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NECESSARY AND SUFFICIENT CONDITIONS

ON EXISTENCE AND CONVEXITY OF SOLUTIONS

FOR DIRICHLET PROBLEMS OF HESSIAN EQUATIONS

ON EXTERIOR DOMAINS

CHONG WANG AND JIGUANG BAO

(Communicated by James E. Colliander)

Abstract. In this paper, we are concerned with the Dirichlet problems of
Hessian equations on exterior domains with prescribed asymptotic behavior

at infinity, and we obtain the necessary and sufficient conditions on existence
and convexity of radial solutions.

1. Introduction

In this paper, we study the Dirichlet problems of the Hessian equations outside
the n-dimensional unit open ball B1

σk(λ(D
2u)) = 1, x ∈ R

n\B1,(1)

u = b, x ∈ ∂B1,(2)

where b ∈ R is a constant,

σk(λ) =
∑

i1<···<ik

λi1 · · ·λik , k = 1, 2, · · · , n

is the kth elementary symmetric function of λ = (λ1, · · · , λn), and λ(D2u) are the
eigenvalues of the Hessian matrix D2u.

(1) is the Poisson equation Δu = 1 if k = 1. It is clear that the radial solution
of (1), (2) is

u(x) = b+
1

n

∫ |x|

1

(
s+ αs1−n

)
ds

=

⎧⎪⎨
⎪⎩

1

2n

(
|x|2 − 1

)
+

α

2− n

(
|x|2−n − 1

)
+ b, n ≥ 3,

1

4

(
|x|2 − 1

)
+

α

2
ln |x|+ b, n = 2,

where α ∈ R is an arbitrary constant.
The Hessian equation (1) is an important class of fully nonlinear elliptic equations

for k ≥ 2, especially (1) is the Monge-Ampère equation det(D2u) = 1 if k = n.
A classical theorem of Jörgens (n = 2 [14]), Calabi (n ≤ 5 [5]), and Pogorelov
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(n ≥ 2 [16]) states that any classical convex solution of the Monge-Ampère equa-
tions det(D2u) = 1 in R

n must be a quadratic polynomial. A simpler and more
analytic proof was later given by Cheng and Yau [7]. Caffarelli [1] extended the
result for classical solutions to viscosity solutions. Jost and Xin [15] gave a more
geometric proof. In 2003, Caffarelli and Li [2] made an extension to the Jörgens-
Calabi-Pogorelov theorem on exterior domains.

In [2], Caffarelli and Li also discussed the Dirichlet problem on exterior domains
with prescribed asymptotic behavior at infinity:

(3)

⎧⎪⎪⎨
⎪⎪⎩

det(D2u) = 1, x ∈ R
n\D,

u = ϕ(x), x ∈ ∂D,

u =
1

2
x′Ax+ b · x+ c+O

(
|x|2−n

)
, x → ∞,

where D is a smooth, bounded, strictly convex domain of Rn, n ≥ 3, ϕ ∈ C2(∂D),
A is a real n×n symmetric positive definite matrix with det(A) = 1, b ∈ R

n, c ∈ R.
They established the following existence theorem.

Theorem 1. There exists some constant c∗, depending only on n, D, ϕ, b and A,
such that for every c > c∗ the problem (3) has a unique solution in C∞(Rn\D) ∩
C0(Rn\D).

In R
2, similar problems were studied by Ferrer, Mart́ınez, and Milán in [11] and

[12] using complex variable methods. See also Delanoë [10].
Using the Perron method, Dai and Bao [9] get the uniqueness and existence

of viscosity solutions to Hessian equations with prescribed asymptotic behavior at
infinity.

There exist many excellent results on solvability of Hessian equations in interior
domains. For instance, Caffarelli, Nirenberg and Spruck [4] for classical solutions,
Trudinger [18] for weak solutions and Urbas [21] for viscosity solutions.

To work in the realm of elliptic equations, we have to restrict the solutions to
some class of functions. Let

Γm = {λ ∈ R
n|σj(λ) > 0, j = 1, 2, · · · ,m}.

