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In this paper, we study the local regularity of very weak solution u ∈ L1
loc(Ω) of the

elliptic equation Dj(aij (x)Diu) = f − Digi. Using the bootstrap argument and the

difference quotient method, we obtain that if aij ∈ C0,1
loc (Ω), gi ∈ Lp

loc(Ω) and f ∈
L

Op

loc(Ω) with 1 < p < ∞, then u ∈ W 1,p
loc (Ω). Furthermore, we consider the higher

regularity of u.
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1. Introduction

The simplest kind of linear elliptic equations in divergence form is

Dj(aij (x)Diu) = 0 in Ω, (1.1)

where Ω is a domain in R
N , N ≥ 2, and the coefficients aij (x) are bounded mea-

surable functions satisfying the ellipticity condition, i.e.

λ|ξ|2 ≤ aij (x)ξiξj ≤ Λ|ξ|2, ∀x ∈ Ω, ξ ∈ R
N , (1.2)

with 0 < λ ≤ Λ < ∞. u ∈ W 1,p
loc (Ω) for p ∈ [1,∞) is called a weak solution of (1.1)

over Ω if ∫
Ω

aijDiuDjϕ = 0, ∀ϕ ∈ C∞
c (Ω). (1.3)

1350012-1

http://dx.doi.org/10.1142/S0219199713500120


June 10, 2013 13:37 WSPC/S0219-1997 152-CCM 1350012

W. Zhang & J. Bao

A fundamental result of De Giorge [7] states that if u ∈ W 1,2
loc (Ω) is a weak

solution of (1.1), then u is locally bounded and then locally Hölder continuous.
Meyers [17] also proved that u ∈ W 1,p

loc (Ω) for some p > 2.
Serrin in [20] showed by a counterexample that in general the solutions of (1.1) in

W 1,p
loc (Ω) for p ∈ (1, 2) need not be locally bounded only under the assumption (1.2).

He proposed a conjecture that if the coefficients aij are locally Hölder continuous,
then any weak solution u ∈ W 1,1

loc (Ω) of (1.1) must be in W 1,2
loc (Ω). Hager and

Ross [12] proved that the conjecture is true for the weak solutions in W 1,p
loc (Ω) for

p ∈ (1, 2). In 2008, a celebrated theorem was established by Brezis (see [3], a full
proof can be found in [2]).

Theorem 1.1. Assume that aij are Dini continuous in Ω, and let u ∈ BVloc(Ω)
be a weak solution of (1.1), then u ∈ W 1,2

loc (Ω).

Here the coefficients aij are Dini continuous in Ω, i.e. aij ∈ C0(Ω), and for any
subdomain Ω′ � Ω, there exists a function ϕ, such that

|aij (x) − aij (y)| ≤ ϕ(|x − y|), x, y ∈ Ω′, where
∫ diam Ω′

0

ϕ(r)
r

dr < ∞.

And u ∈ BVloc(Ω) means u ∈ L1
loc(Ω) and∫

Ω′
|Du| = sup

{∫
Ω′

u · div−→v : −→v ∈ C1
0 (Ω′, RN ), |−→v | ≤ 1

}
< ∞, ∀Ω′ � Ω.

Theorem 1.1 confirmed completely Serrin’s conjecture in the case of less smooth
given coefficients and solutions, since Hölder continuity on aij were replaced by
Dini continuity, and u was extended from W 1,1

loc (Ω) to BVloc(Ω).
For merely continuity on aij , Brezis obtained the following result.

Theorem 1.2. Assume that aij ∈ C0(Ω). If u ∈ W 1,p
loc (Ω) is a weak solution of (1.1)

for some p > 1, then u ∈ W 1,q
loc (Ω) for every q < ∞.

There are the counterexamples to show Theorem 1.2 is not true in the cases
p = 1 or q = ∞. Therefore Theorem 1.2 is optimal in some sense. For the unit ball
B1 and the continuous coefficients aij , Jin, Maz’ya and Schaftingen [14] constructed
a weak solution u ∈ W 1,1

loc (B1)\W 1,p
loc (B1) for every p > 1. They also gave a function

u ∈ W 1,q
loc (B1)\W 1,∞

loc (B1) for every q < ∞, satisfying (1.1).
Recently, in [23], we have considered a very weak solution u ∈ L1

loc(Ω) of (1.1),
namely ∫

Ω

uDi(aijDjϕ) = 0, ∀ϕ ∈ C∞
c (Ω).

Because of the very weak assumptions made on the solutions it is natural that the
coefficients should be interpreted as the local Lipschitz functions. And we have the
following theorem.

Theorem 1.3. Assume that aij ∈ C0,1
loc (Ω). If u ∈ L1

loc(Ω) is a very weak solution
of (1.1), then u ∈ W 2,q

loc (Ω) for any q ∈ [1,∞).
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In fact, we give a positive answer as the above theorem to the question, raised
by Brezis, whether any very weak solution u ∈ L1

loc(Ω) of (1.1) is in W 1,2
loc (Ω).

In this paper, we consider more general nonhomogeneous linear elliptic equations
having principal part in divergence form

Dj(aij (x)Diu) = f − Digi in Ω, (1.4)

where aij ∈ C0,1
loc (Ω), f, gi ∈ L1

loc(Ω) for i, j = 1, 2, . . . , N . u ∈ L1
loc(Ω) is said to be

a very weak solution of Eq. (1.4)∫
Ω

uDi(aij Djϕ) =
∫

Ω

fϕ + giDiϕ, ∀ϕ ∈ C∞
c (Ω). (1.5)

A very weak solution in W 1,p
loc (Ω), p ∈ [1,∞), of (1.4) must be a usual weak solution,

that is

−
∫

Ω

aij DiuDjϕ =
∫

Ω

fϕ + giDiϕ, ∀ϕ ∈ C∞
c (Ω).

