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1. Introduction and main results

It is a common phenomenon that high concentration of extreme mechanical loads
occurs in high-contrast fiber-reinforced composites in the zones that include the narrow
regions between two adjacent inclusions and the thin gaps between the inclusions and
the exterior boundary of the background medium. Extreme loads are always amplified by
such composite microstructure, which will cause failure or fracture initiation. Stimulated
by the well-known work of Babuska et al. [12], where computational analysis of damage
and fracture in fiber composite systems is investigated, we consider the Lamé system
in linear elasticity with partially infinite coefficients to characterize the high-contrast
composites. This paper is a continuation of [15,16], where the upper bound of the gradient
estimate for two adjacent inclusions is established, which can be regarded as interior
estimates for this problem.

Due to the interaction from the boundary data, solutions of these systems become
more irregular near the boundary. In this paper, we mainly investigate the boundary
gradient estimates for the Lamé system with partially infinite coefficients when the inclu-
sion is spaced very close to the matrix exterior boundary. The novelty of these estimates
is that they give not only the pointwise upper bounds but also lower bounds of the
gradient, which shows that the blow-up rate of the gradient with respect to the distance
between the inclusion and the matrix exterior boundary that we obtain is optimal. The
role of the boundary data is embodied in these estimates. Especially, an explicit factor
that determines whether the blow-up occurs or not is singled out in the lower bound es-
timates. We would like to emphasize that the gradient estimates obtained in this paper
hold for inclusions with arbitrary convex shapes and in all dimensions.

Let D C R%(d > 2) be a bounded open set with C*7 boundary, and D; be a strictly
convex open set in D with C?? boundary, 0 < v < 1, and spaced very close to the
boundary 0D. More precisely,

D, C D, the principle curvatures of 9D,0D; > kg > 0, (1.1)
e :=dist(D1,0D) > 0, '
where kg is constant independent of €. We also assume that the C?? norms of dD; are
bounded by some constant independent of . This implies that D; contains a ball of
radius rg for some constant r§ > 0 independent of . See Fig. 1.

Denote

Q:D\ﬁl

We assume that €2 and D; are occupied, respectively, by two different isotropic and
homogeneous materials with different Lamé constants (A, u) and (A1, p1). Then the elas-
ticity tensors for the background and the inclusion can be written, respectively, as C°
and C!, with
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Fig. 1. One inclusion close to the boundary.
Ciojk;l = AdijOr + p(0ixdj1 + 0udn),
and
Ciljk,l = M0ij0ki + p1(dirdji + 0i0j),

where 4, j,k,0 =1,2,--- ,d and ;5 is the Kronecker symbol: §;; = 0 for i # j, 0;; = 1 for

i=7.
Let u = (u',u?,--- ,u®)T : D — R? denote the displacement field. For a given vector
1,2 )T

valued function ¢ = (¢!, ¢?,---, )7, we consider the following Dirichlet problem for

the Lamé system:

{V ((xaC® + xp,Ce(u)) =0, in D, (1.2)

u =, on 0D,

where xq is the characteristic function of Q C R?,
1 T
e(u) = §(Vu + (Vu)")

is the strain tensor.
Assume that the standard ellipticity condition holds for (1.2), that is,

w>0, dA+2u >0, p; >0, di+2u; >0.

For o € H'(D;R%), it is well known that there exists a unique solution v € H'(D;R?)
to the Dirichlet problem (1.2), which is also the minimizer of the energy functional

1

Jiu] = 3 / ((x@C° + xp,Che(u), e(u)) dz

Q
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on
HL(D;RY) := {u € H'(D;R?) | u— ¢ € Hj(D;R?)} .
We introduce the linear space of rigid displacement in R?:
V= {y € C'(R%ERY) | Vo + (V)T =0}
With e, - -, eq denoting the standard basis of R,
{ei, Tjep — Te; | 1<i<d, 1< j<k< d}

is a basis of ¥. Denote this basis of ¥ as {1/1a | a=1,2,---, @}.

