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Abstract

By means of the Reilly formula and the Alexandrov maximum principle, we obtain theddchl
estimates of thav2? strong solutions to the Hessian quotient equationspfaufficiently large,
and then prove that these solutions are smooth. There are counterexamples to show that the integral
exponentp is optimal in some cases. We modify partially the known result in the Hessian case, and
extend the regularity result in the special Lagrangian case to the Hessian quotient case.
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1. Introduction

In this paper we consider the looal-! estimate and the regularity of the strong solu-

tions for the Hessian quotient equation
S (D?
M=c, aexef2, 0<l<k<n, (1.2)
Si(D%u)
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wheres?2 is a domain inR”, ¢ is a positive constani)2x denotes the Hessian of a func-
tion # on 2, ande(Dzu) is defined to be thgth elementary symmetric function of the
eigenvalues. = (A1, Ao, ..., A,) Of D%y,

S;j(D?%u) = oj(M(D?u)) = Z Ayoohi;, j=Ll2,..n.

I<iz<-<ij<n

By a classical theorem of Calder6n and Zygmund [8], the functionWIﬁ‘f(.Q),
p > 5, are pointwise twice differentiable almost everywhereinwe sayu < W,(Z)’C” (£2)is

k-admissible, denoted hye @*(£2), if at almost every point of2 the vecton. = A(D?%u)
of eigenvalues oD2x belongs to the cone

Ni={reR"|o;(0)>0, j=1,... k}.

We call a functionu e Wlf,’C”(Q) for p > 5 an admissible strong solution to (1.1)fe
@k (£2) and satisfies (1.1) almost everywheresin(cf. [6]). From [13] and [7], we know
that Eq. (1.1) is elliptic and

1
Si(D2u)\ 7
< Si(D?u) >
is a concave function of the second derivatives iffu € ®*(£2).

The Hessian quotient equation (1.1) is an important class of fully nonlinear elliptic
equation which is closely related to geometry problems. Some well-known equations can
be regarded as its special cases. When0, it is ak-Hessian equation. In particular, it
is a Poisson equation ¥ = 1, while it is a Monge—Ampére equation &f= n. When
k=n=3,l=1andc =1, Eq. (1.1) arises from special Lagrangian geometry (cf. [10]): if
u is a solution of (1.1), the graph @i overR2 in C2 is a special Lagrangian submanifold
in C3, i.e., its mean curvature vanishes everywhere and the complex structGresemds
the tangent space of the graph to the normal space at every point. Therefore the Hessian
guotient equation (1.1) has drawn much attention.

The regularity of the strong solutions for above equations has been studied by many
authors. Itis a classical result (cf. [9]) that t%(%’c”(.(z) strong solution of Poisson equation
Au = ¢(x) is smooth wherp > 1 andg € C*°(£2). Recently, Urbas (cf. [15] and [16])
has proved that whep > @ such regularity result holds for theHessian equations.

For the special Lagrangian equation in dimensioded D2u) = Au, the same problem
is resolved in [1]. It is verified that thszJ’c”(Q) solutions of the equations are smooth if
p > 3. A counterexample is given to show that this regularity fails i 3.
The interior regularity for the Hessian quotient equations of the form
D2

%:(p(x), 1<l <n, (1.2)
has been discussed in [2], and the lo€ai! estimate is established when> (n — 1) x
maxXn — [, 2}. Throughout this paper, setting

kin—1) n
2 2

ylzmax{ } y2=max{(k—1)max{k—l,2},%},
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and

_ fmin{y1, 2}, n=3,
B 73 n=2

Our main results are as follows.

Theorem 1.1. Let 2 be a domain irR”, andc be a positive constant. jf > y, then every
admissible strong solution ¢fL.1)in Wli’C”(Q) is smooth.

Remark 1.2. There is a counterexample to show that Theorem 1.1 is fajsecik. There-
fore our result is optimal for the following cases:

1, n=2 1[=0;
2, n=234 1[=01;
3, n=3 1[=012

k
k
k

It would be interesting to determine sharp lower boundsjan Theorem 1.1. An
example of Pogorelov [12] tells us that Theorem 1.1 fails in the Hessian casé £.8),
if p< @ Moreover in both the Monge—Ampére case (ike= n > 2 and/ = 0) and
the special Lagrangian case (i.e+=n = 3 and!/ = 1) the optimal regularity results are
p > @ (cf. [3], [4] and [1], respectively), which can be obtained again by Theorem 1.1.

