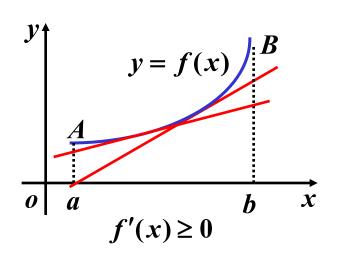
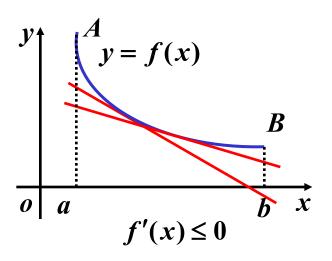


第三讲:导数的应用







引理 设 y = f(x) 在 [a,b] 上连续,在 (a,b) 内可导. 若在(a,b)内

- 1、f'(x) > 0,则 f(x) 在 [a,b] 上单调增加;
- 2、f'(x) < 0,则 f(x) 在 [a,b] 上单调减少.

证 $\forall x_1, x_2 \in (a,b)$, 且 $x_1 < x_2$, 用拉氏定理得,

$$f(x_2)-f(x_1)=f'(\xi)(x_2-x_1),$$

其中 $x_1 < \xi < x_2$.

$$: x_2 - x_1 > 0$$
, 所以, 在 (a,b) 内,

(1)
$$f'(x) > 0$$
, \emptyset $f'(\xi) > 0$, $\therefore f(x_2) > f(x_1)$.

 $\therefore y = f(x)$ 在[a,b]上单调增加.

(2)
$$f'(x) < 0$$
, \emptyset $f'(\xi) < 0$, $\therefore f(x_2) < f(x_1)$.

 $\therefore v = f(x)$ 在[a,b]上单调减少.

7

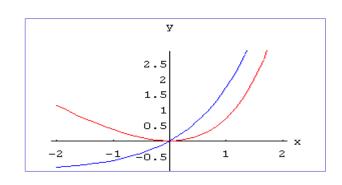
例1 讨论函数 $y = e^x - x - 1$ 的单调性.

解 :
$$y' = e^x - 1$$
, 且 $D = (-\infty, +\infty)$.

在
$$(-\infty,0)$$
内, $y'<0$,

: 函数单调减少

在 $(0,+\infty)$ 内,y'>0,



:. 函数单调增加.

注意:函数的单调性是一个区间上的性质,要用 导数在这一区间上的符号来判定,而不能用一 点处的导数符号来判别一个区间上的单调性.

单调区间求法:

问题: 函数在定义区间上不是单调的,但在各个 部分区间上单调.

若函数在其定义域的某个区间内是单调的, 则该 区间称为函数的单调区间.

导数等于零的点和不可导点是单调区间的可能分 界点.

方法: 用方程 f'(x) = 0的根及 f'(x) 不存在的点 来划分函数 f(x)的定义区间,然后判断区间内导 数的符号.

7

例2 确定函数 $f(x) = 2x^3 - 9x^2 + 12x - 3$ 的单调区间.

$$\mathbf{R}$$
 $:: D: (-\infty, +\infty).$

$$f'(x) = 6x^2 - 18x + 12 = 6(x-1)(x-2)$$

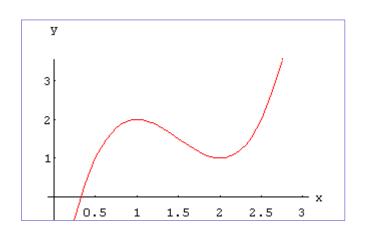
解方程
$$f'(x) = 0$$
得, $x_1 = 1, x_2 = 2$.

当
$$-\infty$$
< x < 1 时, $f'(x)>0,∴在(-∞,1]上单调增加:$

当
$$1 < x < 2$$
时, $f'(x) < 0$, : 在[1,2]上单调减少 :

当
$$2 < x < +\infty$$
时, $f'(x) > 0$, : 在[2,+∞)上单调增加;

单调区间为 (-∞,1], [1,2], [2,+∞).



例3 确定函数 $f(x) = \sqrt[3]{x^2}$ 的单调区间.

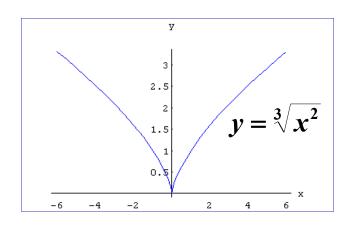
解 :
$$D:(-\infty,+\infty)$$
. $f'(x)=\frac{2}{3\sqrt[3]{x}}$, $(x \neq 0)$

当x = 0时,导数不存在.

当
$$-∞$$
< x < 0 时, $f'(x)$ < 0 ,∴在 $(-∞,0]$ 上单调减少:

当
$$0 < x < +\infty$$
时, $f'(x) > 0$, .. 在 $[0,+\infty)$ 上单调增加;

单调区间为 $(-\infty,0]$, $[0,+\infty)$.



注意: 区间内个别点导数为零不影响区间的单调性.

如, $y = x^3$, $y'|_{x=0} = 0$, 但在($-\infty$, $+\infty$)上单调增加.

例4 当x > 0时,试证 $x > \ln(1+x)$ 成立.

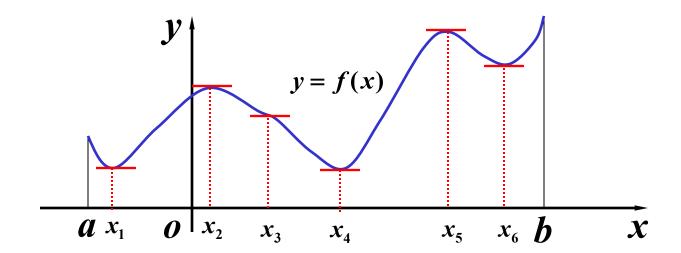
证 设 $f(x) = x - \ln(1 + x)$, 则函数 f(x)在 $[0, +\infty)$

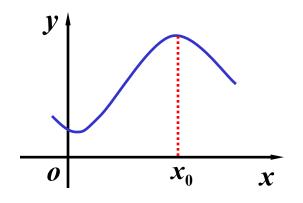
上连续,在 $(0,+\infty)$ 内可导,且 $f'(x) = \frac{x}{1+x} > 0$.

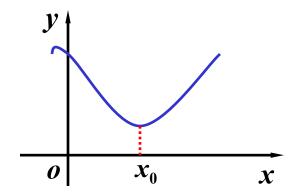
∴在[0,+∞)上单调增加;∴f(0)=0,∴当x>0时,

 $x - \ln(1+x) = f(x) > f(0) = 0$, $\exists \exists x > \ln(1+x)$.

3.2 函数的极值及求法







极值的定义:

设函数 f(x) 在区间 (a,b) 内有定义,且 $x_0 \in (a,b)$ 若存在 x_0 的某邻域,对其中异于 x_0 的任意点 x 均有

$$f(x) < f(x_0)$$

则称 $f(x_0)$ 为 f(x) 的一个极大值.

若存在 x_0 的某邻域,对其中异于 x_0 的任意点x均有 $f(x) > f(x_0)$

则称 $f(x_0)$ 为 f(x) 的一个极小值.

