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In this paper, we study the local regularity of very weak solution u € Lloc(Q) of the
elliptic equation Dj(ay(z)D;u) = f — D;jg;. Using the bootstrap argument and the

difference quotient method, we obtain that if a; e cY 1(Q) gi € L}, () and f €

loc
Lg‘z (Q) with 1 < p < oo, then u € Wi}’f(Q). Furthermore, we consider the higher

regularity of wu.
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1. Introduction
The simplest kind of linear elliptic equations in divergence form is
Dj(aij (x)Diu) =0 in Q, (11)

where © is a domain in RY, N > 2, and the coefficients a;;(x) are bounded mea-
surable functions satisfying the ellipticity condition, i.e.

MéEP < ay(2)&& < A€, VzeQ, EeRY, (1.2)

with 0 < A< A<o0. ue WI})C”(Q) for p € [1,00) is called a weak solution of (1.1)
over (2 if

/ agzDiuDjp =0, Ve CSO(Q) (13)
Q
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A fundamental result of De Giorge [7] states that if u € I/VI})C2 (Q) is a weak

solution of (1.1), then w is locally bounded and then locally Holder continuous.
Meyers [17] also proved that u € W,'”(Q) for some p > 2.

Serrin in [20] showed by a counterexample that in general the solutions of (1.1) in
I/Vlif(Q) for p € (1, 2) need not be locally bounded only under the assumption (1.2).
He proposed a conjecture that if the coefficients a;; are locally Holder continuous,
then any weak solution u € W, (Q) of (1.1) must be in W,>*(Q). Hager and

loc loc

Ross [12] proved that the conjecture is true for the weak solutions in I/Vlif (Q) for

€ (1,2). In 2008, a celebrated theorem was established by Brezis (see [3], a full
proof can be found in [2]).

Theorem 1.1. Assume that a;; are Dini continuous in €, and let u € BV (£2)
be a weak solution of (1.1), then u € VVéf(Q)

Here the coefficients a;; are Dini continuous in 2, i.e. a;; € C°(), and for any
subdomain Q' € (2, there exists a function ¢, such that

o(r)

diam Q'
laij(x) — aij(y)] < p(lz —y]), z, y €Q, where / Tdr < 00.
0
And u € BV}o(Q) means u € L], (Q) and
/ |Du| = Sup{/ w-dive : v € G (Y, RY),|7| < 1} <oo, VO e
Q Q

Theorem 1.1 confirmed completely Serrin’s conjecture in the case of less smooth
given coefficients and solutions, since Hélder continuity on a;; were replaced by
Dini continuity, and u was extended from Wlf)cl () to BV ().

For merely continuity on a;;, Brezis obtained the following result.

Theorem 1.2. Assume that a;; € C°(Q). Ifu € WLP(Q) is a weak solution of (1.1)

loc
for some p > 1, then u € VVI})C‘](Q) for every q < oo.
There are the counterexamples to show Theorem 1.2 is not true in the cases
p =1 or g = co. Therefore Theorem 1.2 is optimal in some sense. For the unit ball
By and the continuous coefficients a;;, Jin, Maz’ya and Schaftingen [14] constructed
a weak solution u € WL (By)\W.L?(B,) for every p > 1. They also gave a function

loc loc

u € Wh(B)\W,.>*(By) for every ¢ < oo, satisfying (1.1).
Recently, in 23], we have considered a very weak solution u € L] () of (1.1),

namely
Q

Because of the very weak assumptions made on the solutions it is natural that the
coeflicients should be interpreted as the local Lipschitz functions. And we have the
following theorem.

