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called a continuous function of x for this inter-
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. (Let E and F be two sets, which
may or may not be distinct. A relation between a
variable element x of E and a variable element y
of F is called a functional relation in y if, for all
x € E, there exists a unique y & F which is in the
given relation with x. We give the name of func-
tion to the operation which in this way associates

with every element x € E the element y € F

which is in the given relation with x, and the
function is said to be determined by the given

functional relation. )
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