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1. Introduction and main results

It is a common phenomenon that high concentration of extreme mechanical loads 
occurs in high-contrast fiber-reinforced composites in the zones that include the narrow 
regions between two adjacent inclusions and the thin gaps between the inclusions and 
the exterior boundary of the background medium. Extreme loads are always amplified by 
such composite microstructure, which will cause failure or fracture initiation. Stimulated 
by the well-known work of Babus̆ka et al. [12], where computational analysis of damage 
and fracture in fiber composite systems is investigated, we consider the Lamé system 
in linear elasticity with partially infinite coefficients to characterize the high-contrast 
composites. This paper is a continuation of [15,16], where the upper bound of the gradient 
estimate for two adjacent inclusions is established, which can be regarded as interior 
estimates for this problem.

Due to the interaction from the boundary data, solutions of these systems become 
more irregular near the boundary. In this paper, we mainly investigate the boundary 
gradient estimates for the Lamé system with partially infinite coefficients when the inclu-
sion is spaced very close to the matrix exterior boundary. The novelty of these estimates 
is that they give not only the pointwise upper bounds but also lower bounds of the 
gradient, which shows that the blow-up rate of the gradient with respect to the distance 
between the inclusion and the matrix exterior boundary that we obtain is optimal. The 
role of the boundary data is embodied in these estimates. Especially, an explicit factor 
that determines whether the blow-up occurs or not is singled out in the lower bound es-
timates. We would like to emphasize that the gradient estimates obtained in this paper 
hold for inclusions with arbitrary convex shapes and in all dimensions.

Let D ⊂ R
d(d ≥ 2) be a bounded open set with C2,γ boundary, and D1 be a strictly 

convex open set in D with C2,γ boundary, 0 < γ < 1, and spaced very close to the 
boundary ∂D. More precisely,

D1 ⊂ D, the principle curvatures of ∂D, ∂D1 ≥ κ0 > 0,
ε := dist(D1, ∂D) > 0,

(1.1)

where κ0 is constant independent of ε. We also assume that the C2,γ norms of ∂D1 are 
bounded by some constant independent of ε. This implies that D1 contains a ball of 
radius r∗0 for some constant r∗0 > 0 independent of ε. See Fig. 1.

Denote

Ω := D \D1.

We assume that Ω and D1 are occupied, respectively, by two different isotropic and 
homogeneous materials with different Lamé constants (λ, μ) and (λ1, μ1). Then the elas-
ticity tensors for the background and the inclusion can be written, respectively, as C0

and C1, with
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Fig. 1. One inclusion close to the boundary.

C0
ijkl = λδijδkl + μ(δikδjl + δilδjk),

and

C1
ijkl = λ1δijδkl + μ1(δikδjl + δilδjk),

where i, j, k, l = 1, 2, · · · , d and δij is the Kronecker symbol: δij = 0 for i �= j, δij = 1 for 
i = j.

Let u = (u1, u2, · · · , ud)T : D → R
d denote the displacement field. For a given vector 

valued function ϕ = (ϕ1, ϕ2, · · · , ϕd)T , we consider the following Dirichlet problem for 
the Lamé system: {

∇ ·
(
(χΩC

0 + χD1C
1)e(u)

)
= 0, in D,

u = ϕ, on ∂D,
(1.2)

where χΩ is the characteristic function of Ω ⊂ R
d,

e(u) = 1
2(∇u + (∇u)T )

is the strain tensor.
Assume that the standard ellipticity condition holds for (1.2), that is,

μ > 0, dλ + 2μ > 0, μ1 > 0, dλ1 + 2μ1 > 0.

For ϕ ∈ H1(D; Rd), it is well known that there exists a unique solution u ∈ H1(D; Rd)
to the Dirichlet problem (1.2), which is also the minimizer of the energy functional

J1[u] := 1
2

∫ (
(χΩC

0 + χD1C
1)e(u), e(u)

)
dx
Ω
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on

H1
ϕ(D;Rd) :=

{
u ∈ H1(D;Rd)

∣∣ u− ϕ ∈ H1
0 (D;Rd)

}
.

We introduce the linear space of rigid displacement in Rd:

Ψ := {ψ ∈ C1(Rd;Rd) | ∇ψ + (∇ψ)T = 0}.

With e1, · · · , ed denoting the standard basis of Rd,{
ei, xjek − xkej

∣∣ 1 ≤ i ≤ d, 1 ≤ j < k ≤ d
}

is a basis of Ψ. Denote this basis of Ψ as 
{
ψα

∣∣ α = 1, 2, · · · , d(d+1)
2

}
.

For fixed λ and μ satisfying μ > 0 and dλ + 2μ > 0, denote uλ1,μ1 as the solution 
of (1.2). Then similarly as in the Appendix of [15], we also have

uλ1,μ1 → u in H1(D;Rd), as min{μ1, dλ1 + 2μ1} → ∞,

where u is a H1(D; Rd) solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,μu := ∇ · (C0e(u)) = 0, in Ω,

u|+ = u|−, on ∂D1,

e(u) = 0, in D1,∫
∂D1

∂u
∂ν0

∣∣∣
+
· ψα = 0, α = 1, 2, · · · , d(d+1)

2 ,

u = ϕ, on ∂D,

(1.3)

where

∂u

∂ν0

∣∣∣
+

:= (C0e(u))n = λ(∇ · u)n + μ(∇u + (∇u)T )n,

and n is the unit outer normal of D1. Here and throughout this paper the subscript 
± indicates the limit from outside and inside the domain, respectively. The existence, 
uniqueness and regularity of weak solutions to (1.3) are proved in the Appendix of [15], 
where multiple inclusions case is studied. In particular, the H1 weak solution to (1.3) is 
in C1(Ω; Rd) ∩ C1(D1; Rd). The solution is also the unique function which has the least 
energy in appropriate functional spaces, characterized by

I∞[u] = min
v∈A

I∞[v], I∞[v] := 1
2

∫
Ω

(C0e(v), e(v))dx,

where

A :=
{
v ∈ H1

ϕ(D;Rd)
∣∣∣ e(v) = 0 in D1

}
. (1.4)
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It is well known that for any open set O and u, v ∈ C2(O),∫
O

(C0e(u), e(v))dx = −
∫
O

(Lλ,μu) · v +
∫
∂O

∂u

∂ν0

∣∣∣
+
· v. (1.5)

A calculation gives

(Lλ,μu)k = μΔuk + (λ + μ)∂xk
(∇ · u), k = 1, · · · , d.

We assume that for some δ0 > 0,

δ0 ≤ μ, dλ + 2μ ≤ 1
δ0

. (1.6)

It is clear that there exist two points P1 ∈ ∂D1 and P ∈ ∂D, such that

dist(P, P1) = dist(D, ∂D) = ε.

We use P1P to denote the line segment connecting P1 and P . Denote

ρd(ε) =

⎧⎪⎪⎨⎪⎪⎩
√
ε, if d = 2,
1

| log ε| , if d = 3,
1, if d ≥ 4.

The first of our results concerns an upper bound of the gradient of solutions to (1.3). In 
brief, this result asserts that the blow up rate of |∇u| is, respectively, ε−1/2 in dimension 
d = 2, (ε| log ε|)−1 in dimension d = 3, and ε−1 in dimension d ≥ 4, which is exactly the 
same as the perfect conductivity problem, see e.g. [13].

Theorem 1.1. (Upper bound). Assume that Ω, D ⊂ R
d, ε are defined in (1.1), ϕ ∈

C2(∂D; Rd). Let u ∈ H1(D; Rd) ∩C1(Ω; Rd) be a solution to (1.3). Then for 0 < ε < 1/2, 
we have

|∇u(x)| ≤ Cρd(ε)
ε

‖ϕ‖C2(∂D;Rd), x ∈ Ω, (1.7)

and

|∇u(x)| ≤ C‖ϕ‖C2(∂D;Rd), x ∈ D1, (1.8)

where C depends only on κ0, δ0, d, the C2,γ norm of ∂D1 and ∂D, but not on ε.

Remark 1.2. Actually, for d ≥ 2, we have the following pointwise upper bound of |∇u|
in Ω:
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|∇u(x)| ≤ C

[
ρd(ε)

ε + dist2(x, P1P )
+
(

dist(x, P1P )
ε + dist2(x, P1P )

+ 1
)]

‖ϕ‖C2(∂D;Rd). (1.9)

This shows that the right hand side archives its maximum at P1P , with value 
Cρd(ε)

ε ‖ϕ‖C2(∂D;Rd) for ε sufficiently small.

In order to show that the blow-up rate of the gradients obtained in Theorem 1.1 is 
optimal, we need to investigate its lower bound. Denote D∗

1 := { x ∈ R
d | x +P1 ∈ D1 }. 

Set Ω∗ := D \D∗
1 . Let u∗

0 be the solution of the boundary value problem:⎧⎪⎪⎨⎪⎪⎩
Lλ,μu

∗
0 = 0, in Ω∗,

u∗
0 = 0, on ∂D∗

1 ,

u∗
0 = ϕ(x) − ϕ(P ), on ∂D.

(1.10)

Define

b∗α :=
∫

∂D∗
1

∂u∗
0

∂ν0
|+ · ψα, α = 1, 2, · · · , d(d + 1)

2 ,

which is a functional of ϕ, playing an important role in the following establishment of 
lower bounds of |∇u| on the segment P1P .

Theorem 1.3. (Lower bound). Under the assumption as in Theorem 1.1, let u ∈
H1(D; Rd) ∩ C1(Ω; Rd) be a solution to (1.3). Then

(i) for d = 2, if there exists some integer 1 ≤ k0 ≤ d such that b∗k0
�= 0 and 

∇x′ϕk0( P ) = 0;
(ii) for d = 3, if there exists some integer 1 ≤ k0 ≤ d such that b∗k0

�= 0;
(iii) for d ≥ 4, if there exists some integer 1 ≤ k0 ≤ d such that b∗k0

�= 0 and b∗α = 0 for 
all α �= k0,

then for sufficiently small 0 < ε < 1/2,

∣∣∇u(x)
∣∣ ≥ ρd(ε)

Cε
, x ∈ P1P ,

where C depends only on κ0, δ0, d, the C2,γ norm of ∂D1 and the C2 norm of ∂D, but 
not on ε.

Remark 1.4. In Theorem 1.3 we do not try to find the most general assumptions to guar-
antee blow-up occur, but instead give simple conditions (i)–(iii), which show, however, 
the essential role of the boundary data in this problem. Since u0 is uniquely determined 
by (1.10) with given data ϕ(x) − ϕ( P ), Theorem 1.3 shows that whether |∇u| blows 
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up or not totally depends only on the boundary data ϕ(x) − ϕ( P ). Furthermore, if the 
blow-up occurs, then from Theorem 1.1 and 1.3, we know that it may occur only on the 
segment P1P .

Remark 1.5. Theorem 1.1 and 1.3 give not only the upper bound but also a lower bound 
of the blow-up rate of the strain tensor in all dimensions, which shows the optimality of 
our estimates. Especially for the lower bound, new difficulties need to be overcome and 
a number of refined estimates are used in our proof. More important, a blow-up factor, 
totally depending on the given boundary data, is captured.

Remark 1.6. The strict convexity assumption on ∂D and ∂D1 in Theorem 1.1 and 1.3
can be extended to a weaker relative strict convexity assumption, see (2.6)–(2.8) below.

The organization of this paper is as follows. In Section 2 we first decompose the 
solution u of (1.3) as a linear combination of uα, α = 1, 2, · · · , d(d+1)

2 , defined by (2.3)
and (2.4) below, and then deduce the proof of Theorem 1.1 to two aspects: the estimates 
of |∇uα| and those of the coefficients Cα and Cα − ϕα(0). In Section 3 we establish an 
upper bound of the gradient of solutions to a boundary problem of Lamé system on Ω
with general Dirichlet boundary data in Theorem 2.1, of independent interest, and then 
obtain the estimates of |∇uα| as a consequence of Theorem 2.1. In Section 4 we present 
the estimates of the coefficients Cα and Cα − ϕα(0). Theorem 1.3 on the lower bound 
of ∇u on the segment P1P is proved by studying the functional b∗α of boundary data ϕ
in Section 5. In the rest of the introduction we review some earlier results on interior 
gradient estimates for high contrast composites.