函数的极大值与极小值统称为极值,使函数取得极值的点称为极值点.

使函数 f(x)的导数为零的点(即方程 f'(x)=0的实根)叫做函数 f(x)的驻点.

函数 f(x) 的驻点和导数不存在的点叫做函数 f(x) 的临界点.

函数极值的求法:

定理(必要条件) 设f(x)在点x。处具有导数,且 在 x_0 处取得极值,那末必定 $f'(x_0)=0$.

注意:可导函数 f(x)的极值点必定是它的驻点, 但函数的驻点却不一定 是极值点.

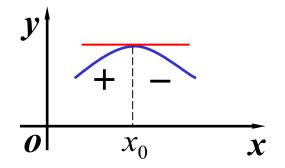
如, $y = x^3$, $y'|_{x=0} = 0$, 但x = 0不是极值点.

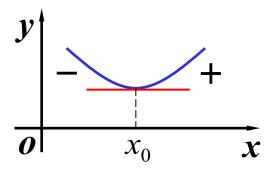
定理 (第一充分条件)

设函数 f(x) 在临界点 x_0 的某去心邻域内可导,且 $f'(x) \neq 0$,若

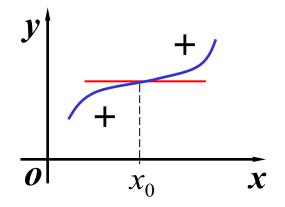
- (1) 当 $x < x_0$ 时,f'(x) > 0;当 $x > x_0$ 时,f'(x) < 0,则 $f(x_0)$ 为极大值.
- (2) 当 $x < x_0$ 时,f'(x) < 0; 当 $x > x_0$ 时,f'(x) > 0,则 $f(x_0)$ 为极小值.
- (3) 当 f'(x) 在点 x_0 的两侧同号时, f(x) 在 x_0 无极值.

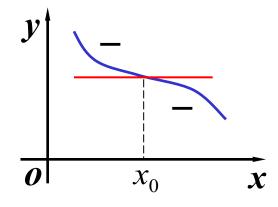
如图所示:





(是极值点情形)





(非极值点情形)

求函数极值的步骤:

- (1)求导函数 f'(x);
- (2) 求全部临界点;
- (3) 检查临界点附近 f'(x)的符号,求极值点;
- (4) 求出所有的极大值和极小值.

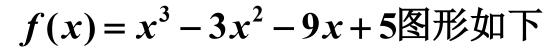
例 5 求出函数 $f(x) = x^3 - 3x^2 - 9x + 5$ 的极值.

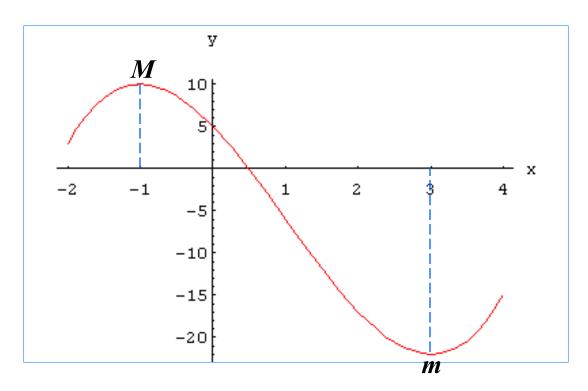
解
$$f'(x) = 3x^2 - 6x - 9 = 3(x+1)(x-3)$$

令 f'(x) = 0, 得驻点 $x_1 = -1, x_2 = 3$. 列表讨论

x	$(-\infty,-1)$	-1	(-1,3)	3	(3,+∞)
f'(x)	+	0	_	0	+
f(x)	↑	极大值	↓	极小值	↑

极大值 f(-1) = 10, 极小值 f(3) = -22.





7

例6 求出函数
$$f(x)=1-(x-2)^{\frac{2}{3}}$$
的极值.

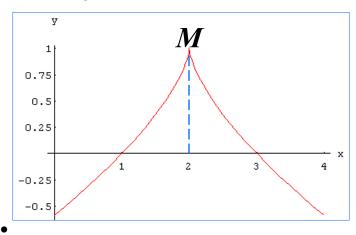
解
$$f'(x) = -\frac{2}{3}(x-2)^{-\frac{1}{3}}$$
 $(x \neq 2)$

当x = 2时, f'(x)不存在. 但函数f(x)在该点连续.

当
$$x < 2$$
时, $f'(x) > 0$;

当
$$x > 2$$
时, $f'(x) < 0$.

 $\therefore f(2) = 1 为 f(x)$ 的极大值.



注意: 函数的不可导点也可能是函数的极值点.

定理(第二充分条件)

设f(x)在 x_0 处二阶可导,且 $f'(x_0)=0$,则

- (1) 当 $f''(x_0) < 0$ 时,f(x)在 x_0 处取得极大值;
- (2) 当 $f''(x_0) > 0$ 时,f(x)在 x_0 处取得极小值;
- (3) 当 $f''(x_0) = 0$ 时,不确定.

$$\text{iff} (1) :: f''(x_0) = \lim_{\Delta x \to 0} \frac{f'(x_0 + \Delta x) - f'(x_0)}{\Delta x} < 0,$$

故 $f'(x_0 + \Delta x) - f'(x_0)$ 与 Δx 异号,

当
$$\Delta x < 0$$
时, 有 $f'(x_0 + \Delta x) > f'(x_0) = 0$,

当
$$\Delta x > 0$$
时, 有 $f'(x_0 + \Delta x) < f'(x_0) = 0$,

所以,函数f(x)在 x_0 处取得极大值.

类似证(2).

例7 求出函数
$$f(x) = x^3 + 3x^2 - 24x - 20$$
的极值.

解
$$f'(x) = 3x^2 + 6x - 24 = 3(x+4)(x-2)$$

令
$$f'(x) = 0$$
, 得驻点 $x_1 = -4$, $x_2 = 2$.

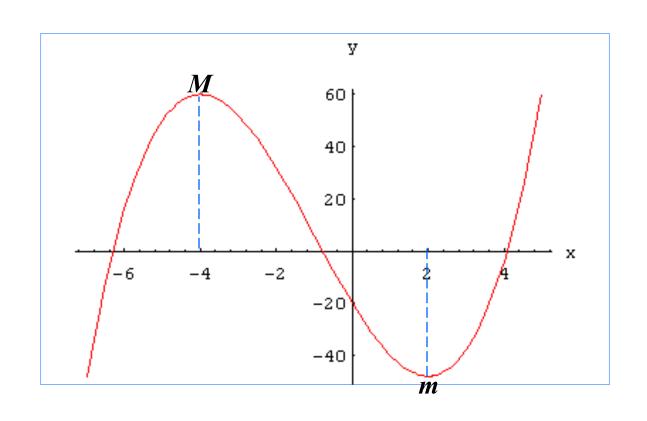
$$f''(x) = 6x + 6,$$

$$f''(-4) = -18 < 0$$
, 故极大值 $f(-4) = 60$,

$$f''(2) = 18 > 0,$$

f''(2) = 18 > 0, 故极小值 f(2) = -48.

$$f(x) = x^3 + 3x^2 - 24x - 20$$
 图形如下



注意: 当 $f''(x_0)=0$ 时,f(x)在点 x_0 处不一定取得极值,此时,仍需用第一充分条件判别.