Remark 1.3. Theorem 1.1 still holds for the following equations of more general form:

Si(D%u)
m=§0(x), a.e.xe.Q, O<l<k§n, (13)

if n>2,p>yand 0< ¢ € C®(2) (cf. [2]).

The result in Remark 1.3 coincides with [2] in the casé ef n. Noting that ifi =0
andy, < y1, we modify partially the corresponding result of theHessian equations in
[15] and [16].

Itis natural for the solutions of Eq. (1.1) to be considere@fis2). We overcome more
difficulties in this paper than in [2], since the eigenvalue®3f: are no longer all positive
foru e ®K(2) if k <n.

The rest of the paper is organized as follows. In the next section, we present some
preliminary inequalities of the elementary symmetric functieps.) and their quotients
‘Z&; which will be used later. Section 3 is devoted to the locally second order derivative
bound in the case gp > y1 where we obtain a weighted iterative inequality by means
of the Reilly formula to improve the regularity step by step. In Section 4 we consider the
c11 estimates in another case pf> y», by using the Alexandrov maximum principle.
Combining above results achieved, we can prove in the last section that the admissible

Wlf,’cp (£2) strong solutions to Eqg. (1.1) are smoothpif> y with the standard regularity
theory on the elliptic equations. At the end of this paper, we give the counterexample in

Remark 1.2, and then get some optimal cases.
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2. Some properties of oz (1) and f;tlc((;))

We will give some properties of the elementary symmetric functigr(@) and their
quotientsZ®) in this section. Following the notations in [11], we set

)

k;i (M) = Ok[x;=0, Oksitip,....iy (A) = Ok iy =hi=--=2;,=0-
For anyi € {1,2,...,n}, we haveg%(k) = ox_1:;(A). For convenience we sep(r) =1
andoy(A) =0fork >n. If A= (A1, A2,...,Ay) € I,

there are at leagt positive components i, (2.1)
and

OlLiyin...iy (M) > 0 foranyfiy, iz, ..., i} C{1,2,...,n}, [ +s=k. (2.2)
Fork > 2, we have Newton inequality (cf. [11])

ok(Mor—2(1) < * ;(i)(_nk:rk;)r el (or-1(1)%. AeR".

_ o)
Denoteoy ;(A) = o - It follows that

00y, )= ok—1,i (Mo (X)) — o1-1,i (Ao (X)
oA (01(1))?
_ ok—1;i (M)oy;i (A) — 071, (A)0g;i (A)
(01(1))?
ok—1;i (Ao (L)
— - Ael;. 2.3
C(01(1))? 23
From now on supposethag > iAo > --- > Ay, A= (A1, A2, ..., Ay) € Ik, then
AM=A2=-- = >0, (2.4)
00} 00} 00%
O<—WM)<—W K- K A). 2.5
<8)»1() axz() 3)»"() (2.5)

From [17] we have Maclaurin inequality

() o) < () o). aer k=11 (2.6)

fk>r,l>s,k—1>r—s, there are Newton—Maclaurin inequalities [13]

1 1
<o‘k()»)>kl <C<Ur()‘))rs, rely, C=C,k,l,r,s). (2.7)

1
1
>

o1 () o5 ()
Forl =k — 1in view of (2.3) and (2.5), we see
i( or(X) ) I L G o L L o A ) 50
arj \or—1(1) or—1(1) (0k—1(1))?
forne Iy, j=1,2,...,n. Therefore
ox—1;;(A) S ox—2,;(A)
oV T ok-1(d)
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Repeating above discussion we obtain
kal;j(k) S Uk72;j()¥) S s UO;j()\) _ 1

= = = - E) (2.8)
ok (1) ox—-1(1) o1(d)  o1(d)
ie.,
A
o> 2P en,j=12...n (2.9)
o1(4)
By Theorem 1 of [11], there exists a constént 6 (n, k), such that
_1i(A

Tt Sk AeT (2.10)

ox—-1(2)
Write o _1(A) as follows:

0k-1(A) = 0k—1,1(A) + A10k—2,12(A) + - - + A1 Ap—201,12. . (k—1) (A)

+ A1A2. . Ak—1,

we have by (2.2),

0k—1(A) Z AMA2... Ak—1, A€} (2.11)
Using (2.4) and (2.5), we obtain

k_ 1

ok;1(A) < C(0k—1,1(1)) 1 = Cop—1,1(V) (0%—1;1(1)) T < Chaop—1,1 ().
In light of 0% (A) = A10%—1.1(X) + ok.1(A), finally we arrive at

r10k—1,1(A) = Cog(h). (2.12)

3. The CY! estimatesfor p > y1

This section is devoted to the establishing of the latht estimates of strong solutions
to Eq. (1.1) forp > y4.

