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1 Introduction

The curve shortening flows have been studied by many authors and have many applications
(cf. [1]). Gage and Hamilton [2] discussed the mean curvature flow in one dimensional case.
The flow is given by the equation

v = k,

where v and k are, respectively, the normal velocity and inward curvature of the plane curve.
They proved that a convex closed curve stays convex and smooth and shrinks to a point in
finite time with the limiting shape of a circle. In this paper, we generalize some results on curve
shortening flow (cf. [2]) to the generalized curve shortening flow (cf. [3])

v = |k|p−1k, (1.1)

where p is the positive number. When p = 1
3 , the flow (1.1) is the affine plane curve evolution

(cf. [4, 5]). More generally, we will also study the non-homogeneous flow (cf. [3]) which is given
by

v = G(k)k, (1.2)
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where G(·) is a positive function on (0,∞). In the high-dimensional case, Guo [6] derived the
evolution equation of the integral of the Gauss curvature on an evolving hypersurface. Nien
and Tsai [7] proved that the self-similar solutions under the contraction flow could happen only
as (1.1). Andrews [3] studied some nonlinear expansion of contraction flow and obtained the
limiting self-similar solutions. But the asymptotic behavior of solutions of the flow (1.1), (1.2)
is little known. The main objective of this paper is to analyze the asymptotic behavior of the
curvature under the generalized curve shortening flow.

Let S
1 be a unit circle in the plane, and

γ0 : S
1 → R

2

be a closed convex curve in the plane. We look for a family of closed curves

γ(u, t) : S
1 × [0, T ) → R

2,

which satisfies ⎧
⎨

⎩

∂γ

∂t
(u, t) = |k|p−1kN, u ∈ S

1, t ∈ [0, T ),

γ(u, 0) = γ0(u), u ∈ S
1, t = 0,

where p is a positive number, k(·, t) is the inward curvature of the plane curve γ(·, t) and N(·, t)
is the unit inward normal vector. More generally, we consider γ(·, t) satisfying

⎧
⎨

⎩

∂γ

∂t
(u, t) = G(k)kN, u ∈ S

1, t ∈ [0, T ),

γ(u, 0) = γ0(u), u ∈ S
1, t = 0,

(1.3)

where G is a positive, non-decreasing smooth function on (0,∞).
In the following sections we assume that A(t) is the area of a bounded domain enclosed by

the curve γ(·, t), L(t) is the length of γ(·, t), rout(t) and rin(t) are respectively the radii of the
largest circumscribed circle and the smallest circumscribed circle of γ(·, t). Define

kmax(t) = max{k(u, t) | u ∈ S
1},

kmin(t) = min{k(u, t) | u ∈ S
1}.

Firstly we introduce the existence theorem, which belongs to Andrews [3, Theorem Π4.1,
Proposition Π4.4].

Proposition 1.1 Let γ0 be a closed strictly convex curve. Then the unique classical solution
γ(·, t) of (1.3) exists only at finite time interval [0, ω), and the solution γ(·, t) converges to a
point ϑ as t→ ω and A(t), kmax(t) satisfy the following properties :

∀ t ∈ [0, ω), A(t) > 0, kmax(t) < +∞,

lim
t→ω

A(t) = 0, lim
t→ω

kmax(t) = +∞.

As t→ ω, the normalized curves

η(·, t) =
√

π

A(t)
γ(·, t)

converge to the unit circle centered at the point ϑ.
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In this paper we always assume that the initial curve satisfies the conditions of Proposi-
tion 1.1, and that G(x) is a function on (0,∞) satisfying

(H1) G(x) ∈ C3(0,∞), G′(x) ≥ 0 and G(x) > 0 for x ∈ (0,∞),
(H2) G(x)x2 is convex in (0,∞) and there is a positive constant C0 such that

G′(x)x ≤ C0G(x), for sufficiently large x.

We now state the main theorem of this paper.

Theorem 1.2 Suppose G(x) satisfies (H1) and (H2). Let γ(·, t) be the solution for Proposi-
tion 1.1. Then the following hold :

i) limt→ω
rin(t)
rout(t)

= 1,

ii) limt→ω
kmin(t)
kmax(t) = 1,

iii) limt→ω
1

ω−t

∫ +∞
k(θ,t)

dx
G(x)x3 = 1 is uniformly convergent on S

1.

Remark 1.3 Let G(x) = |x|p−1 with p ≥ 1 in Proposition 1.1. Then

k(θ, t)[(p+ 1)(ω − t)]
1

p+1 converges uniformly to 1 as t→ ω, (1.4)

for uniformly θ in S
1.

Remark 1.4 When p = 1, by (1.4) it shows the asymptotic formula about curvature func-
tion of the curve shortening flow (1.1) which was discovered firstly by Gage and Hamilton [2,
Corollary 5.6].

This paper is organized as follows: In the next section we transfer the flow (1.3) into an
initial PDEs problem and establish some monotone geometric inequality. In Section 3, we
obtain the global Harnack inequality of the curvature function according to the flow (1.3), see
Lemma 3.6. And then we complete the proof of Theorem 1.2 by making use of Gage–Hamilton’s
methods (cf. [2]).

2 Evolutions

Using the idea in [2], we can drive the evolution equations under the flow (1.3) for the length
and the curvature of the curves, and the area enclosed by the curves.

Let the curve be γ(u) = (x(u), y(u)) with parameter u (modulo 2π) and s be an arc-length
parameter along the curve γ(u) which is unique up to a constant. Then

ds = vdu,
∂

∂s
=

1
v

∂

∂u
,

where

v =

√
(
∂x

∂u

)2

+
(
∂y

∂u

)2

.

Suppose ξ and N are the unit tangent vector and the unit inward normal vector of the
curve. Then the Frenet equations (cf. [8]) are

∂ξ

∂u
= vkN,

∂N

∂u
= −vkξ,

or
∂ξ

∂s
= kN,

∂N

∂s
= −kξ,
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where k(u) is the inward curvature of γ(u).
Let θ be the tangent angle of the curve γ(u) to the x-axis. We drive the following useful

formula.

Lemma 2.1 The geometric quantities v, L, ξ, N , θ and k of the flow (1.3) evolve according
to

i)
∂v

∂t
= −G(k)k2v,

ii)
dL

dt
= −

∫ L

0

G(k)k2ds,

iii)
∂

∂t

∂

∂s
=

∂

∂t

∂

∂s
+G(k)k2 ∂

∂s
,

iv)
∂ξ

∂t
= (G(k)k)′

∂k

∂s
N,

∂N

∂t
= −(G(k)k)′

∂k

∂s
ξ,

v)
∂θ

∂t
= (G(k)k)′

∂k

∂s
,
∂θ

∂s
= k, where ξ = (cos θ, sin θ),

vi)
dA

dt
= −

∫ L

0

G(k)kds,

vii)
∂k

∂t
=

∂

∂s

(

(G(k)k)′
∂k

∂s

)

+G(k)k3.

