The regularity of the surface of the Gauss curvature $0 \le K \in C_0^{\infty}$ *

BAO Jiguang (保继光)

(School of Mathematical Sciences, Peking University, Beijing 100871, China; Department of Mathematics, Beijing Normal University, Beijing 100875, China)

Received July 22, 1977; revised February 4, 1998

Abstract Under the mild conditions, it is proved that the convex surface is global $C^{1,1}$, with the given Gaussian curvature $0 \le K \in C_0^{\infty}$ and the given boundary curve. Examples are given to show that the regularity is optimal.

Keywords: nonnegative curvature, degenerate elliptic equation, any boundary data, global C1,1 regularity.

In this paper we consider in a plane domain Ω the existence of the convex surface $z = u(x, y) \in C^{1,1}(\overline{\Omega})$, whose Gauss curvature is $0 \le K \in C_0^{\infty}(\Omega)$ and whose boundary is a space curve $z = \varphi(x, y)((x, y) \in \partial \Omega)$. As is well known, the existence of the surface is equivalent to the solvability in $C^{1,1}(\overline{\Omega})$ of the Dirichlet problem for the degenerate elliptic Monge-Ampere equations

$$u_{xx}u_{yy} - u_{xy}^2 = K(x, y)(1 + u_x^2 + u_y^2)^2, (x, y) \in \Omega,$$
 (1)

$$u = \varphi(x, y), (x, y) \in \partial \Omega.$$
 (2)

Since refs. [1-3] solved successfully the famous Minkowski problem, the case of the surface with boundary has attracted wide interest. Trudinger and Urbas pointed out in ref. [4] that when K > 0 in Ω , (1) and (2) are uniquely solvable for arbitrary $C^{1,1}$ boundary data φ , with convex solution $u \in C^2(\Omega) \cap C^{0,1}(\overline{\Omega})$ if and only if

$$\iint_{\Omega} K(x, y) dx dy < \pi, \quad K \mid_{\partial \Omega} \equiv 0.$$

Therefore, the elliptic Monge-Ampere equations degenerate on the boundary become the focal point. By modifying the examples in ref. [5], we know that there exists $0 \le K \in C_0^{\infty}(\Omega)$ such that (1) and (2) have a solution $u \in C^{1,1}(\overline{\Omega}) \setminus C^2(\overline{\Omega})$ if $\partial \Omega \in C^{\infty}$ and $\varphi \equiv 0$. This shows that the degenerate ellipticity of (1) near $\partial \Omega$ restricts rigorously the global regularity of its solution.

In some special cases, e.g. $K \equiv 0$ (see ref. [6]) and $\varphi \equiv 0$ (see ref. [7]) for $\partial \Omega$ and φ under some relations (see refs. [8,9]), the $C^{1,1}(\bar{\Omega})$ regularity of the solution is obtained for (1) and (2). Using the ideas in ref. [6] and a preprint by $Guan^{1}$, we prove

Theorem 1. The problem (1)—(2) admits a unique convex solution in $C^{1,1}(\overline{\Omega})$, provided Ω is a smooth uniformly convex domain in the plane, $\varphi \in C^{\infty}(\partial \Omega)$, $0 \le K \in C_0^{\infty}(\Omega)$ and

$$\iint_{\Omega} K(x,y) \mathrm{d}x \mathrm{d}y < \pi.$$

^{*} Project supported by the Doctoral Funds of China and the National Natural Science Foundation of China (Grant No. 19771009).

¹⁾ Guan, B., The Dirichlet problem for monge-Ampere equations in non-convex domains and spacelike hypersurface of constant Gauss curvature, Preprint.

The counterexamples in ref. [5] show that in general u is not in $C^2(\overline{\Omega})$. Therefore Theorem 1 improves the known results. Here the smoothness conditions on K, φ , Ω can be weakened.