Γm is a symmetric cone, that is, any permutation of λ is in Γm if λ ∈ Γm. Γm is the
half space {λ ∈ R

n|λ1 + λ2 + · · · + λn > 0} if m = 1, and Γm is the positive cone
Γ+ = {λ ∈ R

n|λi > 0, i = 1, · · · , n} if m = n. Following [4], we give the definition
of m-convex functions.

Definition 1. A function u ∈ C2(Rn\B1) is called m-convex in R
n\B1 if λ(D

2u) ∈
Γm for all x ∈ R

n\B1.
A function is called convex if it is n-convex.

Motivated by the works of [2] and [9], in this paper, we investigate the exterior
Dirichlet problems (1), (2) with prescribed asymptotic behavior at infinity:

(4) u(x) =
a

2
|x|2 + c+O(|x|2−n), x → ∞,

for n ≥ 3, and

(5) u(x) =
1

2
|x|2 + d

2
ln |x|+ c+O

(
|x|−2

)
, x → ∞,
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for n = 2, where c, d ∈ R,

a =

(
1

Ck
n

) 1
k

, Ck
n =

n!

k!(n− k)!
, k ≥ 2,

and get the necessary and sufficient conditions on existence and convexity of radial
solutions.

For simplicity, we denote for m = 1, 2, · · · , n,
Φm :=

{
u ∈ C1 (Rn\B1) ∩ C2(Rn\B1)|u is an m-convex radial function

}
.

Our first theorem gives the necessary and sufficient conditions on the existence of
m-convex radial solutions of (1), (2) and (4) in higher dimensions.

Theorem 2. Let n ≥ 3, 2 ≤ k ≤ m ≤ n. Then there exists a unique function
u ∈ Φm satisfying (1), (2), (4) if and only if c ∈ [μ(−1), +∞) for m = k, and
c ∈ [μ(−1), μ( k

m−k )] for m > k, where

(6) μ(α) = b− a

2
+ a

∫ ∞

1

s

[(
1 +

α

sn

)1/k

− 1

]
ds.

In the special case of radial solutions, Theorem 2 shows that there is no solution
of (1), (2), (4) if c < μ(−1), and the solutions gradually weaken convexity as c
increases from μ(−1). So we have reason to guess that the general case (1), (2), (4)
has no solution if c is small enough.

From the proof of Theorem 2, we know that the general solutions in Φm of (1),
(2) are

(7) u(x) = b+ a

∫ |x|

1

(
sk + α · sk−n

)1/k
ds, α ∈ [−1, +∞) or [−1,

k

m− k
],

which gives that the asymptotic behavior of solutions is (4), where c ∈ [μ(−1), +∞)
for m = k, and c ∈ [μ(−1), μ( k

m−k )] for m > k.

For n = k = 2, (1) becomes the Monge-Ampère equation

(8) det(D2u) = 1, x ∈ R
2\B1.

Then, we get the following theorem.

Theorem 3. There exists a unique function u ∈ Φ2 satisfying (8), (2), (5) if and
only if d ≥ −1 and c = ν(d), where

(9) ν(d) = b+
d

4
+

d

2
ln 2− 1

2

[
( 1 + d )

1/2
+ d ln

(
1 + ( 1 + d )

1/2
)]

.

Clearly, ν(+∞) = −∞. Differentiating (9), we have

∂ν

∂d
=

1

2
ln

2

1 + (1 + d)1/2
.

It follows that ν(d) increases and decreases on [−1, 0] and [0,+∞), respectively.
Therefore,

ν(d) ≤ ν(0) = b− 1

2
, d ≥ −1.