Proof Let 〈 ·, ·〉 be the inner product in R
2.

i) By (1.3) and the Frenet equations, we have

∂

∂t
(v2) =

∂

∂t

〈
∂γ

∂u
,
∂γ

∂u

〉

= 2
〈
∂γ

∂u
,
∂2γ

∂u∂t

〉

= 2
〈

vξ,
∂

∂u
(G(k)kN)

〉

= 2
〈

vξ,
∂

∂u
(G(k)k)N +G(k)k

∂N

∂u

〉

= 2
〈

vξ,
∂

∂u
(G(k)k)N −G(k)k2vξ

〉

= −2G(k)k2v2.

This implies that the identity (i) holds.
ii) Since L =

∫ 2π

0
vdu, then from (i), there holds

∂L

∂t
=

∫ 2π

0

∂v

∂t
du = −

∫ 2π

0

G(k)k2vdu = −
∫ L

0

G(k)k2ds.

iii) By (i), we get

∂

∂t

∂

∂s
=

∂

∂t

(
1
v

∂

∂u

)

= − 1
v2

∂v

∂t

∂

∂u
+

1
v

∂

∂t

∂

∂u

= − 1
v2

(−G(k)k2v)
∂

∂u
+

∂

∂s

∂

∂t

= G(k)k2 ∂

∂s
+

∂

∂s

∂

∂t
.
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iv) It follows from (1.3) and (iii) that

∂ξ

∂t
=

∂

∂t

∂

∂s
γ =

∂

∂s

∂

∂t
γ +G(k)k2 ∂

∂s
γ =

∂

∂s
(G(k)kN) +G(k)k2ξ.

Then by Frenet equations, we have

∂ξ

∂t
=

∂

∂s
(G(k)k)N +G(k)k

∂N

∂s
+G(k)k2ξ

= (G(k)k)′
∂k

∂s
N −G(k)k2ξ +G(k)k2ξ

= (G(k)k)′
∂k

∂s
N. (2.1)

In terms of 〈ξ,N〉 ≡ 0, we obtain

0 ≡ ∂

∂t
〈ξ,N〉 =

〈
∂ξ

∂t
,N

〉

+
〈

ξ,
∂N

∂t

〉

.

Thus
0 =

〈

(G(k)k)′
∂k

∂s
N,N

〉

+
〈

ξ,
∂N

∂t

〉

= (G(k)k)′
∂k

∂s
+

〈

ξ,
∂N

∂t

〉

.

From 0 ≡ 〈∂N
∂t , N〉, it follows that there exists λ such that

∂N

∂t
= λξ,

and then combining with the above equality, we have

λ = −(G(k)k)′
∂k

∂s
,

and
∂N

∂t
= −(G(k)k)′

∂k

∂s
ξ.

v) Since ξ = (cos θ, sin θ), then N = (− sin θ, cos θ), we obtain

∂ξ

∂t
= (− sin θ, cos θ)

∂θ

∂t
=
∂θ

∂t
N.

Comparing it with (iv), we conclude that

∂θ

∂t
= (G(k)k)′

∂k

∂s
.

In other cases,
∂ξ

∂s
= (− sin θ, cos θ)

∂θ

∂s
=
∂θ

∂s
N.

It follows from ∂ξ
∂s = kN that

∂θ

∂s
= k.

vi) Consider the closed curve γ = {(x(u), y(u))|u ∈ S
1} in R

2. Then it is well known that
the area of the domain by the curve γ can be expressed by the formula

A =
1
2

∫ 2π

0

(

x
∂y

∂u
− y

∂x

∂u

)

du = −1
2

∫ 2π

0

〈γ(u), vN〉du.

Then

dA

dt
= −1

2

∫ 2π

0

〈
∂γ

∂t
, vN

〉

du− 1
2

∫ 2π

0

〈

γ,
∂v

∂t
N

〉

du− 1
2

∫ 2π

0

〈

γ,
∂N

∂t
v

〉

du.
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By (1.3) and (i), (iv), we obtain

dA

dt
= −1

2

∫ 2π

0

〈G(k)kN, vN〉du+
1
2

∫ 2π

0

〈γ,G(k)k2vN〉du+
1
2

∫ 2π

0

〈

γ,
∂

∂s
(G(k)k)vξ

〉

du

= −1
2

∫ 2π

0

G(k)kvdu+
1
2

∫ 2π

0

〈γ,G(k)k2N〉vdu+
1
2

∫ 2π

0

〈

γ,
∂

∂u
(G(k)k)ξ

〉

du

= −1
2

∫ 2π

0

G(k)kvdu+
1
2

∫ 2π

0

〈γ,G(k)k2N〉vdu

+
1
2

∫ 2π

0

〈

γ,
∂

∂u
(G(k)kξ)

〉

du− 1
2

∫ 2π

0

〈

γ,G(k)k
∂ξ

∂u

〉

du.

Thus from ∂ξ
∂u = vkN , we arrive at

dA

dt
= −1

2

∫ 2π

0

G(k)kvdu+
1
2

∫ 2π

0

〈γ,G(k)k2N〉vdu

− 1
2

∫ 2π

0

〈
∂γ

∂u
,G(k)kξ

〉

du− 1
2

∫ 2π

0

〈γ,G(k)k2N〉vdu

= −1
2

∫ 2π

0

G(k)kvdu− 1
2

∫ 2π

0

〈ξ,G(k)kξ〉vdu

= −1
2

∫ 2π

0

G(k)kvdu− 1
2

∫ 2π

0

G(k)kvdu

= −
∫ 2π

0

G(k)kvdu

= −
∫ L

0

G(k)kds.

vii) By (iii) and (v), we drive the following equation

∂k

∂t
=

∂

∂t

∂θ

∂s
=

∂

∂s

∂θ

∂t
+G(k)k2 ∂θ

∂s
=

∂

∂s

(

(G(k)k)′
∂k

∂s

)

+G(k)k3.

Thus, the proof of Lemma 2.1 is completed. �

Similarly to [2], we can use the angle θ of the tangent line as the parameter of the curve and
then write the curvature k = k(θ) in terms of this parameter which is 2π periodic curvature
function of convex curve. The following results give the necessary and sufficient condition for
some one-parameter function as the curvature function of a simple closed curve (cf. Lemma 4.1.1
in [2]).

Lemma 2.2 A positive 2π periodic function represents the curvature function of a closed and
strictly convex C2 curves in the plane if and only if

∫ 2π

0

cos θ
k(θ)

dθ =
∫ 2π

0

sin θ
k(θ)

dθ = 0.

