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Abstract. In this paper, we investigate the asymptotic behavior of local so-
lutions for the semilinear elliptic system −∆u = |u|p−1u with boundary iso-

lated singularity, where 1 < p < n+2
n−2

, n ≥ 2 and u is a C2 nonnegative

vector-valued function defined on the half space. This work generalizes the

correspondence results of Bidaut-Véron-Ponce-Véron on the scalar case, and
Ghergu-Kim-Shahgholian on the internal singularity case.

1. Introduction. The semilinear elliptic system

−∆u = |u|p−1u (1.1)

has attracted a lot of attention, where ∆ :=
∑n
i=1

∂2

∂x2
i

is the Laplace operator with

n ≥ 2. u := (u1, u2, · · · , um) is a nonnegative vector-valued function defined on a
domain in Rn, m ≥ 1, and p > 1. Now coupled systems of nonlinear Schrödinger
equations like (1.1) are parts of several important branches of mathematical physics.
They appear in the Hartree-Fock theory for Bose-Einstein double condensates, the
fiber-optic theory, the langmuir waves theory for plasma physics, and in studying
the behavior of deep water waves and freak waves in the ocean. A general reference
in book form on such systems and their role in physics is by Ablowitz-Prinari-
Trubatch [1]. Our interests is to obtain the asymptotic behavior of local solutions
near the boundary singularity for the semilinear elliptic systems (1.1).

The corresponding internal isolated singularity for the systems had been very
well understood. It is worth mentioning that the classification of the entire so-
lutions plays an important part in the study of the internal isolated singularity.
Using the method of moving spheres, Druet-Hebey-Vetóis [13] had proved that any
nonnegative C2 solutions of the strongly coupled critical elliptic system

−∆u = |u|
4

n−2u in Rn,

is of the form u = uc, where c ∈ S+ := {θ = (θ1, θ2, · · · , θm) ∈ Sm−1 : θi ≥ 0, i =
1, 2, · · · ,m}, Sm−1 is the unit sphere in Rm, and u is the positive solution of the
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scalar Yamabe equations

−∆u = u
n+2
n−2 in Rn.

Caju-do Ó-Silva Santos [9] obtained that if u ∈ C2(Rn\{0}) is the positive solution
of

−∆u = |u|
4

n−2u in Rn\{0},

then u = uc, where c ∈ S+, and u is a positive solution of

−∆u = u
n+2
n−2 in Rn\{0}.

Recently, Ghergu-Kim-Shahgholian [14] obtained that u = 0 is the only nonneg-
ative C2 solution of

−∆u = |u|p−1u in Rn

for 1 < p < n+2
n−2 . Furthermore, they also classified the solutions in the punctured

space, and proved that if u ∈ C2(Rn\{0}) is the positive solutions of

−∆u = |u|p−1u in Rn\{0},

with lim supx→0 |u(x)| = +∞, then u is radially symmetric.
In the same paper [14], they derived the priori estimates that there exists a

constant C depending only on n, m such that

|u(x)| ≤ C|x|−
2
p−1 near x = 0,

for the local positive solutions in C2(B1\{0}) of

−∆u = |u|p−1u in B1\{0},

where B1 := {x ∈ Rn : |x| < 1}, 1 < p ≤ n+2
n−2 . And they got the asymptotic radial

symmetry,

u(x) = (1 +O(|x|))u(|x|) near x = 0,

where u(r) is the average of u over ∂Br. Utilizing the classification of solutions in
the punctured space and the above asymptotic radial symmetry, they further studied
in [14] the exact asymptotic behavior of local solutions around the singularity. In
precise, either u can be continuously extended at the origin, or there exists a lower
bound around the origin.

Especially, for the internal isolated singularity of the scalar case, see [3, 8, 16,
20, 22]. See also Li [21] and Han-Li-Teixeira [19] for conformally invariant fully
nonlinear elliptic equations. The Sobolev critical exponent case p = n+2

n−2 is of
particular interest, because the equation connects to the Yamabe problem and the
conformal invariance, which leads to a richer isolated singularity structure.

Another motivation stems from that the scalar case of system (1.1) with a bound-
ary singularity had been considered by a series of seminal papers. The authors
proved in [10, 11, 18] respectively that the nonexistence of positive bounded solu-
tions in C2(Rn+) ∩ C(Rn+) for{−∆u = up in Rn+,

u = 0 on ∂Rn+,

where Rn+ stands for the half space and p ≥ 1. Xiong lately removed in [25] the
condition on boundness of the solutions. Based on the classification of the solution
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on the half space, the asymptotic behavior of the positive singular solutions in

C2(B+
1 ) ∩ C(B+

1 \{0}) for{
−∆u = up in B+

1 ,

u = 0 on ∂′B+
1 \{0}

has been established by many works, where B+
1 := B1 ∩ Rn+ and ∂′B+

1 := B+
1 ∩

∂Rn+. See Bidaut-Véron-Vivier [6] for 1 < p < n+1
n−1 , Bidaut-Véron-Ponce-Véron

[4, 5] for n+1
n−1 ≤ p < n+2

n−2 and Xiong [25] for p = n+2
n−2 . Under a blow up rate

assumption: |x|
2
p−1u(x) is bounded in B+

1 , then Bidaut-Véron-Ponce-Véron [4, 5]
obtained refined asymptotic behaviors for the supercritical case n+2

n−2 < p < n+1
n−3 .

We refer to [4] and references therein for related results on boundary singularity.
The fact that the exponent n+1

n−1 corresponds to n
n−2 for the internal singularity was

discovered by Brézis-Turner [7].
In the present paper, our primary interest is to analyze the behavior of the

singular positive solutions in C2(B+
1 )∩C(B+

1 \{0}) for the semilinear elliptic system
with Dirichlet boundary value conditions{

−∆u = |u|p−1u in B+
1 ,

u = 0 on ∂′B+
1 \{0},

(1.2)

where u := (u1, u2, · · · , um), m ≥ 1 and p > 1.
Via the method of moving spheres, we first classify the solutions on the half

space, which will be used in the blow up analysis and is consistent with the work
of [10, 11, 18].

Theorem 1.1. Let 1 < p ≤ n+2
n−2 , n ≥ 3 and u ∈ C2(Rn+)∩C(Rn+) be a nonnegative

solution of {
−∆u = |u|p−1u in Rn+,
u = 0 on ∂Rn+,

(1.3)

then u = 0.

The description of the boundary behavior of positive solutions of (1.2) is greatly
helped by using a specific separable solutions of the same equation. This was early
performed by Gmira-Véron [17] in 1991, and recently Porretta-Véron [24] also use
the method for quasilinear Lane-Emden equations. Motivated by these, our next
work is to look for the special positive solutions in C2(Rn+) ∩ C(Rn+\{0}) for{

−∆u = |u|p−1u in Rn+,
u = 0 on ∂Rn+\{0}

(1.4)

with the form

u = |x|−
2
p−1w

(
x

|x|

)
.

By a direct calculation, w ∈ C2(Sn−1
+ ) ∩ C(Sn−1

+ ) must satisfy{
−∆sw = ln,pw + |w|p−1w in Sn−1

+ ,

w = 0 on ∂Sn−1
+ ,

(1.5)

where ∆s denotes the Laplace-Beltrami operator in the unit sphere Sn−1, Sn−1
+ :=

Sn−1 ∩ Rn+, and
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ln,p =
2(n− p(n− 2))

(p− 1)2
.