For fixed A and p satisfying p > 0 and dA + 2u > 0, denote uy, ,, as the solution
of (1.2). Then similarly as in the Appendix of [15], we also have

Un,,puy — 00N HY(D;RY), as min{u1,d\; + 21} — oo,

where u is a H'(D;R?) solution of

Ly u:=V-(C%(u)) =0, in Q,
uly = ul_, on 9Dy,
e(u) =0, in Dy, (1.3)
oo 8] b= amt2e d,
U=, on 0D,
where
ou 0 . o T =
ol = (CY%(w)t = MV - W) + w(Vu + (Vu) )i,

and 7 is the unit outer normal of D;. Here and throughout this paper the subscript
+ indicates the limit from outside and inside the domain, respectively. The existence,
uniqueness and regularity of weak solutions to (1.3) are proved in the Appendix of [15],
where multiple inclusions case is studied. In particular, the H! weak solution to (1.3) is
in C1(Q;RY) N CY(Dy;RY). The solution is also the unique function which has the least
energy in appropriate functional spaces, characterized by

1

Lol =min Lol Lalol = 5 [ (el e0))dn,
Q

where

A= {v € H.(D;R%) ] e(v) =0 in Dl}. (1.4)
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It is well known that for any open set O and u,v € C?(0),

/((Coe(u),e(v))dxz —/(&,,w) s [28] L, (1.5)

81/0 +
(@] (@] 00

A calculation gives
(Lauu), = pAup + (AN + ()04, (V-u), k=1,---,d.
We assume that for some §y > 0,

1
0o < prdA + 2 < = (1.6)
0

It is clear that there exist two points P, € 0D; and P € 0D, such that

dist(P, Py) = dist(D,0D) =e.

We use P, P to denote the line segment connecting P; and P. Denote

VB, if d=2,
1, it d> 4.

The first of our results concerns an upper bound of the gradient of solutions to (1.3). In

~1/2

brief, this result asserts that the blow up rate of |Vu| is, respectively, e in dimension

1

d =2, (¢|loge|)~! in dimension d = 3, and ¢! in dimension d > 4, which is exactly the

same as the perfect conductivity problem, see e.g. [13].

Theorem 1.1. (Upper bound). Assume that Q,D C R%, ¢ are defined in (1.1), ¢ €
C?(OD;R?). Letu € H (D;RH)NCH (4 R?Y) be a solution to (1.3). Then for0 < e < 1/2,
we have

Cpale
Vu@)l < P ol ropgn, ven (1.7
and
[Vu(z)| < Cllellc2opre), @ € Da, (1.8)

where C depends only on ko, o, d, the C>Y norm of D1 and 0D, but not on ¢.

Remark 1.2. Actually, for d > 2, we have the following pointwise upper bound of |Vu|
in Q:
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pa(e) N < dist(z, P, P)

5] — +1 rdy- (1.9
e+ dist’ (@, PP) | \e+ dist>(z, P P) )} lellc2@pme. (1.9)

[Vu(z)| < C

This shows that the right hand side archives its maximum at P;P, with value
%”Q@”c@(aD;Rd) for € sufficiently small.

In order to show that the blow-up rate of the gradients obtained in Theorem 1.1 is
optimal, we need to investigate its lower bound. Denote D% := {2z € R? | z+ P, € D; }.
Set Q* := D\ Dj. Let u}, be the solution of the boundary value problem:

[:)\_’#US = 0, in Q*,
ugy = 0, on 0D7, (1.10)
uy = o(x) — p(P), on dD.

Define

oug d(d+1)
b* = 91, e -1.2.... 17
/ 81/0 "'r w ) « s 4y ’ 2 3

oD%

which is a functional of ¢, playing an important role in the following establishment of

lower bounds of |Vu| on the segment P, P.

Theorem 1.3. (Lower bound). Under the assumption as in Theorem 1.1, let u €
HY(D;RY) N CL(RY) be a solution to (1.3). Then

(i) for d = 2, if there exists some integer 1 < ko < d such that by # 0 and
VI/SOkO(P) =0;
(1) for d =3, if there exists some integer 1 < ko < d such that by # 0;
(iii) for d > 4, if there exists some integer 1 < ko < d such that by # 0 and b}, = 0 for
all a # ko,

then for sufficiently small 0 < e < 1/2,

,IGPlP,

)

pale)
\Y% >
| u(:c)| - Ce
where C' depends only on kg, 8o, d, the C*7 norm of 0D and the C? norm of 0D, but
not on €.