In this section from now on we always assume thathfJ’c”(SZ) with p > y1 andn > 3
is a strong solution of Eq. (1.1) i®*(£2), and$2’ is a compact sub-domain ¢? in R”.
Let ¢ be a mollifier (cf. Chapter 7 in [9]). Far > 0O, the regularization af is defined by
the convolution

us<x>=s”/w<x_y>u<y>dy= / ¥ (yulx — ey)dy.
2

£
B1(0)

Thenu, € ®*(£2’) andu, belongs taC>®(£2’) providede < dist(£2’, 3£2), and
ug —>u in W2P(2') (3.1)

ase — 0, by Lemma 2.3 in [14].
We write Eq. (1.1) in the form

1
Sk (D?u)\ .
Sk((Dzu))) :ck%l, a.e.ing2. 3.2)
i u

F(D?%u) := (
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Equation (3.2) is elliptic and the functiof is concave with respect to any function in
@*(£2) (cf. [13)).
For later use, we denote the first derivatived@h/) andS; (M) with respect tan;; by

3 IF(M . 3S(M
Fil(M) = @) sy (M) = M) 12 (3.3)

Bmﬁ Bmu

and
atl = a(D?%u;) := S} (D?ue) — ¢S (D%u), (3.4)
Si(D?u;) ,

= T el 2 35
T = Dty C (3:9)

whereM = (m;;) is anyn x n matrix. Leti, and A, be the minimal and maximal eigen-
values andZ; be the trace of the matri(uéj ), respectively. Also, leZ be the trace of
(a'l) = (@' (Du)).

The estimates is almost identical to that of [1]. Therefore we need only reevaluate the
lower and the upper bounds széj) and7;. Using the similar argument of [1], we have

the following
Proposition 3.1. Let p > y3, then ing2’,

Sk(D%ug) = ¢Sy (D%ue),  fe>c, (a)>0, (3.6)
if ¢ < dist(£2’,952).

Proposition 3.2. Lets < dist(£2/, 0§2), thena,, A, and 7, satisfy the following estimates
in 27:

Can < al' < CAu)* Y, 1<i<n

Aug

C
Aug

C
whereC is a positive constant depending onlymork, [ andc.

<al! <CAu) ™, izk

< T < C(Aug)k L, 3.7)

Proof. Let A1, A2, ..., A, be the eigenvalues db?u,, here thes-dependence of the;’s

is omitted for simplicity. Without losing of generality we may assume= Ay > --- >

Ax > 0, and D?%u, is in diagonal form at the point under consideration. Therefore,
(S, (D?u,)) and(S,’ (D?u,)) are in diagonal forms as well, and

i . (0 do; 0 Gl d 0
(ay):dlag 9% —cﬂ,ﬂ —cﬂ,...,ﬁ—c o .
ol oAl dA2 A2 oAy oAy
It follows from (3.4) and (3.6) that

_ 0k—1,i (M) (X)) — 07-1,i (A)ox (X) < ok—1,i(A) — coj—1;i (A) _ all
b o1(%) (M)’

A0y 1
T (1))
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In view of (2.3), we have
ai > ok—1,i (Ao (V)
Coi(2)
Especially, by (2.10),

N (L
a;’>a"lT”() fori >1+1

From (3.6) and (2.11) we know

or(A)  CAiho... A
SN MA2... N
Therefore

1
?»12)»2>~-'>?»1+1>E.

By Maclaurin inequality we deduce

L) Clo1 ()1
o1(A) o1(A)

k
= CAi+1Mi42

(3.8)

(3.9)

e SC D)

(3.10)

=Coi(M) T <Cor(WF ! =C(Au)k . (3.11)

Again from (2.8), (2.11) and (3.10), whér- 1 < k, we obtain

o1+1(X) S Al.. A1

1
>

N A) 2> =
oL ®) == o1(%)

ok

When! 4+ 1 =k, it follows from (2.9), (3.6), (2.11) and (3.10),

O’l;i()”) P>

o+1(2) o (A) S cor() S cAy...