Actually, we have

Corollary 1. The problem (8), (2), (5) has a radial convex solution in C1 (Rn\B1)
∩ C2(Rn\B1) if and only if d ≥ −1 or c ≤ b− 1

2 .
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On the other hand, the radial convex solutions of (8), (2) can be expressed as

u(x) = b+
1

2

[
|x|

(
|x|2 + d

)1/2
+ d ln

(
|x|+

(
|x|2 + d

)1/2 ) ]

− 1

2

[
( 1 + d )1/2 + d ln

(
1 + ( 1 + d )1/2

) ]
,

(10)

and then there exist a unique d ≥ −1 and a unique c ≤ b− 1
2 such that u satisfies

(5).
The Dirichlet problem on exterior domains of R2 was studied by Caffarelli, Li in

[2] and Ferrer, Mart́ınez, Milán in [11] and [12], respectively. But their prescribed
asymptotic behavior at infinity is at most

u(x) =
1

2
|x|2 + d

2
ln |x|+ c+O(|x|−1), x → ∞,

which is weaker than (5). It would be interesting to see if the existence of (8), (2),
(5) remains valid without radial symmetry assumptions.

In the following two sections, we shall prove Theorem 2 and Theorem 3, respec-
tively.

2. Proof of Theorem 2

To prove Theorem 2, firstly we have several simple facts.

Lemma 1. Let λ = (β, γ, · · · , γ) ∈ Γm, n ≥ m ≥ 2. Then γ > 0.

Proof. By λ ∈ Γm, m ≥ 2, we have σ2(λ) > 0. That is,

C1
n−1βγ + C2

n−1γ
2 = (n− 1)γ

(
β +

n− 2

2
γ

)
> 0.

Clearly, γ �= 0. Suppose that γ < 0. Then

β < −n− 2

2
γ.

But, by σ1(λ) > 0, we have
β > −(n− 1)γ.

This is a contradiction. Therefore, γ > 0. This completes the proof. �
Lemma 2. Let λ = (β, γ, · · · , γ) ∈ R

n and σk(λ) = 1, 2 ≤ k ≤ n. Then for
k ≤ m ≤ n, λ ∈ Γm if and only if

(11) 0 < γ < γm,

where

γm =

⎧⎪⎨
⎪⎩

a(
1− k

m

)1/k , m > k,

+∞, m = k,

and a =
(
1/Ck

n

)1/k
is given as before.

Proof. By σk(λ) = 1, we have

Ck−1
n−1βγ

k−1 + Ck
n−1γ

k = 1.

That is,

(12) β =
γ

k

(
nakγ−k − n+ k

)
.
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By the definition of λ ∈ Γm, we have for j = 1, 2, · · · ,m,

σj(λ) = Cj−1
n−1βγ

j−1 + Cj
n−1γ

j > 0,

γj−1 (jβ + (n− j)γ) > 0.

From Lemma 1, we get γ > 0, and

jβ + (n− j)γ > 0.

By (12), we have

j
γ

k

(
nakγ−k − n+ k

)
+ (n− j)γ > 0,

akγ−k > 1− k

j
, j = 1, 2, · · · ,m,

which is equivalent to

akγ−k > 1− k

m
.

This lemma is proved. �

Lemma 3. For 2 ≤ k ≤ m ≤ n, assume that u ∈ C1 (Rn\B1) ∩ C2(Rn\B1) is a
radial solution of (1), (2). Let

α := Ck
n (u

′(1))
k − 1.

Then u is k-convex if and only if α ∈ [−1, +∞), and u is m-convex if and only if

(13) α ∈ [−1,
k

m− k
], m = k + 1, · · · , n.

Proof. Assume that

u(x) = u(r) = u(|x|) ∈ C1 (Rn\B1) ∩ C2
(
R

n\B1

)
is a radial solution of (1), (2). A direct calculation gives that

Diju = (ru′′ − u′)
xixj

r3
+ u′ δij

r
, i, j = 1, · · · , n, r > 1,

and the eigenvalues of the Hessian matrix D2u are

λ1 = u′′, λ2 = · · · = λn =
u′

r
.

From Lemma 1,

γ =
u′

r
≥ 0, for r ≥ 1,

and then α ≥ −1.
By (1), we have

Ck−1
n−1u

′′
(
u′

r

)k−1

+ Ck
n−1

(
u′

r

)k

= 1,

(
rn−k(u′)k

)′
=

nrn−1

Ck
n

.