According to the flow (1.3), we take τ = t as the time parameter and use θ as other
coordinate and hence change variables from (u, t) to (θ, τ ).
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Lemma 2.3
∂k

∂τ
= k2

(
∂2

∂θ2
(G(k)k) +G(k)k

)

= k2(G(k)k)′
∂2k

∂θ2
+ k2(G(k)k)′′

(
∂k

∂θ

)2

+G(k)k3.

Proof By the chain rule and Lemma 2.1 (iii), (v), we get

∂k

∂t
=
∂k

∂τ
+
∂k

∂θ

∂θ

∂t

=
∂k

∂τ
+
∂k

∂θ
(G(k)k)′

∂k

∂s

=
∂k

∂τ
+
∂k

∂θ
(G(k)k)′

∂k

∂θ

∂θ

∂s

=
∂k

∂τ
+ (G(k)k)′k

(
∂k

∂θ

)2

.

On the other hand, from Lemma 2.1 (vii), we obtain

∂k

∂t
=

∂

∂s

(

(G(k)k)′
∂k

∂s

)

+G(k)k3

=
∂θ

∂s

∂

∂θ

(

(G(k)k)′
∂k

∂θ

∂θ

∂s

)

+G(k)k3

= k
∂

∂θ

(

(G(k)k)′
∂k

∂θ
k

)

+G(k)k3

= k
∂

∂θ

(

k
∂

∂θ
(G(k)k)

)

+G(k)k3

= k2 ∂
2

∂θ2
(G(k)k) + (G(k)k)′k

(
∂k

∂θ

)2

+G(k)k3.

By comparing the above two equalities, we have the desired results. �

Throughout this paper, we will deal with this equation and replace τ by t.

Lemma 2.4 Suppose (H1) hold. Then the general curve shortening problem (1.3) for convex
curves is equivalent to the Cauchy problem

⎧
⎪⎨

⎪⎩

∂k

∂t
= k2

(
∂2

∂θ2
(G(k)k) +G(k)k

)

, θ ∈ S
1, t ∈ [0, T ),

k(θ, 0) = k0(θ), θ ∈ S
1, t = 0,

(2.2)

where 0 < α < 1, k ∈ C2+α,1+ α
2 (S1× (0, T )), k0(θ) is the curvature function of the initial curve

γ0(θ).

Proof If γ(·, t) is the classical solution of problem (1.3), then by Lemma 2.3 the curvature
function, expressed in θ coordinates, satisfies (2.2).

If k0(θ) is the curvature function for the curve γ0(θ) and k(θ, t) satisfies (2.2), then for each
t ≥ 0, we can define the curves by the formula

x(θ, t) =
∫ θ

0

cosu
k(u, t)

du, y(θ, t) =
∫ θ

0

sin u
k(u, t)

du. (2.3)



2114 Huang R. L. and Bao J. G.

Let γ(θ, t) = (x(θ, t), y(θ, t)). Then ζ = (cos θ, sin θ) and N = (− sin θ, cos θ) are respectively
the tangent vector and the inward normal vector of the curve γ(·, t). Combining (2.2) with (2.3),
we have

∂x

∂t
= −

∫ θ

0

cosu
k2

∂k

∂t
du

= −
∫ θ

0

cosu
(
∂2

∂u2
(G(k)k) +G(k)k

)

du

= −
∫ θ

0

cosu
∂2

∂u2
(G(k)k)du−

∫ θ

0

cosuG(k)kdu,

so that

∂x

∂t
=−

∫ θ

0

sinu
∂

∂u
(G(k)k)du−

∫ θ

0

cosuG(k)kdu− cos θ
∂

∂θ
(G(k)k) +

∂

∂θ
(G(k)k)

∣
∣
∣
∣
θ=0

=
∫ θ

0

cosuG(k)kdu−G(k)k sin θ−
∫ θ

0

cosuG(k)kdu−cos θ
∂

∂θ
(G(k)k)+

∂

∂θ
(G(k)k)

∣
∣
∣
∣
θ=0

= −G(k)k sin θ − cos θ
∂

∂θ
(G(k)k) +

∂

∂θ
(G(k)k)

∣
∣
∣
∣
θ=0

.

For the same reason the following equality holds:

∂y

∂t
= G(k)k cos θ − sin θ

∂

∂θ
(G(k)k) −G(k)k|θ=0.

By setting θ = 2π to the above two equalities, we obtain ∂x
∂t = 0, ∂y

∂t = 0. On the other
hand, x(2π, 0) = 0, y(2π, 0) = 0. Because γ0 is the closed curve in the plane, then applying
Lemma 2.2, we obtain x(2π, 0) = 0, y(2π, 0) = 0, and

∫ 2π

0

cos θ
k(θ, t)

dθ =
∫ 2π

0

sin θ
k(θ, t)

dθ = 0.

By applying Lemma 2.2 again, the curve γ(θ, t) which is defined by (2.3) is closed and then we
have

∂γ

∂t
(θ, t) = G(k)kN − ∂

∂θ
(G(k)k)ξ − (a(0, t), b(0, t)), (2.4)

where
(a(0, t), b(0, t)) =

(

− ∂

∂θ
(G(k)k)

∣
∣
∣
∣
θ=0

, G(k)k|θ=0

)

.

Set

θ = θ(u, τ ), t = τ,

γ̂(u, τ ) = γ(θ(u, τ ), τ ) +
( ∫ τ

0

a(0, t)dt,
∫ τ

0

b(0, t)dt
)

, (2.5)

where θ = θ(u, τ ) is the unique solution of the following ordinary equation
⎧
⎨

⎩

∂θ

∂τ
= k

∂

∂θ
(G(k)k), τ ∈ [0, T ),

θ(u, 0) = u.

Combining (2.4) with(2.5), we know that γ̂(u, τ ) satisfies

∂γ̂

∂τ
= G(k)kN
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and hence we obtain the general curve shortening flow (1.3). �
Using the standard results on parabolic equations (cf. [9]), we obtain the existence results

of the problem (2.2).

Lemma 2.5 Suppose k0(θ) ∈ C(S1) and (H1) holds. Then there exists

T > 0, k ∈ C2,1(S1 × (0, T )) ∩ C(S1 × [0, T )),

satisfying (2.2).

By the maximum principle it shows that if the initial curves are strictly convex, then the
curves remain so under the flow (1.3).

Lemma 2.6 Suppose (H1) holds and k(θ, t) is the classical solution of (2.2). If k0(θ) is
positive on S

1, then kmin(t) = inf{k(θ, t) | θ ∈ S
1} is a nondecreasing function.