Ao A
PR

Al >

o1d)  o1(h) T o1(h) T
In light of (3.8), (2.5) and (2.12), we find
A10k—1;i (Ao (A) S A10k—1;1(A)

Q_I [N

C =

or(A) < 1

&

Cor(A)
Using (2.11), we obtain
Aug

g)\'lgAu€7
i 1o 1
a e .
€7 Ca T CAu,

Hence it follows from (2.10), (2.11) and (3.10),

all > Ok—1:i (A) S ox—1(1) N Ao Ak—1

= =

e = C
In view of

Cc

n

oA

d
3% ) = (0 — k + Dog_1(),

“ Coin)” C

Al .

(3.12)
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we see
ait = %% ) — c@(x) < o (W) < Cop_1(1) < C(Aug)* L,
€ oA oA; = oA; = = ¢
Finally we arrive at
Aug

<dl < C(Au)*t fori >k.

The last inequality in (3.7) follows from the definition @f. O

In the proof of Proposition 3.5 of [1], taking
_(p—k+D%n— Dk 2(n — Dk 2pq

e - - - @ 1
H((—3k+2 T a—bk+2 T p—k+Dx T

we have

2pq _ (m=Dr r_ (n—Dk
(p—k+12 n-1—-r" 2—-r 2 °
An argument similar to [1] gives the following

r<2,

p—k<qg-1

Proposition 3.3. Letn > 3, p > y1 andu € Wlf,’c”(Q) be ak-admissible strong solution of

(1.1). Then we have € W|§}:ﬁ(9) for any p < oo, and for any compact sub-domager’ of
£2 there exists a positive constafit depending only on, k I, ¢, p, p, 2, dist(£2’, 352)
and the localL? norm of Au in £2, such that

2
D 14||L[7(_Q/) <C.

4. The CH1 estimatesfor p > y»

In this section we establish loca&ll'! estimates of strong solutions to Eq. (1.1) for
p > y2, by using Alexandrov maximum principle (cf. [9]).
We recall (see [9]) that the upper contact set of a functicsienoted’ ;" (£2), is defined
to be the subset aR where the graph of lies below a support hyperplane Rf+2, that
is,
I"U+(.Q) = {x e v(z)<v(x)+v - (z—x)forall z e 2, for somev € R"}.

We have the following form of the Alexandrov maximum principle.

Proposition 4.1. Let (a'/) be ann x n matrix which is positive definite a.e. in a bounded
domaing2 c R"?, andv € Wli’c"(Q) N C%$2) withv =00n a2, whereg > n. Then

1
—di Do) n
supv < Cd / S
Q det(a'/)
rf @)

provided that(a’/ D;; v)/det(a"f)% e L"(£2), whered = diams2 and C is a constant de-
pending only om.
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Proposition 4.2. Let A be the maximum eigenvalue of the matiX/). Then

n

F_ <CAuw)?, aexef.
det(Fv)

Proof. Applying

d0%,1 0k—1;i (M)o1(A) —o1-1;i AN or(A) _ ox—1;i (A)
) = 5 <
oA; (o7 (1)) o1 (L)
and (3.12), we know
00y 1 o) < Cop_1(0)
OA; o1 (A)

Therefore it follows from (2.3), (2.9) and (2.10),

op—1(X)
Ay CCm) Cloma)) @)
ijy or—1.i(MNai ) T T . .
det(Fi/) 1_[;‘21“;,12—@)[' [Ti=10k—1.i (M)or,i (1)

Clok-1(A)" (01 (1)"

<
A
(G Horea ) =L (L @ )

_ CaM)* " o) o)
(kW) 0142())
_ C(m(m )"1(ol(x>)k+’—1(ak_1(x))k1
o (A) (@1 (W)Yo )
If I+ 1=k, we have
n 2(k—1)
sty << () o

If I +1 <k, it follows from the Maclaurin inequality and (2.5),

Ay <o~l(x))k—l(al(x))"”‘l(ak_l(k))"1

det(Fi/) = "\ ox(h) (or_1 () T+

k-1
c ( o1(}) > (01(/\))k+1—1(ak_1(/\))k—1—%

ok ()
M\t _ 12
(22 a2
M\ Dk
—c(55y) e

Thus we get the conclusion by Eq. (1.1) and the definitioppof O
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Proposition 4.3. Let 2 be a domain irR"” andu < ng’cp((z) an admissible strong solution
of (1.1)wherep > y», ¢ > Ois a positive constant. Thene C11(£2) and, for anyy € £2
and0 < R < 1 with B3g(y) C £2,

Y=Y

sup | D%ul < C(R™ AUl p gy ¥
Br(y)

whereqg = min{n, p — y»2} and C is a positive constant depending ank, [, p andc.

