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Abstract

In this paper, we study the local regularity of very weak solution u ∈ L1
loc(Ω) of the elliptic equation

Dj (aij (x)Diu) = 0. Using the bootstrap argument and the difference quotient method, we obtain that if

aij ∈ C
0,1
loc (Ω), then u ∈ W

2,p
loc (Ω) for any p < ∞.
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1. Introduction

The simplest kind of linear elliptic equations in divergence form is

Dj

(
aij (x)Diu

) = 0, in Ω, (1.1)

where Ω is a domain in R
N , N � 2, and the coefficients aij (x) are bounded measurable functions

satisfying the uniformly ellipticity condition, i.e.,
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λ|ξ |2 � aij (x)ξiξj � Λ|ξ |2, ∀x ∈ Ω, ξ ∈ R
N, (1.2)

with 0 < λ � Λ < ∞. u ∈ W
1,p

loc (Ω) for p ∈ [1,∞) is called a weak solution of (1.1) over Ω if

∫
Ω

aijDiuDjϕ = 0, ∀ϕ ∈ C∞
c (Ω). (1.3)

A fundamental result of E. De Giorgi [6] states that if u ∈ W
1,2
loc (Ω) is a weak solution of (1.1),

then u is locally bounded and then locally Hölder continuous. N.G. Meyers [15] also proved that
u ∈ W

1,p

loc (Ω) for some p > 2.

J. Serrin in [18] showed by a counterexample that in general the solutions of (1.1) in W
1,p

loc (Ω)

for p ∈ (1,2) need not be locally bounded only under the assumption (1.2). He proposed a
conjecture that if the coefficients aij are locally Hölder continuous, then any weak solution u ∈
W

1,1
loc (Ω) of (1.1) must be in W

1,2
loc (Ω). R.A. Hager and J. Ross [11] proved that the conjecture

is true for the weak solutions in W
1,p

loc (Ω) for p ∈ (1,2). In 2008, a celebrated theorem was
established by H. Brezis (see [2], a full proof can be found in [1]).

Theorem 1.1. Assume that aij are Dini continuous in Ω , and let u ∈ BVloc(Ω) be a weak solution

of (1.1), then u ∈ W
1,2
loc (Ω).

Here the coefficients aij are Dini continuous in Ω , i.e., aij ∈ C0(Ω), and for any subdomain
Ω ′ � Ω , there exists a function ϕ, such that

∣∣aij (x) − aij (y)
∣∣ � ϕ

(|x − y|), x, y ∈ Ω ′, where

diamΩ ′∫
0

ϕ(r)

r
dr < ∞.

And u ∈ BVloc(Ω) means u ∈ L1
loc(Ω) and

∫
Ω ′

|Du| = sup

{∫
Ω ′

u · div −→v : −→v ∈ C1
0

(
Ω ′,R

N
)
, |−→v | � 1

}
< ∞, ∀Ω ′ � Ω.

Theorem 1.1 confirmed completely Serrin’s conjecture in the case of less smooth given coeffi-
cients and solutions, since Hölder continuity on aij were replaced by Dini continuity, and u was
extended from W

1,1
loc (Ω) to BVloc(Ω).

For merely continuity on aij , H. Brezis obtained the following result.

Theorem 1.2. Assume that aij ∈ C0(Ω). If u ∈ W
1,p

loc (Ω) is a weak solution of (1.1) for some

p > 1, then u ∈ W
1,q

loc (Ω) for every q < ∞.

There are the counterexamples to show Theorem 1.2 is not true in the cases p = 1 or
q = ∞. Therefore Theorem 1.2 is optimal in some sense. For the unit ball B1 and the con-
tinuous coefficients aij , T. Jin, V. Mazya and J.V. Schaftingen [13] constructed a weak solution
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u ∈ W
1,1
loc (B1)\W 1,p

loc (B1) for every p > 1. They also gave a function u ∈ W
1,q

loc (B1)\W 1,∞
loc (B1)

for every q < ∞, satisfying (1.1).
Now we consider a very weak solution u ∈ L1

loc(Ω) of (1.1), namely

∫
Ω

uDi(aijDjϕ) = 0, ∀ϕ ∈ C∞
c (Ω). (1.4)

