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Abstract

By means of the Reilly formula and the Alexandrov maximum principle, we obtain the localC1,1

estimates of theW2,p strong solutions to the Hessian quotient equations forp sufficiently large,
and then prove that these solutions are smooth. There are counterexamples to show that the
exponentp is optimal in some cases. We modify partially the known result in the Hessian cas
extend the regularity result in the special Lagrangian case to the Hessian quotient case.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the localC1,1 estimate and the regularity of the strong so
tions for the Hessian quotient equation

Sk(D
2u)

Sl(D2u)
= c, a.e.x ∈ Ω, 0� l < k � n, (1.1)
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whereΩ is a domain inRn, c is a positive constant,D2u denotes the Hessian of a fun
tion u on Ω , andSj (D

2u) is defined to be thej th elementary symmetric function of th
eigenvaluesλ = (λ1, λ2, . . . , λn) of D2u,

Sj (D
2u) = σj

(
λ(D2u)

) =
∑

1�i1<···<ij �n

λi1 . . . λij , j = 1,2, . . . , n.

By a classical theorem of Calderón and Zygmund [8], the functions inW
2,p

loc (Ω),

p > n
2, are pointwise twice differentiable almost everywhere inΩ . We sayu ∈ W

2,p

loc (Ω) is
k-admissible, denoted byu ∈ Φk(Ω), if at almost every point ofΩ the vectorλ = λ(D2u)

of eigenvalues ofD2u belongs to the cone

Γk = {
λ ∈ R

n | σj (λ) > 0, j = 1, . . . , k
}
.

We call a functionu ∈ W
2,p

loc (Ω) for p > n
2 an admissible strong solution to (1.1) ifu ∈

Φk(Ω) and satisfies (1.1) almost everywhere inΩ (cf. [6]). From [13] and [7], we know
that Eq. (1.1) is elliptic and(

Sk(D
2u)

Sl(D2u)

) 1
k−l

is a concave function of the second derivatives ofu if u ∈ Φk(Ω).
The Hessian quotient equation (1.1) is an important class of fully nonlinear el

equation which is closely related to geometry problems. Some well-known equation
be regarded as its special cases. Whenl = 0, it is a k-Hessian equation. In particular,
is a Poisson equation ifk = 1, while it is a Monge–Ampère equation ifk = n. When
k = n = 3, l = 1 andc = 1, Eq. (1.1) arises from special Lagrangian geometry (cf. [10]
u is a solution of (1.1), the graph ofDu overR3 in C

3 is a special Lagrangian submanifo
in C

3, i.e., its mean curvature vanishes everywhere and the complex structure onC
3 sends

the tangent space of the graph to the normal space at every point. Therefore the H
quotient equation (1.1) has drawn much attention.

The regularity of the strong solutions for above equations has been studied by
authors. It is a classical result (cf. [9]) that theW

2,p

loc (Ω) strong solution of Poisson equatio
∆u = ϕ(x) is smooth whenp > 1 andϕ ∈ C∞(Ω). Recently, Urbas (cf. [15] and [16
has proved that whenp >

k(n−1)
2 such regularity result holds for thek-Hessian equations

For the special Lagrangian equation in dimension 3,det(D2u) = ∆u, the same problem
is resolved in [1]. It is verified that theW2,p

loc (Ω) solutions of the equations are smooth
p > 3. A counterexample is given to show that this regularity fails ifp < 3.

The interior regularity for the Hessian quotient equations of the form

Sn(D
2u)

Sl(D2u)
= ϕ(x), 1� l < n, (1.2)

has been discussed in [2], and the localC1,1 estimate is established whenp > (n − 1)×
max{n − l,2}. Throughout this paper, setting

γ1 = max

{
k(n − 1)

,
n
}
, γ2 = max

{
(k − 1)max{k − l,2}, n

}
,

2 2 2
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γ =
{

min{γ1, γ2}, n � 3,

γ2, n = 2.

Our main results are as follows.

Theorem 1.1. LetΩ be a domain inRn, andc be a positive constant. Ifp > γ , then every
admissible strong solution of(1.1) in W

2,p

loc (Ω) is smooth.