As mentioned before, Babus̆ka, Andersson, Smith and Levin [12] computationally 
analyzed the damage and fracture in composite materials and observed numerically that 
the size of the strain tensor remains bounded when the distance ε, between two inclusions, 
tends to zero. This was proved by Li and Nirenberg in [31]. Indeed such ε-independent 
gradient estimates was established there for solutions of divergence form second order 
elliptic systems, including linear systems of elasticity, with piecewise Hölder continuous 
coefficients in all dimensions. See Bonnetier and Vogelius [19] and Li and Vogelius [32]
for responding results on divergence form elliptic equations.

The estimates in [31] and [32] depend on the ellipticity of the coefficients. If ellip-
ticity constants are allowed to deteriorate, the situation is very different. Consider the 
simplified scalar model, also called as conductivity problem,

⎧⎨⎩∇ ·
(
ak(x)∇uk

)
= 0, in Ω,

uk = ϕ, on ∂Ω,

where Ω is a bounded open set of Rd, d ≥ 2, containing two ε-apart convex inclusions 
D1 and D2, ϕ ∈ C2(∂Ω) is given, and
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ak(x) =
{
k ∈ (0,∞), in D1 ∪D2,

1, in Ω \D1 ∪D2.

When k = ∞, the L∞-norm of |∇u∞| for the solutions u∞ of the following perfect 
conductivity problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu = 0, in Ω \D1 ∪D2,

u|+ = u|−, on ∂D1 ∪ ∂D2,

∇u = 0, in D1 ∪D2,∫
∂Di

∂u
∂
n

∣∣∣
+

= 0, i = 1, 2,

u = ϕ, on ∂Ω

(1.11)

generally becomes unbounded as ε tends to 0. There have been much more important 
progress on the interior gradient estimate of the solution of (1.11), in contrast to the 
elasticity vector case. The blow up rate of |∇u∞| is respectively ε−1/2 in dimension 
d = 2, (ε| ln ε|)−1 in dimension d = 3, and ε−1 in dimension d ≥ 4. See Bao, Li and 
Yin [13], as well as Budiansky and Carrier [20], Markenscoff [34], Ammari, Kang and 
Lim [7], Ammari, Kang, Lee, Lee and Lim [9], Yun [37,38] in R2, and Lim and Yun [33]
in R3. Further, more detailed, characterizations of the singular behavior of ∇u∞ have 
been obtained by Ammari, Ciraolo, Kang, Lee and Yun [4], Ammari, Kang, Lee, Lim and 
Zribi [11], Bonnetier and Triki [17,18], Gorb and Novikov [25] and Kang, Lim and Yun 
[26,27]. For more related works, see [3,5,6,8,10,14,17,21–23,28–30,33] and the references 
therein.

2. Outline of the proof of Theorem 1.1 (Upper bound)

We now describe our methods of proof. By a translation and rotation of the coordinates 
if necessary, we may assume without loss of generality that

P1 = (0, ε) ∈ ∂D1, P = (0, 0) ∈ ∂D.

In order to prove Theorem 1.1, it suffices to consider the following problem, by replacing 
u by u − ϕ(0), ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,μu = 0, in Ω,

u|+ = u|−, on ∂D1,

e(u) = 0, in D1,∫
∂D1

∂u
∂ν0

∣∣∣
+
· ψα = 0, α = 1, 2, · · · , d(d+1)

2 ,

u = ϕ(x) − ϕ(0), on ∂D.

(2.1)
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By the third line of (2.1) and the definition of Ψ, u is a linear combination of {ψα}
in D1. Since it is clear that Lλ,μξ = 0 in Ω and ξ = 0 on ∂Ω imply that ξ = 0 in Ω, we 
decompose the solution of (2.1), in the spire of [13], as follows:

u =

d(d+1)
2∑

α=1
Cαψα − ϕ(0) =

d∑
α=1

(Cα − ϕα(0))ψα +

d(d+1)
2∑

α=d+1

Cαψα, in D1,

for some constants Cα, α = 1, 2, · · · , d(d+1)
2 , (to be determined by the forth line in (2.1)) 

and

u =
d∑

α=1
(Cα − ϕα(0))uα +

d(d+1)
2∑

α=d+1

Cαuα + u0, in Ω, (2.2)

where uα ∈ C1(Ω; Rd) ∩ C2(Ω; Rd), α = 1, 2, · · · , d(d+1)
2 , respectively, satisfy⎧⎪⎪⎨⎪⎪⎩

Lλ,μuα = 0, in Ω,

uα = ψα, on ∂D1,

uα = 0, on ∂D;
(2.3)

and u0 ∈ C1(Ω; Rd) ∩ C2(Ω; Rd) satisfies⎧⎪⎪⎨⎪⎪⎩
Lλ,μu0 = 0, in Ω,

u0 = 0, on ∂D1,

u0 = ϕ(x) − ϕ(0), on ∂D.

(2.4)

By the decomposition (2.2), we write

∇u =
d∑

α=1
(Cα − ϕα(0))∇uα +

d(d+1)
2∑

α=d+1

Cα∇uα + ∇u0, in Ω. (2.5)

To estimate |∇u|, two ingredients are in order: (i) estimates of |∇uα|, α = 0, 1, · · · ,
d(d+1)

2 ; (ii) estimates of Cα − ϕα(0), α = 1, · · · , d and Cα, α = 1, · · · , d(d+1)
2 . Since the 

singular behavior of ∇u may occur only in the narrow region between D1 and ∂D, we 
are particularly interested in such narrow region. See Fig. 2.

Fix a small constant 0 < R < 1, independent of ε, such that the portions of ∂D1 near 
P1 and ∂D near P can be represented, respectively, by

xd = ε + h1(x′), and xd = h(x′), for |x′| < 2R.

Moreover, in view of the assumptions of ∂D1 and ∂D, h1 and h satisfy
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Fig. 2. The narrow region between ∂D1 and ∂D.

ε + h1(x′) > h(x′), for |x′| < 2R, (2.6)

h1(0′) = h(0′) = 0, ∇x′h1(0′) = ∇x′h(0′) = 0, (2.7)

∇2
x′h1(0′),∇2

x′h(0′) ≥ κ0I, ∇2
x′(h1 − h)(0′) ≥ κ1I, (2.8)

and

‖h1‖C2,γ(B2R(0′)) + ‖h‖C2,γ(B2R(0′)) ≤ κ2, (2.9)

where κ0, κ1 and κ2 are some positive constants. Throughout the paper, unless otherwise 
stated, we use C to denote some positive constant, whose values may vary from line to 
line, which depend only on δ0, κ0, κ1 and κ2, but not on ε. Also, we call a constant having 
such dependence a universal constant.

For 0 < r < 2R, we denote

Ωr :=
{
x = (x′, xd) ∈ R

d
∣∣ h(x′) < xd < ε + h1(x′), |x′| < r

}
.

The top and bottom boundaries of Ωr are

Γ+
r = {x ∈ R

d |xd = ε + h1(x′), |x′| < r}, Γ−
r = {x ∈ R

d |xd = h(x′), |x′| < r},

respectively.
To estimate |∇uα|, we consider the following general boundary value problems:⎧⎪⎪⎨⎪⎪⎩

Lλ,μv := ∇ · (C0e(v)) = 0, in Ω,

v = ψ(x), on ∂D1,

v = 0, on ∂D,

(2.10)

where ψ(x) = (ψ1(x), ψ2(x), · · · , ψd(x))T ∈ C2(∂D1; Rd) is given vector-valued func-
tions. Locally pointwise gradient estimates for problem (2.10) is as follows:

Theorem 2.1. Assume that hypotheses (2.6)–(2.9) are satisfied, and let v ∈ H1(Ω; Rd) be 
a weak solution of problem (2.10). Then for 0 < ε < 1/2,

|∇v(x′, xd)| ≤
C

ε + |x′|2
∣∣∣ψ(x′, ε + h1(x′))

∣∣∣+ C‖ψ‖C2(∂D1;Rd), ∀x ∈ ΩR, (2.11)
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and

|∇v(x)| ≤ C‖ψ‖C2(∂D1;Rd) ∀x ∈ Ω \ ΩR.

Remark 2.2. Theorem 2.1 is of independent interest. We also can deal with more general 
case when v = φ(x) on ∂D, instead of the condition v = 0 there. The proof of Theorem 2.1
is given in Section 3.

Without loss of generality, we only need to prove Theorem 1.1 for ‖ϕ‖C2(∂D;Rd) = 1, 
and for general case by considering u/‖ϕ‖C2(∂D;Rd) if ‖ϕ‖C2(∂D;Rd) > 0. If ϕ|∂D = 0, then 
u ≡ 0. First, the estimates of |∇uα| are some immediate consequences of Theorem 2.1, 
only taking ψ = ψα, α = 1, · · · , d(d+1)

2 , respectively, or ψ = ϕ(x) − ϕ(0) with minor 
modifications.

Corollary 2.3. Under the hypotheses of Theorem 1.1 and with the normalization 
‖ϕ‖C2(∂D;Rd) = 1. Then for 0 < ε < 1/2,

|∇uα(x)| ≤ C

ε + |x′|2 , α = 1, 2, · · · , d, ∀ x ∈ ΩR; (2.12)

|∇uα(x)| ≤C(ε + |x′|)
ε + |x′|2 , α = d + 1, · · · , d(d + 1)

2 , ∀ x ∈ ΩR; (2.13)

|∇u0(x)| ≤C|∇ϕ(0)||x′|
ε + |x′|2 + C, ∀ x ∈ ΩR; (2.14)

and

|∇uα(x)| ≤ C, α = 0, 1, 2, · · · , d(d + 1)
2 , ∀x ∈ Ω \ ΩR.

On the other hand, we need the following estimates on Cα and |Cα − ϕα(0)|. The 
proof is given in Section 4.

Proposition 2.4. Under the hypotheses of Theorem 1.1 and with the normalization 
‖ϕ‖C2(∂D;Rd) = 1. Then

|Cα| ≤ C, α = 1, 2, · · · , d(d + 1)
2 , (2.15)

and

|Cα − ϕα(0)| ≤ Cρd(ε), α = 1, 2, · · · , d. (2.16)

We are now in position to prove Theorem 1.1.
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Proof of Theorem 1.1. Since

∇u =

d(d+1)
2∑

α=d+1

Cα∇ψα =

⎛⎜⎜⎜⎜⎜⎜⎝

0 Cd+1 Cd+2 · · · C2d−1

−Cd+1 0 C2d · · · C3d−3

−Cd+2 −C2d 0
. . .

...
...

...
. . . . . . C

d(d+1)
2

−C2d−1 −C3d−3 · · · −C
d(d+1)

2 0

⎞⎟⎟⎟⎟⎟⎟⎠ in D1,

The estimate (1.8) immediately follows from (2.15).
By (2.16), Corollary 2.3 and Proposition 2.4, we have, for x ∈ ΩR,

|∇u(x)| ≤
d∑

α=1
|Cα − ϕα(0)| |∇uα| +

d(d+1)
2∑

α=d+1

Cα|∇uα| + |∇u0|

≤ C

(
ρd(ε)

ε + |x′|2 + |x′|
ε + |x′|2 + 1

)
.

Thus, (1.9) is proved, so (1.7). �
To complete this section, we recall some properties of the tensor C. For the isotropic 

elastic material, let

C := (Cijkl) = (λδijδkl + μ(δikδjl + δilδjk)), μ > 0, dλ + 2μ > 0.

The components Cijkl satisfy the following symmetric condition:

Cijkl = Cklij = Cklji, i, j, k, l = 1, 2, · · · , d. (2.17)

We will use the following notations:

(CA)ij =
d∑

k,l=1

CijklAkl, and (A,B) ≡ A : B =
d∑

i,j=1
AijBij ,

for every pair of d × d matrices A = (Aij), B = (Bij). Clearly,

(CA,B) = (A,CB).

If A is symmetric, then, by the symmetry condition (2.17), we have that

(CA,A) = CijklAklAij = λAiiAkk + 2μAkjAkj .