It is easy to be seen that a very weak solution in W
1,p

loc (Ω), p ∈ [1,∞), of (1.1) must be a
usual weak solution. Because of the very weak assumptions made on the solutions it is natural
that the coefficients should be interpreted as the local Lipschitz functions. H. Brezis raised a
question whether any very weak solution u ∈ L1

loc(Ω) is in W
1,2
loc (Ω), and then one can apply

E. De Giorgi’s theory if aij are only in C
0,1
loc (Ω). We give the positive answer and have

Theorem 1.3. Assume that aij ∈ C
0,1
loc (Ω). If u ∈ L1

loc(Ω) is a very weak solution of (1.1), then

u ∈ W
2,p

loc (Ω) for any p ∈ [1,∞).

Throughout the paper, we always assume that the coefficients aij ∈ C
0,1
loc (Ω) are elliptic, i.e.,

for any subdomain Ω ′ � Ω , there exist the constants K , λ, Λ, depending only on Ω ′, such that

∣∣aij (x) − aij (y)
∣∣ � K|x − y|, ∀x, y ∈ Ω ′, i, j = 1,2, . . . ,N, (1.5)

λ|ξ |2 � aij (x)ξiξj � Λ|ξ |2, ∀x ∈ Ω ′, ξ ∈ R
N. (1.6)

The very weak solution has been studied by many authors. In [3], H. Brezis, T. Cazenave,
Y. Martel and A. Ramiandrisoa proved the existence and uniqueness theorem for a very weak
solution in L1(Ω) of the Poisson equations �u = f (x) with zero boundary value. They also
established the estimate

‖u‖L1(Ω) �
∥∥f · dist(x, ∂Ω)

∥∥
L1(Ω)

.

Later, X. Cabré and Y. Martel [4] showed the very weak solution is in Lq(Ω) for any 1 �
q < N

N−2 .
Therefore, the question of the integrability of the weak derivative of the very weak solution

arises in a natural way.
Recently, J.I. Diaz and J.M. Rakotoson [8] extended the results of Brezis et al. to Lu = f (x),

where L is a linear second order elliptic operator with variable coefficients. They obtained if

f · distα(x, ∂Ω) ∈ L1(Ω), 0 � α < 1, then Du belongs to the Lorentz space L
N

N−1+α
,∞(Ω),

where

L
N

N−1+α
,∞(Ω) =

{
f : Ω → R measurable and sup

t�|Ω|
t

α−1
N

t∫
0

|f |∗ ds < ∞
}

,

|f |∗(s) = inf{t ∈ R: meas{|f | > t} � s} for 0 � s � |Ω|. In particular, for Poisson equation

(Lemma 6 in [8]), if f ∈ L1(Ω), then Du ∈ Lq(Ω) ⊂ L
N

N−1 ,∞(Ω), where 1 � q < N .

N−1
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There are other results on the very weak solutions, such as [7,9,12,14,19] for semilinear ellip-
tic equations, [16] and [20] for elliptic systems, [17] for Neumann problems.

The rest part of the paper is organized as follows: In the next section we present some prelim-
inary facts which will be used later. Section 3 is devoted to the proof of Theorem 1.3. We obtain
the theorem by using the bootstrap argument and the difference quotient method.

2. Some preliminary facts

In this section, we list some preliminary facts that will be needed in our proof.
For convenience, we abbreviate a ball with center x0 and radius R as BR , and then consider

the Dirichlet problem

{
aij (x)Dij v = f (x), x ∈ BR,

v = 0, x ∈ ∂BR.
(2.7)

Lemma 2.1. Suppose that aij ∈ C0(BR) satisfy (1.6) in BR and f ∈ Lp(BR) with 1 < p < ∞.

Then (2.7) exists a unique solution v ∈ W 2,p(BR) ∩ W
1,p

0 (BR) satisfying

‖v‖W 2,p(BR) � C‖f ‖Lp(BR),

where C depends only on N , p, λ, Λ, R and the modulus of continuity of aij on BR .