Proof. We consider the second order difference quotient
u(x +h&) — 2u(x) +u(x — hé)

h? ’
where2, = {x € 2 | dist(x, 0§2) > h}. By the concavity ofF' we obtain from (3.2) and
(3.3) that for a.ex € §2,,

Afpu(x) = a.ex € 2,

0= F(D%u(x £ h&)) — F(D?u(x))
< FI(D?%u(x))(Diju(x £ h) — Diju(x)). (4.1)

Lety € £2 with Bzg(y) C £2. Without loss of generality we may assume: 1. For sim-
plicity we will write B, = B,(y) for r > 0 and F/ := F/(D?u(x)) in the rest of this
proof. It follows from (4.1) that

F'Dij(Afu(x)) >0, ae.x e B, (4.2)
whenhi < R. Consider the function
V= Uﬂgg“»

where

andp > 2 is a constant to be determined later. Direct calculation leads to

_1 Cn.B) 1.2
o< Bt h,p2g < B, 43)
and

F'UDjjv=F"(nDij(Afeu) + 2DinD; (A% u) + (Af;u)Dijn)

> 2F" DinD;(Aleu) + (Aleu) F Dyjn

> —Ar(2Dnl|D(Ageu)| + | Ageu|1D )

> COPAE (4 Ry F D(alu)]). aex < Bog, (4.4)

R2n¥

by (4.2) and (4.3).
Forx e I',t (B2g) we takez € 3 Bog With

z—X Dv(x)

lz—x|  [Dv()|
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Sincev = 0 ond Byg, it follows that

v(x) = v(z) — Dv(x) - (z —x) = |z — x|| Dv(x)| > Rn% | Dv(x)|

as
1
|x —z| =2 2R — |x — y| = Rn?.
Consequently o (B2g),
A+ B
n|D(ALeu)| = |Dv — (Afeu) Dn| <|Dv| + (Afeu)| Dyl < ———. (4.5)
Rn#
By (4.4), (4.5) and the concavity ofon I',t (B2g), we have
. CA .
0<—FiDjv< ==L ae.inl}f (Ba). (4.6)
R2p#
whereC > 0 is a constant depending only eng andc.
By Proposition 4.2 we obtain
—FiD Co(Au)
0< ”v v( u) , a.ex e (Bag), 4.7

del(F’J)n Rznﬁ

whereC depends on, 8 andc. Choosing8 = % , we see from (4.7) and Proposition 4.1

that
- 1
_FUD,.U n n
supv < CR / M dx
Bor det(Fi)
15 (Bog)
1

<CR—1< / (Au)VZ(n%zv)"dx>n

17 (B2gr)

<CR™? Supv (/(Au)yz )’ Vzdx)
Bar

It follows from Holder inequality and (cf. [9])

1
n

”AESMHLP(BZR) ||AM||L1’(33R)
Therefore

P Y2 I pP—Y2
/(Au)yz dx <N AUl Ty gy | Agc |70 oy < NAUNT b (5ypye (4-8)

where the constant depends om, k, [, p andc. If supg,, v < 1, Proposition 4.3 holds
trivially. So one may assume sgp v > 1. If p <n + y2 then 1— % >0and

1_2
supy < CR™ (supu) ||Au||L,,(33R)

Bag Bag
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It follows that
y4

_n_ —
supy < CR™ 177 Aullf -
Bog

In view of (4.8) we know thap >n + y» as 1— £ <0, and

2
B

r
supv < CR™ Y Aull},
Bor

Finally we conclude that fok < R,

(B3g)*

1
q

4\ r-r2 _
SUPAL u < (:—3) supv < C(R™( Aull] )y pye)) -
Br Bog

As £ is an arbitrary unit vector ifR", this completes the proof of Proposition 4.3

5. Theproofsof Theorem 1.1 and Remark 1.2

In the last section, we give the proof of Theorem 1.1. On the other hand, we illustrate
a counterexample to show that Theorem 1.1 fails i k, and then obtain several optimal
cases.

