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The existence and uniqueness of the global C'/® solution to the Dirichlet
problem for the degenerate elliptic Monge—Ampére equation are proved, under
mild conditions, and the application to the equation of the prescribed nonnegative
Gauss curvature is also given.  © 1999 Academic Press

1. INTRODUCTION

The present paper is devoted to the Dirichlet problems for the degener-
ate elliptic Monge—Ampeére equations of the form

det D’u = f(x,u, Du), inQ (1.1)

e(x), ondQ, (1.2)

u

where Q is a strictly convex domain in R" with the boundary 9} € C%?,
e C?*H(9Q), 0 <fe CtY(Q’ x R x R"), Q' is some neighborhood of
Q, and Du = (Du) and D?u =[D,;u] are, respectively, the gradient
vector and Hessian matrix of the function u.

The Dirichlet problem (1.1), (1.2) has received considerable study in
both the nondegenerate case (f > 0) and the degenerate case (f > 0).

For the nondegenerate case, Caffarelli et al. [1] and Krylov [2] indepen-
dently proved the well-known theorem: (1.1), (1.2) has a strictly convex
solution in C*(Q) if 9Q, ¢, and f are smooth. In the case where
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fe CtY(Q) is positive on Q and 9Q, ¢ € C3, Wang [3] claimed that the
convex solution belongs to C2 “(Q) for some « € (0, 1).

For the degenerate case, the counterexamples have been found by
Bedford and Fornaess [4], who showed that in general the solution of (1.1),
(1.2) is not of the class C%(Q). The question of whether the solution
belongs to C1(Q) has attracted a lot of attention. The C*!(Q)) smooth-
ness of the solution was proved in [5-9] but only for some special cases,
e.g., for f=0, for ¢ = constant, and for general boundary data under
some restrictions on ¢ and d{). Recently we are informed that Guan et al.
[10] got the global CY! regularity of the solution for the problem (1.1),
(1.2) in the cases where f/"~Y e Ct1(Q’) and 9Q, ¢ € C>™.

If there is no additional assumption about f and ¢, only a solution in
C>Y(Q) n C*¥Q) of the problem (1.1), (1.2) has been obtained so far
(see [11-13]). Naturally, one can ask whether the solution has much better
global regularity. This is the motivation of the present paper.

The purpose of this paper is to show the C+1/3(Q) N C*(Q) regularity
of the solution for the problem (1.1), (1.2) under the usual conditions. To
the author’s knowledge, the study for the global Holder continuity of Du is
much less in the degenerate case.

Throughout the paper we always assume that f(x,z, p) satisfies the
following structure conditions analogous to [8, 9, 12, and 13]:

f=0,f,=0, (x,z,p) € Q' X R X R" (1.3)
f(x,—M,p) < @, (x,p) €QXR" (1.4)
h(p

a/2
f(x @(x),p) < pd?(x)(L+1pI") "7, (x,p) ENXR" (15)
fYme ct(Q' x R* X R") s convex with respect to p, (1.6)

where «, B, u, and M are the nonnegative constants; 8> 0; B> a —n

—1; Q', N are some neighborhoods of Q; and dQ and g, h are the

positive functions, respectively, in L*(Q) and L}, (R") such that

fng(x)dx < fRnh(p)dp. (1.7)

Our main result is as follows.

THEOREM 1.1.  Assume dQ € C*!, ¢ € C*X9Q), and f € C*H Q' X
R X R") satisfy (1.3)-(1.7). Then there exists a unique convex solution of
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(1.D), (1.2) in C¥Y3(Q) N CHHQ) N C2Y(Q)) forall y € (0,1), where
Q,={xe QIf(x,u(x), Du(x)) > 0}.

Remark 1.2. The condition 8 > 0 implies that Eq. (1.1) must be degen-
erate on dQ, which is essential to our proof. But for f = f(x, u) the result
of Theorem 1.1 is also valid in the nondegenerate case (see [14]).

Monge—Ampeére equations are closely related to the problems involving
Gauss—Kronecker curvature in differential geometry. As a consequence,
from Theorem 1.1, we provide the following result for the equation of the
prescribed nonnegative Gauss curvature.