Throughout the paper, we always assume that the coefficients aij ∈ C0,1
loc (Ω)

are elliptic, i.e. for any subdomain Ω′ ⊂⊂ Ω, there exist the constants K, λ, Λ,
depending only on Ω′, such that

|aij (x) − aij (y)| ≤ K|x − y|, ∀x, y ∈ Ω′, i, j = 1, 2, . . . , N, (1.6)

λ|ξ|2 ≤ aij (x)ξiξj ≤ Λ|ξ|2, ∀x ∈ Ω′, ξ ∈ R
N . (1.7)

Suppose that 1 < p < ∞ and

f ∈ L
Op

loc(Ω), gi ∈ Lp
loc(Ω), i = 1, 2, . . . , N, (1.8)

where

Op =



1, 1 < p <
N

N − 1
,

A = A(s) =: max
t≥0

{st − exp(t
N

N−1 ) + 1}, s > 0, p =
N

N − 1
,

Np
N + p

,
N

N − 1
< p < ∞.

Here L
Op

loc(Ω) = LA
loc(Ω) is a local Orlicz space in the case of p = N

N−1 . The Orlicz
space is defined as

LA(Ω) =
{

f : Ω → R measurable and
∫

Ω

A

( |f(x)|
k

)
dx < ∞ for some k > 0

}
.

The Luxemburg norm ‖f‖LA(Ω) is defined as

‖f‖LA(Ω) = inf
{

k > 0 :
∫

Ω

A

( |f(x)|
k

)
dx ≤ 1

}
.

The space LA(Ω), equipped with the norm ‖ · ‖LA(Ω), is a Banach space. f ∈ LA
loc(Ω)

means ‖f‖LA(Ω′) < ∞ for any Ω′ ⊂⊂ Ω.
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Our main results are the Lp, W 1,p and Wn,p regularity of the very weak solu-
tions. In fact, under weaker integrable assumptions on f and gi, i = 1, 2, . . . , N , Lp

regularity is obtained.

Theorem 1.4. Assume that the conditions (1.6), (1.7) hold, f ∈ L
Qp

loc(Ω) and gi ∈
L

Op

loc(Ω) with 1 < p < ∞, i = 1, 2, . . . , N . If u ∈ L1
loc(Ω) is a very weak solution of

(1.4), then u ∈ Lp
loc(Ω). Moreover

‖u‖Lp(ω) ≤ C

(
‖u‖L1(Ω′) + ‖f‖LQp(Ω′) +

N∑
i=1

‖gi‖LOp(Ω′)

)
,

for every ω ⊂⊂ Ω′ ⊂⊂ Ω, where the constant C depends only on N, p, λ, Λ, K, ω

and Ω′, and

Qp =



1, 1 < p <
N

N − 2
,

A = A(s) =: max
t≥0

{st − exp(t
N

N−1 ) + 1}, s > 0, p =
N

N − 2
,

Np

N + 2p
,

N

N − 2
< p < ∞.

Corollary 1.1. Assume that the conditions (1.6), (1.7) hold, f, gi ∈ L1
loc(Ω), i =

1, 2, . . . , N . If u ∈ L1
loc(Ω) is a very weak solution of (1.4), then u ∈ Lp

loc(Ω) for
any p ∈ [1, N

N−1 ).

Theorem 1.5. Assume that the conditions (1.6), (1.7) and (1.8) hold, 1 < p < ∞.
If u ∈ Lp

loc(Ω) is a very weak solution of (1.4), then u ∈ W 1,p
loc (Ω). Moreover

‖u‖W 1,p(Ω′′) ≤ C

(
‖u‖Lp(Ω′) + ‖f‖LOp(Ω′) +

N∑
i=1

‖gi‖Lp(Ω′)

)
,

for every Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω, where the constant C depends only on N, p, λ, Λ, K,

Ω′′ and Ω′.

Remark 1.1. In fact, if u ∈ W 1,p
loc (Ω) is a weak solution of (1.4), then a fine priori

estimate is obtained from the above theorem.

At the same time, we have the following result by combining Theorems 1.4
and 1.5.

Corollary 1.2. Assume that aij ∈ C0,1
loc (Ω), f ∈ L1

loc(Ω) and gi ∈ Lp
loc(Ω), 1 < p <

N
N−1 , i, j = 1, 2, . . . , N . If u ∈ L1

loc(Ω) is a very weak solution of (1.4), then

u ∈ W 1,p
loc (Ω).

In the case of gi = 0, i, j = 1, 2, . . . , N, if we strengthen the integrable condition
on f by assuming f ∈ Lp, then we have the following proposition.
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Proposition 1.1. Assume that aij ∈ C0,1
loc (Ω), f ∈ Lp

loc(Ω) with 1 < p < ∞ and

gi = 0, i, j = 1, 2, . . . , N . If u ∈ L1
loc(Ω) is a very weak solution of (1.4), then

u ∈ W 2,p
loc (Ω).

