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Abstract

We give the comparison principle, the uniqueness theorem, and the necessary and su.cient
conditions for the solvability with positive solutions in W 2;p

loc ∩ L∞ of the Dirichlet problems
for semilinear elliptic equations on general bounded domains. The domains may be irregular
while the equations are in general form. The resultant theorem includes previous work either in
sublinear and some superlinear cases on the smooth domains or in linear case on the general
domains. Our methods are the re2ned a priori estimates and the degree theory.
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1. Introduction

Let � be a general bounded domain in Rn, which may be with irregular boundary
points. In this paper, we are concerned with the problem of 2nding a positive function
u in W 2;p

loc (�) ∩ L∞(�), 1¡p¡+∞, satisfying the semilinear elliptic equations

−Mu= f(x; u) in � (1)

with zero Dirichlet boundary condition in some weak sense, where

M =
n∑

i; j=1

aij(x)Dij +
n∑
i=1

bi(x)Di; aij ∈C(�); bi ∈L∞(�);

c0|�|26
n∑

i; j=1

aij(x)�i�j6 c−1
0 |�|2
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for x∈�; �∈Rn; c0 is some positive constant, and f(x; u) :� × [0;+∞) → R is
nonlinear.
The semilinear elliptic boundary value problems of the type

−Gu= f(u) in �; (2)

u= 0 on @� (3)

arise in a variety of situations in the theory of nonlinear diHusion, thermal ignition
of gases, quantum 2eld, mechanical statistics, gravitational equilibrium of stars and
elsewhere. Therefore, (2), (3) have received considerable study both in the sublinear
case and in the superlinear case. A survey concerning the problems is given by Lions,
see [9] and references therein.
We are interested here in the sublinear case, in which f(u) is assumed to grow

slower than linearly in u. But our results also contain the linear case and some super-
linear case.
If @� is smooth, Berestycki [1] proved the existence and uniqueness theorem of

the positive solutions for (2), (3), using the variational method. Under the similar
conditions, Brezis and Oswald [3] gave a necessary and su.cient condition of the
existence for the more general equations Gu = f(x; u). By making good use of the
super–subsolution method, Taira and Umezu [14] had a generalization of [3] to a class
of sublinear equations having principal part in divergence form

−
n∑

i; j=1

Di(aij(x)Dju) + c(x)u= f(x; u):

We also refer to a number of earlier results, which are closely related to ours, for
instance, [5, Chapter 2], [6,8,11].
However in our situation, Eq. (1) is not a Euler equation of some functional. Thus

the variational methods cannot be applied, even if � is a smooth domain.
For the irregular domain �, boundary condition (3) is too strong a hypothesis. In

general, one cannot prescribe boundary values of solutions at every point of @�. In
such a case, it is di.cult to estimate bounds of the solutions for the usual maxi-
mum principles are invalid. On the other hand, it is now well-understood that a priori
bounds in the sup norm of positive solutions for (2), (3) provide information about
the existence of positive solutions.
We notice that Berestycki et al. [2] worked with a re2ned version for the linear ellip-

tic equations in general bounded domains. They introduced a function u0 ∈W 2;p
loc (�) ∩

L∞(�), for all p¿ 1, satisfying

Mu0 =−1; u0¿ 0 in � (4)

and used the following notion to describe zero Dirichlet boundary condition in some
weak sense.

De�nition 1. For a sequence xl→ @�, we say xl
u0→ @� if u0(xl) → 0. Given u∈C(�),

the notation u
u0= 0 on @� means: along any sequence xl

u0→ @�, we have u(xl) → 0.
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Padilla [13] presented an extension of their results in [2] to the Riemann manifolds.
It is claimed in [2] that u0 vanishes on the boundary in the following sense: u0 can

be extended as a continuous function to every point y of @� admitting a strong barrier
function by setting u0(y) = 0. Miller [12] has shown that every point y∈ @�, where
@� satis2es an exterior cone condition, admits a strong barrier function. Consequently,
for a regular domain �, which means for each boundary point, there is a strong barrier
function, u

u0=0 on @� is the same as u continuous on @� and u(x) = 0 for x∈ @�,
see [4].
Recently, Liu shows using the probability method

u0(x) = Ex[��]; x∈�;
the expectation of the 2rst exit time from �

�� = inf{t¿ 0 |X (t) 	∈ �};
where (X (t); P) is Markov process corresponding to the linear elliptic operator M , see
[10, Theorem 3.1].

