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a b s t r a c t

In this paper, we establish the existence theorem for the exterior Dirichlet problem
for special Lagrangian equations with prescribed asymptotic behavior at infinity. This
extends the previous results onMonge–Ampère equations andHessian equations to special
Lagrangian equations in dimensions n ≤ 4, which is from calibrated geometry. More
generally, we prove that the result is also true for Hessian quotient equations with 0 ≤

l < k ≤ n in dimensions n ≥ 3.
© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the exterior Dirichlet problem for the following Hessian quotient equations
F(D2u) = S3,1(λ(D2u)) = 1, in Rn

\ D,
u = ϕ, on ∂D (1.1)

where D is a bounded open set in Rn, n ≥ 3, λ(D2u) = (λ1, . . . , λn) denotes the eigenvalues of the Hessian matrix D2u,

Sk,l(λ) =
Sk(λ)
Sl(λ)

, 0 ≤ l < k ≤ n,

and

Sk(λ) =


1≤i1<···<ik≤n

λi1 · · · λik

is the k-th elementary symmetric function. We define S0(λ) = 1.
For a bounded open setΩ inRn (n ≥ 2), if u is a smooth function onΩ , then the graph of∇u is automatically a Lagrangian

submanifold in Rn
× Rn with the standard complex structure. Harvey and Lawson [1] showed that the partial differential
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equation

Im det(Id +
√

−1D2u) ≡

[(n−1)/2]
k=0

(−1)kS2k+1(λ(D2u)) = 0 (1.2)

is elliptic at every solution u and (see Theorem 2.7 in [1]) if u is a solution, then the graph of ∇u is an absolutely volume-
minimizing submanifold of Rn

×Rn, which are called special Lagrangian submanifolds. For n = 2, (1.2) is1u = 0; for n = 3
and n = 4, (1.2) corresponds to

S3(λ(D2u)) = S1(λ(D2u)).

The special Lagrangian equation (1.2) in R3 also takes the form

det(D2u) = 1u. (1.3)

The regularity of convex strong solutions of (1.3) in R3 was studied by Bao and Chen [2]. In dimensions n ≥ 3, the regularity
of viscosity solutions to special Lagrangian equationswas established by Chen,Warren and Yuan [3] andWang and Yuan [4].
When the domain is the entire space, the Bernstein type results for global solutions were obtained by Fu [5] for n = 2 and
Yuan [6] for higher dimensions. We mention that the Liouville property of global solutions to Hessian and Hessian quotient
equations can be referred to [7] and the references therein.

For the Monge–Ampère equations

det(D2u) = 1 (1.4)

in Rn, a classical theorem of Jörgens [8], Calabi [9], and Pogorelov [10] states that any classical convex solution of (1.4) must
be a quadratic polynomial. Extensive studies and outstanding results on such an equation are given by Cheng and Yau [11],
Caffarelli [12], Jost and Xin [13], Trudinger and Wang [14] and many others.

Caffarelli and Li [15] extended the Jörgens–Calabi–Pogorelov theorem to exterior domains, namely that if u is a locally
convex viscosity solution of (1.4) in Rn

\ D, where D is a bounded open set in Rn, n ≥ 3, then there exist an n × n real
symmetric positive definite matrix A with det(A) = 1, a vector b ∈ Rn, and a constant c ∈ R such that

lim sup
|x|→∞

|x|n−2
u(x)−


1
2
xTAx + b · x + c

 < ∞. (1.5)

We remark that the theorem of Jörgens–Calabi–Pogorelov is an easy consequence of the above results (see [15]). Motivated
by the above mentioned asymptotic results, Caffarelli and Li [15] established the existence of solutions of the exterior
Dirichlet problem for the Monge–Ampère equation det(D2u) = 1 in Rn

\ D, n ≥ 3 with prescribed asymptotic behavior
(1.5). In R2, similar problems can be referred to [16–18].

There have been some partial results on the existence of solutions to the following exterior Dirichlet problem for Hessian
quotient equations:

Sk,l(λ(D2u)) = 1 (1.6)

in Rn
\ D. For the cases l = 0, (1.6) is Hessian equation

Sk(λ(D2u)) = 1.