Proof By contradiction, there exist 0 ≤ t′1 ≤ t1 < T such that kmin(t) is nondecreasing in
[0, t′1] and kmin(t′1) > kmin(t1) > 0. We suppose t′1 = 0 without loss of generality. Set

t0 = inf{t ∈ [0, t1]|kmin(t) ≤ kmin(t1)}.
By the regularity of k(θ, t), we know that there is θ0 ∈ S

1 such that kmin(t0) = k(θ0, t0). It is
easy to see that kmin(t0) > 0 and then we have

∂2k

∂θ2
(θ0, t0) ≥ 0,

∂k

∂θ
(θ0, t0) = 0, k(θ0, t0) > 0.

Hence from (2.2) and (H1) this yields

∂k

∂t
(θ0, t)|t=t0 > 0,

and it contradicts the hypothesis of t0. So we obtain the desired results. �
Some further consequences of Lemmas 2.4–2.6 are part of Proposition 1.1.

Corollary 2.7 Suppose (H1) holds. Then there exist T > 0 and the unique γ(u, t) ∈ C2,1(S1×
(0, T )) ∩ C(S1 × [0, T )) satisfying the generalized curve shortening flow (1.3).

According to the flow (1.3), we consider the support function (cf. [10, 11]) of γ(u, t) by
defining

h(θ, t) = 〈γ(u(θ, t), t), (sin θ,− cos θ)〉, θ ∈ [0, 2π],

where θ is the tangent angle of γ(·, t) and the unit normal vector N = −(sin θ,− cos θ).
Applying the equation (1.3), we see

∂h

∂t
=

〈
∂γ

∂t
+
∂u

∂t

∂γ

∂u
,−N

〉

=
〈

G(k)kN +
∂u

∂t

∣
∣
∣
∣
∂γ

∂u

∣
∣
∣
∣ξ,−N

〉

= −G(k)k.

Using the methods in [11], we can compute the inward curvature of γ(·, t) by the formula

k =
(
∂2h

∂θ2
+ h

)−1

.

Then h(θ, t) satisfies the following equation

∂h

∂t

(
∂2h

∂θ2
+ h

)

G−1

( (
∂2h

∂θ2
+ h

)−1 )

= −1. (2.6)
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By making use of the maximum principle, we can obtain the containment principle of the
flow (1.3) (cf. [12]).

Lemma 2.8 Let γ1 and γ2 : S
1 × [0, T ) be two classical solutions of the flow (1.3). If γ2(·, 0)

is in the domain enclosed by γ1(·, 0), then γ2(·, t) is contained in the domain enclosed by γ1(·, t)
for all t ∈ [0, T ).

Proof Set h1(θ, t) and h2(θ, t) to be the support functions of γ1(·, t) and γ2(·, t). Then h1(θ, t)
and h2(θ, t) satisfy the equation (2.6). Because γ2(·, 0) is in the domain enclosed by γ1(·, 0) we
can select h1(θ, 0) and h2(θ, 0) such that h1(θ, 0) ≥ h2(θ, 0) for θ ∈ S

1. Thus by applying the
maximum principle of parabolic equations, we deduce that h1(θ, t) ≥ h2(θ, t) for all t ∈ [0, T )
and then we obtain the desired results. �

In order to prove some isometric inequalities, we need the following lemma which belongs
to Andrews [3, Lemma I 3.3].

Lemma 2.9 Let M be a compact manifold with a volume form dμ, and let ξ be a continuous
function on M . Then for any non-decreasing function F , there holds

∫

M
ξF (ξ)dμ

∫

M
F (ξ)dμ

≥
∫

M
ξdμ

∫

M
dμ

.

The next two lemmas roughly characterize the behavior of the geometric quantity when
γ(·, t) is contracting to a point under the flow (1.3).

Lemma 2.10 Suppose (H1) hold. Then under the flow (1.3), we have

d

dt

(
L2

A

)

≤ 0.

Proof By Lemma 2.1 (ii) and (vi), i.e.,

dL

dt
= −

∫ L

0

G(k)k2ds = −
∫ 2π

0

G(k)kdθ,

dA

dt
= −

∫ L

0

G(k)kds = −
∫ 2π

0

G(k)dθ,

we obtain
d

dt

(
L2

A

)

= −2L
A

(∫ 2π

0

G(k)kdθ − L

2A

∫ 2π

0

G(k)dθ
)

. (2.7)

From the isometric inequality in [15], the following inequality holds for convex curves,

πL

A
≤

∫ L

0

k2ds =
∫ 2π

0

kdθ, (2.8)

Substituting (2.8) into (2.7), we have

d

dt

(
L2

A

)

≤ −2L
A

(∫ 2π

0

G(k)kdθ − 1
2π

∫ 2π

0

G(k)dθ
∫ 2π

0

kdθ

)

= −2L
A

∫ 2π

0

G(k)dθ
(∫ 2π

0
G(k)kdθ

∫ 2π

0
G(k)dθ

−
∫ 2π

0
kdθ

∫ 2π

0
1dθ

)

. (2.9)

Setting M = S
1, ψ = k, dμ = dθ in Lemma 2.9, one can show that

∫ 2π

0
G(k)kdθ

∫ 2π

0
G(k)dθ

≥
∫ 2π

0
kdθ

∫ 2π

0
dθ

, (2.10)
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so the proof is completed by means of (2.9) and (2.10). �

Lemma 2.11 Suppose (H1) holds. Under the flow (1.3), if

lim
t→ω

A(t) = 0,

we have

lim inf
t→ω

L

( ∫ L

0

k2ds− πL

A

)

≤ 0. (2.11)

Proof From (2.7), we see

d

dt

(
L2

A

)

= −2L
A

(∫ 2π

0

G(k)kdθ − L

2A

∫ 2π

0

G(k)dθ
)

= −
∫ 2π

0
G(k)dθ
πA

· L
(

2π
∫ 2π

0
G(k)kdθ

∫ 2π

0
G(k)dθ

− πL

A

)

. (2.12)

Applying
dA

dt
= −

∫ 2π

0

G(k)dθ

to (2.12), we conclude that

d

dt

(
L2

A

)

=
1
π

d

dt
(lnA) · L

(
2π

∫ 2π

0
G(k)kdθ

∫ 2π

0
G(k)dθ

− πL

A

)

.

Using (2.10), we have

d

dt

(
L2

A

)

≤ 1
π

d

dt
(lnA) · L

(∫ 2π

0

kdθ − πL

A

)

. (2.13)

Now we prove (2.11) by contradiction. If not, there exists δ > 0 such that if limt→ω A(t) = 0
then

lim inf
t→ω

L

( ∫ L

0

k2ds− πL

A

)

≥ 2δ.

Hence there exists β = β(δ) ∈ (0, ω) such that if t ∈ (β, ω), then the following inequality holds

L

( ∫ L

0

k2ds− πL

A

)

≥ δ. (2.14)

From (2.13) and (2.14), we obtain

d

dt

(
L2

A

)

≤ δ

π

d

dt
(lnA), t ∈ (β, ω).