Remark 1.4. In Theorem 1.3 we do not try to find the most general assumptions to guar-
antee blow-up occur, but instead give simple conditions (i)—(iii), which show, however,
the essential role of the boundary data in this problem. Since wg is uniquely determined
by (1.10) with given data ¢(z) — ¢(P), Theorem 1.3 shows that whether |Vu| blows
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up or not totally depends only on the boundary data ¢(x) — ¢( P). Furthermore, if the
blow-up occurs, then from Theorem 1.1 and 1.3, we know that it may occur only on the

segment P; P.

Remark 1.5. Theorem 1.1 and 1.3 give not only the upper bound but also a lower bound
of the blow-up rate of the strain tensor in all dimensions, which shows the optimality of
our estimates. Especially for the lower bound, new difficulties need to be overcome and
a number of refined estimates are used in our proof. More important, a blow-up factor,
totally depending on the given boundary data, is captured.

Remark 1.6. The strict convexity assumption on 9D and dD; in Theorem 1.1 and 1.3
can be extended to a weaker relative strict convexity assumption, see (2.6)—(2.8) below.

The organization of this paper is as follows. In Section 2 we first decompose the
solution u of (1.3) as a linear combination of us, a = 1,2, -- ,@, defined by (2.3)
and (2.4) below, and then deduce the proof of Theorem 1.1 to two aspects: the estimates
of |Vu,| and those of the coefficients C* and C* — ¢*(0). In Section 3 we establish an
upper bound of the gradient of solutions to a boundary problem of Lamé system on €2
with general Dirichlet boundary data in Theorem 2.1, of independent interest, and then
obtain the estimates of |Vu,| as a consequence of Theorem 2.1. In Section 4 we present
the estimates of the coefficients C* and C* — ¢*(0). Theorem 1.3 on the lower bound
of Vu on the segment Py P is proved by studying the functional b%, of boundary data ¢
in Section 5. In the rest of the introduction we review some earlier results on interior
gradient estimates for high contrast composites.

As mentioned before, Babuska, Andersson, Smith and Levin [12] computationally
analyzed the damage and fracture in composite materials and observed numerically that
the size of the strain tensor remains bounded when the distance €, between two inclusions,
tends to zero. This was proved by Li and Nirenberg in [31]. Indeed such e-independent
gradient estimates was established there for solutions of divergence form second order
elliptic systems, including linear systems of elasticity, with piecewise Holder continuous
coefficients in all dimensions. See Bonnetier and Vogelius [19] and Li and Vogelius [32]
for responding results on divergence form elliptic equations.

The estimates in [31] and [32] depend on the ellipticity of the coefficients. If ellip-
ticity constants are allowed to deteriorate, the situation is very different. Consider the
simplified scalar model, also called as conductivity problem,

V- (ak(x)Vuk) =0, inQ,
U = @, on 01,

where € is a bounded open set of R?, d > 2, containing two e-apart convex inclusions
Dy and Dy, p € C?(09) is given, and
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() k€ (0,00), in D;U Dy,
AR \T) =
¥ 1, iHQ\DluDQ.

When k& = oo, the L>®-norm of |Vus| for the solutions ue, of the following perfect
conductivity problem

AUZO, inQ\DluDg,

uly = ul_, on 0D UdDs,

Vu =0, in Dy UDs, (1.11)
o) _ N

faDia_%+_07 1=1,2,

U=, on 02

generally becomes unbounded as € tends to 0. There have been much more important
progress on the interior gradient estimate of the solution of (1.11), in contrast to the

1/2 in dimension

elasticity vector case. The blow up rate of |Vue| is respectively e~
d =2, (e|/lng|)~! in dimension d = 3, and 7!
Yin [13], as well as Budiansky and Carrier [20], Markenscoff [34], Ammari, Kang and
Lim [7], Ammari, Kang, Lee, Lee and Lim [9], Yun [37,38] in R?, and Lim and Yun [33]

in R3. Further, more detailed, characterizations of the singular behavior of Vus, have

in dimension d > 4. See Bao, Li and

been obtained by Ammari, Ciraolo, Kang, Lee and Yun [4], Ammari, Kang, Lee, Lim and
Zribi [11], Bonnetier and Triki [17,18], Gorb and Novikov [25] and Kang, Lim and Yun
[26,27]. For more related works, see [3,5,6,8,10,14,17,21-23,28-30,33] and the references
therein.