2. Main results

The goal of this paper is to provide the comparison principle, prove the uniqueness
theorem, and give a necessary and su.cient condition for the existence of positive
solutions to the generalized Dirichlet problem

−Mu= f(x; u) in �; (5)

u¿ 0; u 	≡ 0 in �; (6)

u
u0= 0 on @�: (7)

The essential point here is that we do not assume the domains are regular and the
equations are in divergence form. In our proof, we will use the re2ned ABP maximum
principle, the property of 2rst eigenvalue for elliptic operators and the degree theory.
On the nonlinearity f, we make the following assumptions:

(f1) for a.e. x∈� the function u→ f(x; u) is continuous on [0;+∞), and the function
u→ f(x; u)=u is decreasing in (0;+∞);

(f2) for each u¿ 0 the function x → f(x; u) belongs to L∞(�);
(f3) there is a constant C¿ 0 such that

f(x; u)6C(u+ 1) for a:e: x∈�; any u¿ 0:

For later applications we quote the de2nition of the 2rst eigenvalue of the linear
elliptic operator −M − c(x) on the domain � in [2, (1.13)]

�1(−M − c(x); �) =−inf
’

sup
�

{
M’
’

+ c(x)
}
; (8)
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where c(x) is any semi-bounded function in �, and the inf is taken over all positive
functions ’ in W 2; n

loc (�). We will sometimes denote �1(−M−c(x); �) by �1(−M−c(x))
if � is 2xed and the coe.cient c(x) is allowed to vary.
We also introduce the functions

c0(x) = lim
u→0+0

f(x; u)
u

; (9)

c∞(x) = lim
u→+∞

f(x; u)
u

; (10)

uniformly in x∈�. Note that c0(x); c∞(x) may take the in2nite values, which impor-
tance will be seen in the latter half of this section.
Our main result is the following:

Theorem 2. Under the conditions (f 1)–(f3), for p¿ 1,
(a) a W 2;p

loc (�)∩L∞(�) solution of the generalized Dirichlet problem (5)–(7) exists
if

�1(−M − c0(x))¡ 0; (11)

and

�1(−M − c∞(x))¿ 0: (12)

(b) If c0 ∈L∞(�), then conditions (11) and (12) are necessary and su4cient for
the existence of W 2;p

loc (�) ∩ L∞(�) solutions of the generalized Dirichlet problem
(5)–(7), and the solution u is unique in the space W 2; n

loc (�) ∩ L∞(�).
(c) If the nonlinear term f(x; u) is independent of x, then the generalized Dirichlet

problem (5)–(7) has a solution u∈W 2;p
loc (�) ∩ L∞(�) if and only if

�1(−M − c0)¡ 0¡�1(−M − c∞):

If M = !, the Laplace operator, and @� is smooth, then Theorem 2(a) is indeed
[3, Theorem 2]. Their argument makes use of energy associated with !. Since our
operator M has nondivergence form, arguments involving energy cannot be used.
If f(x; u) is linear in u, then Theorem 2 can be regarded as an extension of [2,

Theorem 1.2] for the positive solutions.
We observe from (f1) that

c∞(x)6f(x; 1)6 c0(x) for a:e: x∈�;
and (f2) implies that there is a constant C¿ 0 such that

c0(x)¿− C; c∞(x)6C for a:e: x∈�:
Therefore,

�1(−M − c0(x))∈ [−∞;+∞);

�1(−M − c∞(x))∈ (−∞;+∞]:

Here we have used �1(−M) is bounded, see [2, Lemma 1.1].
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As four simple cases of Theorem 2, the followings show the various situation that
c0(x) and c∞(x) take the 2nite or in2nite values.