Thus C satisfies the following ellipticity condition: For every d ×d real symmetric matrix 
η = (ηij),
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min{2μ, dλ + 2μ}|η|2 ≤ (Cη, η) ≤ max{2μ, dλ + 2μ}|η|2, (2.18)

where |η|2 =
∑

ij η
2
ij . In particular,

min{2μ, dλ + 2μ}|A + AT |2 ≤ (C(A + AT ), (A + AT )). (2.19)

3. Proof of Theorem 2.1 and estimates of |∇uα|

In this section, we first prove Theorem 2.1, then give some much finer estimates on 
|∇uα|, which will be useful for the establishment of the low bound estimates in Section 4
and Section 5.

We decompose the solution of (2.10) as follows:

v = v1 + v2 + · · · + vd,

where vl = (v1
l , v

2
l , · · · , vdl )T , l = 1, 2, · · · , d, with vjl = 0 for j �= l, and vl satisfy the 

following boundary value problem, respectively,⎧⎪⎪⎨⎪⎪⎩
Lλ,μvl := ∇ · (C0e(vl)) = 0, in Ω,

vl = (0, · · · , 0, ψl, 0, · · · , 0)T , on ∂D1,

vl = 0, on ∂D.

(3.1)

Then

∇v =
d∑

l=1

∇vl. (3.2)

In order to estimate |∇vl| one by one, we first introduce a scalar auxiliary function 
v̄ ∈ C2(Rn) such that v̄ = 1 on ∂D1, v̄ = 0 on ∂D and

v̄(x) = xd − h(x′)
ε + h1(x′) − h(x′) , in Ω2R,

and

‖v̄‖C2(Ω\ΩR/2) ≤ C. (3.3)

By a direct calculation, we obtain that for k, j = 1, · · · , d − 1, and x ∈ Ω2R,

|∂xk
v̄(x)| ≤ C|x′|

ε + |x′|2 ,
1

C(ε + |x′|2) ≤ |∂xd
v̄(x)| ≤ C

ε + |x′|2 , (3.4)

and
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|∂xkxj
v̄(x)| ≤ C

ε + |x′|2 , |∂xkxd
v̄(x)| ≤ C|x′|

(ε + |x′|2)2 , ∂xdxd
v̄(x) = 0. (3.5)

Extend ψ ∈ C2(∂D; Rd) to ψ ∈ C2(Ω; Rd) such that ‖ψl‖C2(Ω\ΩR) ≤ C‖ψl‖C2(∂D1), 
for l = 1, 2, · · · , d. We can find ρ ∈ C2(Ω) such that

0 ≤ ρ ≤ 1, |∇ρ| ≤ C, on Ω,

ρ = 1 on Ω 3
2R

, and ρ = 0 on Ω \ Ω2R.
(3.6)

Define

ṽl(x) = (0, · · · , 0,
[
ρ(x)ψl(x′, ε + h1(x′)) + (1 − ρ(x))ψl(x)

]
v̄(x), 0, · · · , 0)T in Ω.

(3.7)

In particular,

ṽl(x) = (0, · · · , 0, ψl(x′, ε + h1(x′))v̄(x), 0, · · · , 0)T in ΩR, (3.8)

and in view of (3.3),

‖ṽl‖C2(Ω\ΩR/2) ≤ C‖ψl‖C2(∂D1). (3.9)

Due to (3.4), and (3.5), for l = 1, 2, · · · , d, and k, j = 1, 2, · · · , d − 1, for x ∈ ΩR,

|∂xk
ṽl(x)| ≤ C|x′||ψl(x′, ε + h1(x′))|

ε + |x′|2 + C‖∇ψl‖L∞ , (3.10)

|ψl(x′, ε + h1(x′))|
C(ε + |x′|2) ≤ |∂xd

ṽl(x)| ≤ C|ψl(x′, ε + h1(x′))|
ε + |x′|2 ; (3.11)

and

|∂xkxj
ṽl(x)|

≤ C|ψl(x′, ε + h1(x′))|
ε + |x′|2 + C

(
|x′|

ε + |x′|2 + 1
)
‖∇ψl‖L∞ + C‖∇2ψl‖L∞ , (3.12)

|∂xkxd
ṽl(x)| ≤ C|x′|

(ε + |x′|2)2 |ψ
l(x′, ε + h1(x′))| + C

ε + |x′|2 ‖∇ψl‖L∞ , (3.13)

∂xdxd
ṽl(x) = 0. (3.14)

Here and throughout this section, for simplicity we use ‖∇ψ‖L∞ and ‖∇2ψ‖L∞ to denote 
‖∇ψ‖L∞(∂D1) and ‖∇2ψ‖L∞(∂D1), respectively.

Let

wl := vl − ṽl, l = 1, 2, · · · , d. (3.15)



J.G. Bao et al. / Advances in Mathematics 314 (2017) 583–629 597
Lemma 3.1. Let vl ∈ H1(Ω; Rd) be a weak solution of (3.1). Then∫
Ω

|∇wl|2dx ≤ C‖ψl‖C2(∂D1), l = 1, 2, · · · , d. (3.16)

Proof. For simplicity, we denote

w := wl, and ṽ := ṽl.

Thus, w satisfies {
Lλ,μw = −Lλ,μṽ, in Ω,

w = 0, on ∂Ω.
(3.17)

Multiplying the equation in (3.17) by w and applying integration by parts, we get∫
Ω

(
C

0e(w), e(w)
)
dx =

∫
Ω

w (Lλ,μṽ) dx. (3.18)

By the Poincaré inequality,

‖w‖L2(Ω\ΩR) ≤ C‖∇w‖L2(Ω\ΩR). (3.19)

Note that the above constant C is independent of ε. Using the Sobolev trace embedding 
theorem,

∫
|x′|=R,

h(x′)<xd<ε+h1(x′)

|w|dx ≤ C

⎛⎜⎝ ∫
Ω\ΩR

|∇w|2dx

⎞⎟⎠
1
2

. (3.20)

According to (3.10), we have∫
ΩR

|∇x′ ṽ|2dx

≤ C

∫
|x′|<R

(ε + h1(x′) − h(x′))
(
|x′|2|ψl(x′, ε + h1(x′))|2

(ε + |x′|2)2 + ‖∇ψl‖2
L∞

)
dx′

≤ C‖ψl‖2
C1(∂D1), (3.21)

where C depends only on d and κ0.
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The first Korn’s inequality together with (2.19), (3.18), (3.9) and (3.19) implies∫
Ω

|∇w|2dx ≤ 2
∫
Ω

|e(w)|2dx

≤C

∣∣∣∣∣∣
∫

ΩR

w(Lλ,μṽ)dx

∣∣∣∣∣∣ + C

∣∣∣∣∣∣∣
∫

Ω\ΩR

w(Lλ,μṽ)dx

∣∣∣∣∣∣∣
≤C

∣∣∣∣∣∣
∫

ΩR

w(Lλ,μṽ)dx

∣∣∣∣∣∣ + C‖ψl‖C2(∂D1)

∫
Ω\ΩR

|w|dx

≤C

∣∣∣∣∣∣
∫

ΩR

w(Lλ,μṽ)dx

∣∣∣∣∣∣ + C‖ψl‖C2(∂D1)

⎛⎜⎝ ∫
Ω\ΩR

|∇w|2

⎞⎟⎠
1/2

,

while, due to (3.14), (3.20) and (3.21),∣∣∣∣∣∣
∫

ΩR

w(Lλ,μṽ)dx

∣∣∣∣∣∣ ≤ C
∑

k+l<2d

∣∣∣∣∣∣
∫

ΩR

w∂xkxl
ṽdx

∣∣∣∣∣∣
≤C

∫
ΩR

|∇w||∇x′ ṽ|dx +
∫

|x′|=R,
h(x′)<xd<ε+h1(x′)

C|∇x′ ṽ||w|dx

≤C

⎛⎝ ∫
ΩR

|∇w|2dx

⎞⎠
1
2
⎛⎝ ∫

ΩR

|∇x′ ṽ|2dx

⎞⎠
1
2

+ C‖ψl‖C1(∂D1)

⎛⎜⎝ ∫
Ω\ΩR

|∇w|2dx

⎞⎟⎠
1
2

≤C‖ψl‖C1(∂D1)

⎛⎝∫
Ω

|∇w|2dx

⎞⎠
1
2

.

Therefore,

∫
Ω

|∇w|2dx ≤ C‖ψl‖C2(∂D1)

⎛⎝∫
Ω

|∇w|2dx

⎞⎠
1
2

.

The proof of Lemma 3.1 is completed. �
For convenience, we denote

δ(z) := ε + h1(z′) − h(z′), for z = (z′, zd) ∈ ΩR.
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By (2.8), we have

1
C

(ε + |z′|2) ≤ δ(z) ≤ C(ε + |z′|2).

Set

Ω̂s(z) :=
{
x ∈ Ω2R

∣∣ |x′ − z′| < s
}
, ∀ 0 ≤ s ≤ R.

It follows from (3.7) and (3.10)–(3.14) that for x ∈ ΩR, l = 1, 2, · · · , d,

|Lλ,μṽl| ≤ C|∇2ṽl| ≤
(

C

ε + |x′|2 + C|x′|
(ε + |x′|2)2

)
|ψl(x′, ε + h1(x′))|

+ C

ε + |x′|2 ‖∇ψl‖L∞ + C‖∇2ψl‖L∞ , (3.22)

where C is independent of ε.

Lemma 3.2. For δ = δ(z) ≤ R, z ∈ ΩR, and l = 1, 2, · · · , d,∫
Ω̂δ(z)

|∇wl|2dx ≤ Cδd+1
(
|ψl(z′, ε + h1(z′))|2 + δ(‖ψl‖2

C2(∂D1) + 1)
)
. (3.23)

Proof. Still denote w := wl, and ṽ := ṽl. For 0 < t < s < 1, let η(x′) be a smooth cutoff 
function satisfying 0 ≤ η(x′) ≤ 1, η(x′) = 1 if |x′ − z′| < t, η(x′) = 0 if |x′ − z′| > s and 
|∇η(x′)| ≤ 2

s−t . Multiplying η2w on both side of the equation in (3.17) and applying 
integration by parts leads to∫

Ω̂s(z)

(C0e(w), e(η2w))dx =
∫

Ω̂s(z)

(η2w)Lλ,μṽdx. (3.24)

By the first Korn’s inequality and the standard arguments, we have∫
Ω̂s(z)

(C0e(w), e(η2w))dx ≥ 1
C

∫
Ω̂s(z)

|η∇w|2dx− C

∫
Ω̂s(z)

|∇η|2|w|2dx. (3.25)

For the right hand side of (3.24), in view of Hölder inequality and Cauchy inequality,∣∣∣∣∣∣∣
∫

Ω̂s(z)

(η2w)Lλ,μṽdx

∣∣∣∣∣∣∣ ≤
⎛⎜⎝ ∫

Ω̂s(z)

|w|2dx

⎞⎟⎠
1
2
⎛⎜⎝ ∫

Ω̂s(z)

|Lλ,μṽ|2dx

⎞⎟⎠
1
2

≤ 1
(s− t)2

∫
Ω̂s(z)

|w|2dx + (s− t)2
∫

Ω̂s(z)

|Lλ,μṽ|2dx.
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This, together with (3.24) and (3.25), implies that∫
Ω̂t(z)

|∇w|2dx ≤ C

(s− t)2

∫
Ω̂s(z)

|w|2dx + C(s− t)2
∫

Ω̂s(z)

|Lλ,μṽ|2dx. (3.26)

We know that w = 0 on Γ−
R. By using (2.6)–(2.9) and Hölder inequality, we obtain

∫
Ω̂s(z)

|w|2dx =
∫

Ω̂s(z)

∣∣∣∣∣∣∣
xd∫

h(x′)

∂xd
w(x′, ξ)dξ

∣∣∣∣∣∣∣
2

dx

≤
∫

Ω̂s(z)

(ε + h1(x′) − h(x′))
ε+h1(x′)∫
h(x′)

|∇w(x′, ξ)|2dξ dx

≤ C
(
ε + (|z′| + s)2

)2 ∫
Ω̂s(z)

|∇w|2dx. (3.27)

It follows from (3.22) and the mean value theorem that∫
Ω̂s(z)

|Lλ,μṽ|2dx

≤ |ψl(z′, ε + h1(z′))|2
∫

Ω̂s(z)

(
C

ε + |x′|2 + C|x′|
(ε + |x′|2)2

)2

dx

+ ‖∇ψl‖2
L∞

∫
Ω̂s(z)

(
C

ε + |x′|2 + C|x′|
(ε + |x′|2)2

)2

|x′ − z′|2dx

+ ‖∇ψl‖2
L∞

∫
Ω̂s(z)

(
C

ε + |x′|2
)2

dx + Cδ(z)sd−1‖∇2ψl‖2
L∞

≤C|ψl(z′, ε + h1(z′))|2
∫

|x′−z′|<s

dx′

(ε + |x′|2)2

+ C‖∇ψl‖2
L∞

∫
|x′−z′|<s

(
1

ε + |x′|2 + s2

(ε + |x′|2)2
)
dx′ + Cδ(z)sd−1‖∇2ψl‖2

L∞ .