This lemma is the direct conclusion of Theorems 6.3 and 6.4 in Chapter 3 in [5].

Lemma 2.2. Let u be a W 2,p(BR) solution of (2.7) with 1 < p < ∞. If aij ∈ C0,1(BR) are
uniformly elliptic, and f ∈ W 1,q (BR) with 1 < q < ∞, then u ∈ W 3,q (BR).

This lemma is a special case of Theorem 9.19 in [10].

3. Proof of Theorem 1.3

Proof. For fixed Ω ′′ � Ω ′ � Ω , let 2δ = min{1, 1
2d(Ω ′′, ∂Ω ′)}. For any x0 ∈ Ω ′′, we let

η(x) ∈ C∞
c (B2δ(x0)) be a cut-off function:

η(x) =
{

1, |x − x0| � δ,

0, |x − x0| � 2δ,

such that 0 � η(x) � 1,

|Dη| � M1

δ
and

∣∣D2η
∣∣ � M2

δ2
,

where M1, M2 are positive constants.
For the sake of clarity, we divide the estimate in Theorem 1.3 into three steps.
Step 1. Lp regularity.
(1) 1 < p < N .
N−1
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Let w1 be a smooth function in B2δ . According to Lemma 2.1, there must be a unique function
v1 ∈ W 2,q1(B2δ) ∩ W

1,q1
0 (B2δ), such that

{
aij (x)Dij v1 = w1, x ∈ B2δ,

v1 = 0, x ∈ ∂B2δ.

Moreover

‖v1‖W 2,q1 (B2δ)
� C‖w1‖Lq1 (B2δ), (3.8)

where q1 ∈ (N,∞). Since aij ∈ C0,1(B2δ), w1 ∈ C∞(B2δ) ⊂ W 1,q1(B2δ), by Lemma 2.2, we
have v1 ∈ W 3,q1(B2δ). Then using the Sobolev imbedding theorem, we get v1 ∈ C2,α(B2δ).

From (1.4) and a density argument, we have

∫
Ω

uDi(aijDjv) = 0, ∀v ∈ C2
0(Ω). (3.9)

Now we choose v = η2v1 in (3.9), and get

0 =
∫
Ω

uDi

(
aijDj

(
η2v1

))

=
∫

B2δ

uDiaijDj

(
η2v1

) + uaijDij

(
η2v1

)

=
∫

B2δ

2ηuv1DiaijDjη + uη2DiaijDjv1 + 2uv1aijDiηDjη

+
∫

B2δ

2ηuv1aijDij η + 4ηuaijDiηDjv1 + uη2aijDij v1.

By the properties of the cut-off function and aij , we have

∣∣∣∣
∫

B2δ

uη2aijDij v1

∣∣∣∣ � 2KM1

δ

∫
B2δ

|uv1| + K

∫
B2δ

|uDjv1| + 2ΛM1
2

δ2

∫
B2δ

|uv1|

+ 2ΛM2

δ2

∫
B2δ

|uv1| + 4ΛM1

δ

∫
B2δ

|uDjv1|

� C‖v1‖W 1,∞(B2δ)
‖u‖L1(B2δ)

.

By the Sobolev imbedding theorem and (3.8), we have

‖v1‖W 1,∞(B ) � C‖v1‖ 2,q1 � C‖w1‖Lq1 (B ).
2δ W (B2δ) 2δ
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So we get ∣∣∣∣
∫

B2δ

uη2w1

∣∣∣∣ � C‖w1‖Lq1 (B2δ)‖u‖L1(B2δ)
.

Since w1 is an arbitrary smooth function in B2δ , we conclude

∥∥η2u
∥∥

Lp1 (B2δ)
� C‖u‖L1(B2δ)

, (3.10)

where p1 := q1
q1−1 ∈ (1, N

N−1 ).

Now using finite covering theorem, we obtain u ∈ L
p

loc(Ω), ∀p ∈ (1, N
N−1 ).

(2) p = N
N−1 .