Corollary 3 (c0(x)=+∞; c∞(x)=0): For any p¿ 1; 0¡"¡ 1 and 06f∈L∞(�),
there is a positive solution u∈W 2;p

loc (�)∩L∞(�) of the generalized Dirichlet problem

−Gu= u" + f(x) in �; u
u0= 0 on @�: (13)

Furthermore, u∈C2; "(�) if f∈C"(�).

Corollary 4 (c0(x) = +∞; c∞(x) = −∞): For any p¿ 1; $¿ 1 and f∈L∞(�). If
inf�f¿ 0, then there is a positive solution u∈W 2;p

loc (�) ∩ L∞(�) of the generalized
Dirichlet problem

−Gu=−u$ + f(x) in �; u
u0= 0 on @�: (14)

Corollary 5 (c0(x)=−c(x); c∞(x)=−∞): For any p¿ 1; c∈L∞(�), and inf�c¿ 0,
there is no positive solution u∈W 2;p

loc (�)∩L∞(�) of the generalized Dirichlet problem

−Gu= c(x)(1− eu) in �; u
u0= 0 on @�: (15)

Corollary 6 (c0(x)=�; c∞(x)=0): For any p¿ 1 and �∈R, there is a unique positive
solution u∈W 2;p

loc (�) ∩ L∞(�) of the generalized eigenvalue problem

−Gu= � log(1 + u) in �; u
u0= 0 on @�; (16)

if only if �¿�1(−!).

Sublinear problem (13) is the most typical case in our consideration. (14) and (15)
are superlinear (from below) problems, and (16) is an asymptotic linear problem near
u= 0.
As we have seen, c0(x) may take +∞ and c∞(x) may take −∞, which seem to be

even more important cases. At the same time, their in2nite values bring about much
di.culty in our discussion.
The rest part of the paper is organized as follows. In the following section we

state some known facts to be used. Section 4 is devoted to the comparison principle
and the uniqueness theorem for the generalized Dirichlet problems (5)–(7), and the
necessity of conditions (11) and (12) for the existence. In Section 5 we derive the
supnorm estimates, employing the re2ned ABP maximum principle. In the last section,
the existence theorem is obtained, where the degree theory is used.

3. Preliminaries

We give three preliminary results. The 2rst lemma was proved in [2, Theorem 2.4
and Propositioon 2.1]. Lemmas 8 and 9 are [2, Theorems 1.3 and 1.2], respectively.
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Lemma 7 (Property of the 2rst eigenvalue). (i) If c1; c2 ∈L∞(�) and c1¿ c2; c1 	≡ c2,
then

�1(−M − c1(x))¡�1(−M − c2(x)):

(ii) If �1 and �2 are two bounded domains with �1 ⊃ �2, and �1 	= �2, then

�1(−M − c(x); �1)¡�1(−M − c(x); �2)

for any c∈L∞(�1).
(iii) �1(−M−c(x)) is Lipschitz continuous with respect to c(x) in the L∞(�) norm,

with Lipschitz constant 1.

Lemma 8 (Re2ned ABP Theorem). Assume c∈L∞(�) and �1(−M −c(x))¿ 0. Sup-
pose u∈W 2; n

loc (�) is a function, bounded from above, satisfying

−(M + c(x))u6f(x) in �;

lim sup
l→∞

u(xl)6 $ if xl
u0→ @�;

where 06f∈Ln(�) and $¿ 0. Then

sup
�
u6C

(
‖f‖Ln(�) + $|�|1=n sup

�
c+

)
+ $:

Here C is the constant depending only on c0; �; ‖b‖L∞(�); ‖c‖L∞(�) and �1(−M−c(x)).

Lemma 9 (Existence for linear equations). Assume c∈L∞(�) and �1(−M−c(x))¿ 0.
Then, given f∈Ln(�), there is a unique solution in W 2; n

loc (�) ∩ L∞(�) of

−(M + c(x))u= f(x) in �;

u
u0= 0 on @�:

4. Uniqueness and necessity

We start with the following lemmas.

Lemma 10 (Positivity). Assume (f 1); (f 2) hold, and let u∈W 2; n
loc (�) ∩ L∞(�) be a

solution of (5), (6). Then we have u¿ 0 in �.