单调性的判别是拉格朗日中值定理的重要应用.

定理中的区间换成其它有限或无限区间,结论仍然成立.

利用函数的单调性可以确定某些方程实根的个数和证明不等式.

极值是函数的局部性概念:极大值可能小于极小值,极小值可能大于极大值.

函数的极值必在临界点取得.

判别法 {第一充分条件; 判别法 (注意使用条件) 第二充分条件.

思考题

若f'(0) > 0,是否能断定f(x)在原点的充分小的邻域内单调递增?

思考题解答

$$f'(0) = \lim_{\Delta x \to 0} (1 + 2 \cdot \Delta x \cdot \sin \frac{1}{\Delta x}) = 1 > 0$$

但
$$f'(x) = 1 + 4x\sin\frac{1}{x} - 2\cos\frac{1}{x}$$
, $x \neq 0$

当
$$x_k = \frac{1}{(2k+\frac{1}{2})\pi}$$
 时, $f'(x_k) = 1 + \frac{4}{(2k+\frac{1}{2})\pi} > 0$

当
$$x_k = \frac{1}{2k\pi}$$
 时, $f'(x_k) = -1 < 0$

注意 k可以任意大,故在 $x_0 = 0$ 点的任何邻域内,f(x)都不单调递增.

思考题

下命题正确吗?

如果 x_0 为连续函数f(x)的极小值点,那么必存在 x_0 的某个邻域,在此邻域内f(x)在 x_0 的左侧下降,而在 x_0 的右侧上升.

思考题解答

不正确.

例
$$f(x) = \begin{cases} 2 + x^2(2 + \sin\frac{1}{x}), & x \neq 0 \\ 2, & x = 0 \end{cases}$$

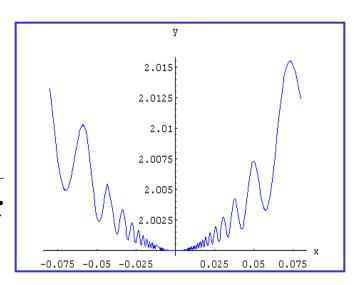
当
$$x \neq 0$$
时, $f(x) - f(0) = x^2(2 + \sin \frac{1}{x}) > 0$

于是x = 0为f(x)的极小值点.

当 $x \neq 0$ 时,

$$f'(x) = 2x(2 + \sin\frac{1}{x}) - \cos\frac{1}{x}$$

当 $x \rightarrow 0$ 时,



$$2x(2+\sin\frac{1}{x}) \to 0$$
, $\cos\frac{1}{x}$ 在—1和1之间振荡

因而f(x)在x = 0的两侧都不单调.

故命题不成立.

课堂练习题

一、 填空题:

1、函数
$$y = 2x^3 - 3x^2 - 12x + 1$$
 单调区间为______

在_____上单调减.

- 二、 设函数 f(x) 在 [0,1] 上可导,且 0 < f(x) < 1. 又 对于 (0,1) 内的一切 $x, f'(x) \ne 1$. 证明: f(x) = x 在 (0,1) 内有惟一实根.
- 三、证明: 当x > 0时, $e^x 1 > (1+x)\ln(1+x)$.
- 四、设f(x)在[a,b]上连续,在(a,b)内f''(x)>0,试证明对于[a,b]上任意两点 x_1 , x_2 有

$$f(\frac{x_1 + x_2}{2}) < \frac{f(x_1) + f(x_2)}{2}$$

课堂练习题答案

- 一、1、 $(-\infty,-1]$, $[2,+\infty)$ 单调增加,[-1,2]单调减少;
 - 2、增加, (-∞,-1],[1,+∞);
 - $3, (-\infty,-1],[-1,0),(0,1],[1,+\infty); (-\infty,-1],(0,1]$
- 二、提示: 1、利用零点定理证明根的存在性;
 - 2、利用罗尔定理证明根的惟一性.
- 三、提示:两次利用单调性.

四、提示、设
$$x_0 = \frac{1}{2}(x_1 + x_2)$$
.

(1) 利用拉氏中值定理:

$$\frac{f(x_0) - f(x_1)}{x_0 - x_1} = f'(\xi_1) < f'(\xi_2) = \frac{f(x_2) - f(x_0)}{x_2 - x_0}$$

(2) 利用泰劳公式: (i=1,2)

$$f(x_i) = f(x_0) + f'(x_0)(x_i - x_0) + \frac{1}{2}f''(\xi_i)(x_i - x_0)^2$$

课堂练习题

- 一、 填空题:
 - 1、 极值反映的是函数的 ______性质.
 - 2、 若y = f(x) 在 $x = x_0$ 可导,则它在 x_0 处有极值的必要条件为

 - 4、设 $f(x) = \begin{cases} x^{3x}, x > 0 \\ x + 1, x \le 0 \end{cases}$,则 $x = _____$ 时, $y = _____$ 为极小值;当 $x = _____$ 时, $y = _____$ 为极大值.

二、求下列函数的极值:

1、 方程 $e^{x^2y} + y = 0$ 所确定的函数 y = f(x);

2.
$$y = \begin{cases} e^{x^{-2}}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

三、设 f(x) 是具有二阶导函数的偶函数,且 $f''(x) \neq 0$,证明: x = 0为函数 f(x)的极值点.

课堂练习题答案

一、1、局部;

$$2, f'(x_0) = 0;$$

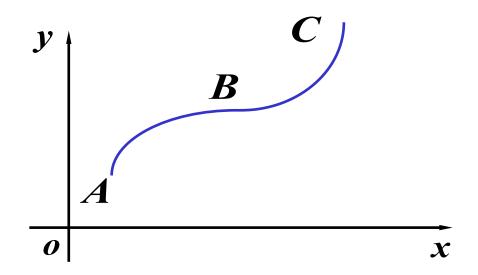
3、1, 无;

4, e^{-1} , $e^{-3e^{-1}}$, 0,1

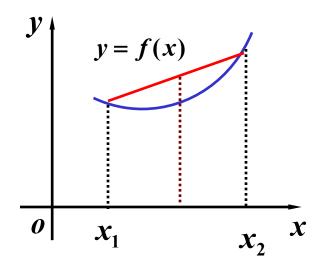
二、1、极小值y(0) = -1; 2、极小值y(0) = 0.

3.4 曲线的凹凸性及其判别法

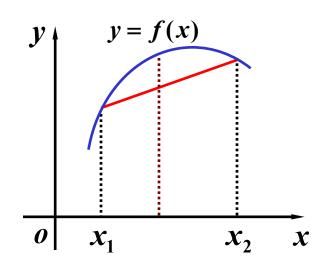
问题: 如何研究曲线的弯曲方向?