Proof. For BR = BR(x0) ⊂ B2R(x0) = B2R ⊂ Ω, we consider the Dirichlet
problem {

Dj(aij (x)Div) = f(x), x ∈ B2R,

v = 0, x ∈ ∂B2R.
(1.9)

From [6, Theorems 6.3 and 6.4], (1.9) exists a unique solution

v ∈ W 2,p(B2R) ∩ W 1,p
0 (B2R)

satisfying

‖v‖W 2,p(B2R) ≤ C‖f‖Lp(B2R). (1.10)

Let w = u − v, then w is a very weak solution of (1.1). By Theorem 1.3, we have

‖u − v‖W 2,p(BR) ≤ C‖u − v‖L1(B2R).

From Minkowski inequality, Hölder inequality and (1.10), we get

‖u‖W 2,p(BR) ≤ C(‖u‖L1(B2R) + ‖f‖Lp(B2R)).

Now, using finite covering theorem, we obtain the result.

The very weak solution has been studied by many authors. In [4], Brezis,
Cazenave, Martel and Ramiandrisoa proved the existence and uniqueness theo-
rem for a very weak solution in L1(Ω) of the Poisson equations ∆u = f(x) with
zero boundary value. They also established the estimate

‖u‖L1(Ω) ≤ ‖f · dist(x, ∂Ω)‖L1(Ω).

Later, Cabré and Martel [5] showed the very weak solution is in Lq(Ω) for any
1 ≤ q < N

N−2 .
Therefore, the question of the integrability of the weak derivative of the very

weak solution arises in a natural way.
Recently, Diaz and Rakotoson [9] extended the results of Brezis et al. to Lu =

f(x), where L is a linear second-order elliptic operator with variable coefficients.
They obtained if f · distα(x, ∂Ω) ∈ L1(Ω), 0 ≤ α < 1, then Du belongs to the
Lorentz space L

N
N−1+α ,∞(Ω), where

L
N

N−1+α ,∞(Ω) =

{
f : Ω → R measurable and sup

t≤|Ω|
t

α−1
N

∫ t

0

|f |∗ds < ∞
}

,

|f |∗(s) = inf{t ∈ R : meas{|f | > t} ≤ s} for 0 ≤ s ≤ |Ω|. In particular, for
Poisson equation (see [8, Lemma 6]), if f ∈ L1(Ω), then Du ∈ Lq(Ω) ⊂ L

N
N−1 ,∞(Ω),

where 1 ≤ q < N
N−1 . It is almost the same to Corollary 1.2, and a special case of

Theorems 1.4 and 1.5.
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Further differentiability of very weak solutions can be deduced readily from the
proof of Theorem 1.5. Suppose that we strengthen the smoothness conditions on
the coefficients by assuming

aij ∈ Cn,1
loc (Ω), i, j = 1, 2, . . . , N, (1.11)

together with

gi ∈ Wn,p
loc (Ω), 1 < p < ∞, i = 1, 2, . . . , N, (1.12)

and

f ∈ W
n,Op

loc (Ω), 1 < p < ∞, (1.13)

where n = 1, 2, . . . , and

Wn,Op =



Wn,1, 1 < p <
N

N − 1
,

Wn,A, p =
N

N − 1
,

Wn, Np
N+p ,

N

N − 1
< p < ∞.

We can then conclude the following extension of Theorems 1.4 and 1.5.

Theorem 1.6. Assume that the conditions (1.7), (1.11), (1.12) and (1.13) hold. If
u ∈ L1

loc(Ω) is a very weak solution of (1.4), then

u ∈ Wn+1,p
loc (Ω). (1.14)

Moreover

‖u‖W n+1,p(ω) ≤ C

(
‖u‖L1(Ω′) + ‖f‖W n,Op(Ω′) +

N∑
i=1

‖gi‖W n,p(Ω′)

)
,

for every ω ⊂⊂ Ω′ ⊂⊂ Ω, where C is a constant depending only on n, N, p,

λ, Λ, ω, Ω′ and the norms of aij (x) in Cn,1(Ω′).

To our knowledge, Theorem 1.6 is new in the case of n = 1. At this time,
the very weak solution has become not only a weak solution, but also a strong
solution. The W 2,p regularity in (1.14) is local and independent of the uniqueness
of solutions, which is different from [6]. Once u ∈ W 2,p

loc (Ω), Eq. (1.4) can be written
in the general form

aij (x)Dij u + Djaij (x)Diu = f(x) − Digi(x),

so that the usual regularity theory of strong solutions would apply. By (1.11), (1.12)
and (1.13), we have

aij , Djaij ∈ Cn−1,1
loc (Ω) ⊂ Cn−2,1

loc (Ω), n = 2, 3, . . . ,

f − Digi ∈ Wn−1,p
loc (Ω), 1 < p < ∞.

Here we have used the fact that W
n,Op

loc (Ω) ⊂ Wn−1,p
loc (Ω). It follows from the higher-

order regularity theorem (see [11, Theorem 9.19]) that u ∈ Wn+1,p
loc (Ω).
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There are other results on the very weak solutions, such as [8, 10, 13, 16, 21]
for semilinear elliptic equations, [19, 22] for elliptic systems, [18] for Neumann
problems.

The rest part of the paper is organized as follows: In the next section we present
some preliminary facts which will be used later. Sections 3–5 are devoted to the
proof of Theorems 1.4–1.6, respectively. We obtain the Lp, W 1,p and Wn,p regularity
of the very weak solutions, by using the bootstrap argument and the difference
quotient method.