Integrating from β to t, we have

L2

A
(t) − L2

A
(β) ≤ δ

π
(lnA(t) − lnA(β)) ,

− L2

A
(β) ≤ δ

π
(lnA(t) − lnA(β)) .

Using limt→ω A(t) = 0, one easily verifies that

−L
2(β)
A(β)

+
δ

π
lnA(β) = −∞,

and this contradicts Proposition 1.1 and then the proof of Lemma 2.11 is completed. �
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3 Asymptotic Behavior

In this section we will study the asymptotic behavior of the curvature under the flow (1.3) and
prove the main theorem of this paper.

We recall the following two auxiliary results, which belong to Gage [15, 16] and Osser-
man [17].

Lemma 3.1 (Gage) (a) There is a non-negative functional F (γ) which is defined for all C2

convex curves and satisfies

(1 − F (γ))
∫ L

0

k2ds− πL

A
≥ 0. (3.1)

(b) Given a sequence of convex curves {γi} such that limi→∞ F (γi) = 0. If these normalized
curves ηi =

√
π
Aγi lie in a fixed bounded region of the plane, then the domain Hi, enclosed by

ηi, converges to the disk in the Hausdorff metric.
(c) F (γ) = 0 if and only if γ is a circle.

Lemma 3.2 (Bonneson inequality) Let γ be a C1 closed convex curve. Then

L2

A
− 4π ≥ π2

A
(rout − rin)2. (3.2)

Definition 3.3 Let A, B be two closed convex sets and Aε= {x ∈ R
2 | dist(x,A) ≤ ε}. Then

the Hausdorff distance between the sets A and B is given by

dH(A,B) = inf{ε | A ⊆ Bε, B ⊆ Aε}.

Proof of Theorem 1.2 (i) We use the idea in [16]. Consider the geometric quantities L(t) and
A(t) according to the flow γ(·, t) satisfying (1.3). By (3.1), we have

∫ L(t)

0

k2(θ, t)ds− πL(t)
A(t)

≥ F (γ(t))
∫ L(t)

0

k2(θ, t)ds. (3.3)

Using Schwarz inequality, we see that

(2π)2 =
( ∫ L(t)

0

k(θ, t)ds
)2

≤
∫ L(t)

0

k2(θ, t)ds
∫ L(t)

0

1ds = L(t)
∫ L(t)

0

k2(θ, t)ds. (3.4)

Substituting (3.4) into (3.3), we obtain

L(t)
(∫ L(t)

0

k2(θ, t)ds− πL(t)
A(t)

)

≥ F (γ)L(t)
∫ L(t)

0

k2(θ, t)ds ≥ 4π2F (γ(t)). (3.5)

In the following steps we will show that if ∀ ti ∈ [0, ω) it satisfies limi→+∞ ti = ω, then the
limitations in Theorem 1.2 (i), (ii) hold.

By substituting γi = γ(·, ti), A(ti), L(ti) into (3.5) and using (2.11), we have

lim
i→+∞

F (γi) = 0.

Next we show that the normalized curve ηi =
√

π
Aγi lies in a bound region. From Lemma 2.10,

we observe that L2

A decreases under the flow (1.3). One easily verifies that

L2(ti)
A(ti)

=
L2

n(ti)
An(ti)

,
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and

L2(ti)
A(ti)

− 4π =
L2

n(ti)
An(ti)

− 4π ≥ π2

An(ti)
(rn,out(ti) − rn,in(ti))2

= π(rn,out(ti) − rn,in(ti))2, (3.6)

and rn,in(ti) ≤ 1, by using the Bonneson inequality, where An(ti) is the area about the bounded
domain enclosed by the normalized curve ηi, and Ln(ti) is the perimeter of the curve ηi, rn,out(ti)
and rn,in(ti) are respectively the radii of the largest and smallest circumscribed circles of the
curve ηi. By (3.6) it shows that the outer radii of the normalized curve ηi are bounded for
all ti ∈ [0, ω). From Proposition 1.1 we know that γi shrinks to a point under the flow (1.3).
Hence if we use ϑ as the origin in the homothetic expansion of R

2, then all of the normalized
curves ηi lie in a ball of radius 2C around this point.

Applying Lemma 3.1 (b), we see that the sequence of normalized domain H(ti) according
to ηi converges to the unit disk in the Haudorff metric,

lim
i→+∞

H(ti) = H0, (3.7)

where H0 is the unit disk in the plane.
Since L and A are continuous functionals of convex domain then there holds

lim
i→+∞

L2(ti)
A(ti)

= lim
i→+∞

L2
n(ti)

An(ti)
= lim

i→+∞
L2(H(ti))
A(H(ti))

=
L2(H0)
A(H0)

= 4π. (3.8)

From (3.2), we have

L2(ti)
A(ti)

− 4π ≥ π2

A(ti)
(rout(ti) − rin(ti))

2 ≥ π2r2out(ti)
A(ti)

(

1 − rin(ti)
rout(ti)

)2

.

It is easy to see that πr2out(ti) ≥ A(ti), and then

L2(ti)
A(ti)

− 4π ≥
(

1 − rin(ti)
rout(ti)

)2

,

such that combining this with (3.8), we have

lim
i→+∞

rin(ti)
rout(ti)

= 1. (3.9)

To prove Theorem 2.1 (ii), (iii), we need the following gradient estimates of the curvature.
A similar proof can be found in [12].

Lemma 3.4 Set Φ(k) = G(k)k and let k = k(θ, t) be the curvature function of the flow (1.3),
where θ is the tangent angle of the curve γ(·, t). Suppose (H1), (H2) hold and � ∈ (0, ω). Then
the following inequality holds :

max
0≤t≤
,θ∈S1

∣
∣
∣
∣
∂Φ
∂θ

∣
∣
∣
∣

2

≤ max
{

2 max
0≤t≤
,θ∈S1

Φ2, max
t=0,θ∈S1

(∣
∣
∣
∣
∂Φ
∂θ

∣
∣
∣
∣

2

+ 2Φ2

)}

. (3.10)

Proof By Lemma 2.6, we know that kmin(t) > 0 for t ∈ [0, ω). It follows from Lemma 2.3 that
φ = Φ(k) satisfies the following equation

∂Φ
∂t

= k2Φ′ ∂
2Φ
∂θ2

+ k2Φ′Φ. (3.11)
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Set

Ψ =
(
∂Φ
∂θ

)2

+ λΦ2,

where λ is a constant to be determined. Suppose (θ0, t0) ∈ S
1 × (0, �] such that

Ψ(θ0, t0) = max
S1×[0,
]

((
∂Φ
∂θ

)2

+ λΦ2

)

.