曲线凹凸的特点:



图形上任意弧段位 于所张弦的下方



图形上任意弧段位 于所张弦的上方

凹凸弧的定义:

设f(x)在(a,b)内连续,若对(a,b)内的任意两点

$$x_1, x_2$$
,恒有

$$f(\frac{x_1+x_2}{2}) < \frac{f(x_1)+f(x_2)}{2},$$

则称 f(x) 在 (a,b) 内的图形为凹弧;

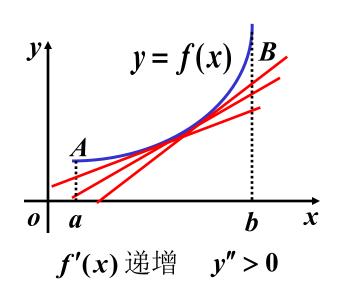
若对(a,b)内的任意两点 x_1,x_2 ,恒有

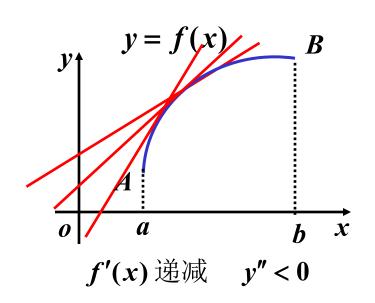
$$f(\frac{x_1+x_2}{2}) > \frac{f(x_1)+f(x_2)}{2},$$

则称 f(x) 在 (a,b) 内的图形为凸弧.

若 f(x) 在 [a,b] 上连续,且在 (a,b) 内的图形是凹(凸)的,则称 f(x) 在 [a,b] 上的图形是凹(凸)弧.

曲线凹凸的判定:





判别法:

设f(x)在[a,b]内连续,在(a,b)内二阶可导,若在(a,b)内

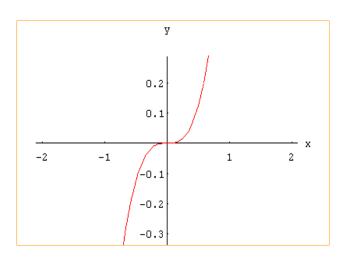
- (1) f''(x) > 0, 则 f(x) 为 [a,b] 上的凹弧;
- (2) f''(x) < 0, 则 f(x) 为 [a,b] 上的凸弧.

例 8 判断曲线 $y = x^3$ 的凹凸性.

解
$$\therefore y'=3x^2$$
, $y''=6x$,

当x < 0时,y'' < 0,

∴曲线在($-\infty$,0]为凸的;



当x > 0时,y'' > 0, ∴曲线在[0,+∞)为凹的;

注意: 点(0,0)是曲线由凸变凹的分界点.

曲线的拐点及其求法

连续曲线上凹凸弧的分界点称为曲线的拐点.

注意: 拐点处的切线必在拐点处穿过曲线.

拐点的求法:

1、必要条件

若f(x)在 $(x_0 - \delta, x_0 + \delta)$ 内存在二阶导数,则

 $(x_0, f(x_0))$ 为拐点的必要条件是 $f''(x_0) = 0$.

2、第一充分条件

设f(x)在 x_0 的邻域内二阶可导且 $f''(x_0) = 0$,

- (1) 若在 x_0 两侧f''(x)异号,则点 $(x_0, f(x_0))$ 为拐点;
- (2) 若在 x_0 两侧f''(x)同号,则点 $(x_0, f(x_0))$ 非拐点.
- 3、第二充分条件

设 f(x) 在 x_0 的邻域内三阶可导且 $f''(x_0) = 0$,

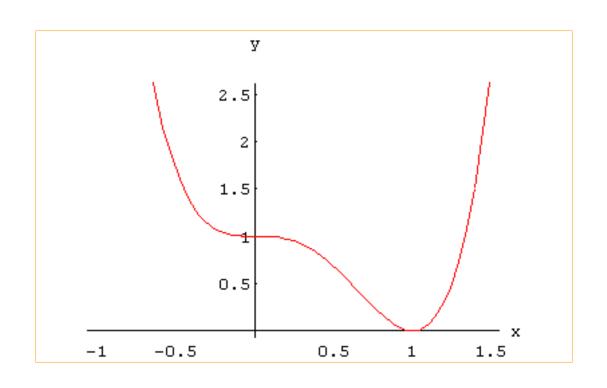
 $f'''(x_0) \neq 0$,则 $(x_0, f(x_0))$ 是曲线 y = f(x)的拐点.

例9 求曲线 $y = 3x^4 - 4x^3 + 1$ 的拐点及凹凸的区间.

解 :
$$D:(-\infty,+\infty)$$

 $y'=12x^3-12x^2$, $y''=36x(x-\frac{2}{3})$.
 $\Rightarrow y''=0$, $\Rightarrow x_1=0, x_2=\frac{2}{3}$.

x	$(-\infty,0)$	0	$(0,\frac{2}{3})$	2/3	$(\frac{2}{3},+\infty)$
f''(x)	+	0	_	0	+
f(x)	凹	拐点 (0,1)	凸	拐点 (² / ₃ , ¹¹ / ₂₇)	凹



凹凸区间为
$$(-\infty,0]$$
, $[0,\frac{2}{3}]$, $[\frac{2}{3},+\infty)$.

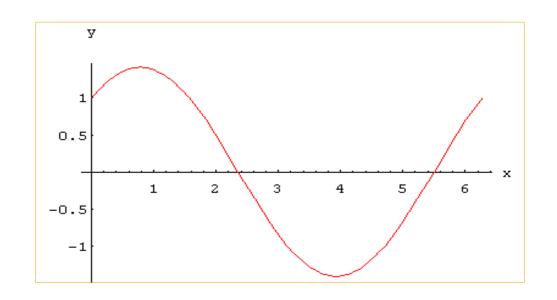
7

例10 求曲线 $y = \sin x + \cos x$ ($0 \le x \le 2\pi$)的拐点.

令
$$y''=0$$
, 得 $x_1=\frac{3\pi}{4}$, $x_2=\frac{7\pi}{4}$.

$$f'''(\frac{3\pi}{4}) = \sqrt{2} \neq 0, \quad f'''(\frac{7\pi}{4}) = -\sqrt{2} \neq 0,$$

∴在[0,2 π]内曲线有拐点为 $(\frac{3\pi}{4},0)$, $(\frac{7\pi}{4},0)$.



注意: 若 $f''(x_0)$ 不存在,点 $(x_0, f(x_0))$ 也可能是连续曲线 y = f(x)的拐点.

例11 求曲线 $y = \sqrt{x}$ 的拐点.

解 当
$$x \neq 0$$
时, $y' = \frac{1}{3}x^{-\frac{2}{3}}$, $y'' = -\frac{4}{9}x^{-\frac{5}{3}}$,

x = 0是不可导点,y',y''均不存在.

但在 $(-\infty,0)$ 内,y''>0, 曲线在 $(-\infty,0]$ 上是凹的;

在 $(0,+\infty)$ 内,y'' < 0, 曲线在 $[0,+\infty)$ 上是凸的.

:.点(0,0)是曲线 $y = \sqrt[3]{x}$ 的拐点.

3.5 小结与思考题

曲线的弯曲方向——凹凸性;

凹凸性的判定.

改变弯曲方向的点——拐点;

拐点的求法1,2.