Indeed, we need to obtain the existence of solutions for the Dirichlet problem (1.5)
on semisphere. On the technical level, we shall transform (1.5) to a similar problem
in an Euclidean space by stereographic projection. Inspired by the result of [14],
we shall obtain a similar description Theorem 1.2 in this case, which is consistent
with the work of [4].

Theorem 1.2. (i) Let 1 < p ≤ n+1
n−1 for n ≥ 2; and let p = n+1

n−3 for n ≥ 4, then

(1.5) admits no positive solution.
(ii) Let n+1

n−1 < p ≤ n+3
n−1 , then (1.5) admits positive solution of the form w := wc,

where c ∈ S+, and w is the positive solution of{
−∆sw = ln,pw + wp in Sn−1

+ ,

w = 0 on ∂Sn−1
+ .

(1.6)

Remark that for the case m = 1, (1.5) admits a unique positive solution for
n+1
n−1 < p < n+1

n−3 , and no positive solution for 1 < p ≤ n+1
n−1 or p ≥ n+1

n−3 . So far, we

have no idea whether this conclusion holds or not for m ≥ 2, p > n+3
n−1 .

We next establish a universal upper estimate near the singularity for (1.2) using
doubling property (see [23, Lemma 5.1]). It is consistent with the work of [4] for
the equation.

Theorem 1.3. Let 1 < p < n+2
n−2 and u be a positive solution of (1.2), then there

exists a positive constant C independent of the solution such that

|u(x)| ≤ C|x|−
2
p−1 near x = 0. (1.7)

In the upcoming sections of this paper, we focus on the exact asymptotic behavior
of the local solutions of (1.2) for the subcritical case 1 < p < n+2

n−2 , which generalizes

the work of [4] for the equation and [14] for internal isolated singularity of the same
systems. In [14], the upper bound and the classification of solutions in Rn\{0} play
a key role in the asymptotic analysis. Next, we devote to studying the lower critical
exponent case p = n+1

n−1 . Due to the multiplicity of components |u|p−1u, the lower

critical exponent case p = n
n−2 is very different from the situation n

n−2 < p < n+2
n−2

for the internal isolated singularity. To overcome this problem, the authors in [14]
first give a more precise upper estimates and then obtain a asymptotic near the
singularity. The similar problem also happens for the scalar case of system (1.1)
with a boundary singularity. Motivated by the precise work, we also use a similar
method to obtain the following theorem.

Theorem 1.4. Let p = n+1
n−1 and u be a positive solution of (1.2), then either u

can be continuously extended at 0, or

lim
x→0

∣∣∣∣∣|x|n−1

(
log

1

|x|

)n−1
2

u(x)− kxn
|x|

ẽ

∣∣∣∣∣ = 0, (1.8)

where ẽ := (1, 1, · · · , 1) ∈ Rm and k is a positive constant depending only on n.

As for the case 1 < p < n+1
n−1 , we study a more general case involving boundary

measures in a subsequent work by a very different method.
We note that u ∈ C2(Rn+) ∩ C(Rn+) if ui ∈ C2(Rn+) ∩ C(Rn+) for any i ∈

{1, 2, · · · ,m}, m ≥ 1, and u is nonnegative if ui is nonnegative for any i ∈
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{1, 2, · · · ,m}. In a word, we say a vector u has some properties means that every
component of u has the same properties. Moreover, if for a fixed i ∈ {1, 2, · · · ,m},
ui vanishes somewhere, then since ui is super-harmonic and nonnegative, we know
that ui vanishes everywhere on Rn+. As a result, if u 6≡ 0, then there is k ∈
{1, 2, · · · ,m} such that after suitable rearrangement in the components of u, ui > 0
if and only if i = 1, 2, · · · , k. Without loss of generality, in our paper, u is nonneg-
ative either ui is positive for any i ∈ {1, 2, · · · ,m} or u = 0.

Our paper is organized as follows. Section 2 includes one proposition to prove
Theorem 1.1. Section 3 is devoted to obtain the existence of solutions for (1.5).
The upper bound for solutions of (1.2) will be provided in Section 4. In Section 5,
we shall show the removability under some blow up assumption. Finally, we obtain
the asymptotic symmetry in Section 6, including Theorem 1.4.

2. Nonexistence of entire solutions. We now give the following proposition,
which is about the monotonicity of positive solutions, that is, the positive solutions
is monotone increasing in xn direction.

Proposition 2.1. Let u be a positive solution of (1.3), then ∂u
∂xn

> 0.

Then we can start to prove Theorem 1.1, and we shall give a proof for Proposition
2.1 later.

Proof of Theorem 1.1. Proposition 2.1 implies that the monotonicity of u with re-
spect to the variable xn. If we also have proved that u is bounded in Rn+, then

u∞(x′) := lim
xn→+∞

u(x′, xn) > u(x′, 0) = 0.

Moreover, the positive vector-valued function u∞ ∈ C2(Rn−1) satisfies

−∆u∞ = |u∞|p−1u∞ in Rn−1.

Together with 1 < p ≤ n+2
n−2 <

n+1
n−3 and the Liouville Theorem [14], we derive that

u∞ = 0. It is a contradiction. Then we complete the proof of Theorem 1.1.
Now, we shall prove that u is bounded in Rn+. If not, then there exist xk ∈ Rn+,

k = 1, 2, · · · , such that

|u(xk)| → +∞ as k → +∞.

By Proposition 2.1 the monotonicity of u in the xn direction, we may assume that

(xk)n →∞ as k → +∞.

Consider

vk(x) := (1− |x− xk|)
2
p−1 |u(x)| in B1(xk),

Let |xk − x̄k| < 1 satisfy

vk(xk) = max
|x−xk|≤1

vk(x),

and denote

µk :=
1

2
(1− |xk − x̄k|).

Then

0 < 2µk ≤ 1 and 1− |x− x̄k| ≥ µk in Bµk(xk). (2.1)

By the definition of vk, we have

(2µk)
2
p−1 |u(xk)| = vk(xk) ≥ vk(x) ≥ (µk)

2
p−1 |u(x)| in Bµk(xk).
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Thus, we have

2
2
p−1 |u(xk)| ≥ |u(x)| in Bµk(xk). (2.2)

We also have

(2µk)
2
p−1 |u(xk)| = vk(xk) ≥ vk(xk) = |u(xk)| → +∞ as k → +∞.

Now, consider

wk(y) :=
1

|u(xk)|
u

(
xk +

y

|u(xk)| p−1
2

)
in BRk ,

where Rk := µk|u(xk)|
p−1
2 → +∞ as k → +∞. It follows from (2.2) that

|wk(0)| = 1, |wk| ≤ 2
2
p−1 in BRk . (2.3)

Using the equations satisfied by u, a direct calculation gives that

−∆wk = |wk|p−1wk in BRk . (2.4)

By (2.3), (2.4) and standard elliptic estimates, after extracting a subsequence, we
have

wk → w∞ in C2
loc(Rn),

and conclude that w∞ is a classical solution of

−∆w∞ = |w∞|p−1w∞ in Rn

and |w∞(0)| = 1. By the Liouville Theorem [14], we have w∞ = 0 for 1 < p < n+2
n−2 ,

and for the critical case p = n+2
n−2 , we obtain that

w∞ = (n(n− 2))
n−2
4

(
r

r2 + |x− z|2

)n−2
2

e

for some z ∈ Rn, r ≥ 0, and a unit nonnegative vector e ∈ Rm. But we know from
the monotonicity of wk that w∞ must be non-decreasing in xn direction. This is a
contradiction and the claim is proved.

