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Abstmt  Under the mild conditions, it is proved that the convex surface is global C'.'. with the given Gaussian 
curvature O G K  E and the given boundary curve. Examples are given to show that the regularity is optimal. 
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In this paper we consider in a plane domain R the existence of the convex surface z = u ( x ,  
y ) E c'~ ' (a 1, whose Gauss curvature is 0 < K E ( 0 ) and whose boundary is a space curve 
z = 9 ( x . y ) ( ( x , y ) E a R ) . As is well known, the existence of the surface is equivalent to the 
solvability in C'I ( fi ) of the hrichlet problem for the degenerate elliptic Monge-Ampere equations 

uZxu, - utY=  K ( X , Y ) ( ~  + U: + u;I2,  (x,Y) E 0 ,  ( 1  1 
U = 9 ( x , y > ,  ( x , y )  € a n .  (21 

Since refs. [I-31 solved successfully the famous Minkowski problem, the case of the surface with 

boundary has attracted wide interest. Trudinger and Urbas pointed out in ref. [4] that when K > 
0 in R ,  ( 1 )  and ( 2 )  are uniquely solvable for arbitrary C1.' boundary data g,, with convex solu- 
tion u E c2(0)  n c 0 . ' ( f i )  if'and only if 

Therefore, the elliptic Monge-Ampere equations degenerate on the boundary become the focal 

point. By modifying the examples in ref. [ 5 I, we know that there exists 0 < K E ( R ) such 

that (1) and ( 2 )  have a solution u E ~ ' ~ ' ( f i )  \ c2(f i )  if an € Cm and p ~ 0 .  This shows that 
the degenerate ellipticity of ( 1 )  near a R  restricts rigorously the global regularity of its solution. 

In some special cases, e. g. K=O (see ref. [ 6 ]  ) and ( p ~ 0  (see ref. [ 7 ]  ) for a R  and g, un- 
der some relations (see refs. [ 8 , 9 ] ) ,  the C 1 * ' ( f i )  regularity of the solution is obtained for (1) and 
(2 ) .  Using the ideas in ref. [ 6 ]  and a preprint by ~ u a n ' ) ,  we prove 

Theorem 1. The problem ( 1 ) - ( 2 )  admits a unique convex solution in C'. ' (a ) , provid- 
ed is a smooth uniformly convex domain i n  the plane, (p E C" ( a n ) ,  0 < K € (0) and 

~ J , K ( X ,  y ) d x d y  < I .  
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The counterexamples in ref. [ 5 ]  show that in general u is not in c 2 ( f i  ) . Therefore Theorem 

1 improves the known results. Here the smoothness conditions on K ,  9, In can be weakened. 

(1  and (2) have a unique convex solution u E ~ ' , " ~ ( f i )  n c ' . ' (L~ ) I ) .  It will be proved 
that u is in c l " ( f i ) .  From now on we denote by C the positive constants depending only on K ,  
y, and a .  

Let 

E > O ,  N , =  l ( ~ , ~ ) E n i d i s t ( ( ~ , ~ ) , a n ) < i ~ I , i = 1 , 2 .  
Then N2 C fl \ suppK for some small constant e .  We will prove that there is a constant C such 

that for every Po(xo ,  Yo) E N1, there exists 6 = 6(Po)  so that for any P ( s ,  y )  E N1, with 

( PPo ( < 6, we have 

u ( x ,  Y )  - u(x0 ,  Yo) - ur(xo,  y o ) ( x  - x0) - uy(x0, YO)(Y - Y O )  < c 1 ppo 12. 

By the convexity of u , u E C" ' ( K )  ( see ref. [ 10 ] ) . The desired result u E c'. ' ( fi ) is ob- 

tained via combining the interior regularity. Without loss of generality, we may suppose u = u, 
- - u, = 0 at Po. Therefore u 2 0  in a .  Now we only need to prove 

u ( s ,  y )  < C I PPo 12, P ( x ,  y )  E N1,  I PPo 1 < 6 .  (3 )  
LetPo(x0,yo) E N l ,  S = I ( X , ~ )  E N2 I u ( x ,  y )  = 01. 
Lemma 1.  Each component r of 2 S n N2 is u segment, which stretches to aN2.  
Proof. If r is not a segment which stretches to aN2.  there is a point on I' such that the 

tangent line and r only intersect at one point. After a translation of coordinates we may assume 
that the point is the origin, B8(0) C N2 and S fl B8(0) fl I y >, 0 I = 10 1 for some 6 >0 .  There- 

fore, there is a constant 60 > 0 such that u has positive lower bound on a B8 (0 )  n I y > - 60 I . 
Let 

U =  l ( x , y )  E Bs(0) i y >- 601, 

~ ( 5 ,  y )  = 61[60 + 2y + a 2 ( x 2  + y 2 ) I ,  a l ,  B2 > 0 .  