Remark 1.2. There is a counterexample to show that Theorem 1.1 is false ifp < k. There-
fore our result is optimal for the following cases:

k = 1, n = 2, l = 0;
k = 2, n = 2,3,4, l = 0,1;
k = 3, n = 3, l = 0,1,2.

It would be interesting to determine sharp lower bounds forp in Theorem 1.1. An
example of Pogorelov [12] tells us that Theorem 1.1 fails in the Hessian case (i.e.,l = 0)
if p <

k(k−1)
2 . Moreover in both the Monge–Ampère case (i.e.,k = n > 2 andl = 0) and

the special Lagrangian case (i.e.,k = n = 3 andl = 1) the optimal regularity results ar
p >

n(n−1)
2 (cf. [3], [4] and [1], respectively), which can be obtained again by Theorem

Remark 1.3. Theorem 1.1 still holds for the following equations of more general form

Sk(D
2u)

Sl(D2u)
= ϕ(x), a.e.x ∈ Ω, 0� l < k � n, (1.3)

if n � 2, p > γ2 and 0< ϕ ∈ C∞(Ω) (cf. [2]).

The result in Remark 1.3 coincides with [2] in the case ofk = n. Noting that if l = 0
andγ2 < γ1, we modify partially the corresponding result of thek-Hessian equations i
[15] and [16].

It is natural for the solutions of Eq. (1.1) to be considered inΦk(Ω). We overcome more
difficulties in this paper than in [2], since the eigenvalues ofD2u are no longer all positive
for u ∈ Φk(Ω) if k < n.

The rest of the paper is organized as follows. In the next section, we present
preliminary inequalities of the elementary symmetric functionsσk(λ) and their quotients
σk(λ)
σl(λ)

, which will be used later. Section 3 is devoted to the locally second order deriv
bound in the case ofp > γ1 where we obtain a weighted iterative inequality by me
of the Reilly formula to improve the regularity step by step. In Section 4 we conside
C1,1 estimates in another case ofp > γ2, by using the Alexandrov maximum principl
Combining above results achieved, we can prove in the last section that the adm
W

2,p

loc (Ω) strong solutions to Eq. (1.1) are smooth ifp > γ with the standard regularit
theory on the elliptic equations. At the end of this paper, we give the counterexam
Remark 1.2, and then get some optimal cases.
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2. Some properties of σk(λ) and σk(λ)
σl(λ)

We will give some properties of the elementary symmetric functionsσk(λ) and their
quotientsσk(λ)

σl(λ)
in this section. Following the notations in [11], we set

σk;i (λ) = σk|λi=0, σk;i1i2,...,is (λ) = σk|λi1=λi2=···=λis =0.

For anyi ∈ {1,2, . . . , n}, we have∂σk

∂λi
(λ) = σk−1;i (λ). For convenience we setσ0(λ) = 1

andσk(λ) = 0 for k > n. If λ = (λ1, λ2, . . . , λn) ∈ Γk ,

there are at leastk positive components inλ, (2.1)

and

σl;i1i2...is (λ) > 0 for any{i1, i2, . . . , is} ⊂ {1,2, . . . , n}, l + s = k. (2.2)

For k � 2, we have Newton inequality (cf. [11])

σk(λ)σk−2(λ) � (k − 1)(n − k + 1)

k(n − k + 2)

(
σk−1(λ)

)2
, λ ∈ R

n.

Denoteσk,l(λ) = σk(λ)
σl(λ)

. It follows that

∂σk,l

∂λi

(λ) = σk−1;i (λ)σl(λ) − σl−1;i (λ)σk(λ)

(σl(λ))2

= σk−1;i (λ)σl;i (λ) − σl−1;i (λ)σk;i (λ)

(σl(λ))2

� σk−1;i (λ)σl;i (λ)

C(σl(λ))2
, λ ∈ Γk. (2.3)

From now on suppose thatλ1 � λ2 � · · · � λn, λ = (λ1, λ2, . . . , λn) ∈ Γk , then

λ1 � λ2 � · · · � λk > 0, (2.4)

0<
∂σk

∂λ1
(λ) � ∂σk

∂λ2
(λ) � · · · � ∂σk

∂λn

(λ). (2.5)

From [17] we have Maclaurin inequality((
Ck

n

)−1
σk(λ)