设 f(x)在 (a,b)内二阶可导,且 $f''(x_0) = 0$,其中 $x_0 \in (a,b)$,则 $(x_0,f(x_0))$ 是否一定为曲线 f(x)的拐点? 举例说明.

思考题解答

因为 $f''(x_0) = 0$ 只是 $(x_0, f(x_0))$ 为拐点

的必要条件, 故 $(x_0, f(x_0))$ 不一定是拐点.

例
$$f(x) = x^4$$
 $x \in (-\infty, +\infty)$ $f''(0) = 0$

但(0,0)并不是曲线f(x)的拐点.

课堂练习题

- 一、 填空题:
 - 1、若函数y = f(x)在(a,b)可导,则曲线y = f(x)在(a,b)内为凹弧的充要条件是_____.
 - 2、 曲线上_____的点称为曲线的拐点.
 - 3、 曲线 $y = \ln(1 + x^2)$ 的拐点为_____.
 - 4、 曲线 $y = \ln(1+x)$ 拐点为_____.

二、利用函数图形的凹凸性,证明不等式:

$$2(x^2 + y^2) > (x + y)^2$$
, $(x \neq y)$.

三、 试决定 $y = k(x^2 - 3)^2$ 中 k 的值, 使曲线在拐点处的法线通过原点.

课堂练习题答案

- 一、1、在(a,b)内,f'(x) 递增或f''(x) > 0;
 - 2、凹凸部分的分界点; 3、(-1,ln2); (1,ln2);
 - 4、不存在.

二、
$$: f(x) = x^2$$
且为凹弧, $: f(\frac{x+y}{2}) < \frac{f(x)+f(y)}{2}$.

$$\equiv$$
, $k=\pm\frac{\sqrt{2}}{8}$.

1、渐近线

当曲线y = f(x)上的一个动点P沿此曲线移向无穷远时,如果点P到某定直线L的距离趋向

于零,那么直线 L 称为曲线 y = f(x) 的渐近线.

水平渐近线

(平行于<math>x轴的渐近线)

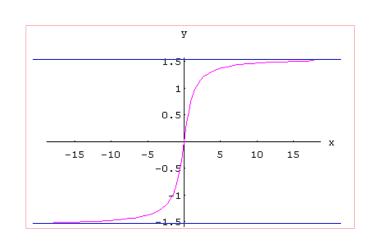
如果 $\lim_{x\to +\infty} f(x) = b$ 或 $\lim_{x\to -\infty} f(x) = b$ (b 为常数)

那么y=b就是y=f(x)的一条水平渐近线.

如, $y = \arctan x$,

有水平渐近线两条:

$$y=\frac{\pi}{2}, \quad y=-\frac{\pi}{2}.$$



铅直渐近线

(垂直于x轴的渐近线)

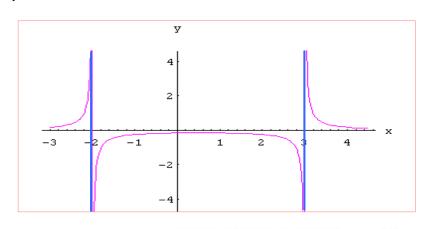
如果
$$\lim_{x\to x_0^+} f(x) = \infty$$
 或 $\lim_{x\to x_0^-} f(x) = \infty$

那么 $x = x_0$ 就是y = f(x)的一条铅直渐近线.

如,
$$y = \frac{1}{(x+2)(x-3)}$$

有铅直渐近线两条:

$$x = -2, \quad x = 3.$$



如果
$$\lim_{x\to +\infty} [f(x)-(ax+b)]=0$$
 或 $\lim_{x\to -\infty} [f(x)-(ax+b)]=0$ (a,b 为常数) 那么 $y=ax+b$ 就是 $y=f(x)$ 的一条斜渐近线.

斜渐近线求法:

$$\lim_{x\to\infty}\frac{f(x)}{x}=a,\quad \lim_{x\to\infty}[f(x)-ax]=b.$$

那么y = ax + b就是曲线y = f(x)的一条斜渐近线.

注意: 如果 (1)
$$\lim_{x\to\infty} \frac{f(x)}{x}$$
 不存在;

(2)
$$\lim_{x\to\infty}\frac{f(x)}{x}=a$$
 存在,但 $\lim_{x\to\infty}[f(x)-ax]$ 不存在,

可以断定y = f(x)不存在斜渐近线.

例12 求
$$f(x) = \frac{2(x-2)(x+3)}{x-1}$$
 的渐近线.

$$M : (-\infty,1) \cup (1,+\infty).$$

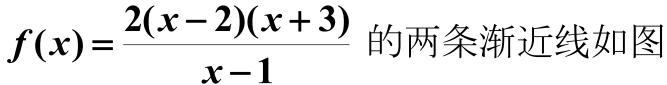
$$\lim_{x\to 1^+} f(x) = -\infty, \qquad \lim_{x\to 1^-} f(x) = +\infty,$$

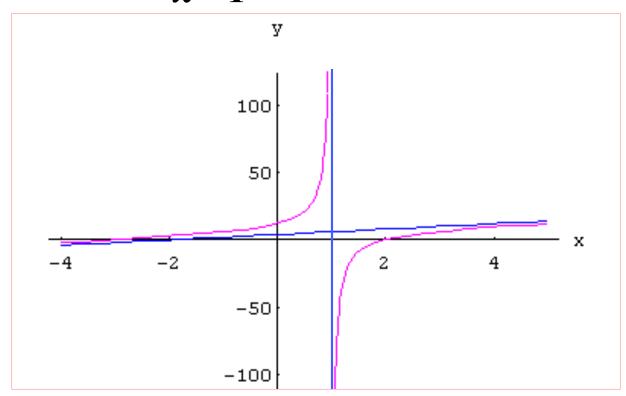
 $\therefore x = 1$ 是曲线的铅直渐近线.

$$\lim_{x \to \infty} \left[\frac{2(x-2)(x+3)}{x-1} - 2x \right]$$

$$= \lim_{x \to \infty} \frac{2(x-2)(x+3) - 2x(x-1)}{x-1} = 4,$$

$$\therefore y = 2x + 4$$
 是曲线的一条斜渐近线.





2、函数图形的描绘

利用函数特性描绘函数图形,步骤如下:

第一步 确定函数y = f(x)的定义域,对函数进行奇

偶性、周期性、曲线与坐标轴交点等性态的讨论,

求出函数的一阶导数f'(x)和二阶导数f''(x);

第二步 求出方程 f'(x) = 0 和 f''(x) = 0 在函数定义

域内的全部实根,用这些根同函数的间断点或导数

不存在的点把函数的定义域划分成几个部分区间.

第三步 确定在这些部分区间内 f'(x) 和 f''(x) 的符

号,并由此确定函数的增减性与极值及曲线的凹凸性与拐点(可列表进行讨论);

第四步 确定函数图形的水平、铅直渐近线、斜渐 近线以及其他变化趋势;

第五步 描出与方程 f'(x)=0 和 f''(x)=0 的根对应的曲线上的点,有时还需要补充一些点,再综合前四步讨论的结果画出函数的图形.