Theorem 1.3. Assume that a; € CON Q). If u e LL _(Q) is a very weak solution

loc loc

of (1.1), then u € W24(Q) for any q € [1,00).

loc

1350012-2



Regularity of Very Weak Solutions for Nonhomogeneous Elliptic Equation

In fact, we give a positive answer as the above theorem to the question, raised
by Brezis, whether any very weak solution u € L} () of (1.1) is in W,.(Q).
In this paper, we consider more general nonhomogeneous linear elliptic equations

having principal part in divergence form
Dj(al-j (l‘)DlU) = f — D191 in Q, (14)
where a; € C2H(Q), f, gi € L (Q) fori,5 =1,2,...,N. u € LL (Q) is said to be

loc loc

a very weak solution of Eq. (1.4)
/QuDi(%‘DﬂP) = /Qfs@‘f'giDi% Ve (). (1.5)

A very weak solution in I/Vlif(ﬂ), p € [1,00), of (1.4) must be a usual weak solution,
that is

—/aijDiuDM:/fWrgiDm Ve C(Q).
Q Q

Throughout the paper, we always assume that the coefficients a;; € C&i(ﬂ)
are elliptic, i.e. for any subdomain Q' CC €, there exist the constants K, A, A,

depending only on €', such that

lay(x) —ay(y)| < Klz—vy|, Vax,ye@, i,j=1,2,...,N, (1.6)
MEP < ay(2)68; < A, Ve, ¢eRY. (1.7)
Suppose that 1 < p < oo and
FELXQ), gell (Q),i=12... N, (1.8)
where
1 1
) SPSyN—T
0, =< A=A(s) = max{st—exp(thil)+1} s>0, p= N
P tZO ) ) N— 1’
Np <p< oo
N+p’ N-1°7F '
Here Lg‘; (Q) = L{t () is a local Orlicz space in the case of p = . The Orlicz

space is defined as

LAQ) = {f : © — R measurable and / A (@) dr < oo for some k > 0} .
Q

The Luxemburg norm || f||z4(q) is defined as

HfHLA(Q) = ll’lf{k >0: /QA (@) dr < 1} .

The space L (), equipped with the norm || - | L4 (), is a Banach space. f € L (Q)
means || f[| L4 o) < oo for any Q' CC Q.
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Our main results are the LP, WP and W™P regularity of the very weak solu-
tions. In fact, under weaker integrable assumptions on f and ¢;, 7 =1,2,..., N, LP
regularity is obtained.

Theorem 1.4. Assume that the conditions (1.6), (1.7) hold, f € ng (Q) and g; €
Lg‘;(Q) with 1 < p<oo,i=1,2,...,N. Ifu e L _(Q) is a very weak solution of

(1.4), then u € LY (). Moreover

loc

N
ullLrwy < C <||u||L1(Q/) 1l perny + Y 9i||L0p(Qf)> ;

i=1

for every w CC Q' cC Q, where the constant C depends only on N,p, \,A, K,w
and ', and

1, 1<p<N_2,
Qp=(A=A(s) = max{st—exp(thzl)+1}, s>0, p= L,
t>0 N —2
Np
N+2p N_g P>

Corollary 1.1. Assume that the conditions (1.6),(1.7) hold, f,g; € Li (D), i =

1,2,...,N. Ifu € L{, () is a very weak solution of (1.4), then u € L¥ () for
any p € [1, %)

Theorem 1.5. Assume that the conditions (1.6), (1.7) and (1.8) hold, 1 < p < oc.
Ifu e LY (Q) is a very weak solution of (1.4), then u € VV&?(Q) Moreover

loc

N
”U”WLP(Q”) <C (”U”LP(Q’) =+ ”f”Lop(Q’) + Z ”giLP(Q’)> )

i=1

for every Q" cc Q' cc Q, where the constant C depends only on N, p, \, A, K,
Q" and Q.

Remark 1.1. In fact, if u € W,-7(Q) is a weak solution of (1.4), then a fine priori
estimate is obtained from the above theorem.

At the same time, we have the following result by combining Theorems 1.4
and 1.5.

Corollary 1.2. Assume that a;; € Cloo’i(Q)7 feLL.(Q) andg; € LY (Q),1<p<
%7 i,j = 1,2,...,N. If u € L. _(Q) is a very weak solution of (1.4), then

loc
ue WhP(Q).

loc

In the case of g; = 0,4,5 = 1,2,..., N, if we strengthen the integrable condition
on f by assuming f € LP, then we have the following proposition.
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Proposition 1.1. Assume that a;; € C’loo’(}(Q)7 fe Ll (Q) withl <p< oo and

gi = 0,4, =1,2,....N. If u € LL_(Q) is a very weak solution of (1.4), then
u € Wil ().