2. Outline of the proof of Theorem 1.1 (Upper bound)

We now describe our methods of proof. By a translation and rotation of the coordinates
if necessary, we may assume without loss of generality that

P, =(0,6e) € 9Dy, P =(0,0)€ dD.

In order to prove Theorem 1.1, it suffices to consider the following problem, by replacing
u by u —¢(0),

Ly u=0, in Q,

uly = ul_, on 0D,

e(u) =0, in Dy, (2.1)
u = () — p(0), on 0D.
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By the third line of (2.1) and the definition of ¥, u is a linear combination of {1}
in D;. Since it is clear that £y ,& = 0 in ©Q and £ = 0 on 9 imply that £ = 0 in £, we
decompose the solution of (2.1), in the spire of [13], as follows:

d(d;—l) d d(d;—l)
u= Y C%%—p(0) =Y (C* = ¢™(0)tba+ Y C%y,  inDy,
a=1 a=1 a=d+1
for some constants C%, o =1,2,---, W, (to be determined by the forth line in (2.1))
and
d d(d2+1)
u= Z(Ca — 0%(0)uq + Z C%ug + ug, in Q, (2.2)
a=1 a=d+1
where u, € CH(Q;RY) NC2(Q;RY), o =1,2,-- -, d(d;l), respectively, satisfy
ﬁ)\,#ua = 0, in Q,
Ug = Yo, on 0Dy, (23)
Ug = 0, on 0D;

and ug € C1(Q;R?) N C?(Q; R?) satisfies

EA,yUO = 0, in Q,
ug = 0, on 0D, (2.4)
uo = ¢(x) —¢(0), on 9D.

By the decomposition (2.2), we write

d d(d2+1)
Vu=Y (C*~¢*(0))Vua + Y. C"Vug + Vug, in Q. (2.5)
a=1 a=d+1

To estimate |Vu|, two ingredients are in order: (i) estimates of |Vuq|, & = 0,1, -,
@; (ii) estimates of C* — p*(0), « =1,--+ ,d and C*, aa =1, - ,@. Since the
singular behavior of Vu may occur only in the narrow region between D; and 0D, we
are particularly interested in such narrow region. See Fig. 2.

Fix a small constant 0 < R < 1, independent of €, such that the portions of 0D; near

Py and D near P can be represented, respectively, by
zg=c+hi(2"), and z4=n(a'), for|z'| <2R.

Moreover, in view of the assumptions of 9D and 9D, h; and h satisfy
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Fig. 2. The narrow region between 9D and 9D.

e+ hi(2') > h(z'), for |2'| < 2R, (2.6)
hi(0") = h(0') =0, Vuhi(0')=V.h(0)=0, (2.7)
V2,0 (0), V2 h(0) > koI, V2 (h1 —h)(0) > ki, (2.8)
and
||h1||c2,w(BQR(0/)) + ||h||CQ’W(B2R(O’)) < Ka, (29)

where kg, k1 and k9 are some positive constants. Throughout the paper, unless otherwise
stated, we use C' to denote some positive constant, whose values may vary from line to
line, which depend only on dg, kg, k1 and k2, but not on . Also, we call a constant having
such dependence a universal constant.