2. Some Preliminary Facts

In this section, we list some preliminary facts that will be needed in our proof.
For convenience, we abbreviate a ball with center x0 and radius R as BR, and

then consider the Dirichlet problem{
aij (x)Dij v = f(x), x ∈ BR,

v = 0, x ∈ ∂BR.
(2.1)

Lemma 2.1. Suppose that aij ∈ C0(BR) satisfy (1.2) in BR and f ∈ Lp(BR)
with 1 < p < ∞. Then (2.1) exists a unique solution v ∈ W 2,p(BR) ∩ W 1,p

0 (BR)
satisfying

‖v‖W 2,p(BR) ≤ C‖f‖Lp(BR),

where C depends only on N, p, λ, Λ, R and the modulus of continuity of aij on BR.

This lemma is the direct conclusion of Theorems 6.3 and 6.4 in [6, Chap. 3].

Lemma 2.2. Let u be a W 2,p(BR) solution of (2.1) with 1 < p < ∞. If aij ∈
C0,1(BR) are uniformly elliptic, and f ∈ W 1,q(BR) with 1 < q < ∞, then u ∈
W 3,q(BR).

This lemma is a special case of [11, Theorem 9.19].

Lemma 2.3 ([1, Theorem 8.27]) (Trudinger’s Theorem). Let Ω be a bounded
domain in R

N satisfying the cone condition. Let mp = N, m be a positive integer
and p > 1. Set

B(t) = exp(t
N

N−m ) − 1 = exp(t
p

p−1 ) − 1.

Then there exists the imbedding

Wm,p(Ω) ↪→ LB(Ω).

Moreover,

‖u‖LB(Ω) ≤ C‖u‖W m,p(Ω)

for u ∈ Wm,p(Ω), where C is a constant depending only on N, p, |Ω| and the cone
condition.

We recall some basic definitions about N -function.
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Definition 2.1. A function M(u) is called an N -function if it admits of the rep-
resentation

M(u) =
∫ |u|

0

p(t)dt,

where the function p(t) is right-continuous for t ≥ 0, positive and nondecreasing
for t > 0 which satisfies the conditions p(0) = 0, p(∞) = limt→∞ p(t) = ∞.

Definition 2.2. Let M1(u) and M2(u) be two N -functions, and we write M1u ≺
M2u if there exist positive constants u0 and k such that M1(u) ≤ M2(ku) (u ≥ u0).
And we say that the N -functions M1(u) and M2(u) are equivalent and write

M1(u) ∼ M2(u)

if M1u ≺ M2u and M2u ≺ M1u.

Definition 2.3. A convex function Q(u) will be called the principal part of the
N -function M(u) if Q(u) = M(u) for large values of the argument.

Definition 2.4. We will say that the N -function M(u) satisfies the �3-condition
if it is equivalent to the N -function |u|M(u).

Lemma 2.4 ([1, Theorem 8.11]) (A Generalized Hölder Inequality). If
B(t) and B̃(s) are complementary N -functions, that is to say,

B̃(s) = max
t≥0

{st − B(t)},

and u ∈ LB(Ω), v ∈ LB̃(Ω), we have∫
Ω

|uv| ≤ 2‖u‖LB(Ω)‖v‖LB̃(Ω).

Lemma 2.5 ([15, Chap. 1, Theorem 6.25]). Suppose that the N -function
M(u), which is complementary to N -function N(v), satisfies the �3 condition and
let the function

Q(v) = |v|M−1(|v|)
be the principal part of an N -function Ψ(v), where M−1(|v|) is the function inverse
to M(u). Then Ψ(v) ∼ N(v).

Remark 2.1. When Ω is a bounded domain,

A(|v|) = max
|u|≥0

{uv − exp(|u| N
N−1 ) + 1},

which is complementary to exp(|u| N
N−1 ) − 1, is equivalent to the N -function

|v|(ln(|v| + 1))
N−1

N .

And we see

Lp(Ω) ⊂ LA(Ω) ⊂ L1(Ω)

for any p > 1, since Lp(Ω) ⊂ L(ln(L + 1))
N−1

N (Ω) ⊂ L1(Ω) for any p > 1.
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3. Lp Regularity

In this section, we will prove Theorem 1.4.

Proof of Theorem 1.4. We first get the estimate for a 2δ ball, and choose δ small
enough, such that 0 < 2δ ≤ 1. For Ω′ ⊂⊂ Ω, x0 ∈ Ω2δ := {x ∈ Ω′|d(x, ∂Ω′) > 2δ},
let η(x) ∈ C∞

c (B2δ(x0)) be a cut-off function:

η(x) =

{
1, |x − x0| ≤ δ,

0, |x − x0| ≥ 2δ,

such that 0 ≤ η(x) ≤ 1, |Dη| ≤ M1
δ and |D2η| ≤ M2

δ2 , where M1, M2 are positive
constants.

For the sake of clarity, we divide the estimate in Theorem 1.4 into five
steps.

Step 1: 1 < p < N
N−1 . Let w1 be a smooth function in B2δ. According to

Lemma 2.1, there must be a unique function v1 ∈ W 2,q1(B2δ) ∩ W 1,q1
0 (B2δ), such

that {
aij (x)Dij v1 = w1, x ∈ B2δ,

v1 = 0, x ∈ ∂B2δ.

Moreover

‖v1‖W 2,q1 (B2δ) ≤ C‖w1‖Lq1(B2δ), (3.1)

where q1 ∈ (N,∞). Since aij ∈ C0,1(B2δ), w1 ∈ C∞(B2δ) ⊂ W 1,q1(B2δ), by
Lemma 2.2, we have v1 ∈ W 3,q1(B2δ). Then using the Sobolev imbedding theo-
rem, we get v1 ∈ C2,α(B2δ).