Proof. Since (f1), (f2) it follows that

f(x; u)
u

¿
f(x; 1 + ‖u‖L∞(�))

1 + ‖u‖L∞(�)
:= Mc(x)∈L∞(�); (17)

and, therefore,

−Mu+ Cu¿ 0 in �;
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for some constant C¿ 0. From the weak Harnack inequality [7, Theorem 9.22](
1

|BR|
∫
BR
up dx

)1=p

6C inf
BR
u (18)

if B2R ⊂ �, where p and C are the positive constants depending only on n; c0; R;
‖b‖L∞(�) and ‖ Mc‖L∞(�).
For any two points x1; x2 ∈�, let ( be a closed arc joining x1 and x2 and choose R

so that 2R¡ dist((; @�). By virtue of the Heine–Borel theorem, ( can be covered by a
2nite number of balls of radius R. Applying estimate (18) in each ball and combining
the resulting inequalities, we obtain u(x1) = 0 if u(x2) = 0. Hence u(x)¿ 0 in � since
06 u 	≡ 0 in �.

Lemma 11. Let c0 ∈L∞(�), f(x; u) satisfy (f 1) and (f 2). If u∈W 2; n
loc (�) ∩ L∞(�)

is a positive solution of (5), (7), then

�1

(
−M − f(x; u)

u

)
= 0:

Proof. First we see that

Mc(x)¡
f(x; u(x))
u(x)

¡c0(x);

for a.e. x∈�, where Mc(x) is de2ned in (17). This implies that

f(x; u(x))
u(x)

∈L∞(�):

Writing Eq. (5) in the form

−
(
M +

f(x; u)
u

)
u= 0 in �;

we then have by Lemma 8

�1

(
−M − f(x; u)

u

)
6 0:

On the other hand, by the de2nition of �1(−M − f(x;u)
u ), and since u¿ 0 in �, we

have

�1

(
−M − f(x; u)

u

)
¿− sup

�

Mu+ f(x; u)
u

¿ 0: (19)

This lemma is proved.

In the proof of (19), we only require the one-sided inequality −Mu¿f(x; u) in �,
and the condition c0 ∈L∞(�) is not used.
The re2ned comparison principle has the following extension to the semilinear

operators for the supersolutions.
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Theorem 12 (Comparison). Let c0 ∈L∞(�), (f 1) and (f 2) hold, and u; v∈W 2; n
loc (�)∩

L∞(�) are positive and satisfy

06−Mu− f(u; x)6−Mv− f(v; x) in �; (20)

lim sup
l→∞

(u− v)(xl)6 0 if xl
u0→ @�: (21)

It then follows that u6 v in �.

Proof. We write

L=M +
f(x; u)
u

; D = {x∈� | u(x)¿v(x)};

and have by (f1), (20) and (21)

−L(u− v) =−Mu− f(x; u) +Mv+
v
u
f(x; u)¡ 0 in D;

lim sup
l→∞

(u− v)(xl)6 0 if xl
u0→ @D:

If D = �, then u¿v in �, and consequently

Mc(x)¡
f(x; u)
u

¡
f(x; v)
v

¡c0(x) in �:

It follows from Lemma 7(i) and (19) that

�1(−L; D) = �1

(
−M − f(x; u)

u
; �

)
¿�1

(
−M − f(x; v)

v
; �

)
¿ 0:

If D 	= �, then we also have by applying Lemma 7(ii) and (19),

�1(−L; D)¿�1(−L; �)¿ 0:

We deduce from Lemma 8, u− v6 0 in D, which contradict the de2nition of D, and
conclude that u6 v in �.

A uniqueness theorem for the generalized Dirichlet problems (5)–(7) follows
immediately from Theorem 12.

Theorem 13 (Uniqueness): Let u; v∈W 2; n
loc (�)∩L∞(�) satisfy (5)–(7). If c0 ∈L∞(�),

(f 1) and (f 2) hold, then u= v in �.

Next, we turn to the necessity of conditions (11) and (12) for the existence to the
generalized Dirichlet problems (5)–(7).