(3.28)

Case 1. For 0 ≤ |z′| ≤ √
ε, (i.e. ε ≤ δ(z) ≤ Cε), and 0 < t < s <

√
ε, by means of 

(3.27) and (3.28), we have
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∫
Ω̂s(z)

|w|2dx ≤ Cε2
∫

Ω̂s(z)

|∇w|2dx, (3.29)

and ∫
Ω̂s(z)

|Lλ,μṽ|2dx

≤ C|ψl(z′, ε + h1(z′))|2
sd−1

ε2 + C‖∇ψl‖2
L∞

sd−1

ε
+ Cε sd−1‖∇2ψl‖2

L∞ . (3.30)

Denote

F (t) :=
∫

Ω̂t(z)

|∇w|2dx.

By (3.26), (3.29) and (3.30), for some universal constant c1 > 0, we get for 0 < t <
s <

√
ε,

F (t) ≤
(

c1ε

s− t

)2

F (s) + C(s− t)2sd−1·(
|ψl(z′, ε + h1(z′))|2

ε2 + ‖∇ψl‖2
L∞

ε
+ ε‖∇2ψl‖2

L∞

)
. (3.31)

Let ti = δ + 2c1iε, i = 0, 1, · · · and k =
[

1
4c1

√
ε

]
+ 1, then

c1ε

ti+1 − ti
= 1

2 .

Using (3.31) with s = ti+1 and t = ti, we obtain

F (ti) ≤
1
4F (ti+1) + C(i + 2)d−1εd+1·(

|ψl(z′, ε + h1(z′))|2 + ε(‖∇ψl‖2
L∞ + ‖∇2ψl‖2

L∞)
)
, i = 0, 1, 2, · · · , k.

After k iterations, making use of (3.16), we have, for sufficiently small ε,

F (t0) ≤
(1
4
)k
F (tk) + Cεd+1

k∑
i=1

(1
4
)i−1(i + 1)d−1·

(
|ψl(z′, ε + h1(z′))|2 + ε(‖∇ψl‖2

L∞ + ‖∇2ψ1‖2
L∞)

)
≤
(1
4
)k
F (

√
ε) + Cεd+1 (|ψl(z′, ε + h1(z′))|2 + ε(‖∇ψl‖2

L∞ + ‖∇2ψl‖2
L∞)

)
≤ Cεd+1

(
|ψl(z′, ε + h1(z′))|2 + ε‖ψl‖2

C2(∂D1)

)
,
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here we used the fact that 
(1

4
)k ≤

( 1
4
) 1

4c1
√

ε ≤ εd+1 if ε sufficiently small. This implies 
that for 0 ≤ |z′| ≤ √

ε,

‖∇w‖2
L2(Ω̂δ(z))

≤ Cεd+1
(
|ψl(z′, ε + h1(z′))|2 + ε‖ψl‖2

C2(∂D1)

)
.

Case 2. For 
√
ε ≤ |z′| < R, (i.e. C|z′|2 ≤ δ(z) ≤ (C + 1)|z′|2), 0 < t < s < 2|z′|

3 , by 
using (3.27) and (3.28) again, we have∫

Ω̂s(z)

|w|2dx ≤ C|z′|4
∫

Ω̂s(z)

|∇w|2dx,

∫
Ω̂s(z)

|Lλ,μṽ|2dx

≤ C|ψl(z′, ε + h1(z′))|2
sd−1

|z′|4 + C‖∇ψl‖2
L∞

sd−1

|z′|2 + C|z′|2sd−1‖∇2ψl‖2
L∞ .

Thus, for 0 < t < s < 2|z′|
3 ,

F (t) ≤
(
c2|z′|2
s− t

)2

F (s) + C(s− t)2sd−1·(
|ψl(z′, ε + h1(z′))|2

|z′|4 + ‖∇ψl‖2
L∞

|z′|2 + |z′|2‖∇2ψl‖2
L∞

)
, (3.32)

where c2 is another universal constant. Taking the same iteration procedure as in Case 1, 
setting ti = δ + 2c2i|z′|2, i = 0, 1, · · · and k =

[
1

4c2|z′|

]
+ 1, by (3.32) with s = ti+1 and 

t = ti, we have, for i = 0, 1, 2, · · · , k,

F (ti) ≤
1
4F (ti+1) + C(i + 2)d−1|z′|2(d+1)·(

|ψl(z′, ε + h1(z′))|2 + |z′|2(‖∇ψl‖2
L∞ + ‖∇2ψl‖2

L∞)
)
.

Similarly, after k iterations, we have

F (t0) ≤
(1
4
)k
F (tk) + C

k∑
i=1

(1
4
)i−1(i + 1)d−1|z′|2(d+1)·

(
|ψl(z′, ε + h1(z′))|2 + |z′|2(‖∇ψl‖2

L∞ + ‖∇2ψl‖2
L∞)

)
≤
(1
4
)k
F (|z′|)

+ C|z′|2(d+1) (|ψl(z′, ε + h1(z′))|2 + |z′|2(‖∇ψl‖2
L∞ + ‖∇2ψ1‖2

L∞)
)

≤C|z′|2(d+1)
(
|ψl(z′, ε + h1(z′))|2 + |z′|2‖ψl‖2

C2(∂D1)

)
,
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which implies that, for 
√
ε ≤ |z′| < R,

‖∇w‖2
L2(Ω̂δ(z))

≤ C|z′|2(d+1)
(
|ψl(z′, ε + h1(z′))|2 + |z′|2‖ψl‖2

C2(∂D1)

)
.

The proof of Lemma 3.2 is completed. �
Lemma 3.3. For l = 1, 2, · · · , d,

|∇wl(x)| ≤ C|ψl(x′, ε + h1(x′))|√
δ(x)

+ C‖ψl‖C2(∂D1), ∀ x ∈ ΩR. (3.33)

Consequently, by (3.10), (3.11) and (3.15), we have for sufficiently small ε and x ∈ ΩR,

|ψl(x′, ε + h1(x′))|
C(ε + |x′|2) ≤ |∇vl(x′, xd)| ≤

C|ψl(x′, ε + h1(x′))|
ε + |x′|2 + C‖ψl‖C2(∂D1). (3.34)

Proof. Take w := wl and ṽ := ṽl for simplicity. Given z = (z′, zd) ∈ ΩR, making a 
change of variables {

x′ − z′ = δy′,

xd = δyd,

where δ = δ(z). Define

ĥ1(y′) := 1
δ

(ε + h1(δy′ + z′)) , ĥ(y′) := 1
δ
h(δy′ + z′).

Then, the region Ω̂δ(z) becomes Q1, where

Qr = {y ∈ R
d | ĥ(y′) < yd < ĥ1(y′), |y′| < r}, 0 < r ≤ 1,

and the top and bottom boundaries of Qr become

Γ̂+
r := {y ∈ R

d | yd = ĥ1(y′), |y′| ≤ r}

and

Γ̂−
r := {y ∈ R

d | yd = ĥ(y′), |y′| ≤ r},

respectively. From (2.6)–(2.9) and the definition of ĥ1 and ĥ, it follows that

ĥ1(0′) − ĥ(0′) = 1,

and for |y′| < 1,

|∇ĥ1(y′)| + |∇ĥ(y′)| ≤ C(δ + |z′|), |∇2ĥ1(y′)| + |∇2ĥ(y′)| ≤ Cδ.
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Since R is small, ‖ĥ1‖C1,1(B1(0′)) and ‖ĥ‖C1,1(B1(0′)) are small and Q1 is approximately a 
unit square (or a cylinder-shaped domain) as far as applications of the Sobolev embedding 
theorems and classical Lp estimates for elliptic systems are concerned.

Let

v̂(y′, yd) := ṽ(δy′ + z′, δyd), ŵ(y′, yd) := w(δy′ + z′, δyd).

Thus, ŵ(y) satisfies {
Lλ,μŵ = −Lλ,μv̂ in Q1,

ŵ = 0, on Γ̂±
1 .

In view of ŵ = 0 on the upper and lower boundaries of Q1, we have, by Poincaré 
inequality, that

‖ŵ‖H1(Q1) ≤ C‖∇ŵ‖L2(Q1).

Using the Sobolev embedding theorem and classical W 2,p estimates for elliptic systems 
(see e.g. [2], or Theorem 2.5 in [24]), we have, for some p > n,

‖∇ŵ‖L∞(Q1/2) ≤ C‖ŵ‖W 2,p(Q1/2) ≤ C
(
‖∇ŵ‖L2(Q1) + ‖Lλ,μv̂‖L∞(Q1)

)
.

Since

‖∇ŵ‖L∞(Q1/2) = δ‖∇w‖L∞(Ω̂δ/2(z)), ‖∇ŵ‖L2(Q1) = δ1− d
2 ‖∇w‖L2(Ω̂δ(z))

and

‖Lλ,μv̂‖L∞(Q1) = δ2‖Lλ,μṽ‖L∞(Ω̂δ(z))

Tracking back to w through the transforms, we have

‖∇w‖L∞(Ω̂δ/2(z)) ≤
C

δ

(
δ1− d

2 ‖∇w‖L2(Ω̂δ(z)) + δ2‖Lλ,μṽ‖L∞(Ω̂δ(z))

)
. (3.35)

By (3.22) and (3.23), we have

δ−
d
2 ‖∇w‖L2(Ω̂δ(z)) ≤

C√
δ
|ψl(z′, ε + h1(z′))| + C‖ψl‖C2(∂D1),

and

δ‖Lλ,μṽ‖L∞(Ω̂δ(z)) ≤
C√
δ
|ψl(z′, ε + h1(z′))| + C(‖∇ψ1‖L∞ + ‖∇2ψl‖L∞).

Plugging these estimates above into (3.35) yields (3.33). The proof of Lemma 3.3 is 
finished. �
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Proof of Theorem 2.1. By using (3.34) and the decomposition of ∇u, (3.2),

|∇v(x)| ≤
d∑

l=1

|∇vl| ≤
C|ψ(x′, ε + h1(x′))|

ε + |x′|2 + C‖ψ‖C2(∂D1), x ∈ ΩR.

Note that for any x ∈ Ω \ ΩR, by using the standard interior estimates and boundary 
estimates for elliptic systems (2.10) (see Agmon et al. [1] and [2]), we have

‖∇v‖L∞(Ω\ΩR) ≤ C‖ψ‖C2(∂D1).

The proof of Theorem 2.1 is completed. �
The following finer estimates in ΩR will be useful in Section 4 and Section 5. We 

assume that ‖ϕ‖C2(∂D;Rd) = 1 without loss of generality. For problem (2.3), taking

ψ = ψα, and ũα := v̄ψα, α = 1, · · · , d

in the proof of Lemma 3.1–Lemma 3.3, respectively, we have

Corollary 3.4. For α = 1, 2, · · · , d,

|∇(uα − ũα)(x)| ≤ C√
δ(x)

, ∀ x ∈ ΩR. (3.36)

Consequently, by the definition of ũα and (3.4), we have, for α = 1, · · · , d,

|∇x′uα(x)| ≤ C√
δ(x)

, ∀ x ∈ ΩR, (3.37)

and
1

Cδ(x) ≤ |∂xd
uα(x)| ≤ C

δ(x) , x ∈ ΩR. (3.38)

Proof. According to the definition of ũα and (3.4), we have

|∇x′ ũα(x)| ≤ C|x′|
ε + |x′|2 , x ∈ ΩR,

1
C(ε + |x′|2) ≤ |∂xd

ũα(x)| ≤ C

ε + |x′|2 , x ∈ ΩR;

and
|Lλ,μũα(x)| ≤C

∑
k+l<2d

|∂xkxl
ũα(x)|

≤
(

C

ε + |x′|2 + C|x′|
(ε + |x′|2)2

)
|ψl(x′, ε + h1(x′))|, x ∈ ΩR.