From (1.5) and a density argument, we have∫
Ω

uDi(aijDjv) =
∫

Ω

fv + giDiv, ∀ v ∈ C2
0 (Ω). (3.2)

Now we choose v = η2v1 in (3.2), and get∫
Ω

fη2v1 + giDi(η2v1) =
∫

Ω

uDi(aijDj(η2v1))

=
∫

B2δ

uDiaijDj(η2v1) + uaijDij (η2v1)

=
∫

B2δ

2ηuv1DiaijDjη + uη2DiaijDjv1

+
∫

B2δ

2uv1aij DiηDjη + 2ηuv1aijDij η

+
∫

B2δ

4ηuaijDiηDjv1 + uη2aij Dijv1.
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By the properties of the cut-off function and aij , we have∣∣∣∣∫
B2δ

uη2aijDij v1

∣∣∣∣ ≤ 2KM1

δ

∫
B2δ

|uv1| + K

∫
B2δ

|uDjv1|

+
2ΛM1

2

δ2

∫
B2δ

|uv1| + 2ΛM2

δ2

∫
B2δ

|uv1|

+
4ΛM1

δ

∫
B2δ

|uDjv1| +
∫

B2δ

|fv1|

+
2M1

δ

∫
B2δ

|giv1| +
∫

B2δ

|giDiv1|

≤ C(‖v1‖W 1,∞(B2δ)‖u‖L1(B2δ)

+ ‖v1‖L∞(B2δ)‖f‖L1(B2δ)

+ ‖v1‖W 1,∞(B2δ)‖gi‖L1(B2δ)).

By the Sobolev imbedding theorem and (3.1), we have

‖v1‖W 1,∞(B2δ) ≤ C‖v1‖W 2,q1 (B2δ) ≤ C‖w1‖Lq1(B2δ).

So we get∣∣∣∣∫
B2δ

η2uw1

∣∣∣∣ ≤ C‖w1‖Lq1(B2δ)(‖u‖L1(B2δ) + ‖f‖L1(B2δ) + ‖gi‖L1(B2δ)).

Since w1 is an arbitrary smooth function in B2δ, we conclude

‖η2u‖Lp1(B2δ) ≤ C(‖u‖L1(B2δ) + ‖f‖L1(B2δ) + ‖gi‖L1(B2δ)), (3.3)

where p1 := q1
q1−1 ∈ (1, N

N−1 ).
Now using finite covering theorem, we obtain u ∈ Lp

loc(Ω), ∀ p ∈ (1, N
N−1 ).

Step 2: p = N
N−1 . Let w2 be a smooth function in B2δ. According to Lemma 2.1,

there must be a unique function v2 ∈ W 2,N (B2δ) ∩ W 1,N
0 (B2δ), such that{

aij (x)Dij v2 = w2, x ∈ B2δ,

v2 = 0, x ∈ ∂B2δ.

Moreover

‖v2‖W 2,N (B2δ) ≤ C‖w2‖LN (B2δ). (3.4)

Since aij ∈ C0,1(B2δ), w2 ∈ C∞(B2δ) ⊂ W 1,N(B2δ), by Lemma 2.2, we have v2 ∈
W 3,N (B2δ). Then using the Sobolev imbedding theorem, we get v2 ∈ W 2,r2(B2δ),
∀ r2 < ∞.
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From (1.5) and a density argument, we have∫
Ω

uDi(aijDjv) =
∫

Ω

fv + giDiv, ∀ v ∈ W 2,l2
0 (B2δ), l2 ∈ (N,∞). (3.5)

Now we choose v = η4v2 in (3.5), use Lemma 2.4, the properties of the cut-off
function and aij , and have∣∣∣∣∫

B2δ

η4uaijDij v2

∣∣∣∣ ≤ C
(‖v2‖W 1,B(B2δ)‖η2u‖LA(B2δ)

+ ‖v2‖L∞(B2δ)‖f‖L1(B2δ)

+ ‖v2‖W 1,B(B2δ)‖gi‖LA(B2δ)

)
,

where B = B(t) = exp(t
N

N−1 ) − 1, A = A(s) = maxt≥0{st − exp(t
N

N−1 ) + 1}, s > 0.
By Lemma 2.3 and (3.4), we obtain

‖v2‖W 1,B(B2δ) ≤ C‖v2‖W 2,N (B2δ) ≤ C‖w2‖LN(B2δ).

So we get∣∣∣∣∫
B2δ

η4uw2

∣∣∣∣ ≤ C‖w2‖LN(B2δ)(‖η2u‖LA(B2δ) + ‖f‖L1(B2δ) + ‖gi‖LA(B2δ)).

From a duality argument, Remark 2.1 and (3.3), we conclude

‖η4u‖
L

N
N−1 (B2δ)

≤ C(‖u‖L1(B2δ) + ‖f‖L1(B2δ) + ‖gi‖LA(B2δ)). (3.6)

Now using finite covering theorem, we have u ∈ Lp
loc(Ω), p = N

N−1 .

Step 3: N
N−1 < p < N

N−2 . Let w3 be a smooth function in B2δ. According to
Lemma 2.1, there must be a unique function v3 ∈ W 2,q3(B2δ) ∩ W 1,q3

0 (B2δ), such
that {

aij (x)Dij v3 = w3, x ∈ B2δ,

v3 = 0, x ∈ ∂B2δ.