Theorem 14 (Necessity). Let f(x; u) satisfy (f 1) and (f 2); u∈W 2; n
loc (�) ∩ L∞(�) be

a positive solution of (5), (7), then condition (12) holds. In addition, if c0 ∈L∞(�)
or f(x; u) = f(u), we have (11) holds.
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Proof. From (f1), it is very easy to obtain

c∞(x)¡ Mc(x)¡
f(x; u(x))
u(x)

¡c0(x);

for a.e. x∈�. Combining Lemma 7(i) with Lemma 11, we get

�1(−M − c∞(x))

¿ �1(−M − Mc(x))¿�1

(
−M − f(x; u)

u

)
= 0¿�1(−M − c0(x))

in the case c0 ∈L∞(�).
If f(x; u) = f(u) and c0 = +∞, then the conclusion of this theorem is clearly.

Remark 15. From the proof of Theorem 14, we see

0¡�1(−M − cm(x))¡+∞; ‖u‖L∞(�)¡m¡+∞;

where

cm(x) =
f(x; m)
m

; a:e: x∈�:

5. Re�ned estimate

First, we establish the re2nement of the supnorm estimates of the positive subsolu-
tions to the generalized Dirichlet problems (5)–(7).

Theorem 16 (Re2ned estimate). Suppose u∈W 2; n
loc (�)∩ L∞(�) is a positive function,

satisfying

−Mu6f(x; u) in �;

lim sup
l→∞

u(xl)6 $ if xl
u0→ @�;

where $ is some nonnegative constant. If (f 1); (f 2) hold, then we have

u(x)6C; x∈�;
where the constant C depends only on n; c0; $; diam�; ‖b‖L∞(�); �1(−M − c∞(x)) and
the behavior of f in the limit arising in (10).

Proof. From Remark 15 and (f2), we can 2nd m¿ 0, such that 0¡�1(−M − cm(x))
¡+∞ and cm(x)∈L∞(�). Because of (f1), we have

−Mu− cm(x)u6 0 in �m;

lim sup
l→∞

u(xl)6max($; m) if xl
u0→ @�m;
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where �m = {x∈� | u(x)¿m}. Applying Lemma 8 we 2nd

sup
�m
u6max($; m)

(
C|�m|1=nsup

�m
f+
m + 1

)
6C:

Therefore,

sup
�
u6C:

Now, we can give the interior W 2;p estimates for the positive solutions of Eq. (5).

Theorem 17 (Interior W 2;p estimate): Suppose u∈W 2; n
loc (�)∩L∞(�) is a positive solu-

tion of (5). If (f 1)–(f 3) hold, then for any �′ ⊂⊂ � and p¿ 1, we have u∈W 2;p(�′).
Furthermore, for a constant C depending only on n; p; c0; ‖b‖L∞(�); �′; �; �1(−M −
c∞(x)), the moduli of continuity of aij on M�′ and the behavior of f in the limit
arising in (10)

‖u‖W 2; p(�′)6C:

Proof. It follows from (f1)–(f3)

−|f(x; ‖u‖L∞(�))|6 u
‖u‖L∞(�)

f(x; ‖u‖L∞(�))6f(x; u)6C(‖u‖L∞(�) + 1)

and f(x; u(x))∈L∞(�). By means of the interior W 2;p regularity [7, Lemma 9.16] we
obtain u∈W 2;p(�′). It follows from the interior W 2;p estimates [7, Theorem 9.11] and
Theorem 16 that

‖u‖W 2; p(�′)6C(‖u‖Lp(�) + ‖f(x; u)‖Lp(�))6C:

6. Su+ciency

Having established the a priori estimates, in this section we derive the existence
theorem of positive solutions for the generalized Dirichlet problems (5)–(7) on the
general domains via the topological degree.

Theorem 18 (Existence): Assume that (f 1)–(f 3), (11) and (12) hold. Then for any
p¿ 1 there is a positive solution u∈W 2;p

loc (�) ∩ L∞(�) of (5)–(7).