For any R > 0, λ > 0, and xR := (0, 0, · · · , 0,−R), define

uxR,λ(y) :=

(
λ

|y − xR|

)n−2

u

(
xR +

λ2(y − xR)

|y − xR|2

)
in Bλ(xR),

the Kelvin transformation of u with respect to the ball Bλ(xR), where Bλ(xR) :=
{x ∈ Rn : |x− xR| < λ}. Next we shall prove the monotonicity, that is Proposition
2.1.

Proof of Proposition 2.1. Suppose that for any λ > R, we have

u ≤ uxR,λ in B+
λ (xR), (2.5)

where B+
λ (xR) := Bλ(xR) ∩ Rn+. Then for any y ∈ Rn+, and every a > 0, it follows

that
u(y) ≤ uxR,R+yn+a/2(y).

Let R→ +∞, we obtain by the above inequality that

u(y) ≤ lim
R→+∞

uxR,R+yn+a/2(y) = u(y1, y2, · · · , yn−1, yn + a),

which implies that
∂u

∂xn
≥ 0 in Rn+.
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It is a straightforward computation to show that

−∆

(
∂u

∂xn

)
= (p− 1)|u|p−3u · ∂u

∂xn
u + |u|p−1 ∂u

∂xn
in Rn+.

Applying the Strong Maximum principle, we conclude that ∂u
∂xn

is always zero or

strictly positive in Rn+. If ∂u
∂xn

≡ 0, together with the boundary condition, we
conclude that u ≡ 0. It is a contradiction with the positive of the solution. Then
we finish the proof.

In order to prove Proposition 2.1, it suffices to obtain (2.5). For the purpose, we
introduce

λ̄(R) := sup
{
µ > R

∣∣ u ≤ uxR,λ in B+
λ (xR), ∀ λ ∈ (R,µ)

}
.

First, we need the following lemma to guarantee that the set over which we are
taking the supremum is non-empty such that λ̄(R) is well defined.

Lemma 2.2. For R > 0 there exists λ0(R) ∈ (R, 2R) such that for any λ ∈
(R, λ0(R)),

u ≤ uxR,λ in B+
λ (xR). (2.6)

Next we shall prove

Lemma 2.3. λ̄(R) = +∞ for all R > 0.

Equivalent to (2.5), the following job gives the proof of Lemma 2.2 and Lemma
2.3.

Proof of Lemma 2.2. A direct calculation gives that

∆uxR,λ =

(
λ

|y − xR|

)n+2

∆u

(
xR +

λ2(y − xR)

|y − xR|2

)
,

−∆uxR,λ =

(
λ

|y − xR|

)n+2−p(n−2)

|uxR,λ|p−1uxR,λ,

−∆(u− uxR,λ) = |u|p−1u−
(

λ

|y − xR|

)n+2−p(n−2)

|uxR,λ|p−1uxR,λ.

We will make use of the narrow domain technique to conclude (2.6). Denote

wλ := uxR,λ − u, w−λ := max{0,−wλ}.

Multiplying both sides of the equation by w−λ and integrating by parts in B+
λ (xR),

it follows that∫
B+
λ (xR)

|∇w−λ |
2

=

∫
B+
λ (xR)

(
|u|p−1u−

(
λ

|y − xR|

)n+2−p(n−2)

|uxR,λ|p−1uxR,λ

)
·w−λ

≤
∫
B+
λ (xR)

(|u|p−1u− |uxR,λ|p−1uxR,λ) ·w−λ

=

∫
B+
λ (xR)

|u|p−1|w−λ |
2 +

∫
B+
λ (xR)

(|u|p−1 − |uxR,λ|p−1)uxR,λ ·w−λ

= : I1 + I2.

(2.7)
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For any λ ∈ (R, 2R) and y ∈ B+
λ (xR), we have∣∣∣∣xR +

λ2(y − xR)

|y − xR|2

∣∣∣∣ ≤ |xR|+ λ2

R
≤ 5R.

With the help of Hölder inequality and Sobolev inequality, we obtain that

I1 =

∫
B+
λ (xR)

|u|p−1|w−λ |
2

≤ sup
B+

5R

|u|p−1|B+
λ (xR)| 2n

(∫
B+
λ (xR)

∣∣w−λ ∣∣ 2n
n−2

)n−2
n

≤S(n) sup
B+

5R

|u|p−1|B+
λ (xR)| 2n

∫
B+
λ (xR)

|∇w−λ |
2,

where S(n) is a constant depending only on n. By the Mean Value Theorem, there
exists a θ ∈ (0, 1) such that

|u|p−1 − |uxR,λ|p−1 =(p− 1)|ũ|p−3ũ · (u− uxR,λ)

≤(p− 1)|u|p−2|w−λ |,

where ũ := θu + (1− θ)uxR,λ. Using the Hölder inequality and Sobolev inequality
again,

I2 ≤(p− 1)

∫
B+
λ (xR)

|u|p−1|w−λ |
2

≤(p− 1)S(n) sup
B+

5R

|u|p−1|B+
λ (xR)| 2n

∫
B+
λ (xR)

|∇w−λ |
2.

From the above argument, it follows that (2.7) implies∫
B+
λ (xR)

|∇w−λ |
2 ≤ S(n)p sup

B+
5R

|u|p−1|B+
λ (xR)| 2n

∫
B+
λ (xR)

|∇w−λ |
2.

Choose λ0(R) > R but very close to R, then |B+
λ (xR)| 2n is small such that

S(n)p sup
B+

5R

|u|p−1|B+
λ (xR)| 2n ≤ 1

2
.

It follows that

|∇w−λ | = 0 in B+
λ (xR).

Together with

w−λ = 0 on ∂B+
λ (xR),

we conclude that

w−λ = 0 in B+
λ (xR).

Hence, we complete the proof.

Proof of Lemma 2.3. We establish Lemma 2.3 by contradiction. If λ̄(R) < +∞
for some R, we shall prove that there exists a positive constant ε such that for all
λ ∈ (λ̄(R), λ̄(R) + ε),

u ≤ uxR,λ in B+
λ (xR), (2.8)

which contradicts with the definition of λ̄(R).
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It is clearly to see by the definition of λ̄(R) that

u ≤ uxR,λ̄(R) in B+
λ̄(R)

(xR).

Combining with

u < uxR,λ̄(R) on ∂B+
λ̄(R)

(xR) ∩ ∂Rn+,

we have, by the Strong Maximum principle,

u < uxR,λ̄(R) in B+
λ̄(R)

(xR).

In order to obtain (2.8), we divided the region B+
λ (xR) into two parts,

K1 : =
{
x ∈ B+

λ̄(R)
(xR)

∣∣dist(x, ∂B+
λ̄(R)

(xR)) ≥ δ
}

;

K2 : = B+
λ (xR)\K1,

where δ is a small positive constant will be fixed later.
Since K1 is compact,

bi := min
K1

(ui,xR,λ̄(R) − ui) > 0.

From the fact that the uniform continuity of u on compact sets, we can choose ε < δ
sufficient small such that for any λ ∈ (λ̄(R), λ̄(R) + ε),

uxR,λ − uxR,λ̄(R) ≥ −
b

2
in K1,

where b := (b1, b2, · · · , bm). Consequently, in view of the above argument, we obtain
that for any λ ∈ (λ̄(R), λ̄(R) + ε),

uxR,λ − u ≥ b

2
in K1.