(1) and (2) have a unique convex solution $u \in C^{1,1/4}(\bar{\Omega}) \cap C^{1,1}(\Omega)^{1)}$. It will be proved that u is in $C^{1,1}(\bar{\Omega})$. From now on we denote by C the positive constants depending only on K, φ and Ω .

Let

$$\epsilon > 0$$
, $N_i = \{(x, y) \in \Omega \mid \text{dist}((x, y), \partial \Omega) < i\epsilon\}, i = 1, 2.$

Then $N_2 \subset \Omega \setminus \operatorname{supp} K$ for some small constant ϵ . We will prove that there is a constant C such that for every $P_0(x_0, y_0) \in N_1$, there exists $\delta = \delta(P_0)$ so that for any $P(x, y) \in N_1$, with $|PP_0| < \delta$, we have

$$u(x,y) - u(x_0,y_0) - u_x(x_0,y_0)(x-x_0) - u_y(x_0,y_0)(y-y_0) \leqslant C |PP_0|^2.$$

By the convexity of u, $u \in C^{1,1}(\overline{N_1})$ (see ref. [10]). The desired result $u \in C^{1,1}(\overline{\Omega})$ is obtained via combining the interior regularity. Without loss of generality, we may suppose $u = u_x = 0$ at P_0 . Therefore $u \ge 0$ in $\overline{\Omega}$. Now we only need to prove

$$u(x,y) \leqslant C + PP_0 + ^2, \quad P(x,y) \in N_1, + PP_0 + < \delta. \tag{3}$$

Let $P_0(x_0, y_0) \in N_1$, $S = \{(x, y) \in \overline{N}_2 \mid u(x, y) = 0\}$.

Lemma 1. Each component Γ of $\partial S \cap N_2$ is a segment, which stretches to ∂N_2 .

Proof. If Γ is not a segment which stretches to ∂N_2 , there is a point on Γ such that the tangent line and Γ only intersect at one point. After a translation of coordinates we may assume that the point is the origin, $B_{\delta}(0) \subset N_2$ and $S \cap B_{\delta}(0) \cap \{y \ge 0\} = \{0\}$ for some $\delta > 0$. Therefore, there is a constant $\delta_0 > 0$ such that u has positive lower bound on $\partial B_{\delta}(0) \cap \{y > -\delta_0\}$.

Let

$$U = \{(x, y) \in B_{\delta}(0) \mid y > -\delta_0\},\$$

$$v(x, y) = \delta_1[\delta_0 + 2y + \delta_2(x^2 + y^2)], \quad \delta_1, \delta_2 > 0.$$

Then in U

$$v_{xx}v_{yy} - v_{xy}^2 = (2\delta_1\delta_2)^2 > 0 = u_{xx}u_{yy} - u_{xy}^2,$$

and for δ_1 , δ_2 sufficiently small, $v \leq u$ on ∂U . Consequently, $u \geqslant v$ in \overline{U} by the Aleksandrov maximum principle. In particular, $u(0,0) \geqslant v(0,0) = \delta_0 \delta_1 > 0$. This contradicts the fact that $(0,0) \in S$ and u(0,0) = 0.

If $P_0 \in$ int S, then (3) holds obviously. If $P_0 \in \partial S$, then by Lemma 1, P_0 lies on a segment with end points $P_1(x_1, y_1)$, $P_2(x_2, y_2) \in \partial N_2$. By the convexity of $\partial N_2 \cap \Omega$ it is impossible for P_1 and P_2 to lie on Ω in the meantime, and one of them is at least on $\partial \Omega$. We may assume $P_2 = 0 \in \partial \Omega$, the positive y axis is the interior normal to $\partial \Omega$ at 0, $\partial \Omega$ is represented near 0, $y = \rho(x)$, |x| < r, and $x_0 \ge 0$, $y_0 = x_0 \tan \theta$, and $0 < \theta \le \frac{\pi}{2}$.