Then at (θ0, t0), Ψ satisfies the following properties

∂Ψ
∂θ

= 0,
∂2Ψ
∂θ2

≤ 0,
∂Ψ
∂t

≥ 0. (3.12)

Next we will prove that if we select some constant λ so large, then at (θ0, t0) we have

∂Φ
∂θ

= 0. (3.13)

Suppose not, then using

0 =
∂Ψ
∂θ

= 2
∂Φ
∂θ

(
∂2Φ
∂θ2

+ λΦ
)

we see

0 =
∂2Φ
∂θ2

+ λΦ. (3.14)

From (3.11) and (3.12), we have

0 ≤ 1
2
∂Ψ
∂t

=
∂Φ
∂θ

∂2Φ
∂θ∂t

+ λΦ
∂Φ
∂t

=
∂

∂θ
(Φ′k2)

∂Φ
∂θ

∂2Φ
∂θ2

+ Φ′k2 ∂Φ
∂θ

∂3Φ
∂θ3

+
∂

∂θ
(Φ′k2)Φ

∂Φ
∂θ

+ k2Φ′(k)
(
∂Φ
∂θ

)2

+ λΦΦ′k2 ∂
2Φ
∂θ2

+ λk2Φ′Φ2. (3.15)

By ∂2Ψ
∂θ2 ≤ 0, we see that

0 ≥ ∂Φ
∂θ

(
∂3Φ
∂θ3

+ λ
∂Φ
∂θ

)

. (3.16)

Substituting (3.14), (3.16) into (3.15), we obtain

0 ≤ −λ ∂
∂θ

(Φ′k2)Φ
∂Φ
∂θ

− λk2Φ′
(
∂Φ
∂θ

)2

+
∂

∂θ
(Φ′k2)Φ

∂Φ
∂θ

+ k2Φ′
(
∂Φ
∂θ

)2

− λ2k2Φ2Φ′ + λk2Φ′Φ2

= (1 − λ)
∂

∂θ
(Φ′k2)Φ

∂Φ
∂θ

+ (1 − λ)Φ′k2

(
∂Φ
∂θ

)2

+ (λ− λ2)k2Φ′Φ2. (3.17)

By the definition of Φ and (H1), (H2), we have

Φ > 0, Φ′ > 0,

(Φ′k2)′ = G′′(k)k3 + 4k2G′(k) + 2G(k)k = k(G(k)k2)′′ ≥ 0,

∂

∂θ
(Φ′k2)Φ

∂Φ
∂θ

= (Φ′k2)′
(
∂k

∂θ

)2

Φ′Φ ≥ 0,
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Φ′k2Φ
(
∂Φ
∂θ

)2

> 0, k2Φ′Φ2 > 0. (3.18)

By selecting λ = 2 and hence substituting it into (3.17) and using (3.18), we obtain the contra-
diction. So (3.13) holds.

By (3.13), we arrive at

max
0≤t≤
,θ∈S1

∣
∣
∣
∣
∂Φ
∂θ

∣
∣
∣
∣

2

≤ max
S1×[0,
]

((
∂Φ
∂θ

)2

+ λΦ2

)

= Ψ(θ0, t0)

= 2Φ2|θ=θ0,t=t0

≤ max
{

2 max
0≤t≤
,θ∈S1

Φ2, max
t=0,θ∈S1

(∣
∣
∣
∣
∂Φ
∂θ

∣
∣
∣
∣

2

+ 2Φ2

)}

.

Thus the proof is completed. �

Lemma 3.5 Let q(t) be continuous function on [0, ω). Suppose for each � ∈ [0, ω), one has

sup
0≤t≤


q(t) < +∞, lim
t→ω

q(t) = +∞.

Then there exists {ti} ⊂ [0, ω) satisfying

∀ i ∈ {1, 2, . . .}, ti < ti+1, lim
i→+∞

ti = ω, (3.19)

q(ti) = sup
0≤t≤ti

q(t).

Proof Consider the sequence {t′i} � {T − T
i+1}. Firstly select t1 ∈ [0, t′1] satisfying

q(t1) = sup
0≤t≤t′1

q(t).

Then
q(t1) = sup

0≤t≤t1

q(t).

It follows from limt→ω q(t) = +∞ that we can choose t′′j1 ∈ {t′i} satisfying q(t′′j1) > q(t1) + 2, so
that we can take t2 ∈ [0, t′′j1 ] satisfying

q(t2) = sup
0≤t≤t′′j1

q(t).

Thus
q(t2) = sup

0≤t≤t2

q(t).

In general we can select t′′jn
∈ {t′i} satisfying q(t′′jn

) > q(tn)+n+1 and then choose tn+1 ∈ [0, t′′jn
]

satisfying
q(tn+1) = sup

0≤t≤t′′jn

q(t).

Then there holds
q(tn+1) = sup

0≤t≤tn+1

q(t).

The desired result follows by taking trace. �
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Set q(t) = kmax(t). Then by Proposition 1.1 it is easy to verify that kmax(t) satisfies the
conditions of Lemma 3.5.

Lemma 3.6 Suppose (H1) and (H2) hold. If we take the sequence {ti} satisfying (3.19) such
that the following holds

∀ i ∈ {1, 2, . . .}, kmax(ti) = sup
0≤t≤ti

kmax(t)

and for each i ∈ {1, 2, . . .} there exists θi0 ∈ S1 such that kmax(ti) = k(θi0, ti), then there exist
constants C,C1 > 0 depending only on γ0 such that

(1 − 2|θ − θi0|)Φ(kmax(ti)) ≤ Φ(k(θ, ti)) + C, ∀ θ ∈ S
1, (3.20)

Φ(kmax(ti)) ≤ C1Φ(k(θ, ti)), ∀ θ ∈ S
1, (3.21)

where Φ(x) = G(x)x.

Proof Step 1 Set Φ(θ) = Φ(k(θ, ti)). For each θ ∈ S
1 by the medium theorem and (3.10),

we have

Φ(θi0) − Φ(θ) =
∂Φ
∂θ

(θ̂)(θi0 − θ) ≤ (2Φ(θi0) + C)|θi0 − θ| ≤ 2Φ(θi0)|θi0 − θ| + C. (3.22)

This yields the inequality (3.20).

Step 2 Take i such that Φ(θi0) is large sufficiently. Being likely with (3.22), ∀ θ1, θ ∈ S
1, we

obtain
Φ(θ1) − Φ(θ) ≤ 3Φ(θi0)|θ1 − θ|. (3.23)

It is clear that Φ(θ) = Φ(k(θ, ti)) ≥ Φ(kmin(0)) > 0. Let θ1 = θi0. If |θ − θi0| ≤ 1
6 , then

from (3.23), we have

Φ(θi0) − Φ(θ) ≤ 1
2
Φ(θi0).