Now let us focus on the region K2. Using the narrow domain technique as that in
Lemma 2.2, we can fix the value of δ small such that for any λ ∈ (λ̄(R), λ̄(R) + ε),

uxR,λ ≥ u in K2.

Together with the above argument, we can see that the moving spheres procedure
may continue beyond λ̄(R) where we reach a contradiction. And we complete the
proof of Lemma 2.3.

3. Existence of solutions of the PDES in Sn−1
+ . First, by applying stereo-

graphic projection, the upper semisphere Sn−1
+ is mapped into the unit ball of

Rn−1. Then as for (1.5), the Laplace-Beltrami operator in Sn−1
+ can be reduced to

the Euclidean Laplace operator, which is convenient to study. Then, we shall show
that

w = wc,

where w is a positive solution of (1.6), c ∈ S+. Then we can complete the proof.
For the purpose, let us summarize some well-known properties of this transfor-

mation: For any point ξ ∈ Sn−1\{S}, S is the south pole. Let gξ be the straight
line through the points ξ and S, and let gξ ∩{X ∈ Rn|Xn = 0} := (x, 0), x ∈ Rn−1.
The mapping ξ → x is conformal and satisfies:

ξ =

(
2x

1 + |x|2
,

1− |x|2

1 + |x|2

)
.
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Proof of Theorem 1.2. By applying stereographic projection ξ 7→ x, Sn−1
+ is trans-

formed into B1 ⊂ Rn−1, and ∆s is transformed into

Lv :=
1

4
(1 + r2)2∆v +

1

8
(n− 3)(1 + r2)3∇

(
2

1 + r2

)
· ∇v,

where ∆ now is the Euclidean Laplace operator in Rn−1. Suppose w is the solution
of (1.5) and set

W(x) :=
w(ξ)

(1 + r2)(n−3)/2
,

it follows that

−∆W =
(n− 1)(n− 3) + 4ln,p

(1 + r2)2
W +

4|W|p−1W

(1 + r2)(n+1−p(n−3))/2
in B1. (3.1)

Then we can obtain that W(x) = W(|x|), and Wr(x) ≤ 0 using the method of
moving plane as [15], which turned out to be a very powerful technique in proving
symmetry results for positive solutions of semilinear elliptic problems in symmetric
domains. Then the symmetry proofs in this work depend on a number of technical
steps. In order to guarantee the method of moving plane is effective, we need that
the right-hand side of (3.1) is non-increasing in r. It is sufficient that

(n− 1)(n− 3) + 4ln,p = (n− 1)(n− 3) +
8(n− p(n− 2))

(p− 1)2
≥ 0,

n+ 1− p(n− 3) ≥ 0.

That is, 1 < p ≤ n+3
n−1 for n ≥ 2; and p = n+1

n−3 for n ≥ 4.
Define

t := − ln |x| = − ln r and U(t) := |x|
n−3
2 W(x),

it follows that

−U′′ + (n− 3)2

4
U =

(n− 1)(n− 3) + 4ln,p
(r−1 + r)2

U +
4|U|p−1U

(r−1 + r)(n+1−p(n−3))/2
in R+.

In particular, for any i ∈ {1, 2, · · · ,m}, we have

−U ′′i +
(n− 3)2

4
Ui =

(n− 1)(n− 3) + 4ln,p
(r−1 + r)2

Ui +
4|U|p−1Ui

(r−1 + r)(n+1−p(n−3))/2
in R+.

Hence, we obtain that for any i, j ∈ {1, 2, · · · ,m},

U ′′i Uj = U ′′j Ui,

which implies that

(U ′iUj − U ′jUi)′ = 0⇒ U ′iUj − U ′jUi = c,

where c is a constant. The following we shall show that c = 0. Suppose that c 6= 0.
Without loss of generality, we can assume that c > 0. A direct calculation gives
that

−
(
Uj
Ui

)′
=
U ′iUj − U ′jUi

U2
i

=
c

U2
i

.

Since there exist a positive constant M such that |U| ≤ M , integrating from 0 to
t, we have

−
∫ t

0

(
Uj
Ui

)′
≥
∫ t

0

c

M2
.
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It follows that

−Uj(t)
Ui(t)

≥ ct

M2
− Uj(0)

Ui(0)
> 0

if t sufficiently large. It is a contradiction. Hence, from the above argument, we
have (

Uj
Ui

)′
= 0.

Therefore, we conclude that there exist constants cji such that

Uj
Ui

= cji.

Fixed any i ∈ {1, 2, · · · ,m}, define ci := (c1i, c2i, · · · , cmi), we have

U = (c1i, c2i, · · · , cmi)Ui = |ci|
(
c1i
|ci|

,
c2i
|ci|

, · · · , cmi
|ci|

)
Ui.

Back to the definition of U, we have

w = (c1i, c2i, · · · , cmi)wi = |ci|
(
c1i
|ci|

,
c2i
|ci|

, · · · , cmi
|ci|

)
wi.

Since |ci|wi is a solution of (1.6), we know by the work of [4] that if 1 < p ≤ n+1
n−1

for n ≥ 2, and p = n+1
n−3 for n ≥ 4, then (1.6) admits no positive solution; if

n ≥ 2, n+1
n−1 < p ≤ n+3

n−1 , then (1.6) admits a unique positive solution. Therefore, we
complete the proof of this theorem.

4. Proof of Theorem 1.3. To prove Theorem 1.3, we introduce two useful propo-
sitions, the first one is the doubling property [23, Lemma 5.1], and the second one
is Proposition 4.2, which plays a key role in the proof of Theorem 1.3.

Proposition 4.1. Suppose that ∅ 6= D ⊂ Σ ⊂ Rn, Σ is closed and Γ = Σ \D. Let
M : D → (0,∞) be bounded on compact subset of D. If for a fixed positive constant
k, there exists y ∈ D satisfying

M(y)dist(y,Γ) > 2k,

then there exists x ∈ D such that

M(x) ≥M(y), M(x)dist(x,Γ) > 2k,

and for all z ∈ D ∩Bk/M(x)(x),

M(z) ≤ 2M(x).

Proposition 4.2. Suppose that 1 < p < n+2
n−2 , 0 < r < 1

2 and u ∈ C2(B+
2r\B

+
r ) ∩

C(B+
2r\B+

r ) is a positive solution of{
−∆u = |u|p−1u in B+

2r\B
+
r ,

u = 0 on ∂′B+
2r \ ∂′B+

r ,
(4.1)

then there exists a positive constant C which is independent of the solution such
that

|u(x)| ≤ C[dist(x, ∂′′B+
2r ∪ ∂′′B+

r )]−
2
p−1 in B+

2r\B
+
r , (4.2)

where ∂′′B+
2r ∪ ∂′′B+

r := ∂(B+
2r\B+

r ) ∩ Rn+.
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Proof. Assume by contradiction that (4.2) is false. Then, for every integer k ≥ 1,

there exist 0 < rk <
1
2 , a solution uk of (4.1) with r = rk, and yk ∈ B+

2rk
\B+

rk such
that

|uk(yk)| > (2k)
2
p−1 [dist(yk, ∂

′′B+
2rk
∪ ∂′′B+

rk
)]−

2
p−1 in B+

2rk
\B+

rk .