Proof. For B = Br(xg) C Bagr(xg) = Bar C Q, we consider the Dirichlet
problem

Dj(ay(x)Div) = f(z), « € Bag,
(1.9)
v =0, x € 0Bag.
From [6, Theorems 6.3 and 6.4], (1.9) exists a unique solution
NS Wz’p(BgR) n Wol’p(BgR)
satisfying
HU||W2=P(BQR) < C”f”Lp(BQR)' (110)

Let w = u — v, then w is a very weak solution of (1.1). By Theorem 1.3, we have

|u = vllw2r(r) < Cllu = vl L1(Byg)-

From Minkowski inequality, Holder inequality and (1.10), we get

ullw2rBr) < CUlullLr(Byr) + 1flLr(Bar))-

Now, using finite covering theorem, we obtain the result. |

The very weak solution has been studied by many authors. In [4], Brezis,
Cazenave, Martel and Ramiandrisoa proved the existence and uniqueness theo-
rem for a very weak solution in L'(Q) of the Poisson equations Au = f(z) with
zero boundary value. They also established the estimate

[ullLre) < |If - dist(z, 0Q) || L1 ()

Later, Cabré and Martel [5] showed the very weak solution is in L4(Q) for any
1<qg< %

Therefore, the question of the integrability of the weak derivative of the very
weak solution arises in a natural way.

Recently, Diaz and Rakotoson [9] extended the results of Brezis et al. to Lu =
f(x), where L is a linear second-order elliptic operator with variable coefficients.
They obtained if f - dist®(xz,0Q) € L'(Q), 0 < a < 1, then Du belongs to the
Lorentz space LNfLHa’OC(Q), where

t
LN—LHQ’OO(Q) = {f :  — R measurable and sup taT_l/ |fl«ds < oo} ,
<10 0
[fl«(s) = inf{t € R:meas{|f] > t} < s} for 0 < s < |Q]. In particular, for
Poisson equation (see [8, Lemma 6)), if f € L(Q), then Du € LI(2) C L%’M(Q),
where 1 < ¢ < % It is almost the same to Corollary 1.2, and a special case of
Theorems 1.4 and 1.5.

1350012-5



W. Zhang & J. Bao

Further differentiability of very weak solutions can be deduced readily from the
proof of Theorem 1.5. Suppose that we strengthen the smoothness conditions on
the coefficients by assuming

ag €O Q), i,5=1,2,...,N, (1.11)
together with
gi EWMP(Q), 1<p<oo, i=1,2...,N, (1.12)
and
FewWro(Q), 1<p< oo, (1.13)
where n =1,2,..., and
wnt, 1<p<N_1,
N
W= =y
W N, <p< oo

N-1
We can then conclude the following extension of Theorems 1.4 and 1.5.

Theorem 1.6. Assume that the conditions (1.7), (1.11), (1.12) and (1.13) hold. If
u € LL () is a very weak solution of (1.4), then

loc
uwe WP, (1.14)

loc

Moreover

N
[ullwn+rp@w) <C (ULl(Q') + 1 lwnon @y + Z ||giW"=P(Q')> )
i=1
for every w CcC Q' cC Q, where C is a constant depending only on n, N, p,
N A,w, Q" and the norms of az;(x) in C™(XY).

To our knowledge, Theorem 1.6 is new in the case of n = 1. At this time,
the very weak solution has become not only a weak solution, but also a strong
solution. The W?2? regularity in (1.14) is local and independent of the uniqueness
of solutions, which is different from [6]. Once u € W;2P(Q), Eq. (1.4) can be written
in the general form

aij () Dyu + Djasi(x)Diu = f(x) — D;gi(z),

so that the usual regularity theory of strong solutions would apply. By (1.11), (1.12)
and (1.13), we have

ay, Djaz; € Cm_l’l(Q) C Cm_Q’l(Q), n=23,...,

loc loc

f—Digi e W'HP(Q), 1<p< .

loc

Here we have used the fact that W{;;O” (Q) c W P(Q). Tt follows from the higher-

loc

order regularity theorem (see [11, Theorem 9.19]) that u € W' ().

loc
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There are other results on the very weak solutions, such as [8, 10, 13, 16, 21]
for semilinear elliptic equations, [19, 22] for elliptic systems, [18] for Neumann
problems.