) 1
k �

((
Cl

n

)−1
σl(λ)

) 1
l , λ ∈ Γk, k � l � 1. (2.6)

If k � r , l � s, k − l � r − s, there are Newton–Maclaurin inequalities [13](
σk(λ)

σl(λ)

) 1
k−l

� C

(
σr(λ)

σs(λ)

) 1
r−s

, λ ∈ Γk, C = C(n, k, l, r, s). (2.7)

For l = k − 1 in view of (2.3) and (2.5), we see

∂

∂λj

(
σk(λ)

σk−1(λ)

)
= σk−1;j (λ)

σk−1(λ)
− σk−1(λ)σk−2;j (λ)

(σk−1(λ))2
� 0

for λ ∈ Γk , j = 1,2, . . . , n. Therefore

σk−1;j (λ) � σk−2;j (λ)
.

σk(λ) σk−1(λ)
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s

Repeating above discussion we obtain

σk−1;j (λ)

σk(λ)
� σk−2;j (λ)

σk−1(λ)
� · · · � σ0;j (λ)

σ1(λ)
= 1

σ1(λ)
, (2.8)

i.e.,

σk−1;j (λ) � σk(λ)

σ1(λ)
, λ ∈ Γk, j = 1,2, . . . , n. (2.9)

By Theorem 1 of [11], there exists a constantθ = θ(n, k), such that

σk−1;i (λ)

σk−1(λ)
� θ, i � k, λ ∈ Γk. (2.10)

Write σk−1(λ) as follows:

σk−1(λ) = σk−1;1(λ) + λ1σk−2;12(λ) + · · · + λ1 . . . λk−2σ1;12...(k−1)(λ)

+ λ1λ2 . . . λk−1,

we have by (2.2),

σk−1(λ) � λ1λ2 . . . λk−1, λ ∈ Γk. (2.11)

Using (2.4) and (2.5), we obtain

σk;1(λ) � C
(
σk−1;1(λ)

) k
k−1 = Cσk−1;1(λ)

(
σk−1;1(λ)

) 1
k−1 � Cλ1σk−1;1(λ).

In light of σk(λ) = λ1σk−1;1(λ) + σk;1(λ), finally we arrive at

λ1σk−1;1(λ) � Cσk(λ). (2.12)

3. The C1,1 estimates for p > γ1

This section is devoted to the establishing of the localC1,1 estimates of strong solution
to Eq. (1.1) forp > γ1.

In this section from now on we always assume thatu ∈ W
2,p

loc (Ω) with p > γ1 andn � 3
is a strong solution of Eq. (1.1) inΦk(Ω), andΩ ′ is a compact sub-domain ofΩ in R

n.
Let ψ be a mollifier (cf. Chapter 7 in [9]). Forε > 0, the regularization ofu is defined by
the convolution

uε(x) = ε−n

∫
Ω

ψ

(
x − y

ε

)
u(y)dy =

∫
B1(0)

ψ(y)u(x − εy)dy.

Thenuε ∈ Φk(Ω ′) anduε belongs toC∞(Ω ′) providedε < dist(Ω ′, ∂Ω), and

uε → u in W2,p(Ω ′) (3.1)

asε → 0, by Lemma 2.3 in [14].
We write Eq. (1.1) in the form

F(D2u) :=
(

Sk(D
2u)

2

) 1
k−l = c

1
k−l , a.e. inΩ. (3.2)
Sl(D u)
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Equation (3.2) is elliptic and the functionF is concave with respect to any function
Φk(Ω) (cf. [13]).

For later use, we denote the first derivatives ofF(M) andSk(M) with respect tomij by

F ij (M) := ∂F (M)

∂mij

, S
ij
k (M) := ∂Sk(M)

∂mij

, k = 1,2, . . . , n, (3.3)

and

aij
ε = aij (D2uε) := S

ij
k (D2uε) − cS

ij
l (D2uε), (3.4)

fε := Sk(D
2uε)

Sl(D2uε)
, x ∈ Ω ′, (3.5)

whereM = (mij ) is anyn × n matrix. Letλε andΛε be the minimal and maximal eigen

values andTε be the trace of the matrix(aij
ε ), respectively. Also, letT be the trace o

(aij ) = (aij (D2u)).
The estimates is almost identical to that of [1]. Therefore we need only reevalua

lower and the upper bounds of(a
ij
ε ) andTε . Using the similar argument of [1], we hav

the following

Proposition 3.1. Letp > γ1, then inΩ ′,

Sk(D
2uε) � cSl(D

2uε), fε � c,
(
aij
ε

)
> 0, (3.6)

if ε < dist(Ω ′, ∂Ω).