作图举例:

例13 作函数
$$f(x) = \frac{4(x+1)}{x^2} - 2$$
 的图形.

解 $D: x \neq 0$, 非奇非偶函数,且无对称性.

$$f'(x) = -\frac{4(x+2)}{x^3}, \qquad f''(x) = \frac{8(x+3)}{x^4}.$$

令
$$f'(x) = 0$$
, 得驻点 $x = -2$,

令
$$f''(x) = 0$$
, 得特殊点 $x = -3$.

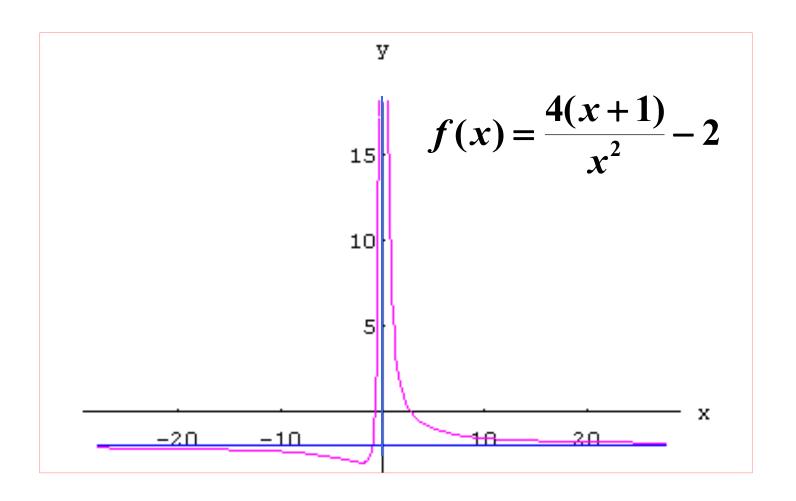
$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \left[\frac{4(x+1)}{x^2} - 2 \right] = -2$$
, 得水平渐近线 $y = -2$;

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \left[\frac{4(x+1)}{x^2} - 2 \right] = +\infty,$$

得铅直渐近线 x=0.

列表确定函数升降区间,凹凸区间及极值点和拐点:

x	$(-\infty,-3)$	-3	(-3,-2)	-2	(-2,0)	0	(0,+∞)
f'(x)	<u> </u>		_	0	+	不存在	
f''(x)	–	0	+	+	+		+
f(x)		拐点 -3,- ²⁶ 9	,	极小值 一 3)	间断点	



例14 作函数 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ 的图形.

解
$$D:(-\infty,+\infty)$$
, $W:0<\varphi(x)\leq \frac{1}{\sqrt{2\pi}}\approx 0.4$.

偶函数,图形关于y轴对称.

$$\varphi'(x) = -\frac{x}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \qquad \varphi''(x) = -\frac{(x+1)(x-1)}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

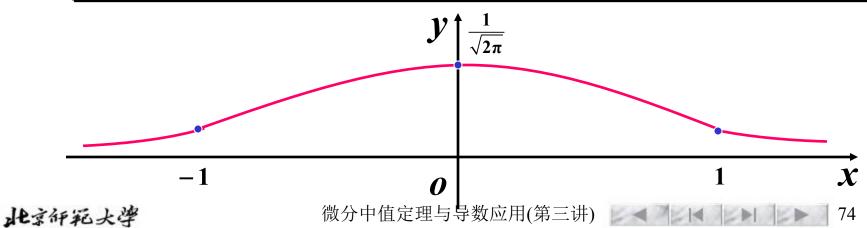
令
$$\varphi'(x) = 0$$
, 得驻点 $x = 0$,

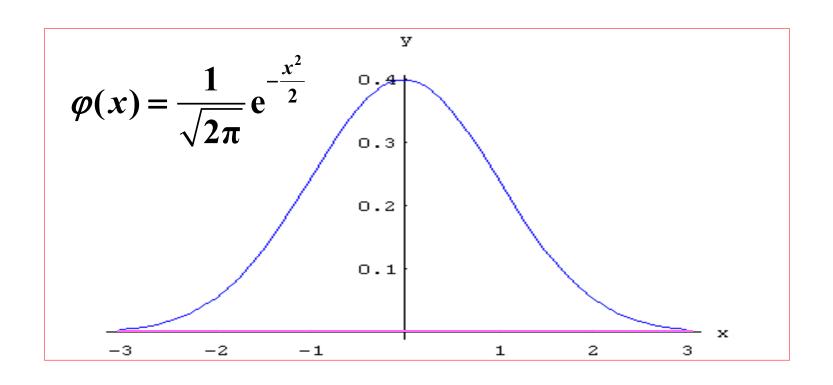
令
$$\varphi''(x) = 0$$
, 得特殊点 $x = -1$, $x = 1$.

$$\lim_{x\to\infty} \varphi(x) = \lim_{x\to\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} = 0, \quad \text{得水平渐近线 } y = 0.$$

列表确定函数升降区间,凹凸区间及极值点与拐点:

x	$(-\infty,-1)$	-1	(-1,0)	0	(0,1)	1	(1,+∞)
$\varphi'(x)$	+	+	+	0	ı		_
$\varphi''(x)$	+	0	1		_	0	+
$\varphi(x)$) ₍₋	拐点 $-1,\frac{1}{\sqrt{2\pi}}$	=) e	极大值 $1 \over \sqrt{2\pi}$		拐点 $,\frac{1}{\sqrt{2\pi e}}$)





例15 作函数 $f(x) = x^3 - x^2 - x + 1$ 的图形.

 \mathbf{M} $D:(-\infty,+\infty)$,无奇偶性及周期性.

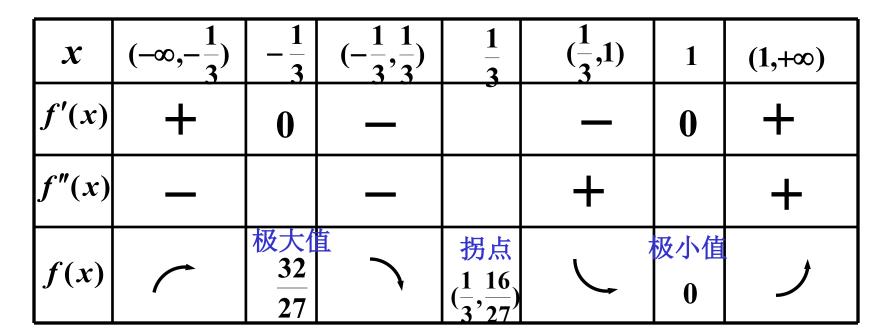
$$f'(x) = (3x+1)(x-1), \qquad f''(x) = 2(3x-1).$$

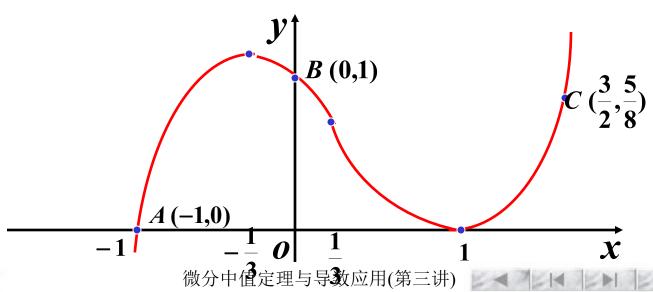
令
$$f'(x) = 0$$
, 得驻点 $x = -\frac{1}{3}$, $x = 1$.