Clearly, (3.36) follows from the proof of Lemma 3.1–Lemma 3.3. �
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For problem (2.4), we decompose the solution u0 as

u0 = u01 + u02 + · · · + u0d,

where u0l, l = 1, 2, · · · , d, satisfy, respectively,⎧⎪⎪⎨⎪⎪⎩
Lλ,μu0l = 0, in Ω,

u0l = 0, on ∂D1,

u0l = (0, · · · , 0, ϕl(x) − ϕl(0), 0, · · · , 0)T , on ∂D.

(3.39)

Similar as (3.7), we define

ũ0l(x) := (0, · · · , 0,
[
ρ(x)(ϕl(x′, h(x′)) − ϕl(0))

+ (1 − ρ(x))(ϕl(x) − ϕl(0))
]
(1 − v̄)(x), 0, · · · , 0)T , ∀ x ∈ Ω.

(3.40)

where ρ ∈ C2(Ω) is a cutoff function satisfying (3.6) as before. In particular,

ũ0l = (0, · · · , 0, (ϕl(x′, h(x′)) − ϕl(0))(1 − v̄)(x), 0, · · · , 0)T , ∀ x ∈ ΩR.

Adapting the proofs of Lemma 3.1–Lemma 3.3 to the equation (3.39), we obtain the 
following corollary.

Corollary 3.5. For l = 1, 2, · · · , d,

|∇(u0l − ũ0l)(x)| ≤ C‖ϕl‖C2(∂D), x ∈ ΩR. (3.41)

Consequently,

|∇x′u0l(x)| ≤ C‖ϕl‖C2(∂D), x ∈ ΩR, (3.42)

and

|ϕl(x′, h(x′)) − ϕl(0)|
Cδ(x) ≤ |∂xd

u0l(x)| ≤ C|∇x′ϕl(0)||x′|
δ(x) + C‖ϕl‖C2(∂D), x ∈ ΩR.

(3.43)

Proof. For (3.39), it is clear from (3.40) that ũ0l = u0l = 0 on ∂D1, ũ0l = u0l on ∂D. 
Note that ũk

0l = 0, if k �= l, and for x ∈ ΩR,

∇x′ ũl
0l = −

(
ϕl(x′, h(x′)) − ϕl(0)

)
∇x′ v̄(x)

+
[
∇x′ϕl(x′, h(x′)) + ∂xd

ϕl(x′, h(x′))∇x′h(x′)
]
(1 − v̄)(x),

∂xd
ũl

0l = −
(
ϕl(x′, h(x′)) − ϕl(0)

)
∂xd

v̄(x).
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By the Taylor expansion and (2.7)–(2.8),

ϕl(x′, h(x′)) =ϕl(0) + ∇x′ϕl(0)x′

+ 1
2x

′T
[
∇2

x′ϕl(0) + ∂xd
ϕl(0)∇2

x′h(0′)
]
x′ + O(|x′|2+γ). (3.44)

Hence, using (3.4), we have

|∇x′ ũ0l(x)| ≤ C|∇x′ϕl(0)||x′|2
ε + |x′|2 + C‖ϕl‖C2(∂D) ≤ C‖ϕl‖C2(∂D), x ∈ ΩR, (3.45)

and

|ϕl(x′, h(x′)) − ϕl(0)|
C(ε + |x′|2) ≤ |∂xd

ũ0l(x)| ≤ C|∇x′ϕl(0)||x′|
ε + |x′|2 + C‖ϕl‖C2(∂D), x ∈ ΩR.

(3.46)

Adapting the proof of Lemma 3.1–Lemma 3.2 and using (3.44), we obtain

|∇(u0l − ũ0l)(x)| ≤C|∇x′ϕl(0)||x′|√
ε + |x′|2

+ C‖ϕl‖C2(∂D) ≤ C‖ϕl‖C2(∂D), x ∈ ΩR,

which, together with (3.45) and (3.46), implies that (3.42) and (3.43). �
4. Proof of Proposition 2.4 and estimates of Cα

In this Section, we are devoted to prove Proposition 2.4 under the normalization 
‖ϕ‖C2(∂D;Rd) = 1.

Denote

aαβ := −
∫

∂D1

∂uα

∂ν0

∣∣∣
+
· ψβ , bβ :=

∫
∂D1

∂u0

∂ν0

∣∣∣
+
· ψβ , α, β = 1, 2, · · · , d(d + 1)

2 .

Multiplying the first line of (2.3) and (2.4), by uβ, respectively, and applying integration 
by parts over Ω leads to

aαβ =
∫
Ω

(C0e(uα), e(uβ))dx, bβ = −
∫
Ω

(C0e(u0), e(uβ))dx.

By (2.5) and the linearity of e(u),

e(u) =
d∑

α=1
(Cα − ϕα(0))e(uα) +

d(d+1)
2∑

α=d+1

Cαe(uα) + e(u0), in Ω.
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Then, it follows from the forth line of (2.1) that for β = 1, 2, · · · , d(d+1)
2 ,

d∑
α=1

(Cα − ϕα(0))aαβ +

d(d+1)
2∑

α=d+1

Cαaαβ = bβ . (4.1)

Denote

X1 = (C1 − ϕ1(0), · · · , Cd − ϕd(0))T , X2 = (Cd+1, · · · , C
d(d+1)

2 )T ,

P 1 = (b1, · · · , bd)T , P 2 = (bd+1, · · · , b d(d+1)
2

)T ,

and

A =

⎛⎝a11 · · · a1d
...

. . .
...

ad1 · · · add

⎞⎠ , B =

⎛⎜⎝
a1 d+1 · · · a1 d(d+1)

2
...

. . .
...

ad d+1 · · · a
d d(d+1)

2

⎞⎟⎠ ,

D =

⎛⎜⎝
ad+1 d+1 · · · a

d+1 d(d+1)
2

...
. . .

...
a d(d+1)

2 d+1 · · · a d(d+1)
2

d(d+1)
2

⎞⎟⎠ .

Thus, by using the symmetry property of aαβ, (4.1) can be rewritten as(
A B
BT D

)(
X1

X2

)
=
(
P 1

P 2

)
(4.2)

Lemma 4.1. There exists a positive universal constant C, independent of ε, such that

d(d+1)
2∑

α,β=1

aαβξαξβ ≥ 1
C
, ∀ ξ ∈ R

d(d+1)
2 , |ξ| = 1. (4.3)

Proof. To emphasize the dependence on ε, we use Ωε := D \D1 and uε
α to denote the 

corresponding solution of (2.3) with α = 1, · · · , d. For ξ ∈ R
d(d+1)

2 with |ξ| = 1, using 
(1.6), we have

d(d+1)
2∑

α,β=1

aαβξαξβ =
∫
Ω

⎛⎝C
0e
( d(d+1)

2∑
α=1

ξαu
ε
α

)
, e
( d(d+1)

2∑
α=1

ξβu
ε
β

)⎞⎠ dx

≥ 1
C

∫
Ω

∣∣∣∣∣∣e
( d(d+1)

2∑
α=1

ξαu
ε
α

)∣∣∣∣∣∣
2

dx.

We claim that there exists a constant C > 0, independent of ε, such that
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∫
Ω

∣∣∣∣∣∣e
( d(d+1)

2∑
α=1

ξαu
ε
α

)∣∣∣∣∣∣
2

dx ≥ 1
C
, ∀ ξ ∈ R

d(d+1)
2 , |ξ| = 1.

Indeed, if not, then there exist εi → 0+, |ξi| = 1, such that

∫
Ω

∣∣∣∣∣∣e
( d(d+1)

2∑
α=1

ξiαu
εi
α

)∣∣∣∣∣∣
2

dx → 0, as i → ∞. (4.4)

Here and in the following proof, we use the notations D∗
1 := { x ∈ R

d | x + (0′, ε) ∈
D1 }, Ω∗ := D \D∗

1 . Since uεi
α = 0 on ∂D, it follows from the second Korn’s inequality 

(see Theorem 2.5 in [36]) that there exists a constant C, independent of εi, such that

‖uεi
α ‖H1(Ωε\Br̄;Rd) ≤ C,

where r̄ > 0 is fixed. Then there exists a subsequence, we still denote {uεi
α }, such that

uεi
α ⇀ ūα, in H1(Ωε \Br̄;Rd), as i → ∞.

By (4.4), there exists ξ̄ such that

ξi → ξ̄, as i → ∞, with |ξ̄| = 1,

and

∫
Ω∗

∣∣∣∣∣∣e
( d(d+1)

2∑
α=1

ξ̄αūα

)∣∣∣∣∣∣
2

dx = 0.

This implies that

e
( d(d+1)

2∑
α=1

ξ̄αūα

)
= 0, in Ω∗.

That means that 
∑ d(d+1)

2
α=1 ξ̄αūα ∈ Ψ in Ω∗. Hence, there exist some constants cβ , β =

1, 2, · · · , d(d+1)
2 , such that

d(d+1)
2∑

α=1
ξ̄αūα =

d(d+1)
2∑

β=1

cβψβ , in Ω∗.

Since 
∑ d(d+1)

2
β=1 cβψβ = 0 on ∂D, it follows from Lemma 6.1 in [16] that cβ = 0, β =

1, · · · , d(d+1) . Thus,
2
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d(d+1)
2∑

α=1
ξ̄αūα = 0, in Ω∗.

Restricted on ∂D∗
1 , it says that 

∑ d(d+1)
2

α=1 ξ̄αψα = 0 on ∂D∗
1 . This yields, using again 

Lemma 6.1 in [16], ξ̄α = 0, α = 1, · · · , d, which contradicts with |ξ̄| = 1. �
Lemma 4.2. For d ≥ 2, we have

1
Cρd(ε)

≤ aαα ≤ C

ρd(ε)
, α = 1, · · · , d; (4.5)

1
C

≤ aαα ≤ C, α = d + 1, · · · , d(d + 1)
2 ; (4.6)

aαβ ≤ C, α = 1, 2, · · · , d(d + 1)
2 , β = d + 1, · · · , d(d + 1)

2 , α �= β;

(4.7)

and if d = 2, then

|a12| = |a21| ≤ C| log ε|; (4.8)

if d ≥ 3, then

|aαβ | = |aβα| ≤ C, α, β = 1, · · · , d, α �= β. (4.9)

Consequently,

1
C(ρd(ε))d

≤ detA ≤ C

(ρd(ε))d
,

1
C
I ≤ D ≤ CI. (4.10)

Proof. STEP 1. Proof of (4.5). In view of (2.18), (3.37) and (3.38), we have, for α =
1, · · · , d,

aαα =
∫
Ω

(C0e(uα), e(uα))dx ≤ C

∫
Ω

|∇uα|2dx

≤ C

∫
ΩR

dx

(ε + |x′|2)2 + C

≤ C

∫
|x′|<R

dx′

ε + |x′|2 + C

= C

R∫
0

ρd−2

ε + ρ2 dρ + C ≤ C

ρd(ε)
,
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and

aαα =
∫
Ω

(C0e(uα), e(uα))dx ≥ 1
C

∫
Ω

|e(uα)|2dx

≥ 1
C

∫
Ω

|eαd(uα)|2dx ≥ 1
C

∫
ΩR

|∂xd
uα
α|2dx.

Notice that uα
α|∂D1 = v̄|∂D1 = 1, uα

α|∂D = v̄|∂D = 0, and recalling the definition of v̄, 
v̄(x′, xd) is linear in xd for fixed x′, so v̄(x′, ·) is harmonic, hence its energy is minimal, 
that is

h1(x′)+ε∫
h(x′)

|∂xd
uα
α|2dxd ≥

h1(x′)+ε∫
h(x′)

|∂xd
v̄|2dxd = 1

ε + h1(x′) − h(x′) .

Integrating on BR(0′) for x′, we obtain

∫
ΩR

|∂xd
uα
α|2dx =

∫
|x′|<R

h1(x′)+ε∫
h(x′)

|∂xd
uα
α|2dxddx

′

≥ 1
C

∫
|x′|<R

dx′

ε + |x′|2 ≥ 1
Cρd(ε)

.