Then,

(14) (u′)k =
1

Ck
n

(
rk + αrk−n

)
, r > 1.
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By Lemma 2 and (14), u is m-convex if and only if for r > 1,

0 < γk =

(
u′

r

)k

=
1 + αr−n

Ck
n

< γk
m,

which is equivalent to
−1 ≤ α < +∞, if m = k,

and

−1 ≤ α ≤ 1

1− k
m

− 1 =
k

m− k
, if m > k.

The lemma is proved. �
Lemma 4. Let n ≥ 3, and μ(α) be given by (6). Then μ(α) is strictly increasing
on [−1,+∞) and μ(+∞) = +∞.

Proof. Since s
[
( 1 + αs−n )

1/k − 1
]
is strictly increasing on α in [−1,+∞) for fixed

s ≥ 1, we have obviously that μ(α) is strictly increasing on [−1,+∞).
For s > |α|1/n, it follows from

s

[(
1 +

α

sn

)1/k

− 1

]
≥ α

k
s1−n

that

μ(α) ≥ b− a

2
+ a

∫ ∞

1

α

k
s1−nds = b− a

2
+

aα

(n− 2) k
.

Therefore,
μ(+∞) = +∞.

This completes the proof of Lemma 4. �
Now we give the proof of Theorem 2.

Proof of Theorem 2. By (14), we have (7), i.e.

u(x) = b+ a

∫ |x|

1

(
sk + α · sk−n

)1/k
ds.

Consequently,

u(x) = b+ a

∫ |x|

1

{
s

[(
1 +

α

sn

)1/k

− 1

]
+ s

}
ds

= b+
a

2

(
|x|2 − 1

)
+ a

∫ ∞

1

s

[(
1 +

α

sn

)1/k

− 1

]
ds

− a

∫ ∞

|x|
s

[(
1 +

α

sn

)1/k

− 1

]
ds

=
a

2
|x|2 + μ(α)− a

∫ ∞

|x|

(α
k
s1−n +O(s1−2n)

)
ds

=
a

2
|x|2 + μ(α) +O(|x|2−n), x → ∞,

(15)

where μ(α) is given by (6).
Comparing (15) with (4), we know from Lemma 3 and Lemma 4 that u is m-

convex if and only if c ∈ [μ(−1), +∞) for m = k and c ∈ [μ(−1), μ( k
m−k )] for

m > k.
The proof of Theorem 2 is completed. �
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3. Proof of Theorem 3

In this section, we prove Theorem 3.
Assume that u(x) = u(r) = u(|x|) is the radial solution of (8), (2). The eigen-

values of the Hessian matrix D2u are

λ1 = u′′, λ2 =
u′

r
.

Then, we have

det(D2u) = u′′ · u
′

r
=

1

2r

(
(u′)2

)′
.

A direct calculation gives that u′ > 0, u′′ > 0, and

u′ =
(
r2 + d

)1/2
,

where d = (u′(1))2 − 1. Therefore,

u = b+

∫ |x|

1

(
s2 + d

)1/2
ds

= b+
1

2

[
|x|

(
|x|2 + d

)1/2
+ d ln

(
|x|+

(
|x|2 + d

)1/2 ) ]

− 1

2

[
( 1 + d )1/2 + d ln

(
1 + ( 1 + d )1/2

) ]
.

(16)

Clearly, the exterior Dirichlet problem (8), (2) has a convex radial solution u ∈
C1

(
R

2\B1

)
∩ C2

(
R

2\B1

)
if and only if d ≥ −1. Using the formulas

s
(
s2 + d

)1/2
= s2 +

d

2
+O

(
s−2

)
, s → +∞,

and

ln
(
s+

(
s2 + d

)1/2 )
= ln s+ ln 2 +O

(
s−2

)
, s → +∞,

we have

(17) u(x) =
1

2
|x|2 + d

2
ln |x|+ ν(d) +O

(
|x|−2

)
,

where ν(d) is given by (9).
Similar to the discussion of the proof of Theorem 2, we know that there exists

a unique function u ∈ Φ2 satisfying (8), (2), (5) if and only if d ≥ −1 and c =
μ(d). �
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