THEOREM 1.3.  Suppose that Q) € C**, ¢ € C*1(9Q), and

K>=0 inQ', K=0 ondQ (1.8)
K, KY" e chY(Q) (1.9)
[ K(x)dx < o, (1.10)

Q

hold, where w, is the volume of the unit ball in R". Then the problem

det D2u = K(x)(1 +1Dul®)" "%, in (1.11)

u=¢@(x), on 9Q) (1.12)

has a unique convex solution u € C**3(Q) N C*X(Q) N C*7(Qy) for all
v € (0, 1), where

Q= {x e QK(x)>0}.

Theorem 1.3 tells us that one can find a C*'/3(Q) N C**(Q) graph
with any given nonnegative Gauss curvature, which meets any given curve
over ().

2. REGULARIZED PROBLEM

This section is concerned with the construction of the regularized
problem and the C? estimates of its solution.

First of all, we introduce f, in a suitable way to approximate the
problem (1.1), (1.2).
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Denote h,(p) = min{h(p), H}, and choose H > 1 so large that by (1.7)
and the Levi theorem,

[ g0y ds < [ hu(p) dp. (21)

Form =1,2,..., define

fu(x,2,p) = n(%)f(x,z,p) Lt

mH '
where
n € C35(R"), 0<n<l
(P
1, Ipl <1
e {o, Ipl> 2.

Then by using (1.3), (1.4), and (2.1) f,, satisfies the conditions

0<fu.(x,z,p) <pm,(lz) =1+ sup{f(x, Izl, p) lx € Q,lpl < Zm}

(2.2)

—fn(x,z,p)sign z < f,.(x, =M, p) < 5’(2{#, [zl > M (2.3)
1

fﬂ(g(X) + ;) de < [ hu(p)dp. (2.4)

for sufficiently large m.
Now we assume without loss of generality that ¢ is extended to all of R”
and is contained in C**(R"). Consider the regularized problem

det D?u = f,,(x,u, Du), in Q,, (2.5)
u=g¢,(x), ondsQ,, (2.6)

where {Q,} and {¢,} are, respectively, a sequence of strictly convex
domains and C* functions in R” such that

QcQ,, le,lczsa,) <C, m=12,...,
Q, —Q, ||€Dm - €D||c2(m) -0, as m — o,

From (2.2), (2.3), (2.4), and the existence theorem [15, Theorem 17.23], it
follows that the problem (2.5), (2.6) always admits a unique convex solution
u, € C3Q,).
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To prove that {u,,} contains a converging subsequence, and the limit
function u is the C**/3(Q) N C**(Q) solution of the problem (1.1), (1.2),
we need to establish the C1/3(Q,) and C*(Q,) estimates of the
approximate solution u,,, which are independent of m.

For simplicity, in estimating u,, we shall omit the subscript m and write
u, f, ¢, Q in place of u,,, f,, ¢,, {,,; denote by C the positive constants,
depending on only n, g, h, M, N, «, B, u, Q, and Q’; and adopt the
summation convention; i.e., the repeated indices indicate summation from
1to n.

Our next step is to present the Cl-estimates. We give the outline of
these estimates for sufficiently large m here for completeness.

THEOREM 2.1.

suplul < C. (2.7)
Q

Proof. The inequalities (2.3), (2.4) and the maximum principle [15,
Theorem 17.4] enable us to get at once the bound for u.

THEOREM 2.2.

sup|Dul < C. (2.8)
Q

Proof.  The convexity of u guarantees that | Du| attains its maximum on
dQ and % < C on 4Q, where v is the unit interior normal to 9Q. The

lower bound for 2+ follows from the inequality

)%, (x.p) ENXR",

1
f(x e(x),p) < 0 + pd?(x)(1+1pl*

For details, refer to [12]. Combining D'u = D'¢ on d{) completes the
proof of Theorem 2.2, where D’ is the tangential boundary gradient
operator.

3. C*/3 ESTIMATES
In this section we derive the Hdlder gradient estimates of the solution to
the problem (2.5), (2.6) for sufficiently large m. We write Eq. (2.5) in the

form

logdet D?u = log f(x,u, Du).
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Its differentiation gives

- 1
u'D;u = ?(ka + f.Dyu +fpiDl-ku), (3.2)

for k = 1,2,...,n, where [u] denotes the inverse of D?u. It follows from
Eqg. (2.5) that

I |-

FYm = (det[u])”" < Y (32)
i=1

Since f¥/" € Ct1(Q’ X R! X R"), we have by virtue of [16, Lemma 1.7.1]

1/2

|D(fl/n)| < C(fl/n)

1
_|fx’fz7fp|SCf71/2n' (33)

f
Using condition (1.5), we obtain
f(y,u(y), Du(x)) =0

for y € 9Q, |x — y| = d(x), and
1
f(x,u, Du) < C(Ix —yl+lu(x) —u(y)l + —
Cld ! N 3.4
< ((x)+Z), X EN. (3.4)

Without loss of generality we may assume that ¢(x) and v(x) have C*
extensions on (), continuously denoted by ¢(x) and v(x). Let 7(x) be the
orthonormal vector field to v(x). First we give the following result.