Estimate (4.5) is proved.
STEP 2. Proof of (4.6) and (4.7). By means of (2.13), for α, β = d + 1, · · · , d(d+1)

2 , we 
have

aαβ =
∫
Ω

(C0e(uα), e(uβ))dx ≤ C

∫
Ω

|∇uα||∇uβ |dx

≤ C

∫
ΩR

(ε + |x′|)2
(ε + |x′|2)2 dx + C ≤ C.

On the other hand, it follows immediately from Lemma 4.1 that there exists a universal 
constant C such that

aαα ≥ 1
C
, α = d + 1, · · · , d(d + 1)

2 .

We now consider the elements for α = 1, 2, · · · , d, β = d +1, d +2, · · · , d(d+1)
2 . We take 

the case that α = 1, β = d + 1 for instance. The other cases are the same. Let ψd+1 =
(x2, −x1, 0, · · · , 0)T . Then using (3.37) and the boundedness of |∇uα| on ∂D1 \ BR, we 
have
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a1(d+1) = −
∫

∂D1

∂u1

∂ν0

∣∣∣
+
· ψd+1

= −
∫

∂D1∩BR

(
λ(∇ · u1)n + μ(∇uα + (∇u1)T )n

)
· (x2,−x1, 0, · · · , 0)T

= −
∫

∂D1∩BR

(
λ
( d∑
k=1

∂xk
uk

1
)
n1 + μ

d∑
l=1

(
∂x1u

l
1 + ∂xl

u1
1
)
nl

)
x2

+
∫

∂D1∩BR

(
λ
( d∑
k=1

∂xk
uk

1
)
n2 + μ

d∑
l=1

(
∂x2u

l
1 + ∂xl

u2
1
)
nl

)
x1

is bounded for d ≥ 2, so a1(d+1).
Thus, estimates (4.6) and (4.7) are established.
STEP 3. Proof of (4.8) and (4.9). Firstly, we estimate |aαβ | for α, β = 1, · · · , d with 

α �= β. By the definition,

aαβ = aβα = −
∫

∂D1

∂uα

∂ν0

∣∣∣
+
· ψβ

= −
∫

∂D1

λ(∇ · uα)nβ + μ
(
(∇uα + (∇uα)T )n

)
β

= −
∫

∂D1

λ

(
d∑

k=1

∂xk
uk
α

)
nβ + μ

d∑
l=1

(
∂xβ

ul
α + ∂xl

uβ
α

)
nl.

Denote

Iαβ :=
∫

∂D1∩BR

(
d∑

k=1

∂xk
uk
α

)
nβ ;

and

IIαβ :=
∫

∂D1∩BR

d∑
l=1

(
∂xβ

ul
α + ∂xl

uβ
α

)
nl

=
∫

∂D1∩BR

d−1∑
l=1

(
∂xβ

ul
α + ∂xl

uβ
α

)
nl +

∫
∂D1∩BR

∂xβ
ud
αnd +

∫
∂D1∩BR

∂xd
uβ
αnd

= : II1αβ + II2αβ + II3αβ ,

where

n = (−∇x′h(x′), 1)√
′ 2

.

1 + |∇x′h(x )|
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Due to (2.7), for k = 1, 2, · · · , d − 1,

|nk| =

∣∣∣∣∣ −∂xk
h(x′)√

1 + |∇x′h(x′)|2

∣∣∣∣∣ ≤ C|x′|, and |nd| = 1√
1 + |∇x′h(x′)|2

≤ 1. (4.11)

For α = 1, 2, · · · , d, β = 1, 2, · · · , d − 1, it follows from (3.37) and (4.11) that

|Iαβ | ≤
∫

∂D1∩BR

∣∣∣∣∣
(

d∑
k=1

∂xk
uk
α

)
nβ

∣∣∣∣∣
≤

∫
∂D1∩BR

C|x′|
ε + |x′|2 ≤

{
C| log ε|, d = 2,
C, d ≥ 3,

(4.12)

while,

|II1αβ | ≤
∫

∂D1∩BR

∣∣∣∣∣
d−1∑
l=1

(
∂xβ

ul
α + ∂xl

uβ
α

)
nl

∣∣∣∣∣ ≤
∫

∂D1∩BR

C|x′|√
ε + |x′|2

≤ C,

|II2αβ | ≤
∫

∂D1∩BR

∣∣∂xβ
ud
αnd

∣∣ ≤ ∫
∂D1∩BR

C√
ε + |x′|2

≤
{
C| log ε|, d = 2,
C, d ≥ 3,

and by the definition of ũα and (3.36),

|II3αβ | ≤
∫

∂D1∩BR

∣∣∂xd
uβ
αnd

∣∣ ≤ ∫
∂D1∩BR

|(∂xd
ũβ
α)nd| +

∫
∂D1∩BR

|(∂xd
(uβ

α − ũβ
α)nd|

≤
∫

∂D1∩BR

C√
ε + |x′|2

≤
{
C| log ε|, d = 2,
C, d ≥ 3.

Here we used the fact that ũβ
α = 0 if α �= β. Hence,

|IIαβ | ≤
{
C| log ε|, d = 2,
C, d ≥ 3.

This, together with (4.12), the boundedness of |∇uα| on ∂D1 \ BR, and the symmetry 
of aαβ = aβα, implies that for α, β = 1, · · · , d with α �= β,

|aαβ | = |aβα| ≤ |λ||Iαβ | + |μ||IIαβ | + C ≤
{
C| log ε|, d = 2,
C, d ≥ 3.

Therefore, (4.8) and (4.9) are proved. (4.10) is an immediate consequence of (4.5)–(4.9). 
The proof of the Lemma 4.2 is finished. �
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Lemma 4.3.

|bβ | ≤ C, β = 1, · · · , d(d + 1)
2 . (4.13)

Consequently,

|P i| ≤ C, i = 1, 2. (4.14)

Proof. STEP 1. To estimate |bβ | for β = 1, · · · , d. We take β = 1 for instance. The other 
cases are the same. Denote

b1 =
d∑

l=1

∫
∂D1

∂u0l

∂ν0

∣∣∣
+
· ψ1 :=

d∑
l=1

b1l,

where u0l, l = 1, 2, · · · , d, is defined by (3.39). By definition,

b11 =
∫

∂D1

∂u01

∂ν0

∣∣∣
+
· ψ1

=
∫

∂D1

[
λ(∇ · u01)n1 + μ

(
(∇u01 + (∇u01)T )n

)
1

]

=
∫

∂D1

[
λ

d∑
k=1

∂xk
uk

01n1 + μ
d∑

i=1
(∂x1u

i
01 + ∂xi

u1
01)ni

]
.

Denote

I :=
∫

∂D1

d∑
k=1

∂xk
uk

01n1 =
∫

∂D1

d−1∑
k=1

∂xk
uk

01n1 +
∫

∂D1

∂xd
ud

01n1 =: I1 + I2,

and

II :=
∫

∂D1

d∑
i=1

(∂x1u
i
01 + ∂xi

u1
01)ni

=
∫

∂D1

d−1∑
i=1

(∂x1u
i
01 + ∂xi

u1
01)ni +

∫
∂D1

∂x1u
d
01nd +

∫
∂D1

∂xd
u1

01nd

= : II1 + II2 + II3.

According to (3.42)–(3.43),

|I1| ≤

∣∣∣∣∣∣
∫ d−1∑

k=1

∂xk
uk

01n1

∣∣∣∣∣∣ ≤
∫

C|x′| + C ≤ C;

∂D1 ∂D1∩BR
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|I2| ≤

∣∣∣∣∣∣
∫

∂D1

∂xd
ud

01n1

∣∣∣∣∣∣ ≤
∫

∂D1∩BR

C|∇x′ϕ1(0)||x′|2
ε + |x′|2 + C ≤ C.

So that,

|I| ≤ |I1| + |I2| ≤ C. (4.15)

By (3.42), (4.11) and the definition of ũ01,

|II1| ≤

∣∣∣∣∣∣
∫

∂D1

d−1∑
i=1

(∂x1u
i
01 + ∂xi

u1
01)ni

∣∣∣∣∣∣ ≤
∫

∂D1∩BR

C|x′| + C ≤ C, (4.16)

and

|II2| ≤
∫

∂D1

|∂x1u
d
01nd|

≤
∫

∂D1∩BR

|∂x1 ũ
d
01nd| +

∫
∂D1∩BR

|∂x1(ud
01 − ũd

01)nd| + C

≤C|∂D1 ∩BR| + C ≤ C. (4.17)

Now, we need only to estimate II3. Note that

II3 =
∫

∂D1∩BR

∂xd
ũ1

01nd +
∫

∂D1∩BR

∂xd
(u1

01 − ũ1
01)nd =: II13 + II23.

By the definitions of ũ1
01 and v̄,

∂xd
ũ1

01 = −(ϕ1(x′, h(x′)) − ϕ1(0))∂xd
v̄ = −ϕ1(x′, h(x′)) − ϕ1(0)

ε + h1(x′) − h(x′) .

From the expression of ∂D1 ∩ BR : xd = ε + h1(x′), |x′| < R, we have dS =√
1 + |∇x′h1(x′)|2dx′. Then, by the Taylor expansion (3.44), we have

II13 =
∫

∂D1∩BR

∂xd
ũ1

01nd

=
∫

|x′|<R

−(ϕ1(x′, h(x′)) − ϕ1(0))
ε + h1(x′) − h(x′) dx′

= −
∫

|x′|<R

∇x′ϕ1(0)x′ + O(|x′|2)
ε + h1(x′) − h(x′) dx′.
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Since

1
C(ε + |x′|2) ≤ 1

ε + h1(x′) − h(x′) ≤ C

ε + |x′|2 , |x′| ≤ R, (4.18)

it follows that ∣∣∣∣∣∣∣
∫

|x′|<R

O(|x′|2)
ε + h1(x′) − h(x′)dx

′

∣∣∣∣∣∣∣ ≤ C.

While, according to (4.18), we have∫
|x′|<R

∇x′ϕ1(0)x′

ε + h1(x′) − h(x′)dx
′

=
∫

|x′|<R

∇x′ϕ1(0)x′

ε + 1
2x

′T (∇2
x′(h1 − h)(0′))x′ dx

′

+
∫

|x′|<R

O(|x′|3+γ)
(ε + 1

2x
′T (∇2

x′(h1 − h)(0′))x′)(ε + h1(x′) − h(x′))
dx′.

For the positive matrix (∇2
x′(h1 − h)(0′)), there exists orthogonal matrix O, such that

OT (∇2
x′(h1 − h)(0′))O = diag(λ1, · · · , λd−1),

where λi ≥ κ1, i = 1, · · · , d − 1. Under the orthogonal transform y′ = Ox′, we obtain∫
|x′|<R

∇x′ϕ1(0)x′

ε + 1
2x

′T (∇2
x′(h1 − h)(0′))x′ dx

′ =
∫

|y′|<R

∇x′ϕ1(0)OT y′

ε + Σd−1
i=1 λiy2

i

dy′ = 0,

and ∣∣∣∣∣∣∣
∫

|x′|<R

O(|x′|3+γ)
(ε + 1

2x
′T (∇2

x′(h1 − h)(0′))x′)(ε + h1(x′) − h(x′))
dx′

∣∣∣∣∣∣∣ ≤ C.

Therefore,

|II13| =

∣∣∣∣∣∣
∫

∂D1∩BR

∂xd
ũ1

01nd

∣∣∣∣∣∣ ≤ C. (4.19)

On the other hand, in view of (3.41),
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|II23| ≤

∣∣∣∣∣∣
∫

∂D1∩BR

∂xd
(u1

01 − ũ1
01)nd

∣∣∣∣∣∣ ≤ C.

This, together with (4.19), implies that

|II3| ≤ C. (4.20)

Combining (4.15)–(4.17) and (4.20), we have

|b11| ≤ C.

Next, for l = 2, · · · , d,

b1l =
∫

∂D1

∂u0l

∂ν0

∣∣∣
+
· ψ1

=
∫

∂D1

[
λ(∇ · u0l)n1 + μ

(
(∇u0l + (∇u0l)T )n

)
1

]

=
∫

∂D1

[
λ

d∑
k=1

∂xk
uk

0ln1 + μ
d∑

i=1
(∂x1u

i
0l + ∂xi

u1
0l)ni

]
.