So
1
2
Φ(θi0) ≤ Φ(θ).

Assume a to be the maximal constant such that if |θ − θi0| ≤ a, then

CΦ(θi0) ≤ Φ(θ), (3.24)

for a suitable positive constant C under control. We will prove that a ≥ π. If not, we take
θ1 = θi0 + a or θ1 = θi0 − a. It follows from (3.23) and (3.24) that ∀ θ ∈ S

1, we have

Φ(θ1) − Φ(θ) ≤ 3
C

Φ(θ1)|θ1 − θ|.

If |θ − θ1| ≤ C
6 , then

1
2
Φ(θ1) ≤ Φ(θ).

Combining with (3.24), if |θ − θi0| ≤ a+ C
6 , then

C

2
Φ(θi0) ≤ Φ(θ).

It is a contradiction to the assumption of the constant a. By Φ(θ + 2π) = Φ(θ), we obtain the
desired results. �
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Set
k̂σ(ti) = sup

{
inf
[a,b]

k(θ, ti)|[a, b] ⊂ (−∞,+∞), b− a = σ
}
.

We introduce a lemma of Gage and Hamilton [2, Lemma 5.1], which is crucial for studying the
asymptotic behavior of the curvature under the general curve shortening flow.

Lemma 3.7
k̂σ(ti)rin(ti) ≤ 1

1 − Λ(σ)
( rout(ti)

rin(ti)
− 1

) ,

where
Λ(σ) =

2 cos σ
2

1 − cos σ
2

.

Remark 3.8 The proof of Lemma 5.1 in [2] follows only from the convexity of the closed
curve γ(·, ti).
Corollary 3.9 Suppose (H1) and (H2) hold. Consider the sequence {ti} satisfying the condi-
tions of Lemma 3.6. Then for the positive ε being small sufficiently, we have

kmax(ti)rin(ti) ≤ 2
1 − ε

· 1

1 − Λ(ε)
( rout(ti)

rin(ti)
− 1

) . (3.25)

Proof It follows from (3.20) that

(1 − 2|θ − θi0|)G(kmax(ti))kmax(ti) ≤ G(k(θ, ti))k(θ, ti) + C

≤ G(kmax(ti))k(θ, ti) + C, ∀ θ ∈ S
1,

so that
(1 − 2|θ − θi0|)kmax(ti) ≤ k(θ, ti) + C, ∀ θ ∈ S

1. (3.26)

By Proposition 1.1, we have
lim

i→+∞
kmax(ti) = +∞.

Hence from (3.21) and (H1), one can easily verify that

lim
i→+∞

k(θ, ti) = +∞, ∀ θ ∈ S
1.

Combining this with (3.26), we obtain

(1 − 2|θ − θi0|)kmax(ti) ≤ 2k(θ, ti)

for i being large enough, and ∀ θ ∈ S
1. Given any ε > 0 , if |θ − θi0| ≤ ε

2 , then

2k(θ, ti) ≥ kmax(ti)(1 − ε).

Take σ = ε. It follows from the definition of k̂σ(ti) that we have

2k̂σ(ti) ≥ kmax(ti)(1 − ε).

Then using Lemma 3.7, we obtain

kmax(ti)rin(ti)(1 − ε) ≤ 2k̂σ(ti)rin(ti) ≤ 2

1 − Λ(ε)
( rout(ti)

rin(ti)
− 1

) .

This yields the desired results. �
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Corollary 3.10 Suppose (H1) and (H2) hold. Consider the sequence {ti} satisfying the con-
ditions of Lemma 3.6. Then for the positive ε being small sufficiently, there exists i(ε) ∈ N,
such that if i > i(ε), we have

kmax(ti)rin(ti) ≤ 2
(1 − ε)2

.

Proof By Theorem 1.2 (ii),

lim
i→+∞

rin(ti)
rout(ti)

= 1.

For i being so large, we have

1 − Λ(ε)
(
rout(ti)
rin(ti)

− 1
)

≥ 1 − ε. (3.27)

Then substituting (3.27) into (3.25), we obtain the desired results. �

Theorem 3.11 Suppose (H1) and (H2) hold. Consider the sequence {ti} satisfying the con-
ditions of Lemma 3.6. Then we have

lim
i→+∞

k(θ, ti)rin(ti) = 1, ∀ θ ∈ S
1. (3.28)

Proof Set fi(θ) = k(θ, ti)rin(ti) and Φ(x) = G(x)x.

Step 1 We will prove that fi(θ) is equi-continuous and bounded uniformly.
Because G(x) is non-decreasing function for x ∈ (0,+∞), then by Lemma 3.4, for θ ∈ S

1,
we arrive at ∣

∣
∣
∣G(k(θ, ti))

∂k

∂θ
(θ, ti)

∣
∣
∣
∣ ≤

∣
∣
∣
∣
∂Φ
∂θ

(θ, ti)
∣
∣
∣
∣

≤ max
0≤t≤ti,θ∈S1

∣
∣
∣
∣
∂Φ
∂θ

∣
∣
∣
∣

≤ 2 max
0≤t≤ti,θ∈S1

|Φ| + C

= 2Φ(kmax(ti)) + C,

so that

Φ(k(θ, ti))
∣
∣
∣
∣
∂k

∂θ
(θ, ti)

∣
∣
∣
∣ =

∣
∣
∣
∣G(k(θ, ti))k(θ, ti)

∂k

∂θ
(θ, ti)

∣
∣
∣
∣ ≤ 2Φ(kmax(ti))kmax(ti) + Ckmax(ti),

∣
∣
∣
∣
∂k

∂θ
(θ, ti)

∣
∣
∣
∣ ≤ 2

Φ(kmax(ti))
Φ(k(θ, ti))

kmax(ti) + C
kmax(ti)

Φ(k(θ, ti))
≤ 2

Φ(kmax(ti))
Φ(k(θ, ti))

kmax(ti) + C
kmax(ti)

Φ(kmin(0))
.

It follows from (3.21) that
∣
∣
∣
∣
∂k

∂θ
(θ, ti)

∣
∣
∣
∣ ≤ (2C + C)kmax(ti), ∀ θ ∈ S

1.

By Corollary 3.10, we obtain
∣
∣
∣
∣
∂k

∂θ
(θ, ti)rin(ti)

∣
∣
∣
∣ ≤ (2C + C)kmax(ti)rin(ti) ≤ C

for i being so large. This yields ∣
∣
∣
∣
dfi

dθ
(θ)

∣
∣
∣
∣ ≤ C.



The Blow up Analysis of the General Curve Shortening Flow 2125

On the other hand, by Corollary 3.10,

|fi(θ)| ≤ C.

The proof of Step 1 is completed.