Dai and Bao [19] established its existence theorem, under the asymptotic assumption

lim sup
|x|→∞

|x|n−2
u(x)−


c∗

2
|x|2 + c

 < ∞, (1.7)

where c∗
= (Ck

n)
−1/k, Ck

n =
n!

(n−k)!k! . A more general case for Hessian equations was considered in [20]. Dai [21] extended
the result in [19] to Hessian quotient cases with k− l ≥ 3 and proved the existence of the exterior Dirichlet problem of (1.6)
with the following asymptotic behavior at infinity:

lim sup
|x|→∞


|x|k−l−2

u(x)−


c∗

2
|x|2 + c

  < ∞, (1.8)

with c∗
=

C l
n/C

k
n

 1
k−l .

If n = 3 or 4, (1.6) with k = 3 and l = 1 corresponds to the special Lagrangian equation (1.2). However, the constraint
that k − l ≥ 3 in [21] precludes these special cases which are useful in geometry. Therefore, in this paper we will prove the
existence theorems for the exterior Dirichlet problem for the special Lagrangian equation (1.2) in dimensions n = 3 and 4,
with prescribed asymptotic behavior at infinity (1.7).

First by solving the radial symmetric solution of the corresponding ordinary differential equation of

S3,1(λ(D2u)) = 1 (1.9)

to be a subsolution of (1.1), and then using Perron’s method, we obtain the first main theorem.
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Theorem 1.1. Let D be a smooth, bounded, strictly convex open subset of Rn, n ≥ 3, ϕ ∈ C2(∂D). Then there exists some
constant c∗, depending only on n,D, and ϕ, such that for every c > c∗ there exists a unique function u ∈ C0(Rn

\ D) that
satisfies (1.1) in the viscosity sense and the asymptotic assumption (1.7) with c∗

=

C1
n /C

3
n

1/2.
More generally, for Hessian quotient equations (1.6) with 0 ≤ l < k ≤ n, although we cannot obtain an explicit formula

for its radial solution, we still can detect some properties from an observation on the corresponding ordinary differential
equation, which guarantee the following theorem still true for the exterior Dirichlet problem of

F(D2u) = Sk,l(λ(D2u)) = 1, 0 ≤ l < k ≤ n, in Rn
\ D,

u = ϕ, on ∂D. (1.10)

Theorem 1.2. Let D be a smooth, bounded, strictly convex open subset of Rn, n ≥ 3, ϕ ∈ C2(∂D). Then there exists some
constant c∗, depending only on n,D, and ϕ, such that for every c > c∗ there exists a unique function u ∈ C0(Rn

\ D) that

satisfies (1.10) in the viscosity sense and the asymptotic assumption (1.7) with c∗
=

C l
n/C

k
n

 1
k−l .

The plan of this paper is as follows. In the next sectionwe give some elementary results on viscosity solutions and Perron’s
method. In Section 3, we study the properties of the radial solutions of Hessian quotient equations. In Section 4 we give the
Proof of Theorems 1.1 and 1.2.

2. Preliminaries

For the reader’s convenience, we recall the definition of viscosity solutions for fully nonlinear elliptic equations (1.6) (see,
e.g., [22]).

Definition 2.1. A function u ∈ C2(Rn
\ D) is called admissible (or k-convex) if at every x ∈ Rn

\ D, λ(D2u(x)) ∈ Γ k, where
Γk = {λ ∈ Rn

| Sj(λ) > 0, j = 1, 2, . . . , k}.

Definition 2.2. A function u ∈ USC(Rn
\ D) (u ∈ LSC(Rn

\ D)) is said to be a viscosity subsolution (supersolution) of (1.6)
in Rn

\ D, (or say that u satisfies F(D2u) ≥ 1(≤ 1) in the viscosity sense), if for any open set N in Rn
\ D, any admissible

function ψ ∈ C2(Rn
\ D) and local maximum (minimum) x̄ ∈ N of u − ψ we have

F(D2ψ(x̄)) ≥ 1(≤ 1). (2.1)

A function u ∈ C0(Rn
\ D) is said to be a viscosity solution of (1.6), if it is both a viscosity subsolution and supersolution of

(1.6).