Let w2 be a smooth function in B2δ . According to Lemma 2.1, there must be a unique function
v2 ∈ W 2,N (B2δ) ∩ W

1,N
0 (B2δ), such that

{
aij (x)Dij v2 = w2, x ∈ B2δ,

v2 = 0, x ∈ ∂B2δ.

Moreover

‖v2‖W 2,N (B2δ)
� C‖w2‖LN(B2δ)

. (3.11)

Since aij ∈ C0,1(B2δ), w2 ∈ C∞(B2δ) ⊂ W 1,N (B2δ), by Lemma 2.2, we have v2 ∈ W 3,N (B2δ).
Then using the Sobolev imbedding theorem, we get v2 ∈ W 2,r2(B2δ), ∀r2 < ∞.

From (1.4) and a density argument, we have

∫
Ω

uDi(aijDjv) = 0, ∀v ∈ W
2,l2
0 (B2δ), l2 ∈ (N,∞). (3.12)

Now we choose v = η4v2 in (3.12), use the properties of the cut-off function and aij , and have

∣∣∣∣
∫

B2δ

uη4aijDij v2

∣∣∣∣ � C‖v2‖W 1,q1 (B2δ)

∥∥η2u
∥∥

Lp1 (B2δ)
,

where p1 ∈ (1, N
N−1 ), q1 = p1

p1−1 ∈ (N,∞).

By the Sobolev imbedding theorem and (3.11), we obtain

‖v2‖W 1,q1 (B2δ)
� C‖v2‖W 2,N (B2δ)

� C‖w2‖LN(B2δ)
.

So we get ∣∣∣∣
∫

uη4w2

∣∣∣∣ � C‖w2‖LN(B2δ)

∥∥η2u
∥∥

Lp1 (B2δ)
.

B2δ
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From a duality argument and (3.10), we conclude∥∥η4u
∥∥

L
N

N−1 (B2δ)
� C‖u‖L1(B2δ)

. (3.13)

Now using finite covering theorem, we have u ∈ L
p

loc(Ω), p = N
N−1 .

(3) N
N−1 < p < N

N−2 .

Let w3 be a smooth function in B2δ . According to Lemma 2.1, there must be a unique function
v3 ∈ W 2,q3(B2δ) ∩ W

1,q3
0 (B2δ), such that{

aij (x)Dij v3 = w3, x ∈ B2δ,

v3 = 0, x ∈ ∂B2δ.

Moreover

‖v3‖W 2,q3 (B2δ)
� C‖w3‖Lq3 (B2δ), (3.14)

where q3 ∈ (N
2 ,N). Since aij ∈ C0,1(B2δ), w3 ∈ C∞(B2δ) ⊂ W 1,q3(B2δ), by Lemma 2.2, we

have v3 ∈ W 3,q3(B2δ). Then using the Sobolev imbedding theorem, we obtain v3 ∈ W 2,r3(B2δ),
r3 = Nq3

N−q3
∈ (N,∞).

From (1.4) and a density argument, we have∫
Ω

uDi(aijDjv) = 0, ∀v ∈ W
2,N
0 (B2δ). (3.15)

Now we choose v = η6v3 in (3.15), use the properties of the cut-off function and aij , we obtain∣∣∣∣
∫

B2δ

uη6aijDij v3

∣∣∣∣ � C‖v3‖
W

1,
Nq3

N−q3 (B2δ)

∥∥η4u
∥∥

L

Nq3
Nq3−N+q3 (B2δ)

.

Recall that q3 ∈ (N
2 ,N). So we have Nq3

Nq3−N+q3
∈ (1, N

N−1 ), and∥∥η4u
∥∥

L

Nq3
Nq3−N+q3 (B2δ)

�
∥∥η4u

∥∥
L

N
N−1 (B2δ)

.

By the Sobolev imbedding theorem and (3.14), we obtain

‖v3‖
W

1,
Nq3

N−q3 (B2δ)

� C‖v3‖W 2,q3 (B2δ)
� C‖w3‖Lq3 (B2δ).

So we get ∣∣∣∣
∫

B2δ

uη6w3

∣∣∣∣ � C‖w3‖Lq3 (B2δ)

∥∥η4u
∥∥

L
N

N−1 (B2δ)
.