Proposition 3.2. Let ε < dist(Ω ′, ∂Ω), thenλε,Λε andTε satisfy the following estimate
in Ω ′:

1

C∆uε

� aii
ε � C(∆uε)

k−1, 1� i � n;
∆uε

C
� aii

ε � C(∆uε)
k−1, i � k;

∆uε

C
� Tε � C(∆uε)

k−1, (3.7)

whereC is a positive constant depending only onn, k, l andc.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues ofD2uε, here theε-dependence of theλj ’s
is omitted for simplicity. Without losing of generality we may assumeλ1 � λ2 � · · · �
λk > 0, and D2uε is in diagonal form at the point under consideration. Theref
(S

ij
k (D2uε)) and(S

ij
l (D2uε)) are in diagonal forms as well, and

(
aij
ε

) = diag

(
∂σk

∂λ1
− c

∂σl

∂λ1
,
∂σk

∂λ2
− c

∂σl

∂λ2
, . . . ,

∂σk

∂λn

− c
∂σl

∂λn

)
.

It follows from (3.4) and (3.6) that

∂σk,l
(λ) = σk−1;i (λ)σl(λ) − σl−1;i (λ)σk(λ)

2
� σk−1;i (λ) − cσl−1;i (λ) = aii

ε .

∂λi (σl(λ)) σl(λ) σl(λ)
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In view of (2.3), we have

aii
ε � σk−1;i (λ)σl;i (λ)

Cσl(λ)
. (3.8)

Especially, by (2.10),

aii
ε � σk−1;i (λ)

C
for i � l + 1. (3.9)

From (3.6) and (2.11) we know

c � σk(λ)

σl(λ)
� Cλ1λ2 . . . λk

λ1λ2 . . . λl

= Cλl+1λl+2 . . . λk � C(λl+1)
k−l .

Therefore

λ1 � λ2 � · · · � λl+1 � 1

C
. (3.10)

By Maclaurin inequality we deduce

c � σk(λ)

σl(λ)
� C(σl(λ))

k
l

σl(λ)
= Cσl(λ)

k−l
l � Cσ1(λ)k−l = C(∆uε)

k−l . (3.11)

Again from (2.8), (2.11) and (3.10), whenl + 1< k, we obtain

σl;i (λ) � σl+1(λ)

σ1(λ)
� λ1 . . . λl+1

σ1(λ)
� λ2 . . . λl+1

C
� 1

C
.

Whenl + 1= k, it follows from (2.9), (3.6), (2.11) and (3.10),

σl;i (λ) � σl+1(λ)

σ1(λ)
= σk(λ)

σ1(λ)
� cσl(λ)

σ1(λ)
� cλ1 . . . λl

σ1(λ)
� λ2 . . . λl

C
� 1

C
.

In light of (3.8), (2.5) and (2.12), we find

λ1a
ii
ε � λ1σk−1;i (λ)σl;i (λ)

Cσl(λ)
� λ1σk−1;1(λ)

Cσl(λ)
� σk(λ)

Cσl(λ)
� 1

C
.

Using (2.11), we obtain

∆uε

n
� λ1 � ∆uε,

aii
ε � 1

Cλ1
� 1

C∆uε

.

Hence it follows from (2.10), (2.11) and (3.10),

aii
ε � σk−1;i (λ)

C
� σk−1(λ)

C
� λ1λ2 . . . λk−1

C
� λ1

C
for i � k � l + 1.

In view of
n∑ ∂σk

∂λi

(λ) = (n − k + 1)σk−1(λ), (3.12)

i=1
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we see

aii
ε = ∂σk

∂λi

(λ) − c
∂σl

∂λi

(λ) � ∂σk

∂λi

(λ) � Cσk−1(λ) � C(∆uε)
k−1.