For 0 < r < 2R, we denote

Q= {z = (2/,2q) ER? | h(2') < g < e+ M ('), [2/] <r}.
The top and bottom boundaries of €,. are
I ={zeRzg=c+hi(2)),]2'| <r}, T = {x € R zqg = h(z)),|a| <7},

respectively.
To estimate |Vu,|, we consider the following general boundary value problems:

L0 :=V-(Clv)) =0, in Q,
v = (), on 0D, (2.10)
v =0, on 0D,

where (x) = (P(z),%%(x),--- 9% (z))T € C?(0Dy;RY) is given vector-valued func-
tions. Locally pointwise gradient estimates for problem (2.10) is as follows:

Theorem 2.1. Assume that hypotheses (2.6)-(2.9) are satisfied, and let v € H*(;R?) be
a weak solution of problem (2.10). Then for 0 < e < 1/2,

|Vo(a', zq)| < (¢, e + hi(2")| + ClYllc2(opyrey, Yz € Qr, (2.11)

C
e+ |z'|? v
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and
Vu(z)| < CllYllc2op,rey Vo € Q\ Qr.

Remark 2.2. Theorem 2.1 is of independent interest. We also can deal with more general
case when v = ¢(x) on 9D, instead of the condition v = 0 there. The proof of Theorem 2.1
is given in Section 3.

Without loss of generality, we only need to prove Theorem 1.1 for [¢[|c2@apray = 1,
and for general case by considering u/||¢||c2ap;ray if |¢llc29pray > 0. If plap = 0, then
u = 0. First, the estimates of |Vu,| are some immediate consequences of Theorem 2.1,

d(d+1)
2

only taking ¢ = o, a = 1,---, , respectively, or ¥ = p(x) — ¢(0) with minor

modifications.

Corollary 2.3. Under the hypotheses of Theorem 1.1 and with the normalization
ollc2opiray = 1. Then for 0 < e < 1/2,

|V ()] Sﬁ, a=1,2,---.d, VaxcQg; (2.12)
|V ()] <%, a=d+1, - ,@, vV x € Qg; (2.13)
|Vuo(z)| S% +C, VzxeQg; (2.14)
and
[Vus(z)| < C, a=0,1,2,--- 7@7 Vze\ Qg

On the other hand, we need the following estimates on C* and |C* — ¢*(0)|. The
proof is given in Section 4.

Proposition 2.4. Under the hypotheses of Theorem 1.1 and with the normalization

lellc2opray = 1. Then

d(d+1)

|Oa|§0, 0[:1,2,"', 9 )

(2.15)

and
|CY — o*(0)] < Cpale), a=1,2,---.d. (2.16)

We are now in position to prove Theorem 1.1.
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Proof of Theorem 1.1. Since

0 Cd+1 od+2 . C2d-1
sen) _Cd+l 0 c2d . C3d—3
ZZ: Covip, = | 2 o 0 : in Dy
a=d+l : : o5
_Q2d-1  _Bd-3 .. ot 0

The estimate (1.8) immediately follows from (2.15).
By (2.16), Corollary 2.3 and Proposition 2.4, we have, for x € Qg,

d(d+1)

[Vu(x)| < Z |C — ¥(0)] [Vua| + Z C*Vugs| + |Vug]
a=d+1

!
<C pa(e) + 127 +1).
e+ 2?2 e+ |af)?

Thus, (1.9) is proved, so (1.7). O

To complete this section, we recall some properties of the tensor C. For the isotropic
elastic material, let

C:= (Cijkl) = (Aél-jékl + u(dikéﬂ =+ Jiléjk)), nw> 0, dX + QILL > 0.
The components C}jx; satisfy the following symmetric condition:
Cijii = Ckiij = Crijis 4,5,k 1=1,2,--+ ,d. (2.17)

We will use the following notations:

d
= Z Cz’jklAkh and (A B Z A”Bm,
k,l=1 i,j=1

for every pair of d x d matrices A = (A;;), B = (B;;). Clearly,
(CA,B) = (A,CB).
If A is symmetric, then, by the symmetry condition (2.17), we have that
(CA,A) = CijriAriAij = MNAj A + 210 Ag; Ak -

Thus C satisfies the following ellipticity condition: For every d x d real symmetric matrix
n = (i),
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min {2, d\ + 2u}n|* < (Cn,n) < max{2u, dA + 2u}|nf?, (2.18)
where [n|* = 37,77 In particular,

min{2u, d\ + 2u}|A + AT|2 < (C(A + AT), (A + AT)). (2.19)
3. Proof of Theorem 2.1 and estimates of |Vu,,|

In this section, we first prove Theorem 2.1, then give some much finer estimates on
|Vtg|, which will be useful for the establishment of the low bound estimates in Section 4
and Section 5.