The rest part of the paper is organized as follows: In the next section we present
some preliminary facts which will be used later. Sections 3-5 are devoted to the
proof of Theorems 1.4-1.6, respectively. We obtain the LP, W? and W™ regularity
of the very weak solutions, by using the bootstrap argument and the difference
quotient method.

2. Some Preliminary Facts

In this section, we list some preliminary facts that will be needed in our proof.
For convenience, we abbreviate a ball with center xy and radius R as Bg, and

then consider the Dirichlet problem
a;i(x)Div = f(x), x € Bg,
R (2.1)
v =0, x € 0Bg.

Lemma 2.1. Suppose that a;; € C°(Bgr) satisfy (1.2) in Br and f € LP(Bg)
with 1 < p < oo. Then (2.1) exists a unique solution v € W2P?(Bg) N W, (Bgr)
satisfying

[vllwze(r) < ClfllLr(Br)s
where C' depends only on N, p, A\, A, R and the modulus of continuity of a;; on Bg.

This lemma is the direct conclusion of Theorems 6.3 and 6.4 in [6, Chap. 3].

Lemma 2.2. Let u be a W?P(Bg) solution of (2.1) with 1 < p < oo. If aj; €
C%Y(BRr) are uniformly elliptic, and f € WY9(Br) with 1 < q < oo, then u €
W3’q(BR).

This lemma is a special case of [11, Theorem 9.19].

Lemma 2.3 ([1, Theorem 8.27]) (Trudinger’s Theorem). Let Q be a bounded
domain in RN satisfying the cone condition. Let mp = N, m be a positive integer
andp > 1. Set

B(t) = exp(t™m) — 1 = exp(t7-7) — 1.
Then there exists the imbedding
WP (Q) — LP(Q).
Moreover,
ullLz@) < Cllullwmr o)

for uw € W™P(Q), where C is a constant depending only on N, p, || and the cone
condition.

‘We recall some basic definitions about N-function.
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Definition 2.1. A function M (u) is called an N-function if it admits of the rep-
resentation

[ul
M) = [ po,
0
where the function p(t) is right-continuous for ¢ > 0, positive and nondecreasing

for t > 0 which satisfies the conditions p(0) = 0, p(co) = limy_, o p(t) = 0.

Definition 2.2. Let M;(u) and Ma(u) be two N-functions, and we write Mju <
Mosu if there exist positive constants ug and k such that M (u) < Ma(ku) (u > uy).
And we say that the N-functions Mj(u) and Ma(u) are equivalent and write

Mi(u) ~ Ma(u)
if Miu < Mou and Msu < Miu.

Definition 2.3. A convex function Q(u) will be called the principal part of the
N-function M (u) if Q(u) = M (u) for large values of the argument.

Definition 2.4. We will say that the N-function M (u) satisfies the Asz-condition
if it is equivalent to the N-function |u|M (u).

Lemma 2.4 ([1, Theorem 8.11]) (A Generalized Hoélder Inequality). If
B(t) and B(s) are complementary N -functions, that is to say,

B(s) = max{st — B(t)},
and u € LP(Q), v e LB(Q)7 we have

/Q Juv] < 2|l Loy 1]l 5 (q-

Lemma 2.5 ([15, Chap. 1, Theorem 6.25]). Suppose that the N -function
M (u), which is complementary to N -function N(v), satisfies the Ag condition and
let the function

Q(v) = [v| M~ ([v])

be the principal part of an N -function ¥ (v), where M ~1(|v]) is the function inverse
to M(u). Then ¥(v) ~ N(v).

Remark 2.1. When 2 is a bounded domain,
Affol) = max{uv — exp(ful ) + 1},

which is complementary to exp(|u\%) — 1, is equivalent to the N-function

[ol(In(Jo] + 1))

N-1
N .

And we see

LP(Q) ¢ LAQ) c LY(Q)

for any p > 1, since LP(Q) C L(In(L + 1))~ (Q) C L(Q) for any p > 1.

1350012-8
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3. LP Regularity

In this section, we will prove Theorem 1.4.