Finally we arrive at

∆uε

C
� aii

ε � C(∆uε)
k−1 for i � k.

The last inequality in (3.7) follows from the definition ofTε . �
In the proof of Proposition 3.5 of [1], taking

q = (p − k + 1)2(n − 1)k

p((n − 3)k + 2)
, r = 2(n − 1)k

(n − 1)k + 2
, s = 2pq

(p − k + 1)2r
> 1,

we have

r < 2,
2pq

(p − k + 1)2
= (n − 1)r

n − 1− r
,

r

2− r
= (n − 1)k

2
, p − k < q − 1.

An argument similar to [1] gives the following

Proposition 3.3. Letn � 3, p > γ1 andu ∈ W
2,p

loc (Ω) be ak-admissible strong solution o

(1.1). Then we haveu ∈ W
2,p̄

loc (Ω) for anyp̄ < ∞, and for any compact sub-domainΩ ′ of
Ω there exists a positive constantC, depending only onn, k ,l, c, p, p̄, Ω ′, dist(Ω ′, ∂Ω)

and the localLp norm of∆u in Ω , such that

‖D2u‖Lp̄(Ω ′) � C.

4. The C1,1 estimates for p > γ2

In this section we establish localC1,1 estimates of strong solutions to Eq. (1.1)
p > γ2, by using Alexandrov maximum principle (cf. [9]).

We recall (see [9]) that the upper contact set of a functionv, denotedΓ +
v (Ω), is defined

to be the subset ofΩ where the graph ofv lies below a support hyperplane inRn+1, that
is,

Γ +
v (Ω) = {

x ∈ Ω: v(z) � v(x) + ν · (z − x) for all z ∈ Ω, for someν ∈ R
n
}
.

We have the following form of the Alexandrov maximum principle.

Proposition 4.1. Let (aij ) be ann × n matrix which is positive definite a.e. in a bound
domainΩ ⊂ R

n, andv ∈ W
2,q

loc (Ω) ∩ C0(Ω̄) with v = 0 on ∂Ω , whereq > n. Then

sup
Ω

v � Cd

( ∫
Γ +

v (Ω)

(−aijDij v)n

det(aij )
dx

) 1
n

,

provided that(aijDij v)/det(aij )
1
n ∈ Ln(Ω), whered = diamΩ andC is a constant de

pending only onn.
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Proposition 4.2. LetΛF be the maximum eigenvalue of the matrix(F ij ). Then

Λn
F

det(F ij )
� C(∆u)γ2, a.e.x ∈ Ω.

Proof. Applying

∂σk,l

∂λi

(λ) = σk−1;i (λ)σl(λ) − σl−1;i (λ)σk(λ)

(σl(λ))2
� σk−1;i (λ)

σl(λ)
,

and (3.12), we know

∂σk,l

∂λi

(λ) � Cσk−1(λ)

σl(λ)
.

Therefore it follows from (2.3), (2.9) and (2.10),

Λn
F

det(F ij )
�

C(
σk−1(λ)

σl(λ)
)n∏n

i=1
σk−1;i (λ)σl;i (λ)

σ2
l (λ)

= C(σk−1(λ))n(σl(λ))n∏n
i=1 σk−1;i (λ)σl;i (λ)

� C(σk−1(λ))n(σl(λ))n

(
σk(λ)
σ1(λ)

)k−1(σk−1(λ))n−k+1 · ( σl+1(λ)

σ1(λ)
)l(σl(λ))n−l

= C(σ1(λ))k+l−1(σk−1(λ))k−1(σl(λ))l

(σk(λ))k−1(σl+1(λ))l

= C

(
σl(λ)

σk(λ)

)k−1
(σ1(λ))k+l−1(σk−1(λ))k−1

(σl(λ))k−l−1(σl+1(λ))l
.

If l + 1= k, we have

Λn
F

det(F ij )
� C

(
σl(λ)

σk(λ)

)2(k−1)(
σ1(λ)

)2(k−1)
.