Applying the previous Proposition 4.1 with

Mk(x) = |uk(x)|
p−1
2 , Dk = B+

2rk
\B+

rk , Γk = ∂′′B+
2rk
∪ ∂′′B+

rk
,

there exists xk ∈ Dk such that

Mk(xk) ≥Mk(yk), Mk(xk) > 2k[dist(xk,Γk)]−1 ≥ 2k, (4.3)

and for any z ∈ Dk and |z − xk| ≤ k/Mk(xk),

Mk(z) ≤ 2Mk(xk). (4.4)

It follows from (4.3) that for any k ∈ N+,

dist(xk,Γk) > 2k/Mk(xk), (4.5)

and
1/Mk(xk)→ 0 as k → +∞, (4.6)

Consider

wk(y) := M
−2
p−1

k (xk)uk (xk + y/Mk(xk)) in B̃k,

where B̃k := Bk ∩ {y ∈ Rn : yn > −Mk(xk)(xk)n}. Combining (4.5), we obtain

that for any y ∈ B̃k,

|xk + y/Mk(xk)− xk| = |y|/Mk(xk) ≤ k/Mk(xk) <
1

2
dist(xk,Γk),

that is,
xk + y/Mk(xk) ∈ B 1

2dist(xk,Γk)
(xk) ⊂ Dk.

Therefore, wk is well defined in B̃k and a calculation gives that wk satisfies{
−∆wk = |wk|p−1wk in B̃k,

wk = 0 on Bk ∩ {y ∈ Rn : yn = −Mk(xk)(xk)n},

and |wk(0)| = 1. Moreover, from (4.4), we find that for all y ∈ B̃k,

|uk(xk + y/Mk(xk))|
p−1
2 ≤ 2|uk(xk)|

p−1
2 = 2Mk(xk).

Since

|wk(y)|
p−1
2 =

(
|uk(xk + y/Mk(xk))|

p−1
2

)
/Mk(xk),

it implies that

|wk(y)|
p−1
2 ≤ 2Mk(xk)/Mk(xk) = 2. (4.7)

Hence, the sequence wk is uniformly bounded, it follows that −∆wk is also uni-
formly bounded. Passing to a subsequence if necessary, we may assume that either
−Mk(xk)(xk)n → −∞ or −Mk(xk)(xk)n → −c ≤ 0.

If −Mk(xk)(xk)n → −∞, from interior elliptic estimates, we have for every
q ∈ (1,∞),

‖wk‖W 2,q
loc (Rn) ≤ Cq.

Then up to a subsequences wk converges locally uniformly in Rn to some smooth
function w∞ such that w∞ satisfies

−∆w∞ = |w|p−1w∞ in Rn,
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and |w∞(0)| = 1, from the Liouville Theorem [14] that w∞ = 0, it is a contradiction.
If −Mk(xk)(xk)n → −c ≤ 0, it follows from interior-boundary elliptic estimates

that

‖wk‖W 2,q
loc ({y∈Rn:yn≥−c}) ≤ Cq.

Then up to a subsequence wk converges locally uniformly in {y ∈ Rn : yn ≥ −c} to
some smooth function w∞ such that w∞ satisfies{

−∆w∞ = |w|p−1w∞ in {y ∈ Rn : yn > −c},
w∞ = 0 on {y ∈ Rn : yn = −c},

and |w∞(0)| = 1, from the Theorem 1.1 that w∞ = 0, it is impossible. Hence, we
finish the proof.

Proof of Theorem 1.3. For any x ∈ B+
1/2, we apply Proposition 4.2 with r = 2

3 |x|.
Since dist(x, ∂′′B+

2r ∪ ∂′′B+
r ) = r

2 , we deduce that

|u(x)| ≤ C[dist(x, ∂′′B+
2r ∪ ∂′′B+

r )]−
2
p−1 = C

(r
2

)− 2
p−1

= C̃|x|−
2
p−1 .

This establishes the result.

5. Removability.

5.1. The case for p > n+1
n−1 .

Theorem 5.1. Suppose that p > n+1
n−1 , and u ∈ C2(B+

1 ) ∩C(B+
1 \{0}) is a positive

solution of (1.2). If

lim
x→0
|x|

2
p−1 |u(x)| = 0, (5.1)

then u ∈ Cα(B+
1/2) for any α ∈ (0, 1) and u(0) = 0.

Proof. In terms of spherical coordinates, we can write (1.2) asurr +
n− 1

r
ur +

1

r2
∆su + |u|p−1u = 0 in (0, 1)× Sn−1

+ ,

u = 0 on (0, 1]× ∂Sn−1
+ .

Let

t := − ln r, v(t, σ) := r
2
p−1u(r, σ). (5.2)

Moreover, v satisfiesvtt + ∆sv −
(
n− 2(p+ 1)

p− 1

)
vt + ln,pv + |v|p−1v = 0 in (0,+∞)× Sn−1

+ ,

v = 0 on (0,+∞)× ∂Sn−1
+

(5.3)
it follows by assumption (5.1) that there exists T0 > 0 such that v is bounded on
[T0,+∞) × Sn−1

+ . Then by the Agmon-Douglis-Nirenberg estimates ( see [2] ) we
have for any q ∈ (1,+∞),

‖v‖W 2,q((t−1,t+1)×Sn−1
+ ) ≤ C‖v‖Lq((t−2,t+2)×Sn−1

+ ),

where t ∈ [T0 + 3,+∞), and C depends on q but not on t. Together with v is
bounded on [T0,+∞)× Sn−1

+ , we have

‖v‖W 2,q((t−1,t+1)×Sn−1
+ ) ≤ C‖v‖L2((t−3,t+3)×Sn−1

+ ), (5.4)
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for t ∈ [T0 + 3,+∞), q is any number in (1,+∞). Multiplying both sides of the i-th
components of the system (5.3) by vi and integrating by parts in Sn−1

+ , it follows
that∫

Sn−1
+

vi

[
(vi)tt + ∆svi −

(
n− 2(p+ 1)

p− 1

)
(vi)t + ln,pvi + |v|p−1vi

]
dσ = 0.

Then in order to obtain the theorem, for any t > 0, we define

Xi(t) := ‖vi(t, ·)‖L2(Sn−1
+ ).

A direct calculation gives that for every t ∈ (0,+∞),

Xi(Xi)t =

∫
Sn−1
+

vi(vi)tdσ. (5.5)

Using Hölder’s inequality we have

|Xi(Xi)t| ≤ ‖vi(t, ·)‖L2(Sn−1
+ )‖(vi)t(t, ·)‖L2(Sn−1

+ ).

Thus,

|(Xi)t| ≤ ‖(vi)t(t, ·)‖L2(Sn−1
+ ). (5.6)

Computing the derivative with respect to t on both sides of identity (5.5), we get

(Xi)
2
t +Xi(Xi)tt =

∫
Sn−1
+

(vi)
2
tdσ +

∫
Sn−1
+

vi(vi)ttdσ

= ‖(vi)t(t, ·)‖2L2(Sn−1
+ )

+

∫
Sn−1
+

vi(vi)ttdσ.

From this identity and estimate (5.6), we deduce that

Xi(Xi)tt ≥
∫
Sn−1
+

vi(vi)ttdσ.