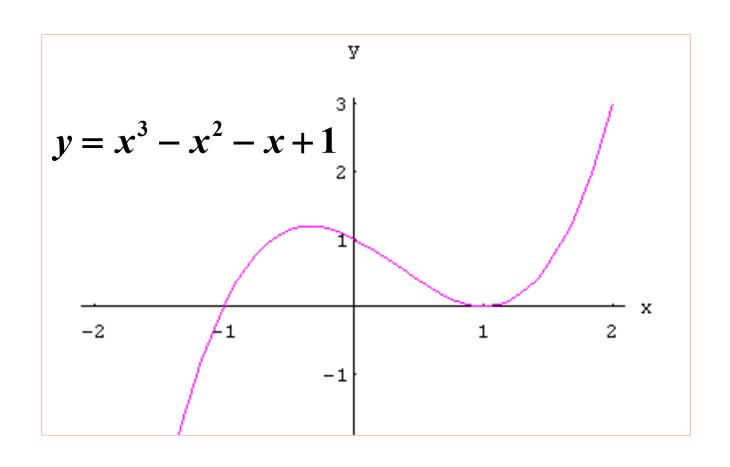
令
$$f''(x) = 0$$
, 得特殊点 $x = \frac{1}{3}$.

补充点:
$$A(-1,0)$$
, $B(0,1)$, $C(\frac{3}{2},\frac{5}{8})$.

列表确定函数升降、凹凸区间及极值点与拐点:

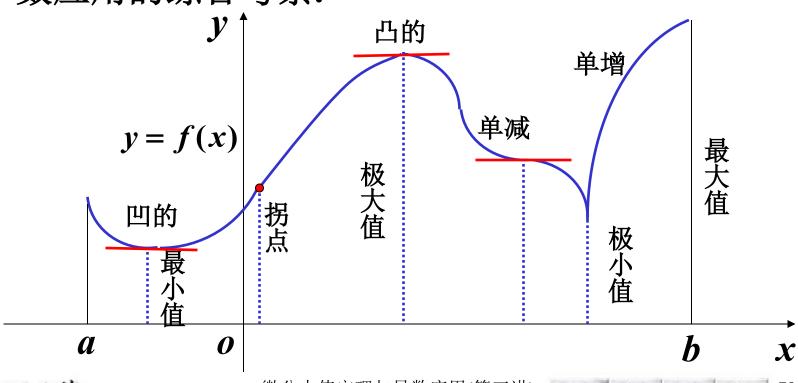






3.7 小结与思考题

函数图形的描绘综合运用函数性态的研究,是导数应用的综合考察.



北京纤靶大学

微分中值定理与导数应用(第三讲)

两坐标轴x = 0, y = 0是否都是

函数
$$f(x) = \frac{\sin x}{x}$$
的渐近线?

思考题解答

$$y = \frac{\sin x}{x}$$
0.8
0.4
0.4
0.2
5
10
x

$$\because \lim_{x \to \infty} \frac{\sin x}{x} = 0$$

 $\therefore y = 0$ 是其图象的水平渐近线.

$$\because \lim_{x \to 0} \frac{\sin x}{x} = 1 \neq \infty$$

 $\therefore x = 0$ 不是其图象的渐近线.

课堂练习题

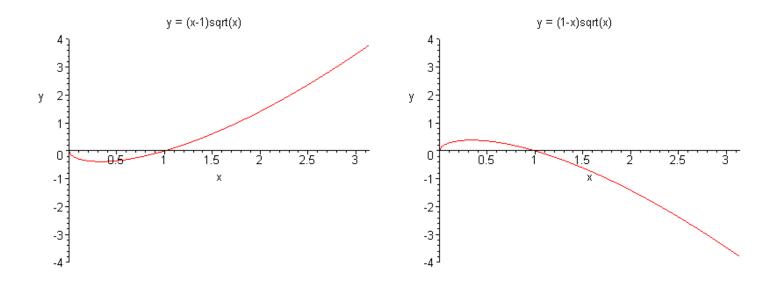
- 一、 填空题:
 - 1、 曲线 $y = e^{\frac{1}{x}}$ 的水平渐近线为______
 - 2、曲线 $y = \frac{1}{x-1}$ 的水平渐近线为______ 铅直渐近线为______.
- 二、 描出下列函数的图形:

1,
$$y^2 = x(x-1)^2$$
; 2, $y = \ln \sin x$; 3, $y = x + \frac{1}{x}$.

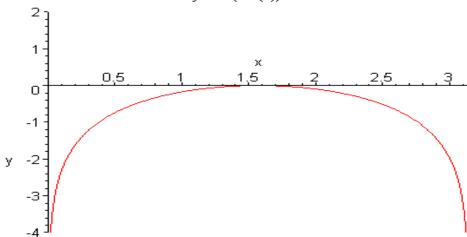
课堂练习题答案

$$-1$$
, $y = 1$; 2 , $y = 0$, $x = 1$.

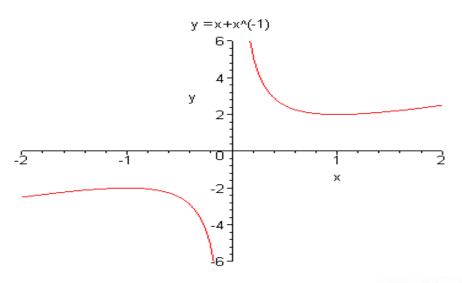
 \equiv , 1,



2,

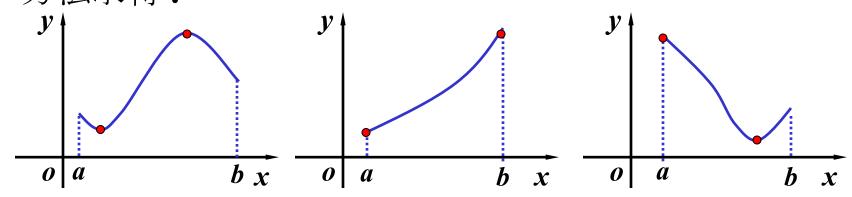


3,



最值的求法:

若函数 f(x) 在 [a,b] 上连续,并且至多有有 限个临界点,则 f(x) 在 [a,b]上的最大值与最小值可 用本节的方法求得.



- 1. 求函数的临界点;
- 2. 求区间端点及临界点的函数值,比较大小,最大者即最大值,最小者即最小值.