Proof of Theorem 1.4. We first get the estimate for a 29 ball, and choose § small
enough, such that 0 < 26 < 1. For ' CC Q, x¢ € Qa5 := {x € V|d(z,0Q") > 26},
let n(x) € C°(Ba2s(xo)) be a cut-off function:

1, |z — x| <9,
n(z) ={

07 |Z’ - $0| = 267
such that 0 < n(z) < 1, |Dn| < % and |D?n| < %, where M, My are positive
constants.
For the sake of clarity, we divide the estimate in Theorem 1.4 into five
steps.

Step 1: 1 < p < % Let w; be a smooth function in Bss. According to

Lemma 2.1, there must be a unique function v; € W% (Bys) N Wy'*" (Bas), such
that

Q5 (.’L’)Dij’l)l =wi, TE B25,
v =0, x € 0Bys.
Moreover
v1llw2a1 (Byys) < CllwillLar (Bys)s (3.1)

where q; € (N,00). Since a; € C%(Bas), w1 € C°(Bas) C Whe(Bays), by
Lemma 2.2, we have v; € W39 (Bys). Then using the Sobolev imbedding theo-
rem, we get vy € C%(Bas).

From (1.5) and a density argument, we have

/ uD;(ai; Djv) = / fv+giDiv, YoveCiRQ). (3.2)
Q Q
Now we choose v = n?v; in (3.2), and get

/ fPor+ giDi(nv1) = / uD;(ai; Dj(nv1))
Q Q
= / uD;ay D) (7]21}1) + uaq; Dy (7]21}1)
Bss
= / 2nuv1Diaij Djn + u772Diaij Djvl
Bss
+ / 2uviag DinDjn + 2nuvia; Dyn
Bss

+ / dnua; DinDjvr + U772aij Dijvy.
Bas

1350012-9
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By the properties of the cut-off function and a;;, we have

2K M
/ un2a¢j Dij U1 !
Bas

< / luv | + K |uD v
5 Bzg B26

2AM12 2AM2
+—= luvy | + — [uwvy |
6 Bas 5 Bas
4AM
+ 5 1/ |uDjv1|+/ | fo1]
Bg(s B26

2M
+Tl/ |givl|+/ |gi D;v:|
325 B26

< C(HUIHWLOO(B%)HUHLI(Bzé)

+ 1l Loe (Bos) 1 f |1 (Bas)
+ |1 llw.oe (Bos) 9ill L1 (Bas))-
By the Sobolev imbedding theorem and (3.1), we have
[villwroe (Bas) < Cllvillwzan (Bys) < CllwtllLar (Bss)-

So we get

/ 772uw1
Bas

Since w; is an arbitrary smooth function in Bys, we conclude

< Cllwillpar (Bos) Null L2 (Bos) + 1 f Il L1(Baos) + 19ill L1 (Bas))-

17 ull or (Bag) < Cllullr(mas) + 1F L1825 + gl 22 (Bas): (3-3)

where p; := qlqil € (1, 5).

Now using finite covering theorem, we obtain u € L} (Q), Vp € (1, %)

Step 2: p = % Let wsy be a smooth function in Bas. According to Lemma 2.1,
there must be a unique function vy € W2V (Bas) N W™ (Bys), such that

Qg5 (LE)DU"UQ =wy, ITE 3257
vg =0, x € 0Bss.

Moreover
[v2l[w2.n (Byy) < Cllwall Ln (Bys)- (3.4)

Since a;; € C%1(Bas), we € C°°(Bas) C WY (Bys), by Lemma 2.2, we have vy €
W3N(Bys). Then using the Sobolev imbedding theorem, we get vy € W272(Bys),
Vry < oo.