If l + 1< k, it follows from the Maclaurin inequality and (2.5),

Λn
F

det(F ij )
� C

(
σl(λ)

σk(λ)

)k−1
(σ1(λ))k+l−1(σk−1(λ))k−1

(σk−1(λ))
(k−l−1)l

k−1 + (l+1)l
k−1

= C

(
σl(λ)

σk(λ)

)k−1(
σ1(λ)

)k+l−1(
σk−1(λ)

)k−1− kl
k−1

� C

(
σl(λ)

σk(λ)

)k−1(
σ1(λ)

)k+l−1(
σ1(λ)

)(k−1)2−kl

= C

(
σl(λ)

σk(λ)

)k−1(
σ1(λ)

)(k−1)(k−l)
.

Thus we get the conclusion by Eq. (1.1) and the definition ofγ2. �
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n
Proposition 4.3. LetΩ be a domain inRn andu ∈ W
2,p

loc (Ω) an admissible strong solutio
of (1.1)wherep > γ2, c > 0 is a positive constant. Thenu ∈ C1,1(Ω) and, for anyy ∈ Ω

and0< R < 1 with B3R(y) ⊂ Ω ,

sup
BR(y)

|D2u| � C
(
R−n‖∆u‖p

Lp(B3R(y))

) 1
q ,

whereq = min{n,p − γ2} andC is a positive constant depending onn, k, l, p andc.

Proof. We consider the second order difference quotient

∆h
ξξu(x) = u(x + hξ) − 2u(x) + u(x − hξ)

h2
, a.e.x ∈ Ωh,

whereΩh ≡ {x ∈ Ω | dist(x, ∂Ω) > h}. By the concavity ofF we obtain from (3.2) and
(3.3) that for a.e.x ∈ Ωh,

0= F
(
D2u(x ± hξ)

) − F
(
D2u(x)

)
� F ij

(
D2u(x)

)(
Diju(x ± hξ) − Diju(x)

)
. (4.1)

Let y ∈ Ω with B3R(y) ⊂ Ω . Without loss of generality we may assumec � 1. For sim-
plicity we will write Br = Br(y) for r > 0 andF ij := F ij (D2u(x)) in the rest of this
proof. It follows from (4.1) that

F ijDij

(
∆h

ξξu(x)
)
� 0, a.e.x ∈ B2R, (4.2)

whenh � R. Consider the function

v = η∆h
ξξu,

where

η(x) =
(

1− |x − y|2
4R2

)β

,

andβ > 2 is a constant to be determined later. Direct calculation leads to

|Dη| � β

R
η

1− 1
β , |D2η| � C(n,β)

R2
η

1− 2
β , (4.3)

and

F ijDij v = F ij
(
ηDij

(
∆h

ξξu
) + 2DiηDj

(
∆h

ξξu
) + (

∆h
ξξu

)
Dijη

)
� 2F ijDiηDj

(
∆h

ξξu
) + (

∆h
ξξu

)
F ijDijη

� −ΛF

(
2|Dη|∣∣D(

∆h
ξξu

)∣∣ + ∣∣∆h
ξξu

∣∣|D2η|)
� −C(n,β)ΛF

R2η
2
β

(
v + Rη

1+ 1
β
∣∣D(

∆h
ξξu

)∣∣), a.e.x ∈ B2R, (4.4)

by (4.2) and (4.3).
Forx ∈ Γ +

v (B2R) we takez ∈ ∂B2R with

z − x = − Dv(x)
.
|z − x| |Dv(x)|
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.1

s

Sincev = 0 on∂B2R , it follows that

v(x) � v(z) − Dv(x) · (z − x) = |z − x|∣∣Dv(x)
∣∣ � Rη

1
β
∣∣Dv(x)

∣∣
as

|x − z| � 2R − |x − y| � Rη
1
β .