Moreover

‖v3‖W 2,q3 (B2δ) ≤ C‖w3‖Lq3(B2δ), (3.7)

where q3 ∈ (N
2 , N). Since aij ∈ C0,1(B2δ), w3 ∈ C∞(B2δ) ⊂ W 1,q3(B2δ), by

Lemma 2.2, we have v3 ∈ W 3,q3(B2δ). Then using the Sobolev imbedding theorem,
we obtain v3 ∈ W 2,r3(B2δ), r3 = Nq3

N−q3
∈ (N,∞).

From (1.5) and a density argument, we have∫
Ω

uDi(aijDjv) =
∫

Ω

fv + giDiv, ∀ v ∈ W 2,N
0 (B2δ). (3.8)
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Now we choose v = η6v3 in (3.8), use the properties of the cut-off function and aij ,
and we obtain∣∣∣∣∫

B2δ

uη6aij Dij v3

∣∣∣∣ ≤ C
(
‖v3‖

W
1,

Nq3
N−q3 (B2δ)

‖η4u‖
L

Nq3
Nq3−N+q3 (B2δ)

+ ‖v3‖L∞(B2δ)‖f‖L1(B2δ)

+ ‖v3‖
W

1,
Nq3

N−q3 (B2δ)
‖gi‖

L
Nq3

Nq3−N+q3 (B2δ)

)
.

Recall that q3 ∈ (N
2 , N). So we have Nq3

Nq3−N+q3
∈ (1, N

N−1 ), and

‖η4u‖
L

Nq3
Nq3−N+q3 (B2δ)

≤ ‖η4u‖
L

N
N−1 (B2δ)

.

By the Sobolev imbedding theorem and (3.7), we obtain

‖v3‖
W

1,
Nq3

N−q3 (B2δ)
≤ C‖v3‖W 2,q3 (B2δ) ≤ C‖w3‖Lq3(B2δ).

So we get ∣∣∣∣∫
B2δ

η6uw3

∣∣∣∣ ≤ C‖w3‖Lq3(B2δ)

(
‖η4u‖

L
N

N−1 (B2δ)
+ ‖f‖L1(B2δ)

+ ‖gi‖
L

Nq3
Nq3−N+q3 (B2δ)

)
.

From a duality argument, Remark 2.1 and (3.6), we conclude

‖η6u‖
L

q3
q3−1 (B2δ)

≤ C
(
‖u‖L1(B2δ) + ‖f‖L1(B2δ) + ‖gi‖

L
Nq3

Nq3−N+q3 (B2δ)

)
. (3.9)

Since q3 ∈ (N
2 , N), we have q3

q3−1 ∈ ( N
N−1 , N

N−2 ). By taking p3 = q3
q3−1 , it follows

that q3 = p3
p3−1 . So we get

Nq3

Nq3 − N + q3
=

Np3

N + p3
∈
(

1,
N

N − 1

)
,

and

‖η6u‖Lp3(B2δ) ≤ C
(
‖u‖L1(B2δ) + ‖f‖L1(B2δ) + ‖gi‖

L
Np3

N+p3 (B2δ)

)
, (3.10)

for N
N−1 < p3 < N

N−2 .

Now using finite covering theorem, we have u ∈ Lp
loc(Ω), p = p3 ∈ ( N

N−1 , N
N−2 ).

Step 4: p = N
N−2 (N ≥ 3). Let w4 be a smooth function in B2δ. According to

Lemma 2.1, there must be a unique function v4 ∈ W 2, N
2 (B2δ) ∩ W

1, N
2

0 (B2δ), such
that {

aij (x)Dij v4 = w4, x ∈ B2δ,

v4 = 0, x ∈ ∂B2δ.
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Moreover

‖v4‖
W 2, N

2 (B2δ)
≤ C‖w4‖

L
N
2 (B2δ)

. (3.11)

Since aij ∈ C0,1(B2δ), w4 ∈ C∞(B2δ) ⊂ W 1, N
2 (B2δ), by Lemma 2.2, we have v4 ∈

W 3, N
2 (B2δ). Then using the Sobolev imbedding theorem, we get v2 ∈ W 2,N(B2δ).

From (1.5) and a density argument, we have∫
Ω

uDi(aijDjv) =
∫

Ω

fv + giDiv, ∀ v ∈ W 2,l4
0 (B2δ), l4 ∈

(
N

2
,∞
)

. (3.12)

Now we choose v = η8v4 in (3.12), use Lemma 2.4, the properties of the cut-off
function and aij , and have∣∣∣∣∫

B2δ

uη8aijDij v4

∣∣∣∣ ≤ C
(
‖v4‖W 1,N (B2δ)‖η6u‖

L
N

N−1 (B2δ)

+ ‖v4‖LB(B2δ)‖f‖LA(B2δ)

+ ‖v4‖W 1,N (B2δ)‖gi‖
L

N
N−1 (B2δ)

)
,

where B = B(t) = exp(t
N

N−1 ) − 1, A = A(s) = maxt≥0{st − exp(t
N

N−1 ) + 1}, s > 0.
By Lemma 2.3, the Sobolev imbedding theorem and (3.11), we obtain

‖v4‖LB(B2δ) ≤ C‖v4‖W 1,N (B2δ),

‖v4‖W 1,N (B2δ) ≤ C‖v4‖
W 2, N

2 (B2δ)
≤ C‖w4‖

L
N
2 (B2δ)

.

So we get∣∣∣∣∫
B2δ

η8uw4

∣∣∣∣ ≤ C‖w4‖
L

N
2 (B2δ)

(
‖η6u‖

L
N

N−1 (B2δ)
+ ‖f‖LA(B2δ) + ‖gi‖

L
N

N−1 (B2δ)

)
.