Let $P(x, y) \in N_1$, $|PP_0| < \delta$, and L, L_0 be straight lines passing through P, P_1 and P_0 , P_1 , respectively. L intersects $\partial \Omega$ at a point $\overline{P}(\bar{x}, \bar{y})$, and the angle between L and L_0 is α . Then

$$L_0: y = x \tan \theta$$
, $L_1: y - x_1 \tan \theta = (x - x_1) \tan(\theta \pm \alpha)$.

Denote by d the distance from P_0 to L and regard x, y and d as the functions of the angle a. We have

¹⁾ Bao Jiguang, The global $C^{1,\frac{1}{4}}$ hypersurface of the nonnegative Gauss curvature, Chin. Ann. of Math., to appear.

Lemma 2.

$$\lim_{\alpha\to 0}\frac{|\overline{x}(\alpha)|}{d(\alpha)}=\frac{|x_1|}{|x_1-x_0|\sin\theta}.$$

Proof. It follows from $\overline{P} \in \partial \Omega \cap L$ that $\overline{x}(\alpha)$ satisfies the implicit equation $\rho(\overline{x}(\alpha)) - x_1 \tan \theta = (\overline{x}(\alpha) - x_1) \tan(\theta \pm \alpha)$

for α sufficiently small. Thus

$$\frac{d\bar{x}}{d\alpha} = \frac{\pm (x_1 - \bar{x})\sec^2(\theta \pm \alpha)}{\tan(\theta \pm \alpha) - \rho'(\bar{x}(\alpha))}.$$

With the distance formula between point and line we have

$$d(\alpha) = \frac{|x_1 - x_0| \sin \alpha}{\cos \theta}.$$

By viture of L' Hosptial rule and noting x, d, $\rho'(\bar{x}) \rightarrow 0$, if $\alpha \rightarrow 0$, we get

$$\lim_{\alpha \to 0} \frac{\overline{x}(\alpha)}{d(\alpha)} = \frac{\cos \theta}{|x_1 - x_0|} \lim_{\alpha \to 0} \frac{\overline{x}(\alpha)}{\sin \alpha} = \frac{\pm x_1}{|x_1 - x_0| \sin \theta}.$$

This completes the proof of Lemma 2.

Case 1. $P_1 \in \Omega$.

In this case i $OP_0 \mid \leq \mid P_0P_1 \mid$ since $P_0 \in N_1$, and there is a uniformly positive constant θ^0 such that $\theta \geqslant \theta^0$ since $P_1 \in \partial N_2 \cap \Omega$. From Lemma 2 and $|x_1| \leq 2|x_1 - x_0|$, we obtain

$$\frac{|\bar{x}|}{|PP_0|} \leqslant \frac{|\bar{x}(\alpha)|}{d(\alpha)} \leqslant \frac{2|x_1|}{|x_1 - x_0| \sin \theta} \leqslant \frac{4}{\sin \theta^0},$$

if δ is sufficiently small. It follows from $u(x_1, y_1) = 0$ and the convexity and nonnegativity of u that

$$u(x,y) \leqslant u(\bar{x},\bar{y}) = \varphi(\bar{x},\rho(\bar{x})) \leqslant C\bar{x}^2 \leqslant C \mid PP_0 \mid^2$$

Case 2. $P_1 \in \partial \Omega$.

We may suppose $\mid P_0P_2 \mid \leqslant \mid P_0P_1 \mid$, or exchange the position of P_1 and P_2 in the following proof.

Lemma 3. $|OP_1| \leq C \tan \theta$.

Proof. Since Ω is smooth and convex, the boundary data φ admits a smooth strict convex extension in $\overline{\Omega}$. Therefore

$$\varphi(x_1, y_1) \geqslant \varphi(0, 0) + \varphi_x(0, 0)x_1 + \varphi_y(0, 0)y_1 + \frac{1}{C}(x_1^2 + y_1^2).$$

Using $\varphi(x_1, y_1) = \varphi(0, 0) = 0$ and $\varphi \ge 0$ on $\partial \Omega$, we have

$$\varphi_r(0,0)=0,$$

$$|OP_1|^2 \leqslant -C\varphi_y(0,0)y_1 = -C\varphi_y(0,0)x_1\tan\theta \leqslant C + OP_1 + \tan\theta.$$

Hence Lemma 3 is proved.