Then the relation between viscosity and classical solutions is that if u is an admissible classical solution of (1.6), then u
is a viscosity solution; conversely, if u is a viscosity solution of (1.6) and u is of class C2, then u is an admissible classical
solution.

Definition 2.3. Let ϕ ∈ C0(∂D). A function u ∈ C0(Rn
\ D) is a viscosity subsolution (resp. supersolution, solution) of the

Dirichlet problem (1.10), if u is a viscosity subsolution (resp. supersolution, solution) of (1.6) and u ≤ (resp. ≥,=) ϕ(x) on
∂D.

With the above definition of the viscosity solution, thewell-known theory on the viscosity solution developed in [23] can
be adapted to the present casewith slightmodifications. Under the assumptions u, v ∈ C0(Ω), the comparison principlewas
proved in [22], based on Jensen approximations (see [24]). The proof remains valid under theweaker regularity assumptions
on u and v.

Lemma 2.1. Let Ω ⊂ Rn be a bounded open set, u ∈ LSC(Ω) and v ∈ USC(Ω) are respectively viscosity supersolutions and
subsolutions of (1.6) inΩ satisfying u ≥ v on ∂Ω . Then u ≥ v inΩ .

The following ingredients for the viscosity adaptation of Perron’s method (see [25]) are available.

Lemma 2.2. Let Ω ⊂ Rn be an open set, and let S be a non-empty family of viscosity subsolutions of (1.6) inΩ . Set

u(x) = sup {v(x) | v ∈ S} ,

and

u∗(x) = lim
r→0

sup
Br (x)

u(y)

be the upper semicontinuous envelope of u. Then, if u∗ < ∞ inΩ, u∗ is a viscosity subsolution of (1.6) inΩ .

Lemma 2.2 can be proved by standard arguments; see e.g. [23]. Let
u∗(x) = lim

r→0
inf
Br (x)

u(y)

be the lower semicontinuous envelope of u. We also need the following construction to apply Perron’s method.
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Lemma 2.3 ([23]). Let Ω be open and u be subsolution of F(D2u) = 1 in Ω . If u∗ fails to be a supersolution at some point x̂,
then for any small κ > 0 there is a subsolution Uκ of F(D2u) = 1 inΩ satisfying

Uκ(x) ≥ u(x) and sup
Ω

(Uκ − u) > 0,

Uκ(x) = u(x) for x ∈ Ω, |x − x̂| ≥ κ.
(2.2)

3. Radial symmetric solutions

For r > 0, let Br := {x ∈ Rn
| |x| < r}. In order to find a subsolution of (1.9), we first consider the radial symmetric

solutions of (1.9). We have the following proposition.

Proposition 3.1. For n ≥ 3, let ua = ua(r) be a smooth radial symmetric solution of

S3,1(λ(D2u)) = 1, in Rn
\ B1, (3.1)

then ua is locally convex in Rn
\ B1 and

ua(r) =
c∗

2
r2 + µ0(a)+ O


r2−n , as r → +∞,

where µ0(a) is a strictly increasing function of a.

Proof. Let u = u(r) be a smooth radial function, then

λ(D2u) =


u′′(r),

u′(r)
r
, . . . ,

u′(r)
r


.

Thus if u = u(r) is a real solution of (3.1), then

u′′(r) · C2
n−1


u′(r)
r

2

+ C3
n−1


u′(r)
r

3

= u′′(r)+ C1
n−1

u′(r)
r
.

That is,

(rn−3(u′(r))3)′ =
C1
n

Ck
n
(rn−1u′(r))′.

Integrating it, we have
u′(r)
r

3

−
C1
n

C3
n

u′(r)
r

−
2a
rn

= 0,

where a is an arbitrary positive constant. (Actually, we need a to be a sufficiently large positive constant, determined by c∗
later.)

Solving the cubic equation

z3 + pz + q = 0,

using the Cardano formula, we have

zj = Aωj
+ Bω3−j, j = 1, 2, 3,

where

A =


−

q
2

+

 q
2

2
+

p
3

31/3

, B =


−

q
2

−

 q
2

2
+

p
3

31/3

, ω =
−1 +

√
−3

2
.