1350012-10
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From (1.5) and a density argument, we have
/ UDi(aiijU) :/ fU +giDﬂ}, Yo e W027l2 (BQ(;), Iy € (N,OO) (35)
Q Q

Now we choose v = ntvy in (3.5), use Lemma 2.4, the properties of the cut-off
function and a;;, and have

/ iuag Dyva| < C ([oallwoos () 7% 1 (500)
Bas

+ (|2l Lo (Bos) 1 | L1 (Bas)

+ llvallwr.s (Bos)llgill L2 (Bas) )

where B = B(t) = exp(t%) —1, A= A(s) = max;>o{st — exp(tNIil) +1},s>0.
By Lemma 2.3 and (3.4), we obtain

v2llwr.B(Bos) < Cllvallwzn sy < CllwallLy(B,y)-

So we get

/ 774uw2
Bas

From a duality argument, Remark 2.1 and (3.3), we conclude

< C||w2HLN(B%)(||772U||LA(B%) =+ ||f||L1(B25) + H9i||LA(325))-

””4“HLNJL(B25) < C(llullr(Bys) + 1 F L1 (Bas) + 19l La(B2s))- (3.6)

Now using finite covering theorem, we have u € L{, (), p = %

Step 3: % <p< % Let w3 be a smooth function in Bys. According to

Lemma 2.1, there must be a unique function vz € W29 (Bas) N Wol’% (Bas), such
that

Q5 (Z‘)Dij’l)g =ws3, TE B25,
v = 0, x € 0Bys.

Moreover

vallw2.as (Bys) < Cllws||Las (Bas)s (3.7)

where g3 € (5§, N). Since a; € C%'(Bays), wy € C®(Bas) C W (Bys), by
Lemma 2.2, we have v3 € W39 (Bays). Then using the Sobolev imbedding theorem,
we obtain vz € W73 (Bas), r3 = 3= € (N, 0).

From (1.5) and a density argument, we have

/ uDi(aiijv) = / fU —|—giD¢v, Yo e Woz’N(ng). (38)
Q Q

1350012-11
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Now we choose v = 7%v3 in (3.8), use the properties of the cut-off function and a;;,
and we obtain

6
/ un - aqg Dij V3
Bas

<C(lusl , wu  lr'ul
WN

___Naz
—a3 (Bas) LNa3=N+a3 (Bys)

+ [vsll Loo (Bos) 1 f11 L1 (Bas)

ol gy il ).
W N — 6 LNq3 N+q3(B25)

qs( 5
Recall that g3 € (5, N). So we have % € (1,75), and
5 < .
||n UHLNQBJX%JWS (Bas) o Hn UHL%(B%)

By the Sobolev imbedding theorem and (3.7), we obtain

HUSHWL%%( B < Cllvsllw2as (Bys) < Cllws||Las(Bys)-
So we get
/ nuws| < C||w3Han(325)< v I sy
Bos (B2s)

gl sy ).
q3—N+q3 (Bas)

From a duality argument, Remark 2.1 and (3.6), we conclude

Inull o ()<c@wpmﬂﬂmm%é+muvﬁma%). (3.9)
Since q3 € ( N), we have qsqil € (#5, #55). By taking p3 = qsqil, it follows
that ¢3 =

Ngs _ _Nps c (1 N )
Ngs—N+qg3 N +p3 "N -1

and

Il gy < O (llulliaqoas) + 112 sy + il

), (3.10)

N+p3 (B2s)

N N
forﬁ<p3<ﬁ

Now using finite covering theorem, we have u € L} (Q), p = p3 € (&5, 725)-
Step 4: p = x— (IV > 3). Let wy be a smooth function in Bas. According to

N
Lemma 2.1, there must be a unique function vy € W22 (Bas) N Wol’ 2 (Bgs), such
that

{al]( )D7.]U4 = W4, TE BQéa

vy =0, T € 0Bss.

1350012-12
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Moreover

< Cllwal, o, (3.11)

loallyy o % 5, Bas)’

Since aij € C%1(Bas), wy € C°°(Bas) C W2 (Bys), by Lemma 2.2, we have vy €

W3 > (Bas). Then using the Sobolev imbedding theorem, we get vo € W2 (Bys).
From (1.5) and a density argument, we have

N
/ uDi(aiijv) = / fv+giDiv, Yve W02,l4 (325)7 ly € (3,00) (312)
Q Q

Now we choose v = n®vy in (3.12), use Lemma 2.4, the properties of the cut-off
function and a;;, and have