Consequently onΓ +
v (B2R),

η
∣∣D(

∆h
ξξu

)∣∣ = ∣∣Dv − (
∆h

ξξu
)
Dη

∣∣ � |Dv| + (
∆h

ξξu
)|Dη| � (1+ β)v

Rη
1
β

. (4.5)

By (4.4), (4.5) and the concavity ofv onΓ +
v (B2R), we have

0� −F ijDij v � CΛF v

R2η
2
β

, a.e. inΓ +
v (B2R), (4.6)

whereC > 0 is a constant depending only onn, β andc.
By Proposition 4.2 we obtain

0� −F ijDij v

det(F ij )
1
n

� Cv(∆u)
γ2
n

R2η
2
β

, a.e.x ∈ Γ +
v (B2R), (4.7)

whereC depends onn, β andc. Choosingβ = 2n
p−γ2

, we see from (4.7) and Proposition 4
that

sup
B2R

v � CR

( ∫
Γ +

v (B2R)

(−F ijDij v)n

det(F ij )
dx

) 1
n

� CR−1

( ∫
Γ +

v (B2R)

(∆u)γ2
(
η

−2
β v

)n
dx

) 1
n

� CR−1
(

sup
B2R

v
)1− 2

β

( ∫
B2R

(∆u)γ2
(
∆h

ξξu
)p−γ2 dx

) 1
n

.

It follows from Hölder inequality and (cf. [9])∥∥∆h
ξξu

∥∥
Lp(B2R)

� ‖∆u‖Lp(B3R).

Therefore∫
B2R

(∆u)γ2
(
∆h

ξξu
)p−γ2 dx � ‖∆u‖γ2

Lp(B2R)

∥∥∆h
ξξu

∥∥p−γ2
Lp(B2R)

� ‖∆u‖p

Lp(B3R), (4.8)

where the constantC depends onn, k, l, p andc. If supB2R
v < 1, Proposition 4.3 hold

trivially. So one may assume supB2R
v � 1. If p � n + γ2 then 1− 2

β
� 0 and

supv � CR−1
(

supv
)1− 2

β ‖∆u‖
p
n

Lp(B3R)
.

B2R B2R
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strate
al

nd
, the
It follows that

sup
B2R

v � CR−1
n

p−γ2 ‖∆u‖
p

p−γ2
Lp(B3R).

In view of (4.8) we know thatp � n + γ2 as 1− 2
β

� 0, and

sup
B2R

v � CR−1‖∆u‖
p
n

Lp(B3R).

Finally we conclude that forh < R,

sup
BR

∆h
ξξu �

(
4

3

) 2n
p−γ2

sup
B2R

v � C
(
R−q‖∆u‖p

Lp(B3R)

) 1
q .

As ξ is an arbitrary unit vector inRn, this completes the proof of Proposition 4.3.�

5. The proofs of Theorem 1.1 and Remark 1.2

In the last section, we give the proof of Theorem 1.1. On the other hand, we illu
a counterexample to show that Theorem 1.1 fails ifp < k, and then obtain several optim
cases.

Proof of Theorem 1.1. Let Ω ′ be a bounded subdomain ofΩ , Ω̄ ′ ⊂ Ω . If n = 2 or
n � 3, γ1 � γ2. Thenγ = γ2 andu ∈ C1,1(Ω̄ ′) by Proposition 4.3. As (3.2) is concave a
uniformly elliptic in a strictly admissible solution with bounded second derivatives
Evans–Krylov regularity theorem [5] then implies thatu ∈ C2,α(Ω̄ ′) for some 0< α < 1.
The smoothness ofu now follows from the standard elliptic regularity theory (cf. [9]).

If n � 3 andγ2 > γ1. Thenγ = γ1 andu ∈ W
2,p

loc (Ω) by Proposition 3.3, wherep > γ2.
Therefore Theorem 1.1 holds by using above discussion.�
Proof of Remark 1.2. For k � 4, we have

γ1 � max

{
2(n − 1),

n

2

}
= 2(n − 1),

γ2 � max

{
2(k − 1),

k

2

}
� 2(k − 1),

and

γ � min
{
2(n − 1),2(k − 1)

} = 2(k − 1) > k + 1.

Therefore it is impossible that the results in Theorem 1.1 is optimal fork � 4.
A direct calculation gives that

γ = γ1 = γ2 = n

2
, if k = 1;

γ1 = n − 1, γ2 = max

{
2,

n
}
, γ = min

{
n − 1,

n
}
, if k = 2;
2 2
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ns to

me

ic
and

γ1 = 3

2
(n − 1), γ2 =

{
max{6, n

2}, l = 0,

max{4, n
2}, l = 1,2,

γ � min

{
3

2
(n − 1),4

}
, if k = 3.