From a duality argument and (3.13), we conclude∥∥η6u
∥∥ q3

q −1
� C‖u‖L1(B2δ)

. (3.16)

L 3 (B2δ)
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Since q3 ∈ (N
2 ,N), we have q3

q3−1 ∈ ( N
N−1 , N

N−2 ). By taking p3 = q3
q3−1 , it follows that q3 = p3

p3−1 .
So we get

Nq3

Nq3 − N + q3
= Np3

N + p3
∈

(
1,

N

N − 1

)
,

and

∥∥η6u
∥∥

Lp3 (B2δ)
� C‖u‖L1(B2δ)

, (3.17)

for N
N−1 < p3 < N

N−2 .

Now using finite covering theorem, we have u ∈ L
p

loc(Ω), p = p3 ∈ ( N
N−1 , N

N−2 ).

(4) p � N
N−2 (N � 3).

From (2) and (3), we have η6u ∈ Lp(B2δ) for any p ∈ [ N
N−1 , N

N−2 ). Likewise, for any given

positive integer k = 3,4, . . . ,N , we obtain that η2(k+1)u ∈ Lp(B2δ), ∀p ∈ [ N
N+1−k

, N
N−k

). More-
over,

∥∥η2(k+1)u
∥∥

Lp(B2δ)
� C‖u‖L1(B2δ)

, (3.18)

for all p � N
N−2 .

Now, for p > 1, using finite covering theorem, we have

‖u‖Lp(Ω ′′) � C‖u‖L1(Ω ′),

where the constant C depends only on N , p, λ, Λ, K , Ω ′′ and Ω ′.
Step 2. W 1,p regularity.
Recall that η is the cut-off function defined at the beginning of our proof. For fixed h <

1
3 dist(suppη, ∂B2δ) and k = 1,2, . . . ,N ,

�k
hu(x) = u(x + hek) − u(x)

h
∈ Lp

(
Ω ′′),

we have |η�k
hu|p−1sign(η�k

hu) ∈ Lr(B2δ), where r = p
p−1 . According to Lemma 2.1, there must

be a unique function

vh ∈ W 2,r (B2δ) ∩ W
1,r
0 (B2δ),

such that

{
aij (x)Dij vh = ∣∣η�k

hu
∣∣p−1 sign(η�k

hu), x ∈ B2δ,

vh = 0, x ∈ ∂B2δ.

Moreover

‖vh‖W 2,r (B ) � C
∥∥|η�ku|p−1

∥∥
r � C

∥∥η�ku
∥∥p−1

p . (3.19)

2δ h L (B2δ) h L (B2δ)



W. Zhang, J. Bao / Journal of Functional Analysis 262 (2012) 1867–1878 1875
From (1.4) and a density argument, we have

∫
Ω

uDi(aijDjw) = 0, ∀w ∈ W
2,r
0 (Ω). (3.20)

Now we choose w = η�k
−hvh in (3.20), and get

0 =
∫

B2δ

uDi

(
aijDj

(
η�k

−hvh

))

=
∫

B2δ

uDiaijDjη�k
−hvh + uηDiaij�

k
−h(Djvh) + uaijDijη

(
�k

−hvh

)

+
∫

B2δ

2uaijDiη�k
−h(Djvh) + uaij η�k

−h(Dij vh). (3.21)

Meanwhile by the property of difference quotients, we get

∫
B2δ

uaij η�k
−h(Dij vh) = −

∫
B2δ

η�k
huaijDij vh

−
∫

B2δ

(
�k

hη
)
u(x + hek)aij (x + hek)Dij vh

−
∫

B2δ

(
�k

haij

)
ηu(x + hek)Dij vh. (3.22)

From (3.21) and (3.22),

∫
B2δ

η�k
huaijDij vh �

∫
B2δ

ηu(x + hek)
(
�k

haij

)
Dijvh

+
∫

B2δ

(
�k

hη
)
u(x + hek)aij (x + hek)Dij vh

+
∫

B2δ

∣∣uDiaijDjη
(
�k

−hvh

)∣∣

+
∫

B2δ

∣∣uηDiaij�
k
−h(Djvh)