Proof of Theorem 1.1. Let £2' be a bounded subdomain &, 2’ c 2. If n =2 or
n>3,y1> ye. Theny = y» andu € C11(£2’) by Proposition 4.3. As (3.2) is concave and
uniformly elliptic in a strictly admissible solution with bounded second derivatives, the
Evans—Krylov regularity theorem [5] then implies the& C%%(£2’) for some O< « < 1.
The smoothness af now follows from the standard elliptic regularity theory (cf. [9]).

If n >3 andy2 > y1. Theny = y; andu € W,(Z)’C”(Q) by Proposition 3.3, wherg > y».
Therefore Theorem 1.1 holds by using above discussian.

Proof of Remark 1.2. Fork > 4, we have

Y12 max{Z(n -D.5(=20-1),

NI NS

D i p—

Y22 max{Z(k -1,5¢=220k-1,

and
y=min{2(n —1),2(k — 1} =2k —1) >k + 1.
Therefore it is impossible that the results in Theorem 1.1 is optimal fo#.
A direct calculation gives that
n

=y1=yp=—, ifk=1
Yy=Y1i=Y2 2

y1=n—1, yg:max{Z, }, y:min{n—l,%}, if k=2;

NS
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and
max(6, 4}, =0,

3
= - —1’ =
Y1 2(n ), V2 {max{4,%}, =12

y >min{g(n—l),4}, if k=3.

So we derive the optimal cases that has been mentioned in Remark 1.2.

We conclude this paper with showing that a radially symmetric admissible solutions to
Eqg. (1.1) must be a quadratic polynomial or a strong solutioWIﬁ*f(R") forall p <k
but not in W,%f (R™).

The counterexample of the cake= n has been found in [2]. Hence we may assume
l<k<n.lLetu(x)=y(r),where|x|=r.Thenfori, j=1,2,...,n

ou  x;

)

ax; yr

3214 _y,/xin+y, rZSij—xixj
dx;0x; r2 r3 ’

/

Atx =(r0,....,0, un1=y" uji == (i >
the eigenvalues ab2u areis = y”, 4, = ¥ (i

j—1 N J
S;(D%u) = €I~ iy”<yr) +cn 1(%)
= il 1)( O )J>, j=12...n-1 ¢

Letu(x) = y(r) be such a solution of (1.1). Thensatisfies

y/ k—1 y/ k y -1 y/ 1
c,’;_}y”<7) +C,’;_1<7) =cc? ”( ) +cCl 1< > (5.2)
k=1 —(n—1) e ,_ -1 —(n-1) N
C,_ir = O ) =cC,qr ( b

We integrate to obtain

N\ k N\
r" (y—) =Cor"<y—> +C, (5.3)
r r

where Cg is a positive constant depending only enk, [ andc¢, andC is an arbitrary
constant. .
If C =0, then eithery’ =0 or y’ = (Co)*7r. Thereforey is a constant or quadratic

polynomial in this case. I€ > 0 for r sufficiently small, take positivé/ in (5.3). Then

N\ k
r"(y—) >C:=8>0.

). Since the rotation invariance 6f (D?%u),
> 2). Therefore

< N

ie.,

r
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Furthermore

l ) n k _nl k
r’ y—/ :r"f%]. rky gr"*%. rky' :r" ¢ - y—/ .
or or or 5k r

In light of £ > [, we see

nl
Cor" % 1
0 <

sk=1 2
for r sufficiently small. Thu5r"(y7’)k < 2C. We may deduce”(%)’ — 0 asr — 0. Let
r — 0in (5.3), we have" (X — C, i.e.,
/
lim —— 3. (5.4)

r%Ork%n

Applying (5.2)—(5.4), we see

"
. —k
lim 2 ==k, (5.5)
r—0 r k k
Therefore
Au . Y+ @m-DY 1
lim ZZ = lim y(nin)r =n<l— —)8 > 0.
r—0 rk r—0 rk k

So Au € L{ (R") for p <k, but Au ¢ Lf (R"). Hence if we can show e &*(£2),

Theorem 1.1 fails whep < k. Indeed, it follows from (5.1),

(CVIES . -
S/(Du)_(n—j—l)!(j_l)! <r> n—j+jr .

In view of (5.4) and (5.5), we see

"

y Y

jim 2= 07 _ k=)
r—0 r_% (l’l—])k]
Therefore
. S;(D? k—j i
lim i€ ,u)= JC,{8/>O forj=1,2,...,k—1.
r—0 I"% k

It follows that Sj(Dzu) >0forj=12,...,k—1 andr sufficiently small. In view of
Eq. (1.1), we know thas; (D?u) > 0 and thent € #%(2). O
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