Similarly, making use of (3.42), (3.43) and (4.11), we have∣∣∣∣∣∣
∫

∂D1

d∑
k=1

∂xk
uk

0ln1

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∫

∂D1

d−1∑
k=1

∂xk
uk

0ln1

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫

∂D1

∂xd
ud

0ln1

∣∣∣∣∣∣ ≤ C, (4.21)

and recalling the definition of ũ0l, and ũ1
0l = 0,∣∣∣∣∣∣

∫
∂D1

d∑
i=1

(∂x1u
i
0l + ∂xi

u1
0l)ni

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

∂D1

d−1∑
i=1

(∂x1u
i
0l + ∂xi

u1
0l)ni

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫

∂D1

∂x1(ud
0l − ũd

0l)nd

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫

∂D1

∂x1 ũ
d
0lnd

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫

∂D1

∂xd
(u1

0l − ũ1
0l)nd

∣∣∣∣∣∣
≤C.

This implies that

|b1l| ≤ C, l = 2, · · · , d.
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Hence,

|b1| ≤ C.

STEP 2. To estimate |bβ | for β = d + 1, · · · , d(d+1)
2 . By using (2.13) and (2.14), we 

have

|bβ | =

∣∣∣∣∣∣
∫
Ω

(
C

0e(u0), e(uβ)
)
dx

∣∣∣∣∣∣
≤ C

∫
Ω

|∇u0||∇uβ |dx

≤
∫

ΩR

C|∇x′ϕ(0)||x′|(ε + |x′|)
(ε + |x′|2)2 dx + C

≤ C.

The proof of Lemma 4.3 is completed. �
Proof of Proposition 2.4. Step 1. Proof of (2.15).

Let uε be the solution of (2.1). By Theorem 6.6 in the appendix in [15], uε is the 
minimizer of

I∞[u] := 1
2

∫
Ω

(
C

0e(u), e(u)
)
dx

on A defined by (1.4). It follows that

‖uε‖2
H1(Ω) ≤ C‖e(uε)‖2

L2(Ω) ≤ CI∞[uε] ≤ C.

By the Sobolev trace embedding theorem,

‖uε‖L2(∂D1∩BR) ≤ C.

Recalling that

uε =

d(d+1)
2∑

α=1
Cαψα, on ∂D1.

If C := (C1, C2, · · · , C d(d+1)
2 ) = 0, there is nothing to prove. Otherwise,

C ≥ |C|

∥∥∥∥∥∥
d(d+1)

2∑
α=1

Ĉαψα

∥∥∥∥∥∥
L2(∂D1∩BR)

, (4.22)
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where Ĉα = Cα

|C| and |Ĉ| = 1. It is easy to see that

∥∥∥∥∥∥
d(d+1)

2∑
α=1

Ĉαψα

∥∥∥∥∥∥
L2(∂D1∩BR)

≥ 1
C
. (4.23)

Indeed, if not, along a subsequence ε → 0, Ĉα → Cα, and∥∥∥∥∥∥
d(d+1)

2∑
α=1

Cαψα

∥∥∥∥∥∥
L2(∂D∗

1∩BR)

= 0,

where ∂D∗
1 is the limit of ∂D1 as ε → 0 and |C| = 1. This implies

d(d+1)
2∑

α=1
Cαψα = 0 on ∂D∗

1 ∩BR.

But {ψα|∂D∗
1∩BR

} is easily seen to be linear independent, according to Lemma 6.1 in the 
appendix of [16], we must have C = 0. This is a contradiction. (2.15) follows from (4.22)
and (4.23).

Step 2. Proof of (2.16). According to Lemma 4.1, the matrix(
A B
BT D

)
is positive definite, so invertible. Moreover,

A ≥ 1
C
Id×d, D ≥ 1

C
I d(d−1)

2 × d(d−1)
2

. (4.24)

Therefore, from (4.2), we have

(
X1

X2

)
=
(

A B
BT D

)−1 (
P 1

P 2

)
.

For d ≥ 4, it is easy to see from Lemma 4.1 and Lemma 4.3 that

|X1| ≤ C.

Next, we prove (2.16) for d = 2, 3. By Lemma 6.2 in Appendix of [16] and Lemma 4.2,

(
A B
BT D

)−1

=
(
A−1 0
0 D−1

)
+ (Errors) ,
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where

|(Errors)| ∼ o(ρd(ε)). (4.25)

Then,(
X1

X2

)
=
(
A−1 0
0 D−1

)(
P 1

P 2

)
+ (Errors)

(
P 1

P 2

)
=
(
A−1P 1

D−1P 2

)
+ (Errors) .

Therefore,

X1 = A−1P 1 + Errors = 1
detAA∗P 1 + Errors, (4.26)

where A∗ =
(
a∗αβ

)
is the adjoint matrix of A. Following Lemma 4.2, it is clear that

A∗ ∼

⎛⎜⎜⎜⎝
c̃1

(ρd(ε))d−1 · · · o
(

1
(ρd(ε))d−1

)
...

. . .
...

o
(

1
(ρd(ε))d−1

)
· · · c̃d

(ρd(ε))d−1

⎞⎟⎟⎟⎠ ,

for some constants c̃α �= 0, α = 1, · · · , d, independent of ε. In view of (4.10) and (4.14), 
we obtain

|X1| ≤ Cρd(ε).

Therefore,

|Cα − ϕα(0)| ≤ Cρd(ε), α = 1, · · · , d.

Proposition 2.4 is established. �
5. Proof of Theorem 1.3 (Lower bound)

In order to prove Theorem 1.3, we first prove bβ → b∗β , as ε → 0, β = 1, · · · , d.

Lemma 5.1. For d ≥ 3, β = 1, 2, · · · , d,

|bβ − b∗β | ≤ C
(
|∇x′ϕ(0)| + ‖∇2ϕ‖L∞(∂D)

)
εγd ;

for d = 2, if ∇x′ϕβ(0) = 0 for β = 1 or 2, then, for α �= β,

|bβ − b∗β | ≤ C
(
|∇x′ϕα(0)| + ‖∇2ϕ‖L∞(∂D)

)
εγ2 ,

where



J.G. Bao et al. / Advances in Mathematics 314 (2017) 583–629 621
γd =
{

d−2
2(d−1) , d ≥ 3,
1
6 , d = 2.

Consequently,

bβ → b∗β , as ε → 0, β = 1, 2, · · · , d.

Proof. We here prove the case β = 1 for instance. The other cases are the same. It 
follows from the definitions of u0 and u1 and the integration by parts formula (1.5) that

b1 =
∫

∂D1

∂u0

∂ν0
|+ · u1 =

∫
Ω

(
C

0e(u1), e(u0)
)

=
∫
∂D

∂u1

∂ν0
|+ · (ϕ(x) − ϕ(0)).

Similarly,

b∗1 =
∫

∂D∗
1

∂u∗
0

∂ν0
|+ · ψ1 =

∫
∂D

∂u∗
1

∂ν0
|+ · (ϕ(x) − ϕ(0)),

where u∗
1 satisfies ⎧⎪⎪⎨⎪⎪⎩

Lλ,μu
∗
1 = 0, in Ω∗,

u∗
1 = ψ1, on ∂D∗

1 \ {0},
u∗

1 = 0, on ∂D.

(5.1)

Thus,

b1 − b∗1 =
∫
∂D

∂(u1 − u∗
1)

∂ν0

∣∣∣
+
· (ϕ(x) − ϕ(0)).

Similarly as before, in order to estimate the difference u1 − u∗
1, we introduce two 

auxiliary functions

ũ1 =

⎛⎜⎜⎝
v̄
0
...
0

⎞⎟⎟⎠ , and ũ∗
1 =

⎛⎜⎜⎝
v̄∗

0
...
0

⎞⎟⎟⎠ ,

where v̄ is defined in Section 3, and v̄∗ satisfies v̄∗ = 1 on ∂D∗
1 \ {0}, v̄∗ = 0 on ∂D, and

v̄∗ = xd − h(x′)
h1(x′) − h(x′) , on Ω∗

R, ‖v̄∗‖C2(Ω∗\Ω∗
R/2)

≤ C,
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where Ω∗
r :=

{
x ∈ Ω∗ ∣∣ |x′| < r

}
, for r < R. By (2.7) and (2.8), we have, for x ∈ Ω∗

R,

|∇x′(ũ1
1 − ũ∗1

1 )| ≤ C

|x′| , (5.2)

and

|∂xd
(ũ1

1 − ũ∗1
1 )| =

∣∣∣ 1
h1(x′) − h(x′) − 1

ε + h1(x′) − h(x′)

∣∣∣ ≤ Cε

|x′|2(ε + |x′|2) . (5.3)

Applying Corollary 3.4 to (5.1), we obtain

|∇(u∗
1 − ũ∗

1)(x)| ≤ C

|x′| , x ∈ Ω∗
R; (5.4)

and

|∇x′u∗
1(x)| ≤ C

|x′| , |∂xd
u∗

1(x)| ≤ C

|x′|2 , x ∈ Ω∗
R. (5.5)

Define a cylinder

Cr :=
{
x ∈ R

d
∣∣ |x′| < r, 0 ≤ xn ≤ ε + 2 max

|x′|=r
h1(x′)

}
,

for r < R0. Next, we divide into two steps to estimate the difference u1 − u∗
1.

STEP 1. Notice that u1 − u∗
1 satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Lλ,μ(u1 − u∗
1) = 0, in D \ (D1 ∪D∗

1),
u1 − u∗

1 = ψ1 − u∗
1, on ∂D1 \D∗

1 ,

u1 − u∗
1 = u1 − ψ1, on ∂D∗

1 \ (D1 ∪ {0}),
u1 − u∗

1 = 0, on ∂D.

We first estimate |u1 − u∗
1| on ∂(D1 ∪ D∗

1) \ Cεγ , where 0 < γ < 1/2 to be determined 
later. For ε sufficiently small, in view of the definition of u∗

1,

|∂xd
u∗

1(x)| ≤ C, x ∈ Ω∗ \ Ω∗
R,

we have, for x ∈ ∂D1 \D∗
1 ,

|(u1 − u∗
1)(x′, xd)| = |u∗

1(x′, xd − ε) − u∗
1(x′, xd)| ≤ Cε. (5.6)

For x ∈ ∂D∗
1 \ (D1 ∪ Cεγ ), by (2.12),

|(u1 − u∗
1)(x′, xd)| = |u1(x′, xd) − u1(x′, xd + ε)|

≤ Cε

ε + |x′|2 ≤ Cε1−2γ . (5.7)
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By using (5.3), (3.36) and (5.4), we have, for x ∈ Ω∗
R with |x′| = εγ ,

|∂xd
(u1 − u∗

1)(x′, xd)| = |∂xd
(ũ1 − ũ∗

1) + ∂xd
(u1 − ũ1) + ∂xd

(u∗
1 − ũ∗

1)| (x′, xd)

≤ Cε

|x′|2(ε + |x′|2) + C

|x′|

≤ C

ε4γ−1 + C

εγ
.

Thus, for x ∈ Ω∗
R with |x′| = εγ , recalling u1 − u∗

1 = 0 on ∂D, we have

|(u1 − u∗
1)(x′, xd)| = |(u1 − u∗

1)(x′, xd) − (u1 − u∗
1)(x′, h(x′))|

≤ sup
h(x′)≤ xd≤ h1(x′)

∣∣∂xd
(u1 − u∗

1)(x′, xd)
∣∣
|x′|=εγ

· (h1(x′) − h(x′))

≤ ( C

ε4γ−1 + C

εγ
) · ε2γ ≤ C(ε1−2γ + εγ). (5.8)

Letting 1 − 2γ = γ, we take γ = 1/3. Combining (5.6), (5.7) and (5.8), and recalling 
u1 − u∗

1 = 0 on ∂D, we obtain

|(u1 − u∗
1)(x)| ≤ Cε1/3, x ∈ ∂(D \ (D1 ∪D∗

1 ∪ C 3√ε)).

Applying the maximum principle for Lamé systems, see [35],

|(u1 − u∗
1)(x)| ≤ Cε1/3, in D \ (D1 ∪D∗

1 ∪ C 3√ε).