Letting p = −
C1
n

C3
n

= −(c∗)2, q = −
2a
rn , recalling u is a real-valued function, we have

u′(r)
r

=

 a
rn

+

 a
rn

2
−


c∗

√
3

6
1/3

+

 a
rn

−

 a
rn

2
−


c∗

√
3

6
1/3

. (3.2)



J. Bao, H. Li / Nonlinear Analysis 89 (2013) 219–229 223

We first show that u is a locally convex function on Rn
\ B1 (cf. [2]). From (3.2) it follows that

u′′(r) =


c∗
√
3

6
 a

rn
2

−


c∗
√
3

6
 a

rn
+

 a
rn

2
−


c∗

√
3

6
2/3

−

 a
rn

−

 a
rn

2
−


c∗

√
3

6
2/3 (3.3)

for r ≠


(

√
3

c∗ )
3a
1/n

, and

u′′

√
3

c∗

3

a

1/n =
4
3

√
3

c∗

3

a

 2
3n

.

It is clear that if r ≤


(

√
3

c∗ )
3a
1/n

, u′(r) and u′′(r) are real. For r >

(

√
3

c∗ )
3a
1/n

, letting

a
c∗
√
3

3
rn

= cos θ,

then 0 < θ < π
2 . Thus, (3.2) and (3.3) can be rewritten as follows:

u′(r) =
c∗r
√
3


cos θ +

√
−1 sin θ

1/3
+


cos θ −

√
−1 sin θ

1/3
=

2c∗r
√
3

cos
θ

3
,

and

u′′(r) =


c∗

√
3

 
cos θ +

√
−1 sin θ

2/3
−

cos θ −

√
−1 sin θ

2/3
i sin θ

= 2


c∗

√
3


sin(2θ/3)

sin θ
.

By a direct calculation, we have

lim
r→∞

u′(r)
r

= lim
r→∞

u′′(r) = c∗,

and

u′(r) > 0, u′′(r) > 0 on [1,+∞).

This shows that u = u(r) is a locally convex function in R3
\ B1.

From (3.2), we have

u(r) =
c∗

2
r2 +

 r

1
s


 a
sn

+

 a
sn

2
−


c∗

√
3

6
1/3

+

 a
sn

−

 a
sn

2
−


c∗

√
3

6
1/3

− c∗

 ds + C

=
c∗

2
r2 +

 r

1


c∗s
√
3

2 cos

1
3
arccos

 a
c∗
√
3

3
sn


−

√
3

 ds + C . (3.4)

Let

f (s) = cos

1
3
arccos

 a
c∗
√
3

3
sn


 ,

then as s → +∞, by Taylor’s expansion, we have

f (s) =

√
3
2

+
1
6

a
c∗
√
3

3
sn

+ o


1
sn


.
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So that

g(r) =


+∞

r


c∗s
√
3

2 cos

1
3
arccos

 a
c∗
√
3

3
sn


−

√
3

 ds

is convergent, and

g(r) =
1
3
(n − 2)a

c∗
√
3

2 1
rn−2

+ o


1
rn−2


as r → +∞.

Therefore, by (3.4), we have

u(r) =
c∗

2
r2 + µ0(a)+ O


1

rn−2


as r → +∞, (3.5)

where

µ0(a) =


+∞

1
s


 a
sn

+

 a
sn

2
−


c∗

√
3

6
1/3

+

 a
sn

−

 a
sn

2
−


c∗

√
3

6
1/3

− c∗

 ds + C .

By a simple computation similar as above, we have

∂µ0(a)
∂a

=


+∞

1

s

3sn
 a

sn
2

−


c∗
√
3

6

 a
sn

+

 a
sn

2
−


c∗

√
3

6
1/3

−

 a
sn

−

 a
sn

2
−


c∗

√
3

6
1/3 ds

> 0.

The proof is completed. �

For Hessian quotient equations

Sk,l(λ(D2u)) = 1, in Rn
\ B1, (3.6)

assume that u = u(r) is a smooth convex radial symmetric solution of (3.6). By the direct calculation, we know that
w(r) =

u′(r)
r satisfies

F(w, b) := wk(r)−

C l
n/C

k
n


wl(r)−

b
rn

= 0, w(r) > 0, (3.7)

for an arbitrary constant b > 0. Although there is no explicit formula for the solution of (3.7), similarly as (3.2), by a
straightforward analysis on (3.7) itself, we can obtain the desired properties.