On the other hand, since the first eigenvalue of the Laplace-Beltrami operator −∆s

in W 1,2
0 (Sn−1

+ ) is n− 1,

(n− 1)(Xi)
2 ≤

∫
Sn−1
+

|∇σvi|2dσ = −
∫
Sn−1
+

vi∆svidσ.

The Hölder inequality gives that∫
Sn−1
+

|v|p−1v2
i ≤ (Xi)

2‖v(t, ·)‖p−1

L∞(Sn−1
+ )

.

Combining with the above estimates, we have

(Xi)tt −
(
n− 2(p+ 1)

p− 1

)
(Xi)t +

(
ln,p − n+ 1 + ‖v(t, ·)‖p−1

L∞(Sn−1
+ )

)
Xi ≥ 0. (5.7)

From the condition we have

lim
t→+∞

|v(t, ·)| = 0 uniformly in Sn−1
+ .

it follows that for a given sufficient small ε > 0 there exists t0 > T0 + 10 such that
for any t ∈ (t0,+∞),

‖v(t, ·)‖p−1

L∞(Sn−1
+ )

< ε.
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We deduce that for every t ∈ (t0,+∞),

(Xi)tt −
(
n− 2(p+ 1)

p− 1

)
(Xi)t + (ln,p − n+ 1 + ε)Xi ≥ 0. (5.8)

On the other hand, consider

Z(t) := C0e
−
(
p+1
p−1 +

√
n2−4ε−n

2

)
t
,

where 0 < ε < min
{
n2

4 ,
p+1
p−1

(
n− p+1

p−1

)}
, C0 is a positive constant C0 such that

Xi(t0) ≤ Z(t0),

and it follows that Z(t) satisfies

Ztt −
(
n− 2(p+ 1)

p− 1

)
Zt + (ln,p − n+ 1 + ε)Z = 0,

and

lim
t→+∞

Z(t) = 0.

Moreover, if ε > 0 sufficient small, the fact p > n+1
n−1 gives

ln,p − n+ 1 + ε < 0.

Hence, using the Maximum principle for Xi and Z, we obtain that for any t ∈
(t0,+∞),

Xi(t) ≤ C0e
−
(
p+1
p−1 +

√
n2−4ε−n

2

)
t
.

Applying estimates (5.4) with q > n
2 , we have

‖v‖W 2,q((t−1,t+1)×Sn−1
+ ) ≤ Ce

−
(
p+1
p−1 +

√
n2−4ε−n

2

)
t
.

The Morrey’s inequality implies that

‖v‖L∞((t−1,t+1)×Sn−1
+ ) ≤ Ce

−
(
p+1
p−1 +

√
n2−4ε−n

2

)
t
.

The estimate above implies that for |x| small,

|u| ≤ C|x|
√
n2−4ε−(n−2)

2 .

Together with ε > 0 is sufficient small, we conclude that u is Hölder continuous up
to x = 0 and u(0) = 0.

5.2. The case for p = n+1
n−1 .

Theorem 5.2. For p = n+1
n−1 , if u ∈ C2(B+

1 ) ∩C(B+
1 \{0}) is a positive solution of

(1.2) and

lim
x→0
|u(x)||x|n−1

(
log

1

|x|

)n−1
2

= 0, (5.9)

then u can be continuously extended to 0.
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Proof. Since p = n+1
n−1 , then (5.3) can be written asvtt + ∆sv + nvt + (n− 1)v + |v|

2
n−1v = 0 in (0,+∞)× Sn−1

+ ,

v = 0 on (0,+∞)× ∂Sn−1
+ ,

(5.10)

where v defined as (5.2). For any t ∈ (0,+∞), i ∈ {1, 2, · · · ,m}, let

Xi(t) := t
n−1
2 ‖vi(t, ·)‖L2(Sn−1

+ ).

Multiplying both sides of the i-th components of the system (5.10) by tn−1vi and
integrating by parts in Sn−1

+ and by the fact that

tn−1

∫
Sn−1
+

vi(vi)tdσ = Xi(Xi)t −
n− 1

2t
X2
i ,

and

tn−1

∫
Sn−1
+

vi(vi)ttdσ

≤ Xi(Xi)tt +
n2 − 1

4t2
X2
i −

n− 1

t
Xi(Xi)t,

then together with (5.9), we conclude that for any ε > 0 there exists t0 sufficiently
large such that for every t ∈ (t0,+∞),

(Xi)tt +

(
n− n− 1

t

)
(Xi)t +

1

t

(
n2 − 1

4t
− n(n− 1)

2
+ ε

)
Xi ≥ 0.

On the other hand, applying Lemma A.2 in [4] we know that one solution of the
equation

Ztt +

(
n− n− 1

t

)
Zt +

1

t

(
n2 − 1

4t
− n(n− 1)

2
+ ε

)
Z = 0

satisfies the following asymptotic behaviors as t→ +∞,

Z(t) = t
n−1
2 + ε

n e−nt(1 + o(1)).

Let ε > 0 small enough and T0 ≥ t0 large enough such that

n2 − 1

4t
− n(n− 1)

2
+ ε < 0 in [T0,+∞),

Choose a positive constant C0 ∈ R such that

Xi(T0) ≤ C0Z(T0).

Then from

Xi(t)→ 0 as t→ +∞.
Using the Maximum principle for Xi and C0Z, we deduce that for t ∈ (T0,+∞),

Xi(t) ≤ C0Z(t).

In particular, for t large,

Xi(t) ≤ C0t
n−1
2 e−(n−1)t.

By the same argument as Theorem 5.1, we conclude that u is bounded and u can
be continuously extended to 0.
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6. Asymptotic.

6.1. The case for p = n+1
n−1 . In this part, with a blow up rate assumption, we shall

show some asymptotic symmetry.

Theorem 6.1. Let p = n+1
n−1 , and u be a positive solution of (1.2). If

|x|
2
p−1 |u(x)| is bounded, (6.1)

then

lim
x→0
|x|

2
p−1 |u(x)| = 0.

Proof. From our assumption (6.1), it follows that there exists T0 > 0 such that
v is bounded [T0,+∞) × Sn−1

+ , where v is defined as (5.2) in Theorem 5.1. It
follows from the estimates (5.4) and the Morrey’s inequality that for any γ ∈ (0, 1),
t ∈ [T0 + 3,+∞),

‖v‖C1,γ((t−1,t+1)×Sn−1
+ ) ≤ C(γ).

Furthermore, we also have by elliptic estimates that

‖v‖C2,γ((t−1,t+1)×Sn−1
+ ) ≤ C(γ) (6.2)

for any γ ∈ (0, 1), t ∈ [T0+3,+∞). With the above estimates, to prove the theorem,
we first to show that

vt(t, ·)→ 0 uniformly in Sn−1
+ as t→ +∞. (6.3)

Next we can prove that

v(t, ·)→ 0 uniformly in Sn−1
+ as t→ +∞. (6.4)

As the first step, we shall show (6.3). Multiplying the system (5.3) by vt and
integrating over Sn−1

+ yields∫
Sn−1
+

vt · vttdσ +

∫
Sn−1
+

vt ·∆svdσ −
(
n− 2(p+ 1)

p− 1

)∫
Sn−1
+

|vt|2dσ

+ ln,p

∫
Sn−1
+

vt · vdσ +

∫
Sn−1
+

|v|p−1vt · vdσ = 0.