Then using the standard interior and boundary estimates for Lamé system, we have, for 
any 0 < γ̃ < 1/3,

|∇(u1 − u∗
1)(x)| ≤ Cεγ̃ , in D \ (D1 ∪D∗

1 ∪ C
ε

1
3−γ̃ ).

This implies that

|Bout| :=
∣∣∣ ∫
∂D\C

ε
1
3−γ̃

∂(u1 − u∗
1)

∂ν0

∣∣∣
+
· (ϕ(x) − ϕ(0))

∣∣∣ ≤ Cεγ̃ , (5.9)

where 0 < γ̃ < 1/3 will be determined later.
STEP 2. In the following, we estimate

Bin :=
∫

∂D∩C 1−γ̃

∂(u1 − u∗
1)

∂ν0

∣∣∣
+
· (ϕ(x) − ϕ(0))
ε 3
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=
∫

∂D∩C
ε
1
3−γ̃

∂(ũ1 − ũ∗
1)

∂ν0

∣∣∣
+
· (ϕ(x) − ϕ(0))

+
∫

∂D∩C
ε
1
3−γ̃

∂(w1 − w∗
1)

∂ν0

∣∣∣
+
· (ϕ(x) − ϕ(0))

= : Bũ + Bw

where w1 = u1 − ũ1, w∗
1 = u∗

1 − ũ∗
1. By definition,

Bũ =
∫

∂D∩C
ε
1
3−γ̃

{
λ

d∑
k=1

∂x1(ũ1
1 − ũ∗1

1 )nk(ϕk(x) − ϕk(0))

+μ
d∑

k=1

∂xk
(ũ1

1 − ũ∗1
1 )

[
n1(ϕk(x) − ϕk(0)) + nk(ϕ1(x) − ϕ1(0))

]}
= : λ

(
B1
ũ + B2

ũ

)
+ μ

(
B3
ũ + B4

ũ + B5
ũ + B6

ũ

)
,

where

B1
ũ :=

∫
∂D∩C

ε
1
3−γ̃

d−1∑
k=1

∂x1(ũ1
1 − ũ∗1

1 )nk(ϕk(x) − ϕk(0)),

B2
ũ :=

∫
∂D∩C

ε
1
3−γ̃

∂x1(ũ1
1 − ũ∗1

1 )nd(ϕd(x) − ϕd(0)),

B3
ũ :=

∫
∂D∩C

ε
1
3−γ̃

d−1∑
k=1

∂xk
(ũ1

1 − ũ∗1
1 )n1(ϕk(x) − ϕk(0)),

B4
ũ :=

∫
∂D∩C

ε
1
3−γ̃

∂xd
(ũ1

1 − ũ∗1
1 )n1(ϕd(x) − ϕd(0)),

B5
ũ :=

∫
∂D∩C

ε
1
3−γ̃

d−1∑
k=1

∂xk
(ũ1

1 − ũ∗1
1 )nk(ϕ1(x) − ϕ1(0)),

and

B6
ũ :=

∫
∂D∩C

ε
1
3−γ̃

∂xd
(ũ1

1 − ũ∗1
1 )nd(ϕ1(x) − ϕ1(0)).

According to (5.2), (5.3) and the Taylor expansion of ϕk(x),
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∣∣B1
ũ

∣∣+
∣∣B3

ũ

∣∣ +
∣∣B5

ũ

∣∣
≤

∫
∂D∩C

ε
1
3−γ̃

C

|x′| · |x
′| · |∇x′ϕ(0)||x′| +

∫
∂D∩C

ε
1
3−γ̃

C‖∇2ϕ‖L∞(∂D)|x′|2

≤C|∇x′ϕ(0)|ε( 1
3−γ̃)d + Cε( 1

3−γ̃)(d+1)‖∇2ϕ‖L∞(∂D); (5.10)∣∣B2
ũ

∣∣ ≤ ∫
∂D∩C

ε
1
3−γ̃

C

|x′| · |∇x′ϕ(0)||x′| +
∫

∂D∩C
ε
1
3−γ̃

C‖∇2ϕ‖L∞(∂D)|x′|

≤C|∇x′ϕ(0)|ε( 1
3−γ̃)(d−1) + C‖∇2ϕ‖L∞(∂D)ε

( 1
3−γ̃)d; (5.11)

and ∣∣B4
ũ

∣∣ ≤ ∫
∂D∩C

ε
1
3−γ̃

C

|x′|2 · |x′| · |∇x′ϕ(0)||x′| +
∫

∂D∩C
ε
1
3−γ̃

C‖∇2ϕ‖L∞(∂D)|x′|

≤C|∇x′ϕ(0)|ε( 1
3−γ̃)(d−1) + C‖∇2ϕ‖L∞(∂D)ε

( 1
3−γ̃)d. (5.12)

For d = 2 if ∇x′ϕ1(0) = 0, we have

∣∣B6
ũ

∣∣ ≤ ∫
∂D∩C

ε
1
3−γ̃

C‖∇2ϕ1‖L∞(∂D) ≤ C‖∇2ϕ1‖L∞(∂D)ε
( 1
3−γ̃)(d−1). (5.13)

If d ≥ 3, we have

∣∣B6
ũ

∣∣ ≤ ∫
∂D∩C

ε
1
3−γ̃

C

|x′|2 · |∇x′ϕ(0)||x′| +
∫

∂D∩C
ε
1
3−γ̃

C‖∇2ϕ‖L∞(∂D)

≤C|∇x′ϕ(0)|ε( 1
3−γ̃)(d−2) + C‖∇2ϕ‖L∞(∂D)ε

( 1
3−γ̃)(d−1). (5.14)

Hence, combining (5.10)–(5.14) yields that for ε > 0 sufficiently small, if d = 2 and 
∇x′ϕ1(0) = 0,

|Bũ| ≤ C
(
|∇x′ϕ2(0)| + ‖∇2ϕ‖L∞(∂D)

)
ε

1
3−γ̃ ; (5.15)

and if d ≥ 3,

|Bũ| ≤ C
(
|∇x′ϕ(0)| + ‖∇2ϕ‖L∞(∂D)

)
ε( 1

3−γ̃)(d−2). (5.16)

We now estimate Bw. It follows from Corollary 3.4 that

|∇w1(x)| ≤ C√
δ(x)

, 0 < |x′| ≤ R, (5.17)
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and

|∇w∗
1(x)| ≤ C

|x′| , 0 < |x′| ≤ R. (5.18)

By definition,

Bw =
∫

∂D∩C
ε
1
3−γ̃

⎧⎨⎩λ
d∑

k,l=1

∂xk
(wk

1 − w∗k
1 )nl(ϕl(x) − ϕl(0))

+ μ

d∑
k,l=1

[∂xl
(wk

1 − w∗k
1 ) + ∂xk

(wl
1 − w∗l

1 )]nl(ϕk(x) − ϕk(0))

⎫⎬⎭ .

By (5.17), (5.18) and the Taylor expansion of ϕl(x),

|Bw| ≤
∫

∂D∩C
ε
1
3−γ̃

C

|x′| ·
(
|∇x′ϕl(0)||x′| + ‖∇2ϕl‖L∞(∂D)|x′|2

)
≤ C|∇x′ϕl(0)|ε( 1

3−γ̃)(d−1) + ‖∇2ϕl‖L∞(∂D)ε
( 1
3−γ̃)d

≤ C
(
|∇x′ϕ(0)| + ‖∇2ϕ‖L∞(∂D)

)
ε( 1

3−γ̃)(d−1). (5.19)

This, together with (5.15), implies that, for d = 2, if ∇x′ϕ1(0) = 0,∣∣Bin
∣∣ ≤ |Bũ| + |Bw| ≤ C

(
|∇x′ϕ(0)| + ‖∇2ϕ‖L∞(∂D)

)
ε

1
3−γ̃ .

Combining with (5.9), we now simply choose γ̃ = γ2 = 1/6, such that 1
3 −γ2 = γ2. Thus, 

we have, for d = 2,

|b1 − b∗1| ≤ |Bin| + |Bout| ≤ C
(
|∇x′ϕ2(0)| + ‖∇2ϕ‖L∞(∂D)

)
ε1/6.

For d ≥ 3, combining (5.19) together with (5.16) yields that∣∣Bin
∣∣ ≤ |Bũ| + |Bw| ≤ C

(
|∇x′ϕ(0)| + ‖∇2ϕ‖L∞(∂D)

)
ε( 1

3−γ̃)(d−2).

Therefore, using (5.9) again and picking γ̃ = γd = d−2
3(d−1) (such that (1

3−γd)(d −2) = γd), 
we have, for d ≥ 3,

|b1 − b∗1| ≤ |Bin| + |Bout| ≤ C
(
|∇x′ϕ(0)| + ‖∇2ϕ‖L∞(∂D)

)
εγd .

The proof of Lemma 5.1 is completed. �
Proof of Theorem 1.3. Under the assumptions of Theorem 1.3 that b∗k0

�= 0 for some 
integer 1 ≤ k0 ≤ d, it follows from Lemma 5.1 that there exists a universal constant 
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C0 > 0 and a sufficiently small number ε0 > 0, such that, for 0 < ε < ε0,

|bk0 | >
C0

2 > 0. (5.20)

By the definition of A∗ = (a∗αβ)d×d, where a∗αβ is the cofactor of aαβ, and Lemma 4.2, 
we have

a∗αα ∼ 1
(ρd(ε))d−1 , α = 1, · · · , d; a∗αβ ∼ 1

(ρd(ε))d−2 , α �= β. (5.21)

According to (4.13), (4.25), (4.26), (5.20) and (5.21), for sufficiently small ε,

|Ck0 − ϕk0(0)| =

∣∣∣∣∣∣ 1
detA

[
a∗k0k0

bk0 +
∑
β 	= k0

a∗k0βbβ

]
+ Errors

∣∣∣∣∣∣
≥ 1

2
1

detAa∗k0k0
|bk0 | ≥

ρd(ε)
C

. (5.22)

On the other hand, in view of Corollary 3.4, we obtain

|∂xd
uk0
k0
| = |∂xd

ũk0
k0

+ ∂xd
(uk0

k0
− ũk0

k0
)|

≥ |∂xd
ũk0
k0
| − |∂xd

(uk0
k0

− ũk0
k0

)| ≥ 1
C(ε + |x′|2) , x ∈ ΩR. (5.23)

At the same time, since ũk0
α = 0 if α �= k0, it is easy to see from Corollary 3.4 that

|∂xd
uk0
α | = |∂xd

ũk0
α + ∂xd

(uk0
α − ũk0

α )|

= |∂xd
(uk0

α − ũk0
α )| ≤ C√

ε + |x′|2
, α �= k0, x ∈ ΩR. (5.24)

Therefore, by a combination of the estimates (5.22), (5.23), (5.24), we get, for (0′, xd) ∈
P1P ,∣∣∣∣∣

d∑
α=1

(Cα − ϕα(0))∇uα

∣∣∣∣∣ ≥
∣∣∣∣∣

d∑
α=1

(Cα − ϕα(0))∂xd
uk0
α

∣∣∣∣∣
≥
∣∣∣(Ck0 − ϕk0(0))∂xd

uk0
k0

∣∣∣−
∣∣∣∣∣∣

d∑
α	=k0

(Cα − ϕα(0))∂xd
uk0
α

∣∣∣∣∣∣
≥ ρd(ε)

Cε
. (5.25)

Here we used the assumption that b∗α = 0 for α �= k0, 1 ≤ α ≤ d when d ≥ 4. By means 
of Corollary 2.3, (2.15), Lemma 4.2 and Lemma 4.3, especially for x = (0′, xd) ∈ P1P ,
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∣∣∣∣∣∣
d(d+1)

2∑
α=d+1

Cα∇uα

∣∣∣∣∣∣ ≤ C(ε + |x′|)
ε + |x′|2 ≤ C, (5.26)

|∇u0| ≤
C|∇ϕ(0)||x′|
ε + |x′|2 + C ≤ C. (5.27)

Combining (5.25), (5.26), (5.27) and (2.5) immediately yields that for x = (0′, xd) ∈ P1P ,

|∇u(0′, xd)| ≥
ρd(ε)
Cε

, 0 < xd < ε.

Theorem 1.3 is thus established. �
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