Rewrite it as

wl(r)

wk−l(r)− (c∗)k−l

=
b
rn
,

where c∗
= (C l

n/C
k
n)

1
k−l . If b > 0, then there is a unique real solution w(r, b) such that w(r, b) > c∗ for r > 1. Letting

r → +∞, we have

lim
r→+∞

w(r, b) = c∗.

Furthermore,

lim
r→+∞

w(r, b)− c∗

br−n
= lim

r→+∞

1
wl(r)(wk−l−1(r)+ · · · + (c∗)k−l−1)

=
1

(k − l)(c∗)k−1
.

This implies

w(r, b)− c∗
= O(r−n), as r → +∞. (3.8)
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Proposition 3.2. For n ≥ 3, let ub = ub(r) be a smooth radial symmetric solution of (3.6) then ub is locally convex in Rn
\ B1

and

ub(r) =
c∗

2
r2 + µ0(b)+ O


r2−n , as r → +∞,

where µ0(b) is a strictly increasing function of b.

Proof. Recallingw(r, b) =
u′
b(r)
r , then for any β0 ∈ R, the solution of (3.6) can be written as

ub(r) =

 r

1
u′

b(s)ds + β0

=
c∗

2
r2 +

 r

1
s

w(s, b)− c∗


ds −

c∗

2
+ β0.

By (3.8), we know for a fixed b > 0, the integral
+∞

1
s

w(s, b)− c∗


ds

is convergent. Therefore, we have

lim
r→+∞


ub(r)−

c∗

2
r2


= β0 −
c∗

2
+


+∞

1
s

w(s, b)− c∗


ds := µ0(b),

and in view of (3.8),

ub(r)−
c∗

2
r2 − µ0(b) = −


+∞

r
s

w(s, b)− c∗


ds

= O

r2−n , as r → +∞. (3.9)

By (3.7), we have, forw > c∗,

∂w

∂b
= −

∂F
∂b


∂F
∂w

=
r−n

lwl−1(wk−l − (c∗)k−l)+ (k − l)wk−1
> 0.

Hence
∂µ0(b)
∂b

=


+∞

1
s
∂ (w(s, b)− c∗)

∂b
ds > 0.

This shows that µ0(b) is strictly increasing in b, if b > 0. Proposition 3.2 is proved. �

Remark 3.1. For any fixed r0 > 1, we define

µr0(b) =


+∞

r0
s(w(s, b)− c∗)ds.

Then

µr0(b) >
 r0+1

r0
s(w(s, b)− c∗)ds := h(b).

By (3.7), we have, for b > 0 andw > c∗,

∂w

∂r
= −

∂F
∂r


∂F
∂w

=
−nbr−n−1

lwl−1(wk−l − (c∗)k−l)+ (k − l)wk−1
< 0.

So

∂h(b)
∂b

=

 r0+1

r0
s
∂w(s, b)
∂b

ds

=

 r0+1

r0

s1−n

lwl−1(s, b)[wk−l(s, b)− (c∗)k−l] + (k − l)wk−1(s, b)
ds

>
(r0 + 1)1−n

lwl−1(r0, b)[wk−l(r0, b)− (c∗)k−l] + (k − l)wk−1(r0, b)
> 0.
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This shows that h(b) is strictly increasing in b and limb→+∞ h(b) = +∞, so is µr0(b). In the next section we will use

lim
b→+∞

µr0(b) = +∞.

4. Proof of main results

Without loss of generality, we also assume that B2(0) ⊂ D. This will be assumed below. The following lemma and its
proof can be found in [15].

Lemma 4.1. Let ϕ ∈ C2(∂D). There exists some constant C, depending only on n, the convexity of D, ∥ϕ∥C2(∂D), and the C2 norm
of ∂D, such that, for every ξ ∈ ∂D, there exists x̄(ξ) ∈ Rn satisfying

|x̄(ξ)| ≤ C and wξ < ϕ on D \ {ξ},

where

wξ (x) := ϕ(ξ)+
1
2


|x − x̄(ξ)|2 − |ξ − x̄(ξ)|2


, x ∈ Rn. (4.1)

Proof of Theorem 1.1. Fix r0 > 0, such that D ⊂ Br0 . For a > 0 and β ∈ R, let

ωa(x) = β +


|x|

r0
s


a3

s3
+


a3

s3

2

−


c∗

√
3

6
1/3

+

a3

s3
−


a3

s3

2

−


c∗

√
3

6
1/3 ds.