LEMMA 3.1.

du e a
‘E(X)—E(X) < Cd(x),  xel. (3)

Proof.  Suppose the origin is on the boundary and the x, axis is the
interior normal at 0. It suffices to prove

‘c?u 0 A 0 C
— (0’ - — (0’ < .
(0x,) = So(0x,)| < C,
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For A > 1and ¢ € (0,1), set

1 5 d
w(x) = —(Ax, —Ixl*) = —(u — ¢)(x)
& JT
as the auxiliary function in Q_ = Q N {x, < &}. Since Q is strictly convex,
there exists some positive constant ¢, such that
e=x, > colxlz, onQ,,

for sufficiently small ¢. Hence we can choose A, independent of &, so
large that

1 2 1 2
w= —(Axn—lxl )2 —(Acy — D)Ix|* = 0, on dQ N 4Q,,
&£ &

1 d 1
w=—(Ade—Ixl’)— —(u—9¢)24———-C=0, onQNJIQ,.
£ or Co

From (3.1)—(3.4), we infer that

i —
u'’D;w

—2divr — u'/
or

de
D;;7Dyu —Dij(—)

1 do
_? T fx+fz& f‘ Dt(g) DlTkau
1 n n ) % n )
<—|-2Yd"+Cl v [+C| Lu"+1
€ i=1 i=1 i=1
1 C
s(C——)Zu”Jr—
el &
1 , C
arfe- )
& &

if £ is small enough and m is sufficiently large.
An application of the maximum principle gives w > 0 in _. Therefore

J A _
—(u - ¢) < —x,, in Q,.
oT &

In a similar fashion we can obtain the lower estimate.
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Now we show that 2* is Lipschitz equicontinuous on ().

v

LEMMA 3.2.

u u
—(x) - — ()| <Clx—yl,  x,ye€I. (3.6)
v v

Proof. From (3.5), we see

< Clx — x|

J J
‘;(u —¢)(x) - E(u - ¢)(X)
for x € Q, x € 9Q, and |x — x| = d(x). Thus

d%u

ovorT

< C, on d().

By virtue of the Mean Value Theorem, for x, y € 9Q, there is &£ € 9Q,
such that

< Clx —yl.

20 - 20| = o) -

This completes the proof of the lemma.
Next we present the boundary Holder estimate for 4*.

LEMMA 3.3.

<Clx—yl”?* xeQ,yedQ. (3.7)

du u
— () = —(¥)

Proof.  There is no loss of generality in assuming that y = 0, the x, axis
is the interior normal at 0, and D% > ¢, for some ¢, > 0. We consider
the auxiliary function in Q_, = Q N {x, < &},

u u
w(x) =A(u — ¢)(x) + Bxy/? — 81/2[E(x) - E(O) ,

where A, B > 1and ¢ € (0, 1) are the positive constants to be determined.
On 4Q, N 99, by (3.6)

u u
w = BxY/? — 81/2[&— — (9—(0)} > Bx}/* — Clx| > (B - C)x;/* > 0,
14 14
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if B>C.On dQ,nNQ,
w=A(u — ¢) + Begl/? — 81/2[— - —(0)

> (B — CAsY? — C)el/2 > 0,

B 2
<|—|. B>2c
‘ (ZCA) ¢

By (3.1)—(3.4), a direct calculation yields
T

—Dw
f

i —
u''D;w

. B
=A(l’l _ uljDij¢) _ Z)6;3/2unn

1 B
_?I:Afpl-Di(u - @)+ _x;l/zf ]

y 1 du
- 81/2[2 divv + u'D;;v, Dyu + ?(V'fx +fZE —fpiDinDku)}

n

y .