Combining vt vanishes on the boundary [T0,+∞)× ∂Sn−1
+ , we have

d

dt

∫
Sn−1
+

(
|vt|2

2
− |∇σv|

2

2
+
ln,p|v|2

2
+
|v|p+1

p+ 1

)
dσ

=

(
n− 2(p+ 1)

p− 1

)∫
Sn−1
+

|vt|2dσ.
(6.5)

Since (6.2) gives that∣∣∣∣∣
∫
Sn−1
+

(
|vt|2

2
− |∇σv|

2

2
+
ln,p|v|2

2
+
|v|p+1

p+ 1

)
dσ

∣∣∣∣∣ ≤ C in [T0 + 3,+∞)

for some constant C > 0. Hence, integrating (6.5) on (T0 + 3,+∞), we obtain∣∣∣∣∣
(
n− 2(p+ 1)

p− 1

)∫ +∞

T0+3

∫
Sn−1
+

|vt|2dσds

∣∣∣∣∣ < +∞. (6.6)
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On the other hand, since p 6= n+2
n−2 , n − 2(p+1)

p−1 6= 0, we conclude that (6.3) follows.

Indeed, by (6.2) we obtain that vt, vtt is uniformly bounded in (T0 +3,+∞)×Sn−1
+ .

It follows that there exists a constant M > 0 such that∣∣∣∣∣ ddt
∫
Sn−1
+

|vt|2dσ

∣∣∣∣∣ ≤ 2

∫
Sn−1
+

|vt||vtt|dσ ≤M

for t ∈ (T0 + 3,+∞). If (6.3) not true, for a given ε > 0 there exist a sequences
{tl} → +∞ such that

∫
Sn−1
+
|vt(tl, ·)|2dσ > ε and choose η = ε

4M such that for any

t ∈ (tl − η, tl + η),∫
Sn−1
+

|vt(t, ·)|2dσ =

∫
Sn−1
+

|vt(tl, ·)|2dσ −
∫ t

tl

d

dt

∫
Sn−1
+

|vt(t, ·)|2dσ

≥
∫
Sn−1
+

|vt(tl, ·)|2dσ −
ε

2

>
ε

2
.

We can assume that tl < tl+1 − η < tl+1 < tl+1 + η < tl+2, then∫ tl−η

T0+3

∫
Sn−1
+

|vt|2dσds >
(l − 1)Mε2

4
→ +∞ as l→ +∞.

It is a contradiction with (6.6).
For (6.4), we study the limit set of the trajectories of vi, i ∈ {1, · · · ,m} and for

simplicity, we just consider i = 1, namely the set

Γ = ∩τ≥0∪t≥τ{v1(t, ·)},
where the closure is computed with respect to the usual norm in C0(Sn−1

+ ). Since

Γ is the intersection of a decreasing family of closed connected subsets of C0(Sn−1
+ ),

Γi is closed and connected. In addition, from (6.2) and the Arzelà-Ascoli theorem
that Γi is also compact and nonempty.

For any w1 ∈ Γ, let tk be a sequence of nonnegative real numbers such that
tk → +∞ and

v1(tk, ·)→ w1 uniformly in Sn−1
+

Clearly, w1 is nonnegative and w1 = 0 on ∂Sn−1
+ . For each k ≥ 1, let

Vk : (s, σ) ∈ [0, 1]× Sn−1
+ → Rm

be the function defined by Vk(s, σ) = v(tk + s, σ). For every φ ∈ C∞0 (Sn−1
+ ) and

for every ε ∈ (0, 1), from the equation satisfied by v we have∫ ε

0

∫
Sn−1
+

(
(Vk)tt + ∆sVk −

(
n− 2(p+ 1)

p− 1

)
(Vk)t + ln,pVk + |Vk|p−1Vk

)
φdσds

= 0.

Since the sequence Vk is bounded in C1([0, 1]× Sn−1
+ ), passing to a subsequence if

necessary, we may assume that for some continuous functions W,

Vk →W uniformly in [0, 1]× Sn−1
+ .

Furthermore, the fact that vt → 0 uniformly as t→ +∞ gives∫ ε

0

∫
Sn−1
+

(Vk)ttφdσds =

∫
Sn−1
+

(vt(tk + ε, σ)− vt(tk, σ))φdσ → 0,
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and ∫ ε

0

∫
Sn−1
+

(Vk)tφdσds→ 0.

Therefore, we conclude that for every ε ∈ (0, 1),∫ ε

0

∫
Sn−1
+

(
W∆sφ+ ln,pWφ+ |W|p−1Wφ

)
dσds = 0.

Dividing both sides by ε, and letting ε→ 0, we get∫
Sn−1
+

(
W(0, σ)∆sφ+ ln,pW(0, σ)φ+ |W(0, σ)|p−1W(0, σ)φ

)
dσ = 0.

Then (6.4) follows from the fact that W(0, ·) = 0 by Theorem 1.2, and we finish
the proof.

Now we establish a more precise estimates near the singularity for p = n+1
n−1 .

Theorem 6.2. Let p = n+1
n−1 and u be a positive solution of (1.2), then

|u(x)| ≤ C|x|1−n
(

log
1

|x|

)−n−1
2

near x = 0

for some constant C > 0 (possibly depending on the solution).

To obtain Theorem 6.2, we just need to prove the following Theorem.

Theorem 6.3. Let p = n+1
n−1 , E = ker[∆s + (n− 1)I] and u be a positive solution

of (1.2). v is defined as (5.2). If v = v1 + v2 is the decomposition of v as the
orthogonal projections in L2(Sn−1

+ ) onto E and E⊥, respectively, then for t large,

‖v1(t, ·)‖L2(Sn−1
+ ) ≤ Ct

−n−1
2 , (6.7)

and

‖v2(t, ·)‖L2(Sn−1
+ ) ≤ Ce

− t2 (n+
√
n2+4n). (6.8)

Proof. We first prove the estimates (6.7). Denoting by φ1 the positive first eigen-
function of −∆s with ‖φ1‖L2(Sn−1

+ ) = 1, we have

v1(t, σ) = y(t)φ1(σ),

where

y(t) :=

∫
Sn−1
+

v(t, ·)φ1(·)dσ.

Multiplying (5.10) by φ1 and integrating over Sn−1
+ , we have

y′′ + ny′ +

∫
Sn−1
+

|v|
2

n−1φ1vdσ = 0.
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By Hölder inequality and ‖φ1‖L2(Sn−1
+ ) = 1, it follows that for any i ∈ {1, 2, · · · ,m},

y
n+1
n−1

i =

(∫
Sn−1
+

viφ
n−1
n+1

1 φ
2

n+1

1 dσ

) n+1
n−1

≤C
∫
Sn−1
+

v
n+1
n−1

i φ1dσ

≤C
∫
Sn−1
+

|v|
2

n−1 viφ1dσ,

which implies that

y′′i + ny′i + Cy
n+1
n−1

i ≤ 0.

Addition, from Theorem 6.1, we have

lim
t→+∞

|v(t, ·)| = 0 uniformly in Sn−1
+ .

It follows that limt→+∞ yi(t) = 0. Applying Lemma A.1 in [4] we deduce that

yi ≤ Ct−
n−1
2 as t→ +∞.

By the definition of v1(t, ·) and ‖φ1‖L2(Sn−1
+ ) = 1, we conclude that as t→ +∞,

‖v1(t, ·)‖L2(Sn−1
+ ) = |y(t)|‖φ1(σ)‖L2(Sn−1

+ ) ≤ Ct
−n−1

2 .