∣∣ + ∣∣uaijDijη
(
�k

−hvh

)∣∣

+
∫

2
∣∣uaijDiη�k

−h(Djvh)
∣∣.
B2δ
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By the properties of the cut-off function and aij , we have

∫
B2δ

η�k
huaijDij vh � K

∫
suppη

∣∣u(x + hek)Dij vh

∣∣ + ΛM1

δ

∫
suppη

∣∣u(x + hek)Dij vh

∣∣

+ KM1

δ

∫
suppη

∣∣u�k
−hvh

∣∣ + K

∫
suppη

∣∣u�k
−h(Djvh)

∣∣

+ ΛM2

δ2

∫
suppη

∣∣u�k
−hvh

∣∣ + 2ΛM1

δ

∫
suppη

∣∣u�k
−h(Djvh)

∣∣.
By Hölder inequality, (3.19), Sobolev imbedding theorem, the property of difference quotients
and Young inequality, we obtain

∫
B2δ

ηaij�
k
huDij vh � 1

2

∥∥η�k
hu

∥∥p

Lp(B2δ)
+ C

δ2p
‖u‖p

Lp(B2δ)
. (3.23)

Meanwhile∫
B2δ

ηaij�
k
huDij vh =

∫
B2δ

η�k
hu

∣∣η�k
hu

∣∣p−1 sign
(
η�k

hu
) = ∥∥η�k

hu
∥∥p

Lp(B2δ)
. (3.24)

From (3.23) and (3.24), we have

∥∥�k
hu

∥∥
Lp(Bδ)

� C

δ2
‖u‖Lp(B2δ).

Using the property of difference quotients again, we obtain Dku ∈ Lp(Bδ), and

‖Dku‖Lp(Bδ) � C‖u‖Lp(B2δ).

Now, using finite covering theorem, we have

‖u‖W 1,p(Ω ′′) � C‖u‖Lp(Ω ′),

where C depends only on N , p, λ, Λ, K , Ω ′′ and Ω ′.
Step 3. W 2,p regularity.
Now, u ∈ W

1,p

loc (Ω) is a weak solution of (1.1), i.e.,∫
Ω

aijDiuDjϕ = 0, ∀ϕ ∈ C∞
c (Ω).

In particular, ∫
aijDiuDj (ηϕ) = 0, ∀ϕ ∈ C∞

c (Ω),
Ω
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where η is the cut-off function given at the beginning of our proof. Let v = ηu, then v = 0 on
∂B2δ and ∫

B2δ

aijDivDjϕ =
∫

B2δ

f ϕ, ∀ϕ ∈ C∞
c (B2δ), (3.25)

where

f (x) = −Dj(uaijDiη) − aijDiuDjη ∈ Lp(B2δ).

Consider the Dirichlet problem

{
Dj

(
aij (x)Diw

) = −f (x), x ∈ B2δ,

w = 0, x ∈ ∂B2δ.
(3.26)

Using Theorem 6.3 in [5], (3.26) exists a unique w ∈ W 2,p(B2δ) ∩ W
1,p

0 (B2δ) and

‖w‖W 2,p(B2δ)
� C‖f ‖Lp(B2δ) � C‖u‖W 1,p(B2δ)

.

Obviously, w is also a weak solution of (3.26) in B2δ . By the uniqueness of the weak solution
of (3.26), we conclude v = w ∈ W 2,p(B2δ), i.e., ηu ∈ W 2,p(B2δ). Moreover

‖u‖W 2,p(Bδ)
� C‖u‖W 1,p(B2δ)

.

Now, using finite covering theorem, we obtain

‖u‖W 2,p(Ω ′′) � C‖u‖W 1,p(Ω ′).

Finally, from Step 1 to Step 3, we conclude that

‖u‖W 2,p(Ω ′′) � C‖u‖L1(Ω ′),

where C depends only on N , p, λ, Λ, K , Ω ′′ and Ω ′. �
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