8
/ un”az; Dijvg
Bas

< Ollvallwas g Inull sy

)

where B = B(t) = exp(t%) —1, A= A(s) = max;>o{st — exp(t%) +1},s>0.
By Lemma 2.3, the Sobolev imbedding theorem and (3.11), we obtain

+[[vall LB (Bys) | 1] L4 (Bus)

+llvallwr v sas)llgill

vall LB (B,5) < Cllvallwrn s,y

lvallwrv By < Clluall Cllwall, x

W2N(B)* L2(B s)°

So we get

/ 77 UWq
Bas

From a duality argument, Remark 2.1 and (3.10), we conclude

F B + llgill |

1<Bza>>'

< Ol o (Pl

ey < Ol + 1 o + il e, ) (313)

for p = Lz

Now using finite covering theorem, we have u € L{, (), p = %

Step 5: p > 5~ (IV > 3). From Step 2 to Step 3, we have n®u € LP(Bys) for any
pE [N T NNQ) L1kew1se for any given positive integer k = 3,4,..., N, we obtain

that n?**Hu € LP(Bays), Vp € [5—5, 75)- Moreover,
17"Vl Lo (s5) < CUlullLr(Bas) + 1100 (3o + 196l 200 (By5))s  (3:14)
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for all p > %, where
L,
Qp =1 A=A(s) = rgagc{st - exp(thzl) +1}, s> 0,
Np
N +2p’
1,
Op=qA=A(s) = r{1>aox{st - exp(tNIil) +1}, s> 0,
Np
N+p’

Finally, using finite covering theorem, we have

l<p<

N -2’
. N
p—N_2’
N_2<p<oo,
1<p< R
P=NT1
N
p_N_17
N_1<p<oo.

ullrwy < Clullzrry + 1l Ler @y + 19illLow @r))s

where the constant C' depends only on N, p, A\, A, K, w and €.

4. WbLP Regularity

In this section, we will prove Theorem 1.5.

Proof of Theorem 1.5. For fixed ' CC Q' CC Q,let 2R = min{1, 3d(Q",5')}.
For any zo € ", we let n(z) € C(Bzr) be a cut-off function, such that

0 <n(xz) <1and

n(x) =1 for x € Bp,

M,y 9 Mo
Dn| < — Dy < —

2

where M7y, My are positive constants.
For fixed h < %dist(supp 1n,0Bag) and k =1,2,..., N,

x + hey) — u(x)

Afu(z) = u( W

e LP(Q"),

for x € Bspg,

we have [pAkulP~lsign(nA¥u) € L"(Bag), where r -7 According to
Lemma 2.1, there must be a unique function
vp, € W2T(Bag) N Wy " (Bar),
such that
aij(x) Doy, = InAFuP~sign(nAfu), = € Bag,
{vh =0, x € 0Bsp.
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Moreover

_ —1
lonllwe () < ClIAEUP ey < Cllndullyly o (41)

From (1.5) and a density argument, we have
/ uDi(aiijw) Z/ fw —|—gl-D¢w, YVw e WOQ’T(Q) (42)
Q Q
Now we choose w = nAF , v, in (4.2), and get

Fn(AE yon) + g Di(nA on)
Bar

- / uD;(ag D3 (nA* 0n))
Bor

= / uDiaiijnA’ihvh + unDiaijA’ih(Djvh) + uaijDijn(A’ihvh)
Bar

+ / QuaiijA’ih(Djvh) + uaijnA’ih(Dijvh). (4.3)
Bar
Meanwhile by the property of difference quotients, we get

/ “aijnA]ih(Dijvh) = —/ nA’lzuaijDijvh
Bar Baor
- / (AFm)u(z + her)ag (xz + hey) Dijon
Bar

- / (Afag)nu(x + hey)Dijop. (4.4)
Bar
From (4.3) and (4.4),
/ nA,’iuaij Dy, < / nu(x + hek)(A]fLaij)Dijvh
BQR BZR
+ / (Armu(z + her)ag (x + heg)Dijon
Bar
+ / [uDjay Dyn(A* ,vp)]
Bar
+ /B lunDiag A 4 (Djvp)| + [uag Dyn(AF o))
2R