Then in U 
2 

VzrVw - v; = (2a162I2 > 0 = urruyy - Ury, 

and for 61, 62 sufficiently small, v<  u on 8 U .  Consequently, u >, v in U by the Aleksandrov 
maximum principle. In particular, u (0,O) > v(0,O) = a061 > 0. This contradicts the fact that 

(0,O) € S and u(0,O) = 0 .  

If Po E int S , then ( 3 ) holds obviously. If Po E a S , then by Lemma 1, Po lies on a segment 

with end pointsPl(xl ,  y l ) ,  P2 (x2 ,  y2) € a N 2 .  By the convexity of a N 2 n  it is impossible for 
P1 and P2 to lie on 0 in the meantime, and one of them is at least on 2 0 .  We may assume P2 = 

OE a a ,  the positive y axis is the interior normal to 3 0 at 0, d In is represented near 0, 

X 
y = p ( z ) ,  I x I < r ,  and so 2 0, yo = xu tan8. and 0 < 0 < T .  

Let P ( x ,  y) E N1, I PPo I < 6,  and L, I4 be straight lines passing through P, PI and Po, 
P1, respectively. L intersects 2 0  at a point F( i, y ), and the angle between L and Lo is a .  Then 

14:y = xtan8, L :y  - xltan6 = ( x  - x 1 ) t a n ( 8  + a). 
- 

Denote by d the distance from Po to L and regard x ,  y and d as the functions of the angle a .  We 
have 

1 
1)Bao Jiguang, The global C1' 4 hypersurface of thc nonnegative Gauss curvature. Chin. A n n .  of Much. ,  to appear. 
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Lemma 2. 

I :(a) I I x1 I 
lim - 
.-o d ( a )  I x1 - s o  I s ine'  

Proof. It follows from P E a 0  n L that 2 ( a ) satisfies the implicit equation 
p ( % ( a ) )  - xl tane  = (:(a) - x1)tan(8 f a )  

for a sufficiently small. Thus 

With the distance formula between point and line we have 

I x l  - xo I sina 
d ( a )  = 

C O S ~  

By viture of L' Hosptial rule and noting x ,  d ,  , D ' ( ~ ) + O ,  if a+O, we get 

; ( a >  - C O S ~  .z(a>= f x l  lim - - lim 
.-o d ( a )  I x l  - x o  I 0-0 sina I x 1  - x 0  1 s ine'  

This completes the proof of Lemma 2 .  
1 .  P1 E 0. 

In this case i OPo I < I POPl i since Po € N1, and there is a uniformly positive constant e0 
such that O>eO since P1 E a N 2  n 0 .  From Lemma 2 and I x l  1 G2 1 x l  - so I ,  we obtain 

I : I I :(a) I 2 1 x 1 1  < 4 
I PPo I d ( a )  I x l  - x o  I sine G -  sine0' 

if 6 is sufficiently small. It follows from u ( x 1, y l  ) = 0 and the convexity and nonnegativity of u 
that - 

u ( x ,  Y )  < u ( : , y )  = P)(x, p ( S ) )  < cg2 < C I PPo 12. 

C a s e 2 .  P 1 € a O .  

We may suppose I Pop2 I < I POPl I ,  or exchange the position of P1 and P2 in the following 
proof. 

Lemma 3. 1 OP1 I < Ctane. 
Proof. Since 0 is smooth and convex, the boundary data P) admits a smooth strict convex 

extension in a .  Therefore 

P)(xlr Y I )  > ~ ( 0 ~ 0 )  + ( P ~ ( O , O ) X ~  + '&,(O,O)yl + $(I :  + y:). 

Using P ) ( X ~ ,  y l ) = ~ ( O , O ) = 0  and 9 2 0  on an, we have 

~ ( 0 ~ 0 )  = 0, 

I OP1 l 2  <- C P ) ~ ( O , O ) ~ ,  = - Cqy(0,O) x l t a n e <  C I OP1 I t a d .  

Hence Lemma 3 is proved. 

Now fix 80 E (0, ) such that C tanso < r . If B> 6'0, the proof of (3)  is analogous to that 

of case 1. If 8<00,  denote f ( x ) =  P)(x, p ( x ) ) .  

Lemma4. O<f'(O)<cx:. 

Proof. Bythenonnegativityof u ,  wehave f ( x ) >  f ( 0 )  = 0,  f ' (0)  = 0 ;  thusforsome 

€ €  ( - r ,  r ) .  
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It follows that for sufficiently large C, 
1 1 If (0) + g'"(0)x + cx2  > 0. x E ( -  w ,  + m ) ,  

(~"(0) 1' < Cf(0). 
By f ( X I  ) = 0, we obtain 

1 Taking r ] =  - completes the proof of Lemma 4. 
2 

It follows from Lemma 4 that 
U ( X ,  Y) < 9(;, ,o(%)) = ( 9 ( r ,  ,o(x)))"(0)s2 + 0 ( s 3 )  < c(x:G2 + I  2 13). 

By Lemmas 2 and 3, when 6 < sin38 is sufficiently small, we have 

The proof of Theorem 1 is completed. 
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