12 "~ 2n

—co  ut+ Cf?
i=1

n
+ Cgl/z( Z uii +f1/2n)
i=1

<A + BCx, 1/3f-1/2n

AfY/2" + B

fl/n 172
=8

< (—cod + Ce¥?) Y ut + Cf "
i=1

fl/n 172
=

n
Zuii_‘_cffl/n Afl/Zn + B

nc
- 70 + Cfl/z”) + BC]

1 1/2n
A(—CO+C(3+—) + BC

m
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co A\ 1 cp \M/2n 2BC
e<(—), g+—<(—) , A> .
2C m 2C Co
Here we have used the fact that f in the term f*/” /x , which is not f,,
satisfies
f(x,u(x),p) =0, (x,p) € 90 X R",
and f¥" e C*Y(Q x R' X R").
By the maximum principle we have that w > 0 on Q_. This implies that
du du 12
(1) = —(0) < e V2 A(u — @)(x) + Bx/?] < Clx|"2.
14 14

The lower estimate follows from a similar argument.
After having proved the above three lemmas, we can deduce the global
Holder estimates for Du.

THEOREM 3.4.

| Du( x) —Du(y)lsCIx—yIl/3, x,y€Q. (3.8)
Proof. Let x,y € Q,0<|x —yl< %, and d(x) < d(y). The proof of
the theorem is divided into two cases.

Case 1. |x —y|** > d(x). There exists a point ¥ € dQ with d(x) =

|x — x|. From (3.7) and

d(y) <ly—xl<ly — x|+ |x =% < 2lx — y[*?,

it is easy to see that

2= 2| | - 2+
(0 = )| <50 = (@)

du Ju
— ) = — (%)

< C(lx — %7 + Iy —x?)

< Clx —y|"?.
By (3.5) we have
u u u de
—- () - E(Y)‘ S‘E(x) - - ()

do Jo
5 () - ;(Y)‘

+ 20 - 2]

< Cld(x) +|x =yl +d(y)]

< Clx —yI”*.

Hence (3.8) holds in this case.
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Case 2. |x —y|*’® < d(x). By means of the interior estimates for the
second derivatives [13],

|D?u( x€Q, (3.9)

x)| < m,
and

d(x + (1 —t)y) >d(x) —l(x + (1 —1)y) — x]
2/3

v

lx — |77 = |x =yl

Hx —yl”®,  te]0,1],

%

it follows that

|Du(x) — Du(y)| =‘fOlD2u(tx + (1 —=t)y) (x—y)dt

Clx — vyl
< fl AN
od(x+(1—1)y)
< Clx —yI"?.

So far we have proved Theorem 3.4.

4. THE PROOF OF THEOREM 1.1

The estimates (2.7), (2.8), (3.8), and (3.9) tell us that the solution u,, of
the regularized problem (2.5), (2.6) is uniformly bounded in C**/3(Q,) N
Cct'(Q,,). Consequently there is a subsequence of {u,} such that it
converges in CX(Q) to u € C*¥3(Q) N CHY(Q). It is not difficult to get
that u is the unique convex solution of the problem (1.1), (1.2). u €
C“(Qf) follows from the regularity theorem in [17].

To conclude the paper we point out two counterexamples to explain the
conditions in Theorem 1.1.

The maximum global smoothness possible for the solution u in Theorem
1.1 is C*/2 because of the following.

EXAMPLE 4.1. In the C”* domain Q = {x € R"| |x| < 1}, the convex
function u(x) = (1 — x,)¥? € C*1/2(Q) satisfies the equation det D?u =
0 and the boundary condition u = ¢(x) € C*¥(9Q). But u is not in
CcL1/2+2(Q) for any & > 0.

On the other hand, the smoothness of the boundary data ¢ € C%1(9Q)
is the minimum smoothness possible for the global C*1/2 solution of the
problem (1.1), (1.2), as shown in the following example.
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ExAMPLE 4.2. Let Q c R? be the unit ball centered at (0, 1), 6 € (0, 3),

3-26

o(x, y) = x|
CZ,l—ZS(&Q).
Suppose u is the viscosity solution to the problem

det D*u =0, in Q, u=¢(x,y), onaQ.
Let
v=(2y)Y°7° +y2,
W= 8(x2y1/2—3 + 2y3/2_5).
Then
det D°w = 26%(3 — 8)(53 — 8)y 1 72°(2y —x*) =0

= det D%u = det D?v, in Q.

Fix & > 0 small such that
w < dey¥/?7°% < 43C((x2)3/2_6 +y2)

VT yr =y, on 49.

IA

¢ <(2y)

By the definition of viscosity solution [17],

26y P <w<u<v<Cy¥?%  onQ.

This shows that u does not belong to C/2(Q).
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