We decompose the solution of (2.10) as follows:

V=01 + V2 4+ Vg,

where v; = (Ull,vf,~-~ ,vf)T, [l =1,2,--- ,d, with vlj = 0 for j # [, and v; satisfy the
following boundary value problem, respectively,

Ly v =V - (C%(v;)) =0, in Q,
Ul:<07"' 707’(/}1707"' 7O)T7 on aDla (31)
v =0, on 0D.
Then
d
Vo=> Vu. (3.2)
=1

In order to estimate |Vu;| one by one, we first introduce a scalar auxiliary function
v € C?(R™) such that ¥ = 1 on D1, v = 0 on dD and

_ Tq — h(x’) .
= Q
V@) = @) —hy e
and
[0]lo2(@\0p,) < C- (3.3)
By a direct calculation, we obtain that for k,7 =1,--- ,d — 1, and x € Qap,
- Cla'| 1 _ C
0 < —s <0, < 3.4
et < Cer o) < Pl s e (3.4)

and
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C Clz'|

|0y 0(2)| < P |04z, 0(2)] < Cr PP

Bpyo,(z) = 0. (3.5)

Extend ¢ S CQ(aD Rd) to w S CQ(Q ]Rd) such that ||w ||02 Q\QR) C”’(ﬂ HC2(8D1)7
for 1 =1,2,---,d. We can find p € C?(Q) such that

0<p<1, |Vp|<C, on,
pzlonﬁ%R, and p=0on Q\ Qar.

In particular
o(z) = (0, 0,%"(z',e + hi(2"))v(x),0,---,0)" in Qpg, (3.8)
and in view of (3.3),
o1l (@\@rye) < Clltlle2op,)- (3.9)

Due to (3.4), and (3.5), for [ =1,2,--- ,d, and k,j =1,2,--- ,d — 1, for z € Qp,

Cla'|[¢' (2, € + ha(2))|

e+ |2

|0, 01()| < +C|IVY! | L=, (3.10)

¢ (2", & + ha ()| Cl'(a’,e + hu(a"))]

<0z, 0u(2)] <

; (3.11)

Cle + |2'|?) e+ |7|2
and
|0, 01 ()]
Clyt(a' e + ha(2))| || ! 2.1
< 1 oo oo 12
= et ]2 +C e+ ) +1) [V |ree + O VYL,  (3.12)
Cla'| ! C .

|02, D1 ()] < mhﬁ (2’ e 4+ hi(2"))] + m”vw o<, (3.13)
Dy, T1(2) = 0. (3.14)

Here and throughout this section, for simplicity we use ||Vt L= and || V23|~ to denote

V|| Lo oD,y and ||V21/J||Loo(3Dl), respectively.
Let

wp = 1)1—’[71, l:1,2,-~' ,d. (315)
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Lemma 3.1. Let v; € H'(Q;R?) be a weak solution of (3.1). Then

/ VwlPde < Clit ooy, 1=1,2,--- .d. (3.16)
Q

Proof. For simplicity, we denote

Thus, w satisfies

{ﬁ,\yuw = —E)\Mfl, in €, (3‘17)

w =0, on Jf.

Multiplying the equation in (3.17) by w and applying integration by parts, we get

/(Coe(w),e(w)) dx = /w (Lx,p0) dx. (3.18)

Q Q

By the Poincaré inequality,
[wll2@\0r) < ClIVWIlL2(@\048)- (3.19)

Note that the above constant C' is independent of €. Using the Sobolev trace embedding
theorem,

W=

/ lwlde < C / |Vw|?dz | . (3.20)

|z'|=R, Q\Qr
h(z')<zg<e+hi(z")