Proof. In the following we suppose f(x; u) = 0 for u¡ 0. Thus the solutions of
(5)–(7) must be nonnegative. By Lemma 10 we see that a non-zero solution is a
positive solution. So we can use the Leray–Schauder degree directly in

X =
{
u∈C(�) ∩ L∞(�) | u u0= 0 on @�

}
:

De2ne by Lemma 9 the mapping Tt of [0; 2]× X → X by u= Ttv being the solution
of the problem

−tGu− (1− t)Mu= t|v|1=2 + (1− t)f(x; v) in �;

u
u0= 0 on @�;
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if t ∈ [0; 1]; or the solution of problem

−Gu= |v|1=2 + (t − 1)(�1v+ 1) in �;

u
u0= 0 on @�;

if t ∈ [1; 2], where �1 is the 2rst eigenvalue of −!.
According to the regularity theory, the solvability of (5)–(7) in the space W 2;p

loc (�)
∩ L∞(�) is equivalent to the existence of the 2xed points of T0. With the aid of
Lemma 8 and the HNolder interior estimates [7, Corollary 9.24], we get

‖u‖C"∗(�)6C(‖v‖L∞(�));

where C"∗(�) is a subspace of C"(�), which is a Banach space endowed with the
interior HNolder norm

‖u‖C"∗(�) = sup
�

|u|+ sup
x;y∈�

d"x;y
|u(x)− u(y)|

|x − y|" ;

where 0¡"¡ 1; dx = dist(x; @�), and dx;y = min(dx; dy). Applying the compactness
results [7, Lemma 6.33], we have Tt is compact.

When t ∈ [0; 2], from Theorem 16 we have established a uniform bound in X for
the 2xed points of Tt . Hence for R su.ciently large, Tt has no 2xed point on @BR,
and therefore the topological degree deg(I − Tt; BR; 0) is well-de2ned and independent
of t ∈ [0; 2] by the homotopy invariance, where BR is the ball in X of radius R with
the center at u ≡ 0.

For t = 2,

c∞(x) = �1; �1(−!− c∞(x)) = 0:

By Theorem 14, T2 has no 2xed point. Hence

deg(I − T0; BR; 0) = deg(I − T2; BR; 0) = 0:

By (9) and Lemma 7(iii), we can 2x r ¿ 0 small such that

�1(−M − cr(x))¡ 0: (22)

De2ne again a compact map Ss from [0; 1]× X into X : u= Ssv is the solution of

−Mu= sf(x; v) + (1− s)cr(x)v in �;

u
u0= 0 on @�:

If u∈ @Br ⊂ X satis2es

−Mu= sf(x; u) + (1− s)cr(x)u in �;

u
u0= 0 on @�;
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with s∈ [0; 1], then by (22) we have

sup
�

{
Mu
u

+ cr(x)
}
¿− �1(−M − cr(x))¿ 0:

Thus at some point x̂∈�
0 =

Mu+ sf(x; u) + (1− s)cr(x)u
u

=
Mu+ cr(x)u

u
− s(cr(x)u− f(x; u))

u

¿−1
2
�1(−M − cr(x))−

(
cr(x)− f(x; u)

u

)

¿−1
2
�1(−M − cr(x))¿ 0

if u(x̂)6 r. Hence Ss has no 2xed point on @Br for all s∈ [0; 1] provided r ¿ 0 is
su.ciently small. Therefore, by the homotopy invariance

deg(I − S1; Br; 0) = deg(I − S0; Br; 0);

that is,

deg(I − T0; Br; 0) = deg(I − S0; Br; 0):

Let u is a 2xed point of S0 in Br , then

−Mu= cr(x)u in �;

u
u0= 0 on @�:

By the de2nition of �1(−M − cr(x)), and since u¿ 0 in �, we have

�1(−M − cr(x))¿− sup
�

Mu+ cr(x)u
u

= 0:

Eq. (22) implies that there is no such positive solution. Thus S0 has no 2xed point in
Br\{0}, and

deg(I − S0; Br; 0) = 1:

So we obtain by the additivity

deg(I − T0; BR\Br; 0) =−1:

This means the existence of positive solution of (5)–(7) by Kronecker theorem.
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