注意:如果区间内只有一个极(大或小)值,则这个极(大或小)值就是最(大或小)值。

应用举例:

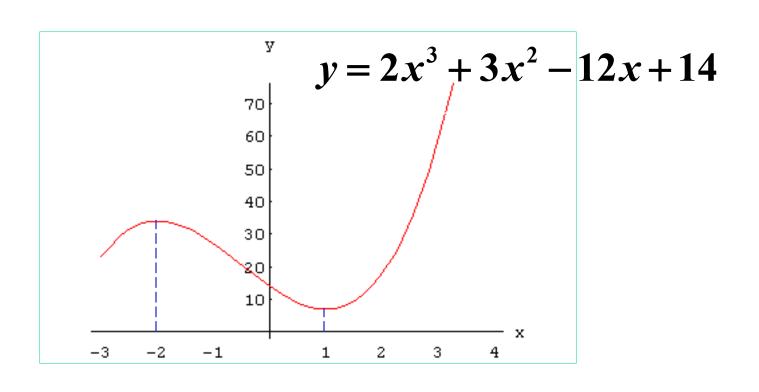
例16 求函数 $y = 2x^3 + 3x^2 - 12x + 14$ 的在[-3,4] 上的最大值与最小值.

解
$$:: f'(x) = 6(x+2)(x-1)$$

解方程
$$f'(x) = 0$$
,得 $x_1 = -2, x_2 = 1$.

计算
$$f(-3) = 23$$
; $f(-2) = 34$;

$$f(1) = 7;$$
 $f(4) = 142;$



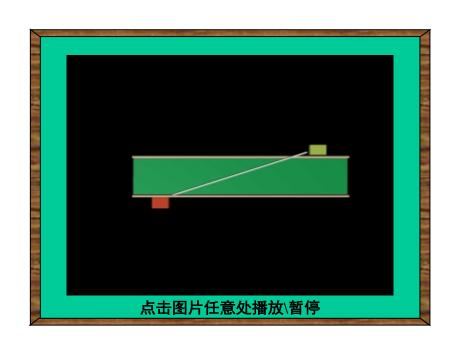
比较得 最大值 f(4) = 142,最小值 f(1) = 7.

例17 一汽车从河的北岸A处以1千米/分钟的速度向正北行驶,同时一摩托车从河的南岸B处向正东追赶,速

度为2千米/分钟.

问摩托车何时与汽

车相距最近?



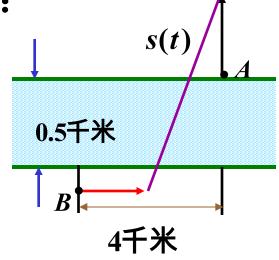
7

解 (1)建立两车相距函数关系:

设t为摩托车从B处出发起追赶的时间(分),两车相距

$$s(t) = \sqrt{(0.5+t)^2 + (4-2t)^2}$$

(2) 求s = s(t)的最小值点.



$$s'(t) = \frac{5t - 7.5}{\sqrt{(0.5 + t)^2 + (4 - 2t)^2}}.$$

故摩托车从B处起追赶后1.5分钟距离最近.

实际问题求最值应注意:

- (1) 建立目标函数;
- (2) 求最值;

若目标函数只有唯一驻点,则该点的函数值即为所求的最大值或最小值.

7

例18 某房地产公司有50套公寓要出租,当租 金定为每月1800元时,公寓会全部租出去,当 租金每月增加100元时,就有一套公寓租不出 去,而租出去的房子每月需花费200元的整修 维护费. 试问房租定为多少可获得最大收入?

解设房租为每月x元,租出去的房子有

$$50-\left[\frac{x-1800}{100}\right]$$
 套,每月总收入为:
$$R_0(x) = (x-200)\left(50-\left[\frac{x-1800}{100}\right]\right)$$
(元).

$$R'(x) = \left(68 - \frac{x}{100}\right) + (x - 200)\left(-\frac{1}{100}\right) = 70 - \frac{x}{50}.$$

$$R'(x) = 0 \Rightarrow x = 3500$$
 (唯一驻点)

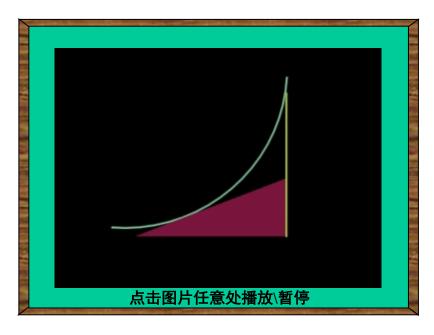
故每月每套租金为3500元时收入最高。

最大收入为:

$$R(x) = (3500 - 200) \left(68 - \frac{3500}{100} \right) = 108\,900\,(\overline{71}).$$

例19 由直线 y=0, x=8 及抛物线 $y=x^2$ 围成一个曲边三角形,在曲边 $y=x^2$ 上求一点,使曲线在该点

处的切线与直 $线 y = 0 \ \mathcal{X} = 8$ 所围成的三角 形面积最大.



解 如图,

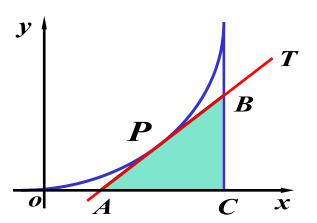
设所求切点为 $P(x_0, y_0)$,

则切线PT为

$$y - y_0 = 2x_0(x - x_0),$$

$$\therefore y_0 = x_0^2, \ \therefore A(\frac{1}{2}x_0, \ 0), \ C(8, \ 0), \ B(8, \ 16x_0 - x_0^2)$$

$$\therefore S_{\Delta ABC} = \frac{1}{2} (8 - \frac{1}{2} x_0) (16 x_0 - x_0^2) \qquad (0 \le x_0 \le 8)$$



解得
$$x_0 = \frac{16}{3}$$
, $x_0 = 16$ (舍去).

$$:: s''(\frac{16}{3}) = -8 < 0.$$
 $:: s(\frac{16}{3}) = \frac{4096}{27}$ 为极大值.

故
$$s(\frac{16}{3}) = \frac{4096}{27}$$
 为所有三角形中面积的最大者.

3.8 小结与思考题

注意最值与极值的区别.

最值是整体概念而极值是局部概念.

实际问题求最值的步骤.

若 f(a)是 f(x)在 [a,b]上的最值,且 f'(a)存在,那么是否一定有 f'(a)=0?

思考题解答

不成立. 因为最值点不一定是内点.

例
$$y = f(x) = x$$
 $x \in [0,1]$

在
$$x = 0$$
 有最小值,但 $f'(0) = f'_{+}(0) = 1 \neq 0$.

课堂练习题

- 一、 填空题:
 - 1. 最值可在____处取得.
 - 2. 函数 $y = 2x^3 3x^2$ ($0 \le x \le 5$)的最大值为_____; 最小值为 .
 - 3. 函数 $y = \sqrt{100 x^2}$ 在 [0, 8] 上的最大值为_____; 最小值为_____.
- 二、 求函数 $y = x^2 \frac{16}{x}$ (x < 0) 的最小值.
- 三、 求数列 $\left\{\frac{n^2}{2^n}\right\}$ 的最大项.

课堂练习题答案

- 一、1、区间端点及临界点;
 - 2、最大值y(5)=175,最小值y(1)=-1;
 - 3, 10, 6.
- 二、当x=-2时,函数有最小值 12.
- 三、数列 $\left\{\frac{n^2}{2^n}\right\}$ 的第3项: $\frac{3^2}{2^3} = \frac{9}{8}$.