Step 2 Because fi(θ) is equi-continuous and bounded uniformly, then by Ascoli–Arzela the-
orem, there exists f(θ) ∈ C(S1) such that

lim
i→+∞

fi(θ) = f(θ), ∀ θ ∈ S
1. (3.29)

Step 3 We will prove that f(θ) ≤ 1, ∀ θ ∈ S
1.

Suppose the assertion is false. Then there exists θ0 ∈ S
1, β > 0, such that f(θ0) ≥ 1 + 3β.

Hence there exists also δ > 0, such that if θ ∈ [θ0 − δ, θ0 − δ], we have

f(θ) ≥ 1 + 2β.

By (3.29) for i being so large, we have

fi(θ) ≥ 1 + β, ∀ θ ∈ [θ0 − δ, θ0 − δ],

i.e.,
k(θ, ti)rin(ti) ≥ 1 + β, ∀ θ ∈ [θ0 − δ, θ0 − δ].

Take σ = 2δ. Then according to the definition of k̂σ(ti), we obtain

1 + β ≤ k̂2δ(ti)rin(ti) ≤ 1

1 − Λ(2δ)
( rout(ti)

rin(ti)
− 1

) .

Then using

lim
i→+∞

rin(ti)
rout(ti)

= 1.

we have
1 + β ≤ 1,

and it is impossible. So f(θ) ≤ 1, ∀ θ ∈ S
1.

Step 4 We will prove that f(θ) ≡ 1.
By Fatou lemma, we have

∫ 2π

0

dθ

f(θ)
≤ lim inf

i→+∞

∫ 2π

0

dθ

fi(θ)
= lim inf

i→+∞

∫ 2π

0

dθ

k(θ, ti)rin(ti)
. (3.30)

By the convexity of γ(·, ti), it is easy to verify that

L(ti) =
∫ 2π

0

dθ

k(θ, ti)
,

and substitute it into (3.30), we obtain
∫ 2π

0

dθ

f(θ)
≤ lim inf

i→+∞
L(ti)
rin(ti)

= lim inf
i→+∞

L(ti)
rout(ti)

· rout(ti)
rin(ti)

. (3.31)

By the geometric property of rout one can easily verify that 2πrout ≥ L. Then combining this
with (3.31), we have

∫ 2π

0

dθ

f(θ)
≤ lim inf

i→+∞
L(ti)
rin(ti)

≤ 2π · lim inf
i→+∞

rout(ti)
rin(ti)

.
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By making use of Theorem 1.2 (i) again, we have
∫ 2π

0

dθ

f(θ)
≤ 2π.

On the other hand, by f(θ) ≤ 1 in Step 3, we obtain
∫ 2π

0

dθ

f(θ)
≥ 2π.

This yields
∫ 2π

0

dθ

f(θ)
= 2π.

Using f(θ) ≤ 1 again, we have f(θ) ≡ 1.
Combining (3.29) with Step 4 we complete the proof of the theorem. �

Remark 3.12 It follows from Cauchy criterion that the following limitation holds:

lim
t→ω

k(θ, t)rin(t) = 1, ∀ θ ∈ S
1. (3.32)

Proof of Theorem 1.2 (ii), (iii) Step 1 According to (3.31) we conclude that

lim
t→ω

kmax(t)rin(t) = 1, lim
t→ω

kmin(t)rin(t) = 1.

Combining this with Theorem 1.2 (ii) it shows that

lim
t→ω

kmax(t)
kmin(t)

= 1. (3.33)

Step 2 Given t ∈ (0, ω), consider kmax(t). By the property of continuous function, there
exists θ = θ(t) ∈ S

1 such that kmax(t) = k(θ(t), t). Then at (θ(t), t) by the regularity of k(θ, t),
we have

∂k

∂θ
= 0,

∂2k

∂θ2
≤ 0,

dk

dt
=
∂k

∂θ

dθ

dt
+
∂k

∂t
=
∂k

∂t
. (3.34)

By Lemma 2.3,
∂k

∂t
= k2

(
∂2

∂θ2
(G(k)k) +G(k)k

)

. (3.35)

Combining (3.34) with (3.35), we see

dkmax(t)
dt

≤ G(kmax(t))k3
max(t).

By the differential inequality and using kmax(ω) = +∞, we get

1
ω − t

∫ +∞

kmax(t)

dx

G(x)x3
≤ 1. (3.36)

From (3.21) it is easy to see that kmin(ω) = +∞. Similarly, we have

1
ω − t

∫ +∞

kmin(t)

dx

G(x)x3
≥ 1. (3.37)

Since
∫ kmax(t)

kmin(t)
dx

G(x)x3

∫ +∞
kmin(t)

dx
G(x)x3

≤
kmax(t)−kmin(t)

G(kmin(t))k3
min(t)

1
2G(kmin(t))k2

min(t)
− 1

2

∫ +∞
kmin(t)

G′(x)
G2(x)x2 dx

= 2
(
kmax(t)
kmin(t)

− 1
)

1

1 −G(kmin(t))k2
min(t)

∫ +∞
kmin(t)

G′(x)
G2(x)x2 dx

, (3.38)
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we now claim that for the positive z being so large, there holds

1 −G(z)z2

∫ +∞

z

G′(x)
G2(x)x2

dx ≥ 2
2 + C0

. (3.39)

Indeed, by (H2), we obtain
∫ +∞

z

G′(x)
G2(x)x2

dx ≤ C0

∫ +∞

z

dx

G(x)x3
.

Then ∫ +∞

z

G′(x)
G2(x)x2

dx ≤ C0

C0 + 2

∫ +∞

z

G′(x)
G(x)x2

dx+
2C0

C0 + 2

∫ +∞

z

dx

G(x)x3
,

∫ +∞

z

G′(x)
G2(x)x2

dx ≤ −C0

C0 + 2

∫ +∞

z

(
1

G(x)x2

)′
dx =

C0

C0 + 2
· 1
G(z)z2

,

and this yields (3.39).
By (3.33), (3.38), (3.39) and applying kmin(ω) = +∞, we have

lim
t→ω

∫ kmax(t)

kmin(t)
dx

G(x)x3

∫ +∞
kmin(t)

dx
G(x)x3

= 0.

Then we obtain

lim
t→ω

∫ +∞
kmax(t)

dx
G(x)x3

∫ +∞
kmin(t)

dx
G(x)x3

= lim
t→ω

∫ +∞
kmin(t)

dx
G(x)x3 − ∫ kmax(t)

kmin(t)
dx

G(x)x3

∫ +∞
kmin(t)

dx
G(x)x3

= 1. (3.40)

Combining (3.36), (3.37) with (3.40) we arrive at

lim
t→ω

1
ω − t

∫ +∞

k(θ,t)

dx

G(x)x3
= 1, ∀ θ ∈ S

1. �
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