Then we claim that ωa is a locally convex smooth subsolution of (1.1) with some large a > r0 and some small β . From
Proposition 3.1, we have

ωa(x) =
c∗

2
|x|2 + µ(a)+ O(|x|2−n), as |x| → +∞, (4.2)

where

µ(a) = β −
c∗

2
r20 +


+∞

r0
s


a3

s3
+


a3

s3

2

−


c∗

√
3

6
1/3

+

a3

s3
−


a3

s3

2

−


c∗

√
3

6
1/3

− c∗

 ds

= β −
c∗

2
r20 +


+∞

r0


c∗s
√
3

2 cos

1
3
arccos

 a
c∗
√
3

3
sn


−

√
3

 ds.

Moreover, µ(a) is strictly increasing in (0,+∞), and

lim
a→∞

µ(a) = ∞. (4.3)

On the other hand,

ωa ≤ β, in Br0 \ D, ∀a > r0. (4.4)

Let

β := min

wξ (x) | ξ ∈ ∂D, x ∈ Br0 \ D


,

wherewξ (x) is given by Lemma 4.1. This shows that ωa is a locally convex smooth subsolution of (1.1).
We will fix the value of c∗ in the proof. First we require that c∗ satisfies c∗ > β . It follows that

µ(0) ≤ β −
c∗

2
r02 < β < c∗.

Thus, in view of (4.3), for every c > c∗, there exists a unique a(c) ∈ [r0,+∞) such that

µ(a(c)) = c. (4.5)

So ωa(c) satisfies

ωa(c)(x) =
c∗

2
|x|2 + c + O


|x|2−n , as x → ∞. (4.6)



J. Bao, H. Li / Nonlinear Analysis 89 (2013) 219–229 227

Set

w(x) = max

wξ (x) | ξ ∈ ∂D


.

It is clear by Lemma 4.1 thatw is a locally Lipschitz function in Rn
\D, andw = ϕ on ∂D. Sincewξ is a smooth locally convex

solution of (1.9), w is a viscosity subsolution of (1.9) in Rn
\ D. We fix a number r1 > r0, and then choose another number

a1 > 0 such that

min
∂Br1

ωa1 > max
∂Br1

w.

We require that c∗ also satisfies c∗ ≥ µ(a1). We now fix the value of c∗.
For c ≥ c∗, we have a(c) = µ−1(c) ≥ µ−1(c∗) ≥ a1, and therefore

ωa(c) ≥ ωa1 > w, on ∂Br1 . (4.7)

By (4.4), we have

ωa(c) ≤ β ≤ w, in Br0 \ D. (4.8)

Now we define, for c > c∗,

u(x) =


max


ωa(c)(x), w(x)


, x ∈ Br1 \ D,

ωa(c)(x), x ∈ Rn
\ Br1 .

We know from (4.8) that

u = w, in Br0 \ D, (4.9)

and in particular

u = w = ϕ, on ∂D. (4.10)

We know from (4.7) that u = ωa(c) in a neighborhood of ∂Br1 . Therefore u is locally Lipschitz in Rn
\ D. Since both ωa(c) and

w are viscosity subsolutions of (1.9) in Rn
\ D, so is u.

For c > c∗,

u(x) :=
c∗

2
|x|2 + c

is a smooth convex solution of (1.9). By (4.8),

ωa(c) ≤ β < c∗ < u, on ∂D.

We also know by (4.6) that

lim
|x|→∞


ωa(c)(x)− u(x)


= 0.

Thus, in view of Lemma 2.1, we have

ωa(c) ≤ u, on Rn
\ D. (4.11)

By (4.7) and the above, we have, for c > c∗,

wξ ≤ u, on ∂(Br1 \ D), ∀ξ ∈ ∂D.

By the comparison principle for smooth convex solutions of (1.9), we have

wξ ≤ u, in Br1 \ D, ∀ξ ∈ ∂D.

Thus

w ≤ u, in Br1 \ D.