From a duality argument, Remark 2.1 and (3.10), we conclude

‖η8u‖
L

N
N−2 (B2δ)

≤ C
(
‖u‖L1(B2δ) + ‖f‖LA(B2δ) + ‖gi‖

L
Np

N+p (B2δ)

)
, (3.13)

for p = N
N−2 .

Now using finite covering theorem, we have u ∈ Lp
loc(Ω), p = N

N−2 .

Step 5: p ≥ N
N−2 (N ≥ 3). From Step 2 to Step 3, we have η6u ∈ Lp(B2δ) for any

p ∈ [ N
N−1 , N

N−2 ). Likewise, for any given positive integer k = 3, 4, . . . , N , we obtain

that η2(k+1)u ∈ Lp(B2δ), ∀ p ∈ [ N
N+1−k , N

N−k ). Moreover,

‖η2(k+1)u‖Lp(B2δ) ≤ C(‖u‖L1(B2δ) + ‖f‖LQp(B2δ) + ‖gi‖LOp (B2δ)), (3.14)
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for all p ≥ N
N−2 , where

Qp =



1, 1 < p <
N

N − 2
,

A = A(s) =: max
t≥0

{st − exp(t
N

N−1 ) + 1}, s > 0, p =
N

N − 2
,

Np

N + 2p
,

N

N − 2
< p < ∞,

Op =



1, 1 < p <
N

N − 1
,

A = A(s) =: max
t≥0

{st − exp(t
N

N−1 ) + 1}, s > 0, p =
N

N − 1
,

Np

N + p
,

N

N − 1
< p < ∞.

Finally, using finite covering theorem, we have

‖u‖Lp(ω) ≤ C(‖u‖L1(Ω′) + ‖f‖LQp(Ω′) + ‖gi‖LOp(Ω′)),

where the constant C depends only on N , p, λ, Λ, K, ω and Ω′.

4. W 1,p Regularity

In this section, we will prove Theorem 1.5.

Proof of Theorem 1.5. For fixed Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω, let 2R = min{1, 1
2d(Ω′′, ∂Ω′)}.

For any x0 ∈ Ω′′, we let η(x) ∈ C∞
c (B2R) be a cut-off function, such that

0 ≤ η(x) ≤ 1 and

η(x) = 1 for x ∈ BR,

|Dη| ≤ M1

R
, |D2η| ≤ M2

R2
for x ∈ B2R,

where M1, M2 are positive constants.
For fixed h < 1

3dist(supp η, ∂B2R) and k = 1, 2, . . . , N ,

�k
hu(x) =

u(x + hek) − u(x)
h

∈ Lp(Ω′′),

we have |η�k
hu|p−1sign(η�k

hu) ∈ Lr(B2R), where r = p
p−1 . According to

Lemma 2.1, there must be a unique function

vh ∈ W 2,r(B2R) ∩ W 1,r
0 (B2R),

such that {
aij (x)Dij vh = |η�k

hu|p−1sign(η�k
hu), x ∈ B2R,

vh = 0, x ∈ ∂B2R.
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Moreover

‖vh‖W 2,r(B2R) ≤ C‖|η�k
hu|p−1‖Lr(B2R) ≤ C‖η�k

hu‖p−1
Lp(B2R). (4.1)

From (1.5) and a density argument, we have∫
Ω

uDi(aij Djw) =
∫

Ω

fw + giDiw, ∀w ∈ W 2,r
0 (Ω). (4.2)

Now we choose w = η�k
−hvh in (4.2), and get∫

B2R

fη(�k
−hvh) + giDi(η�k

−hvh)

=
∫

B2R

uDi(aijDj(η�k
−hvh))

=
∫

B2R

uDiaijDjη�k
−hvh + uηDiaij�k

−h(Djvh) + uaijDij η(�k
−hvh)

+
∫

B2R

2uaijDiη�k
−h(Djvh) + uaijη�k

−h(Dij vh). (4.3)

Meanwhile by the property of difference quotients, we get∫
B2R

uaijη�k
−h(Dij vh) = −

∫
B2R

η�k
huaijDij vh

−
∫

B2R

(�k
hη)u(x + hek)aij (x + hek)Dij vh

−
∫

B2R

(�k
haij )ηu(x + hek)Dij vh. (4.4)

From (4.3) and (4.4),∫
B2R

η�k
huaijDij vh ≤

∫
B2R

ηu(x + hek)(�k
haij )Dij vh

+
∫

B2R

(�k
hη)u(x + hek)aij (x + hek)Dij vh

+
∫

B2R

|uDiaij Djη(�k
−hvh)|

+
∫

B2R

|uηDiaij�k
−h(Djvh)| + |uaijDij η(�k

−hvh)|

+
∫

B2R

2|uaijDiη�k
−h(Djvh)|

+
∫

B2R

|fη(�k
−hvh)| + |giDi(η�k

−hvh)|.
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By the properties of the cut-off function and aij , we have∫
B2R

η�k
huaijDij vh ≤ K

∫
supp η

|u(x + hek)Dij vh|

+
ΛM1

R

∫
supp η

|u(x + hek)Dij vh|

+
KM1

R

∫
supp η

|u�k
−hvh|

+ K

∫
supp η

|u�k
−h(Djvh)| + ΛM2

R2

∫
supp η

|u�k
−hvh|

+
2ΛM1

R

∫
supp η

|u�k
−h(Djvh)| +

∫
supp η

|f�k
−hvh|

+
M1

R

∫
supp η

|gi�k
−hvh| +

∫
supp η

|gi�k
−hDivh|.

