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Abstract Under the mild conditions, it is proved that the convex surface is global C'*!, with the given Gaussian
curvature 0XK € Cg° and the given boundary curve. Examples are given to show that the regularity is optimal.
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In this paper we consider in a plane domain  the existence of the convex surface z = u(x,

y) € Ct1(f2), whose Gauss curvature is0 <X K € Cg (£2) and whose boundary is a space curve
z = ¢(x,y)((z,y) € 3N). Asis well known, the existence of the surface is equivalent to the
solvability in C!**(£2) of the Dirichlet problem for the degenerate elliptic Monge-Ampere equations
Uy, — ui,= K(z, y)(1 + u2 + u2)%, (z,y) € O, (1)

u= o(z,y), (z,y) €30Q. (2)

Since refs. [ 1—3] solved successfully the famous Minkowski problem, the case of the surface with
boundary has attracted wide interest. Trudinger and Urbas pointed out in ref. [4] that when K >

0 in 2, (1) and (2) are uniquely solvable for arbitrary C'! boundary data ¢, with convex solu-
tion u € C2(02) N C*'(Q) if'and only if

JJQK(x,y)dxdy <n, Klzp=0.

Therefore, the elliptic Monge-Ampere equations degenerate on the boundary become the focal
point. By modifying the examples in ref.[5], we know that there exists 0 << K € Cg’ () such
that (1) and (2) have a solution « € C"'(Q2)\ C*(2)if 302 € C* and ¢=0. This shows that
the degenerate ellipticity of (1) near 32 restricts rigorously the global regularity of its solution.

In some special cases, e.g. K=0 (see ref.[6]) and ¢=0 (see ref.[7]) for 32 and ¢ un-
der some relations (see refs.[8,9]), the C!''(Q) regularity of the solution is obtained for (1) and
(2). Using the ideas in ref. [6] and a preprint by Guan!), we prove

Theorem 1.  The problem (1)—(2) admits a unique convex solution in C'*(Q2), provid-
ed §) is a smooth uniformly convex domain in the plane, ¢ € C7(3Q2), 0K K € C5(2) and

IJQK(J:, y)dxdy < =.
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The counterexamples in ref. [S] show that in general « is not in C*(£2). Therefore Theorem
1 improves the known results. Here the smoothness conditions on K, ¢, 2 can be weakened.

(1) and (2) have a unique convex solution u € C*Y4(2) N C'(2)Y. It will be proved
that u is in C""1(£2). From now on we denote by C the positive constants depending only on K,
¢ and 2.

Let

€e>0, N, = {(z,y) € 2idist((x,y),9R) < iel,i =1,2.
Then N, C 2 \ suppK for some small constant €. We will prove that there is a constant C such
that for every Po(xg, yo) € N;, there exists 8 = 8(P;) so that for any P(z, y) € N, with
|PPy| < &, we have
ulz,y) - u(xOvyO) - u.r(xO’yO)(x - xo) — “y(l’o,yo)(y - yo) < C|PP0|2-

By the convexity of u, u € C"'(N;) (see ref. [10]). The desired result « € C'(f2) is ob-
tained via combining the interior regularity. Without loss of generality, we may suppose u = u,
= u, = 0 at Py. Therefore «=20 in 2. Now we only need to prove

u(x,y) < CIPP 1%, P(x,y) € Ny, | PP 1< 8. (3)

Let Po(zgs y0) € Ny, S = {(z,y) € Ny | u(z,y) = 0}.

Lemma 1. Each component I' of 3S(\ N, is a segment, which stretches to 3N,.

Proof. If I is not a segment which stretches to N, there is a point on I" such that the
tangent line and I" only intersect at one point. After a translation of coordinates we may assume
that the point is the origin, B;(0) C N,and S\ Bs(0) N { y =0} = {0} for some 8 >0. There-
fore, there is a constant 8¢ >0 such that « has positive lower bound on dB;(0) N {y> — &of.

Let

U= {(x,y) € B;(0) i y >~ &l,
vz, y)= 6,[80 + 2y + 82(z2 + ¥2)], 681,68, > 0.
Then in U
VpUyy — Voy = (28182)2 >0 = uu,, — ul,,
and for &,, &, sufficiently small, v<Cu on 3U. Consequently, «=>v in U by the Aleksandrov
maximum principle. In particular, #{(0,0) = v(0,0) = 8,8, > 0. This contradicts the fact that
(0,0) € S and «(0,0) = 0.

If Py € int S, then (3) holds obviously. If Py € S, then by Lemma 1, Pg lies on a segment
with end points Py (zy, y,), P;(x3, y2) € dN,. By the convexity of 3N, @ it is impossible for
P, and P, to lie on £ in the meantime, and one of them is at least on 2. We may assume P, =
0€ 3 2, the positive y axis is the interior normal to 4 2 at 0, 9 is represented near 0,

X

y=p(x), 1< r,and 220, yp = z¢tand, and 0 < § < >

Let P(x,y) € N,, | PP, 1 < &, and L, L4 be straight lines passing through P, P; and Py,

P, respectively. L intersects (2 at a point P(x, y), and the angle between L and Lg is a. Then
Lg:y = rtand, L:y — z,tanfd = (x — z,)tan(8 + a).