According to (3.10), we have

/|Vx/17|2dx
Qr
N2l (! h )2
<o [ ) - ney (PRI ov )
|z'|[<R

< Cll¥' 181 opy)s (3.21)

where C' depends only on d and kg.
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The first Korn’s inequality together with (2.19), (3.18), (3.9) and (3.19) implies
/|Vw|2dx §2/|e(w)\2d:17
Q Q

<C /w(ﬁk,uﬁ)dx +C / w(Ly,,0)dx

Qg O\Qr

<0 | [ wles)ia|+Cle'lcoap,y [ Iulds
Qr Q\QR

1/2

<o| [wesyia|+Cletlcoapy | [ 10l |

Qr O\Qr

while, due to (3.14), (3.20) and (3.21),

/w([,)\,lﬁ))dx <C Z /w@zkzlﬁdx
G k+i<2d |G

SC/|VU}HVI/1~J|d.Z‘+ / C|V . 0||w|dx
Qr

o’ |=R,
h(z")<zg<e+hi(z')

N
=

1
3
<C /|Vw|2dm /|Vx/€z\2dx +C||z/)l|\cl(aDl) / \Vw|2dx
Qr Qr Q\Qr

[N

<Ol ller omny / Vo 2de
Q

Therefore,

N[=

/\Vw|2dx < Ol = omy) /|Vw|2dac
Q Q

The proof of Lemma 3.1 is completed. 0O
For convenience, we denote

8(z) :=e+h(2') —h(z), for z=(7,z24) € Qr.
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By (2.8), we have

(e + 2]) < 8(2) < Cle +|2'P).

Ql -

Set

~

Qu(z):={@eQr |2 -7|<s}, VO<s<R

It follows from (3.7) and (3.10)—(3.14) that for x € Qg, [ =1,2,--- ,d,

~ i C |
< 2 < Lt /
|£>\7ﬂvl| — C1|V Ul| —(5+|x/2 (5+|x/|2)2) |,(/) (m;€+h1(qf‘ ))|
¢ l 2,1
oo oo .22

where C' is independent of ¢.

Lemma 3.2. For 6 =§(z) < R, z€ Qgr, andl =1,2,--- ,d,

[ 1Vl < 058 (10 + P+ 60 Baopy + 1) (323
Qs(z)

Proof. Still denote w := w;, and ¥ := ¥;. For 0 < t < s < 1, let n(z’) be a smooth cutoff
function satisfying 0 < n(z') <1, n(z’) = 11if |2/ — 2| <t, n(z’) =0 if |2’ — 2’| > s and
[Vn(z")| < % Multiplying n?w on both side of the equation in (3.17) and applying
integration by parts leads to

/ (COe(w), e(n*w))dz = / (n*w) L, 0dz. (3.24)
Qs (2) Qu(2)
By the first Korn’s inequality and the standard arguments, we have
/ (Ce(w), e(rw))dz > / nVl?dz — / Vnl?wl2dz.  (3.25)
Qs (2) Qu(2) Qu(2)
For the right hand side of (3.24), in view of Holder inequality and Cauchy inequality,

2 2

/(an)EA#’Ddx /|w|2d:c /\EML@\de

Q.(2) ﬁ«z) Qs (2)

/ |w|?dx + (s — t)? / |Ly 0% d.

Qu(2) Qu(2)

IN
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This, together with (3.24) and (3.25), implies that

/ |Vw|?dx < / |w|*dz + C(s — t)? / 1Ly 0% dx. (3.26)
Qu(2) Qu(2) (2)
We know that w = 0 on I';. By using (2.6)(2.9) and Hoélder inequality, we obtain
2

/\w|2dx—/ / o €)de| dx

Q. (2) Q.(z) |M(=)
e+hi(a’)
/ (e + ha(2") — h(2")) / \Vw(z', €)[2d¢ d
Q. (2) h(z")

< C(e+ (|2 +5)?) / |Vw|?dz. (3.27)