This proves the first estimate (6.7).
We next prove the estimates (6.8). From v(t, σ) = y(t)φ1(σ) + v2(t, σ), we have

vt(t, σ) = yt(t, σ)φ1(σ) + (v2)t(t, σ), vtt = ytt(t, σ)φ1(σ) + (v2)tt(t, σ).

For t ∈ (0,+∞), define

Yi(t) := ‖vi,2(t, ·)‖L2(Sn−1
+ ).

By the orthogonality between φ1 and vi,2, we have

Yi(Yi)t =

∫
Sn−1
+

vi,2(vi,2)tdσ =

∫
Sn−1
+

vi,2[(yi)tφ1 + (vi,2)t]dσ =

∫
Sn−1
+

vi,2(vi)tdσ.

From the first equality and the Hölder inequality gives that

|(Yi)t| ≤ ‖(vi,2)t(t, ·)‖L2(Sn−1
+ ).

As in the proof of Theorem 5.1, we have

Yi(Yi)tt ≥
∫
Sn−1
+

vi,2(vi)ttdσ.

Since the second eigenvalue of the Laplace-Beltrami operator −∆s in W 1,2
0 (Sn−1

+ )
is 2n,

2nY 2
i ≤

∫
Sn−1
+

|∇vi,2|2dσ = −
∫
Sn−1
+

vi,2∆svi,2dσ = −
∫
Sn−1
+

vi,2∆svidσ.

Then multiplying the i-th of (5.10) by vi,2 and integrating over Sn−1
+ , together with

limt→+∞ |v(t, ·)| = 0 uniformly in Sn−1
+ , we obtain that as in the proof of Theorem

5.1, for every ε ∈ (0, 1) there exists t0 > 0 such that for every t ∈ (t0,+∞),

(Yi)tt + n(Yi)t − (n+ 1− ε)Yi ≥ 0.
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Define

Z(t) := C0e
− t2 (n+

√
n2+4n+4−4ε),

where C0 a positive constant such that

Yi(t0) ≤ Z(t0).

We also have

lim
t→+∞

Z(t) = 0.

It is obviously that Z satisfies

Ztt + nZt − (n+ 1− ε)Z = 0.

Since Yi(t)→ 0 as t→ +∞ and −(n+ 1− ε) < 0, applying the Maximum principle
one deduces that for any t ∈ (t0,+∞),

Yi(t) ≤ Z(t) < Ce−
t
2 (n+

√
n2+4n).

This gives the estimate for v2 and we complete the proof of (6.8).

Proof of Theorem 6.2. By the above theorem, we have as t→ +∞,

‖v(t, ·)‖L2(Sn−1
+ ) ≤ Ct

−n−1
2 .

Choosing the q of (5.4) bigger than n
2 , by the Morrey’s inequality the result follows.

Now we shall begin to prove Theorem 1.4.

Proof of Theorem 1.4. Define

w(t, σ) := t
n−1
2 v(t, σ),

where v is defined as (5.2) and Theorem 6.2 implies that w is bounded in (T0,+∞)×
Sn−1

+ for some T0 > 0 large enough. By a straightforward computation, w satisfies

wtt + ∆sw +

(
n− 1 +

n2 − 1

4t2

)
w

+

(
n− n− 1

t

)
wt +

1

t

(
|w|

2
n−1w − n(n− 1)

2
w

)
= 0.

(6.9)

Let φ : Sn−1
+ → R be the function defined by φ(σ) = σn

|σ| . We also recall that the

first eigenvalue of −∆s in W 1,2
0 (Sn−1

+ ) is n− 1 and the eigenspace associated to this
eigenvalue is spanned by the function φ(σ). For t ∈ (0,+∞), let

z(t) =

∫
Sn−1
+

w(t, ·)φ(·)dσ,

and we know that z is bounded in (T0,+∞). Multiplying (6.9) by φ and integrating
over Sn−1

+ , we obtain that

ztt +
n2 − 1

4t2
z +

(
n− n− 1

t

)
zt +

1

t

∫
Sn−1
+

|w|
2

n−1wφdσ − n(n− 1)

2t
z = 0.



2210 YIMEI LI AND JIGUANG BAO

Thus, for any i ∈ {1, 2, · · · ,m}, we have

(zi)tt +

(
n− n− 1

t

)
(zi)t +

1

t

(∫
Sn−1
+

z
n+1
n−1

i φ
2n
n−1 dσ − n(n− 1)

2
zi

)

=− n2 − 1

4t2
zi +

1

t

∫
Sn−1
+

(z
n+1
n−1

i φ
n+1
n−1 − |w|

2
n−1wi)φdσ.

On the one hand, we obtain by Theorem 6.3 that as t→ +∞,

‖vi,2(t, ·)‖L2(Sn−1
+ ) =

∥∥∥∥∥vi(t, ·)−
∫
Sn−1
+

vi(t, ·)φ(·)dσφ(·)

∥∥∥∥∥
L2(Sn−1

+ )

≤ Ce−
t
2 (n+

√
n2+4n).

Hence, we have by the definition of w and z that as t→ +∞,

‖wi(t, ·)− zi(t)φ(·)‖L2(Sn−1
+ ) ≤ Ct

n−1
2 e−

t
2 (n+

√
n2+4n). (6.10)

It is easy to see that

z
n+1
n−1

i φ
n+1
n−1 − |w|

2
n−1wi ≤ (ziφ)

n+1
n−1 − w

n+1
n−1

i

≤ n+ 1

n− 1
|ziφ− wi|(ziφ)

2
n−1 .

From the fact that z is bounded in (T0,+∞), we using the Hölder inequality and
(6.10) obtain that as t→ +∞,∫

Sn−1
+

(z
n+1
n−1

i φ
n+1
n−1 − |w|

2
n−1wi)φdσ

≤n+ 1

n− 1
z

2
n−1

i ‖wi(t, ·)− zi(t)φ(·)‖L2(Sn−1
+ )‖φ

2
n−1 ‖L2(Sn−1

+ )

≤Ct
n−1
2 e−

t
2 (n+

√
n2+4n).

Thus, as t large enough, we have∥∥∥∥∥−n2 − 1

4t2
zi +

1

t

∫
Sn−1
+

((ziφ)
n+1
n−1 − w

n+1
n−1

i )φdσ

∥∥∥∥∥
L∞(Sn−1

+ )

≤ Ct−2.

By a straightforward modification of the end of the proof of [7, Corollary 4.2], zi
admits a limit k ≥ 0 when t→ +∞, where k satisfies(∫

Sn−1
+

φ
2n
n−1 dσ

)
k
n+1
n−1 − n(n− 1)

2
k = 0.

Therefore, either k = 0 or k =

 n(n−1)

2
∫
Sn−1
+

φ
2n
n−1 dσ


n−1
2

. As t → +∞, we deduce by

(6.10) that,

wi(t, ·) := t
n−1
2 vi(t, ·)→ kφ in L2(Sn−1

+ ).

We conclude by (5.4) and Morrey’s inequality that

t
n−1
2 vi(t, ·)→ kφ uniformly in Sn−1

+ .
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Rewriting the convergence in terms of u, we conclude that either (1.8) holds or

|x|n−1

(
log

1

|x|

)n−1
2

u(x)→ 0 as x→ 0.

If the above estimates holds, then u must can be continuously extended to 0 in view
of Theorem 5.2.
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