Now fix $\theta_0 \in (0, \frac{\pi}{2})$ such that $C \tan \theta_0 < r$. If $\theta \ge \theta_0$, the proof of (3) is analogous to that of case 1. If $\theta < \theta_0$, denote $f(x) = \varphi(x, \rho(x))$.

Lemma 4. $0 \le f''(0) \le Cx_1^2$.

Proof. By the nonnegativity of u, we have $f(x) \ge f(0) = 0$, f'(0) = 0; thus for some $\xi \in (-r, r)$,

$$f(x) = x^{2} \left[\frac{1}{2} f''(0) + \frac{1}{6} f'''(0) x + \frac{1}{24} f'''(\xi) x^{2} \right], \quad x \in (-r, r).$$

It follows that for sufficiently large C,

$$\frac{1}{2}f''(0) + \frac{1}{6}f'''(0)x + Cx^2 \ge 0, \ x \in (-\infty, +\infty),$$
$$(f'''(0))^2 \le Cf''(0).$$

By $f(x_1) = 0$, we obtain

$$\frac{1}{2}f''(0) + \frac{1}{6}f'''(0)x_1 + \frac{1}{24}f'''(\xi)x_1^2 = 0,$$

$$f'''(0) \leqslant C(x_1\sqrt{f''(0)} + x_1^2) \leqslant \eta f''(0) + C_n x_1^2.$$

Taking $\eta = \frac{1}{2}$ completes the proof of Lemma 4.

It follows from Lemma 4 that

$$u(x,y) \leqslant \varphi(\bar{x},\rho(\bar{x})) = (\varphi(x,\rho(x)))''(0)\bar{x}^2 + O(\bar{x}^3) \leqslant C(x_1^2\bar{x}^2 + |\bar{x}|^3).$$

By Lemmas 2 and 3, when $\delta < \sin^3 \theta$ is sufficiently small, we have

$$u(x,y) \leqslant C \left(\tan^2 \theta \frac{|\operatorname{PP}_0|^2}{\sin^2 \theta} + \frac{|\operatorname{PP}_0|^3}{\sin^3 \theta} \right) \leqslant C |\operatorname{PP}_0|^2.$$

The proof of Theorem 1 is completed.

Acknowledgement The author wishes to thank Profs. K. C. Chang, J. Q., Liu and J. X. Hong for their encouragement and help.

References

- 1 Pogorelov, A. V., The regularity of a convex surface with a given Gauss curvature, Mat. Sb., 1952, 31: 88.
- 2 Nirenberg, L., The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 1953, 6; 337.
- 3 Cheng, S. Y., Yau, S. T., On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math., 1976, 29: 495.
- 4 Trudinger, N. S., Urbas, J. I. E., The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Austral. Math. Soc., 1983, 30: 217.
- 5 Bedford, E., Fornaess, J., Counterexamples to regularity for the complex Monge-Ampère equation, Inv. Math., 1979, 50: 129.
- 6 Caffarelli, L. A., Nirenberg, L., Spruck, J., The Dirichlet problem for degenerate Monge-Ampère equation, Revista Mathematica Iberoamericana, 1986, 2: 19.
- 7 Hong, J. X., Dirichlet problems for Monge-Ampère equation degenerate on boundary, Chin. Ann. of Math., 1991, 12B; 407.
- 8 Hong, J. X., The estimates near the boundary for solutions of Monge-Ampère equations, J. Partial Diff. Eqs., 1994, 7: 97.
- 9 Kutev, N., On the solvability of the Dirichlet problem for degenerate equations of Monge-Ampère type, Nonlinear Analysis, Theory and Applications, 1989, 13: 1475.
- 10 Caffarelli, L. A., Cabre, X., Fully Nonlinear Elliptic Equations, Providence: American Mathematical Society, 1995.