This, combining with (4.11), implies that

u ≤ u, in Rn
\ D.

For any c > c∗, let Sc denote the set of v ∈ C0(Rn
\ D)which are viscosity subsolutions of (1.9) in Rn

\ D satisfying

v = ϕ, on ∂D, (4.12)

and

u ≤ v ≤ u, in Rn
\ D. (4.13)
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We know that u ∈ Sc . Let

uc(x) := sup {v(x) | v ∈ Sc} , x ∈ Rn
\ D.

By (4.6), and the definitions of u and u,

uc(x) ≥ u(x) = ωa(c)(x) =
c∗

2
|x|2 + c + O(|x|2−n), as |x| → +∞ (4.14)

and

uc(x) ≤ u(x) =
c∗

2
|x|2 + c.

The estimate (1.7) follows.
Next, we prove that uc satisfies the boundary condition. It is obvious from (4.10) that

lim inf
x→ξ

uc(x) ≥ lim
x→ξ

u(x) = ϕ(ξ), ∀ξ ∈ ∂D.

So we only need to prove that

lim sup
x→ξ

uc(x) ≤ ϕ(ξ), ∀ξ ∈ ∂D.

Let ω+
c ∈ C2(Br0 \ D) be defined by
1ω+

c = 0, in Br0 \ D,
ω+

c = ϕ, on ∂D,
ω+

c = max
∂Br0

u, on ∂Br0 .

By Lemma 2.2, we have u∗
c is a viscosity subsolution of (1.9). Hence, by the definition of viscosity solution,

1u∗

c ≥ 0, in Br0 \ D,
u∗

c ≤ ϕ on ∂D,
u∗

c ≤ max
∂Br0

u on ∂Br0 .

By the comparison principle, it follows that

uc ≤ u∗

c ≤ ω+

c in Br0 \ D,

and then

lim sup
x→ξ

uc(x) ≤ lim
x→ξ

ω+

c (x) = ϕ(ξ), ∀ξ ∈ ∂D.

Finally, we prove that uc ∈ C0(Rn
\ D) is a viscosity solution of (1.9). We observe that

u
∗

≤ (uc)∗ ≤ uc ≤ u∗

c ≤ u∗
= u.

In particular,

(uc)∗ = uc = u∗

c = ϕ on ∂D,

and (uc)∗, uc, u∗
c all satisfy the asymptotic assumption (1.7). By Lemma 2.2 u∗

c is a subsolution of (1.9) and hence, by
comparison, u∗

c ≤ u. It then follows from the definition of uc that uc = u∗
c , so uc is a subsolution.

If (uc)∗ fails to be a supersolution at some point x̂ ∈ Rn
\ D, let Uκ be provided by Lemma 2.3. Clearly uc ≤ Uκ and Uκ

satisfies the boundary conditions for sufficiently small κ . By comparison, Uκ ≤ u and since u is the maximal subsolution
between u and u, we arrive at the contradiction Uκ ≤ uc . Hence (uc)∗ is a supersolution of (1.9) and then, by comparison for
(1.9), u∗

c = uc ≤ (uc)∗, showing that uc is continuous and is a solution.
Theorem 1.1 is established. �

Proof of Theorem 1.2. Fix an r̄ > 2, such that D ⊂ Br̄ . For b > c∗ and β ∈ R, let

ωb(x) = β + ub(|x|)− ub(r̄), for |x| > 2,

where ub(|x|) is defined in Proposition 3.2. Then we claim that ωb(x) is an admissible smooth subsolution of (1.10) with
some small β . It is easy to see that

ωb(x) =
c∗

2
|x|2 + µ(b)+ O


|x|2−n , as |x| → +∞,
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where

µ(b) := µr̄(b)+ β −
c∗

2
r̄2.

By Remark 3.1, we have that µ(b) is strictly increasing in (c∗,+∞), and

lim
b→+∞

µ(b) = +∞.

Similar arguments as in the Proof of Theorem 1.1 can complete the rest of the proof. �

Acknowledgments

The first author was partially supported by SRFDPHE (20100003110003). The second author was partially supported by
NSFC (11126038, 11201029) and SRFDPHE (20100003120005). Both authors were partially supported by NSFC (11071020)
and the Fundamental Research Funds for the Central Universities.