By Hölder inequality, (4.1), Sobolev imbedding theorem, the property of difference
quotients and Young inequality, we obtain∫

B2R

ηaij�k
huDijvh ≤ 1

2
‖η�k

hu‖p
Lp(B2R) +

C

R2p
(‖u‖p

Lp(B2R)

+ ‖f‖p

LOp(B2R)
+ ‖gi‖p

Lp(B2R)), (4.5)

where

Op =



1, 1 < p <
N

N − 1
,

max
t≥0

{st − exp(t
N

N−1 ) + 1}, p =
N

N − 1
,

Np

N + p
,

N

N − 1
< p < ∞.

Meanwhile ∫
B2R

ηaij�k
huDij vh =

∫
B2R

η�k
hu|η�k

hu|p−1sign(η�k
hu)

= ‖η�k
hu‖p

Lp(B2R). (4.6)

From (4.5) and (4.6), we have

‖�k
hu‖Lp(BR) ≤ C

R2

(
‖u‖Lp(B2R) + ‖f‖LOp(B2R) +

N∑
i=1

‖gi‖Lp(B2R)

)
.

Using the property of difference quotients again, we obtain Dku ∈ Lp(BR), and

‖Dku‖Lp(BR) ≤ C

(
‖u‖Lp(B2R) + ‖f‖LOp(B2R) +

N∑
i=1

‖gi‖Lp(B2R)

)
.
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Finally, using finite covering theorem, we have

‖u‖W 1,p(Ω′′) ≤ C

(
‖u‖Lp(Ω′) + ‖f‖LOp(Ω′) +

N∑
i=1

‖gi‖Lp(Ω′)

)
,

where C depends only on N , p, λ, Λ, K, Ω′′ and Ω′.

5. Higher Regularity

In this section, we will give the proof of Theorem 1.6.

Proof of Theorem 1.6. We will prove Theorem 1.6 by induction on n, the case
n = 0 being Theorem 1.4 and Theorem 1.5 above. Assume that Theorem 1.6 holds
for some nonnegative integer n. Suppose then

aij ∈ Cn+1,1
loc (Ω), i, j = 1, 2, . . . , N, (5.1)

gi ∈ Wn+1,p
loc (Ω), i = 1, 2, . . . , N, (5.2)

f ∈ W
n+1,Op

loc (Ω) (5.3)

with 1 < p < ∞, and u ∈ L1
loc(Ω) is a very weak solution of (1.4). We want to show

that u ∈ Wn+2,p
loc (Ω). By the induction hypotheses, we have

u ∈ Wn+1,p
loc (Ω), (5.4)

with the estimate

‖u‖W n+1,p(Ω′′) ≤ C

(
‖u‖L1(Ω′) + ‖f‖W n,Op(Ω′) +

N∑
i=1

‖gi‖W n,p(Ω′)

)
, (5.5)

for each Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω and an appropriate C.
Now fix ω ⊂⊂ Ω′′, and let α be any multiindex with |α| = n + 1, and choose

any test function ϕ̃ ∈ C∞
c (Ω′′). Insert

ϕ := (−1)|α|Dαϕ̃

into the (1.5), and perform some integrations by parts, eventually to discover∫
Ω

ũDi(aij Djϕ̃) =
∫

Ω

f̃ ϕ̃ + g̃iDiϕ̃,

for

ũ := Dαu ∈ Lp(Ω′′),

f̃ := Dαf,

and

g̃i := Dαgi +
∑
β≤α
β �=α

(
α

β

)
Dα−βaijD

βDju.

In view of (5.1)–(5.4), we have f̃ ∈ LOp(Ω′′), g̃i ∈ Lp(Ω′′).
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In light of Theorem 1.1, we see ũ ∈ W 1,p(Ω′), with the estimate

‖ũ‖W 1,p(ω) ≤ C

(
‖ũ‖L1(Ω′′) + ‖f̃‖LOp(Ω′′) +

N∑
i=1

‖g̃i‖Lp(Ω′′)

)
.

That is, Dαu ∈ W 1,p(ω) and

‖Dαu‖W 1,p(ω) ≤ C

‖Dαu‖L1(Ω′′) + ‖Dαf‖LOp(Ω′′)

+
N∑

i=1

‖Dαgi‖Lp(Ω′′) +
∑
β≤α
β �=α

‖DβDu‖Lp(Ω′′)

 .

Meanwhile

‖Dαu‖L1(Ω′′) ≤ C‖u‖W n+1,p(Ω′′)

and ∑
β≤α
β �=α

‖DβDu‖Lp(Ω′′) ≤ C‖u‖W n+1,p(Ω′′).

Consequently we have u ∈ Wn+2,p
loc (Ω), by (5.5), and get

‖u‖W n+2,p(ω) ≤ C

(
‖u‖L1(Ω′) + ‖f‖W n+1,Op(Ω′) +

N∑
i=1

‖gi‖W n+1,p(Ω′)

)
,

where C is a constant depending only on n, N , p, λ, Λ, ω, Ω′ and the norms of aij

in Cn+1,1(Ω′).

Acknowledgments

The authors are supported by Program for Changjiang Scholars and Innovative
Research Team in University, the National Natural Science Foundation of China
(11071020) and Doctoral Program Foundation of Institute of Higher Education of
China (20100003110003).And they would like to express deep gratitude to Professor
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