+ / 2|uaiijA’ih(Djvh)|
Bar

+ /B (K o] + lg: Di(nsk om)].
2R

1350012-15



W. Zhang & J. Bao

By the properties of the cut-off function and a;;, we have
/ nAﬁuaijDijvh <K |u(z + her)Dijun|
Bar supp 7
AM
+ ! / |u(z + heg)Dgjup|
R Jsuppn

KM
! / |uA’ihvh|
R Jsuppn

AM.
+K lu\E  (Djon)| + R22 / [uNF o
supp 7 supp 7

2AM
Ll B TRy TN
suppn

supp 7

M
o AT by ey et
supp 7 supp 7

By Holder inequality, (4.1), Sobolev imbedding theorem, the property of difference
quotients and Young inequality, we obtain

1 C
AFuD. ZnAEkyP . P
/Bm nag ApuDgop < 2”77 huHLp(B2R) R2p(”u”LP(BQR)

1A 0y 5,0 + 1960 (4.5)
where
1 1
) < P < N _ 17
N N
Op = (et —exp(t) + 1}, p= g7,
Np <p <X
N +9p’ N_1 7P :
Meanwhile

/ nag AkuDy v, = / nAEulnAE P~ sign(nAku)
Bar

Bar

— Akl - (4.6)
From (4.5) and (4.6), we have

N
C
ARl eBr) < 25 (umBm) 1l on (Bam) + D IIQin(Bm) :
i=1

Using the property of difference quotients again, we obtain Dyu € LP(Bg), and

N
1Dkl r(r) < C (umBm) 10 (Bam) + D IIQin(Bm) :
i=1
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Finally, using finite covering theorem, we have

N
[ullwrr@n <C (umm + 1 flpory + 9i||m(9/)> ,

i=1
where C depends only on N, p, A\, A, K, Q" and Q. O

5. Higher Regularity
In this section, we will give the proof of Theorem 1.6.
Proof of Theorem 1.6. We will prove Theorem 1.6 by induction on n, the case

n = 0 being Theorem 1.4 and Theorem 1.5 above. Assume that Theorem 1.6 holds
for some nonnegative integer n. Suppose then

aiy € OPFVNQ), i, j=1,2,...,N, (5.1)
gi € WITPP(Q), i=1,2,...,N, (5.2)
J e Wil (@) (5.3)

with 1 <p < oo,and u € LllOC

that u € W"T*?(Q). By the induction hypotheses, we have
we WP Q), (5.4)

loc

() is a very weak solution of (1.4). We want to show

with the estimate

N
[ulwntrp@ny < C <||U||L1(Q') + (| Fllwmon gy + Y gi”W"v?(ﬂ’)) , (5.5)
=1

for each ) cC Q' CcC Q and an appropriate C.
Now fix w CC Q”, and let @ be any multiindex with |a| = n + 1, and choose
any test function ¢ € C°(Q"). Insert

¢ = (~1)*D*p
into the (1.5), and perform some integrations by parts, eventually to discover
[ aDiasDip) = [ Fo+aiDis,
Q Q
for
= D% € LP(Q"),
f=D°F,

=31

and

Gii=Di+ (g) D*Pa;DP Dju.
b3a

In view of (5.1)-(5.4), we have f € LO»(Q"), §; € LP(V").
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In light of Theorem 1.1, we see 4 € W1P(Q)), with the estimate

N
|1y < C (HﬂLl(Q“) + 1l Low @y + Z ||9~in(9~)> .

i=1

That is, D% € WP (w) and

||Dau||Wl,p(w) S C HDOLUHLI(Q//) + HDafHLOp(Q//)

N
+ > ID%gill oy + > 1D? Dul|poar)
=1 B<a
pZa
Meanwhile
[D%ull oy < Cllullwn+rp@rn
and

> IDP Dull oy < Cllullwnsrogry.-
B<a
BFo

Consequently we have u € I/Vlzzrz’p(ﬂ), by (5.5), and get

N
[ullwn+ewwy < C (”U”Ll(ﬂ’) + 1 llwmeromary + ||gz‘wr»+1m(szf)> :

i=1

where C'is a constant depending only on n, N, p, A\, A, w, ' and the norms of a;;
in O TLL(QY). O
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