So we derive the optimal cases that has been mentioned in Remark 1.2.
We conclude this paper with showing that a radially symmetric admissible solutio

Eq. (1.1) must be a quadratic polynomial or a strong solution inW
2,p

loc (Rn) for all p < k

but not inW
2,k
loc (Rn).

The counterexample of the casek = n has been found in [2]. Hence we may assu
1< k < n. Let u(x) = y(r), where|x| = r . Then fori, j = 1,2, . . . , n,

∂u

∂xi

= y′ xi

r
,

∂2u

∂xi∂xj

= y′′ xixj

r2
+ y′

(
r2δij − xixj

r3

)
.

At x = (r,0, . . . ,0), u11 = y′′, uii = y′
r

(i � 2). Since the rotation invariance ofSj (D
2u),

the eigenvalues ofD2u areλ1 = y′′, λi = y′
r

(i � 2). Therefore

Sj (D
2u) = C

j−1
n−1y′′

(
y′

r

)j−1

+ C
j

n−1

(
y′

r

)j

= C
j−1
n−1r−(n−1)

(
rn−j

j
(y′)j

)′
, j = 1,2, . . . , n − 1. (5.1)

Let u(x) = y(r) be such a solution of (1.1). Thenu satisfies

Ck−1
n−1y

′′
(

y′

r

)k−1

+ Ck
n−1

(
y′

r

)k

= cCl−1
n−1y

′′
(

y′

r

)l−1

+ cCl
n−1

(
y′

r

)l

, (5.2)

i.e.,

Ck−1
n−1r

−(n−1)

(
rn−k

k
(y′)k

)′
= cCl−1

n−1r
−(n−1)

(
rn−l

l
(y′)l

)′
.

We integrate to obtain

rn

(
y′

r

)k

= C0r
n

(
y′

r

)l

+ C, (5.3)

whereC0 is a positive constant depending only onn, k, l and c, andC is an arbitrary
constant.

If C = 0, then eithery′ = 0 or y′ = (C0)
1

k−l r . Thereforey is a constant or quadrat
polynomial in this case. IfC > 0 for r sufficiently small, take positivey

′
r

in (5.3). Then

rn

(
y′ )k

> C := δk > 0.

r
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in di-

Amer.
Furthermore

rn

(
y′

δr

)l

= rn− nl
k ·

(
r

n
k y′

δr

)l

� rn− nl
k ·

(
r

n
k y′

δr

)k

= rn− nl
k

δk
· rn

(
y′

r

)k

.

In light of k > l, we see

C0r
n− nl

k

δk−l
� 1

2

for r sufficiently small. Thusrn(
y′
r
)k � 2C. We may deducern(

y′
r
)l → 0 asr → 0. Let

r → 0 in (5.3), we havern(
y′
r
)k → C, i.e.,

lim
r→0

y′

r
k−n
k

= δ. (5.4)

Applying (5.2)–(5.4), we see

lim
r→0

y′′

r− n
k

= − (n − k)

k
δ. (5.5)

Therefore

lim
r→0

∆u

r− n
k

= lim
r→0

y′′ + (n − 1)
y′
r

r− n
k

= n

(
1− 1

k

)
δ > 0.

So ∆u ∈ L
p

loc(R
n) for p < k, but ∆u /∈ Lk

loc(R
n). Hence if we can showu ∈ Φk(Ω),

Theorem 1.1 fails whenp < k. Indeed, it follows from (5.1),

Sj (D
2u) = (n − 1)!

(n − j − 1)!(j − 1)! ·
(

y′

r

)j−1

·
(

y′′

n − j
+ y′

jr

)
.

In view of (5.4) and (5.5), we see

lim
r→0

y′′
n−j

+ y′
jr

r− n
k

= n(k − j)

(n − j)kj
δ.

Therefore

lim
r→0

Sj (D
2u)

r
nj
k

= k − j

k
C

j
nδj > 0 for j = 1,2, . . . , k − 1.

It follows that Sj (D
2u) > 0 for j = 1,2, . . . , k − 1 andr sufficiently small. In view of

Eq. (1.1), we know thatSk(D
2u) > 0 and thenu ∈ Φk(Ω). �
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