Denote by d the distance from Py to L and regard z, y and d as the functions of the angle a. We
have

1)Bao Jiguang, The global C"'4L hypersurface of the nonnegative Gauss curvature, Chin. Ann. of Math ., to appear.
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Lemma 2.

i I.;(a)l= | x|
a0 d(a) | 23 — x¢ | sinf’
Proof. It follows fromP € 302 N L that z(a) satisfies the implicit equation
p(x(a)) — z tanfd = (z(a) = z;)tan(8 + a)
for a sufficiently small. Thus
dz _ *(x, - z)sec?(6 % a)
de ~ tan(f§ £ a) - p'(x(a))’

With the distance formula between point and line we have

I.’L‘l—l'o | sina

d(a) = cosd
By viture of L’ Hosptial rule and noting z, d, p'(z)—>0, if a—>0, we get
lim;(a) _ cosf . z(a) _ T
a0 d(a) ~ | 7y = x4 | ae0 sina | £y = zg | sind’

This completes the proof of Lemma 2.

Case 1. P, € Q.

In this case i OPy || PyP; | since Py€ N, and there is a uniformly positive constant §°
such that §2>6° since P, €3N, N 2. From Lemma 2 and |z, /<2l xz, ~ zo!, we obtain

|z | | z(a) | 21 x| 4
IPPOI< d(a) < | y = xo | sind " sing®’

if & is sufficiently small. It follows from u(x;, y;) =0 and the convexity and nonnegativity of u
that

u(z,y) < ulz,y) = ¢(z,0(z2)) < Cz?< C | PP, |12
Case 2. P, €3Q.

We may suppose | PgP, [<<| PyPy |, or exchange the position of P, and P, in the following
proof.

Lemma 3. | OP, I< Ctand.

Proof. Since 2 is smooth and convex, the boundary data ¢ admits a smooth strict convex
extension in 2. Therefore

#2131 = 9(0,0) + £,(0,0)z, + 9,(0,0) 3, + £( + 53).
Using ¢(x1, y1) = ¢(0,0) =0 and ¢=>0 on 302, we have
¢:(0,0) =0,
I OP; 17 <~ Cg,(0,0)y, =— Cg,(0,0)x,tand < C | OP, | tanf.

Hence Lemma 3 is proved.

Now fix 8, € (0, %) such that C tanf, < r. If §2=6,, the proof of (3) is analogous to that
of case 1. If 6<§,y, denote f(z)=¢p(x,p(x)).

Lemmad4. 0< F(0) < Cx?.

Proof. By the nonnegativity of u, we have f(x) = f(0) = 0, £ (0) = 0; thus for some
¢€(—r,7),

f(2) = 2[5FO) + ¢ Oz + 35/ (O], =€ (=r,r).
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It follows that for sufficiently large C,
L) +£f (0 + C220, z € (-0, + ),

(f7(0))* < CfF(0).
By f(z;) =0, we obtain

20) + £ Oz, + 5 £7(8)z} = 0,
F7(0) < C(xy V£(0) + 23) < 9f(0) + C,ail.

Taking n= —é— completes the proof of Lemma 4.

It follows from Lemma 4 that
ulz, y) < o(z, p(z2)) = (p(z, p(z)))(0)2? + O(2?) < C(xiz? +1 z 1?).

By Lemmas 2 and 3, when 8 < sin’6 is sufficiently small, we have
| PPy 12 , | PPy K

sin’4 sin’ @

u(x,y)gc(tanzo )<CIPPO|2.

The proof of Theorem 1 is completed.

Acknowledgement The author wishes to thank Profs. K. C. Chang, J. Q., Liu and J. X. Hong for their encour-
agement and help.

References

1 Pogorelov, A. V., The regularity of a convex surface with a given Gauss curvature, Mat. Sb., 1952, 31:. 88.

2 Nirenberg, L., The Weyl and Minkowski problems in differential geometry in the large, Comm . Pure Appl. Math ., 1953,

6: 337.

3 Cheng, S. Y., Yau, S. T., On the regularity of the solution of the n-dimensional Minkowski problem, Comm . Pure Ap-

pl. Math ., 1976, 29: 495.

4 Trudinger, N. S., Urbas, J. I. E., The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Austral.

Math. Soc., 1983, 30: 217.

5 Bedford, E., Fornaess, J., Counterexamples to regularity for the complex Monge-Ampére equation, Inv. Math., 1979,

50: 129.

6 Caffarelli, L. A., Nirenberg, L., Spruck, J., The Dirichlet problem for degenerate Monge-Ampére equation, Revista

Mathematica lberoamericana, 1986, 2: 19.

7 Hong, J. X., Dirichlet problems for Monge- Ampére equation degenerate on boundary, Chin. Ann. of Math., 1991, 12B:

407.

8 Hong, ]J. X., The estimates near the boundary for solutions of Monge-Ampére equations, J. Partial Diff. Egs., 1994, 7:

97.

9 Kutev, N., On the solvability of the Dirichlet problem for degenerate equations of Monge-Ampére type, Nonlinear Analysis,

Theory and Applications, 1989, 13:. 1475.
10 Caffarelli, .. A., Cabre, X., Fully Nonlinear Elliptic Equations, Providence: American Mathematical Society, 1995.



	98101047.TIF
	98101048.TIF
	98101049.TIF
	98101050.TIF