References

[1] R. Harvey, H.B. Lawson, Calibrated geometries, Acta Math. 148 (1982) 47–157.
[2] J.G. Bao, J.Y. Chen, Optimal regularity for convex strong solutions of special Lagrangian equations in dimension 3, Indiana Univ. Math. J. 52 (2003)

1231–1249.
[3] J.Y. Chen, M. Warren, Y. Yuan, A priori estimate for convex solutions to special Lagrangian equations and its application, Comm. Pure Appl. Math. 62

(2009) 583–595.
[4] D.K. Wang, Y. Yuan, Hessian estimates for special Lagrangian equations with critical and supercritical phases in general dimensions, 2011. arXiv:

1110.1417.
[5] L. Fu, An analogue of Bernstein’s theorem, Houston J. Math. 24 (1998) 415–419.
[6] Y. Yuan, A Bernstein problem for special Lagrangian equations, Invent. Math. 150 (2002) 117–125.
[7] J.G. Bao, J.Y. Chen, B. Guan, M. Ji, Liouville property and regularity of a Hessian quotient equation, Amer. J. Math. 125 (2003) 301–316.
[8] K. Jörgens, Über die Lösungen der differentialgleichung rt − s2 = 1, Math. Ann. 127 (1954) 130–134.
[9] E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958) 105–126.

[10] A.V. Pogorelov, On the improper convex affine hyperspheres, Geom. Dedicata 1 (1972) 33–46.
[11] S.Y. Cheng, S.T. Yau, Complete affine hypersurfaces, I, the completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986) 839–866.
[12] L.A. Caffarelli, Topics in PDEs: The Monge–Ampère Equation, Graduate Course, Courant Institute, New York University, 1995.
[13] J. Jost, Y.L. Xin, Some aspects of the global geometry of entire space-like submaniflods, Results Math. 40 (2001) 233–245.
[14] N.S. Trudinger, X.-J. Wang, The Bernstein problem for affine maximal hypersurface, Invent. Math. 140 (2000) 399–422.
[15] L. Caffarelli, Y.Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math. 56 (2003) 549–583.
[16] P. Delanoë, Partial decay on simple manifolds, Ann. Global Anal. Geom. 10 (1992) 3–61.
[17] L. Ferrer, A. Martínez, F. Milán, An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres, Math. Z. 230

(1999) 471–486.
[18] L. Ferrer, A. Martínez, F. Milán, The space of parabolic affine spheres with fixed compact boundary, Monatsh. Math. 130 (1) (2000) 19–27.
[19] L.M. Dai, J.G. Bao, On uniqueness and extence of viscosity solutions to Hessian equations in exterior domains, Front. Math. China 6 (2011) 221–230.
[20] J.G. Bao, H.G. Li, Y.Y. Li, On the exterior Dirichlet problem for Hessian equations, Trans. Amer. Math. Soc. (2012) in press arXiv:1112.4665v1.
[21] L.M. Dai, The Dirichlet problem for Hessian quotient equations in exterior domains, J. Math. Anal. Appl. 380 (2011) 87–93.
[22] J.I.E. Urbas, On the existence of nonclassical solutions for two class of fully nonlinear elliptic equations, Indiana Univ. Math. J. 39 (1990) 355–382.
[23] M.G. Crandall, H. Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992)

1–67.
[24] R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Ration. Mech. Anal. 101

(1988) 1–27.
[25] H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs, Comm. Pure Appl. Math. 42 (1989) 15–45.

http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref1
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref2
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref3
http://arxiv.org/1110.1417
http://arxiv.org/1110.1417
http://arxiv.org/1110.1417
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref5
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref6
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref7
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref8
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref9
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref10
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref11
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref12
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref13
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref14
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref15
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref16
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref17
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref18
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref19
http://arxiv.org/1112.4665v1
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref21
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref22
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref23
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref24
http://refhub.elsevier.com/S0362-546X(13)00170-3/sbref25

	The exterior Dirichlet problem for special Lagrangian equations in dimensions  n leq 4 
	Introduction
	Preliminaries
	Radial symmetric solutions
	Proof of main results
	Acknowledgments
	References