Qu(2)
It follows from (3.22) and the mean value theorem that

/ Ly, 0|2 da

Q. (2)

cl] \°
<|1/) (z e+ hi(z 5+|zc’|2 et |22 dz
Q.(2)

c Clz'|  \?
v 12 / 72
oo - d
Vel A/ <5+|93I|2 (€+|:1?’|2)2> o'~ e

Qs(2)

c \° _
HIVIE [ () dot oI
Qs(2)
dx’
l 2
<CRNZ e+ ha(2))] / i)

|z’ —2z'|<s

1 s
L2 U d—1 2,012
+elvel. | (H e |x’|2)2> da' + C3(2)s 1|2 3.

|z’ —2'|<s

(3.28)

Case 1. For 0 < |2/| < /g, (ie. € € 8(2) < Ce), and 0 < t < s < /g, by means of
(3.27) and (3.28), we have
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/ lw|2da < O / Vwdz, (3.29)
Q. (2) Q.(2)
and
/ |Lx,, 0] dx
0.(2)
Sdfl sdfl
< CWU e+ (@)= + CIVY [T = + Ces"H[VA![1~. (3.30)
Denote

F(t) = / |Vw|*dz.

Qi (2)

By (3.26), (3.29) and (3.30), for some universal constant ¢; > 0, we get for 0 < ¢ <

s < \/e,

2
F(t) < < Cl€t> F(s)+C(s —t)%s771.

s —

2

L(ot / l
<W%Z7E+hﬂz»P_+”V%ﬂ%w_%d§ﬂ¢m%m>. (3.31)

Let t; =0 + 2cyie,i=0,1,--- and k = [4511\/5} + 1, then

c1€ 1

tiv1 —t; 2
Using (3.31) with s = ¢;41 and t = ¢;, we obtain

F(t;) < =F(tiy1) + C(i +2)7 Tt

N

(|¢l<2/’5 + hl(zl))|2 + E(val”%“’ + Hvzwl”%w)) ) i = 0’ 172’ U ’k'

After k iterations, making use of (3.16), we have, for sufficiently small e,

k .
F(tp) < (i)kF(tk) + Cett ; (%)H(z‘ +1)4t
(10, + ha ()P + eIV [T + IV291 7))
1

< (Z)kF(ﬁ) + 0t (|92 e + ()P + (I VY [ + IV [IE))

< O (|42 2 + ha ()P + 62 0py))
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1
here we used the fact that (%)k < (i) TavE < gdtl jf ¢ sufficiently small. This implies
that for 0 < |2/ < /e,

19012, 0y < O™ (1912 + ()P +elld! 2o, ) -

Case 2. For /e < |2/| < R, (ie. C]2'2 < 8(2) < (C+D]Z?),0<t<s< %Z,l, by
using (3.27) and (3.28) again, we have

/ |w|?dz < C2|* / |Vw|?dz,

Q. (2) Qs (2)
/ |Lx,, 0] dx
Q.(2)
< Ol (', + M ()22 + ClIVY 3 s + Ol P V20 e

B |2 ’|2

Thus, f01r0<t<s<2‘z|
CQ‘Z/|2 2 o 41
F(t) < — F(s)+ C(s — t)%s% 1.
S —
(2 e + hi(2))]? V2
(l ( Z/|4( DE L |Z,|||2L LRI ). (3.32)

where ¢y is another universal constant. Taking the same iteration procedure as in Case 1,
setting ¢; = 6 + 2coi|2/|%, i =0,1,--- and k = [ } + 1, by (3.32) with s = #;41 and
t =t;, we have, for i =0,1,2,--- | k,

4ea|2'|

F(t;) < =F(tip1) + C(i + 2)471 2/ 2.

(10" e+ ha (NP + 12 PUVY [T + V29[ 7)) -

| =

Similarly, after k iterations, we have

k: .
Fito) < () F(0) + O ()74 DI040,

=1

(W' e+ ()P + 122V 3 + IV 13))
1
<()"F()
+ CI P (1912 e+ ha(2) P + 12 PV e + IV |7 )

SC|Z/|2(d+1) (|¢l(3’,6 + hl(z’))|2 + |Z"2H,¢)1H202(6D1)> )
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which implies that, for /e < |2| < R,
IV0l2, g,y < C12 P (1042 P + 12 P16 Eegom ) -
The proof of Lemma 3.2 is completed. 0O

Lemma 3.3. Forl=1,2,--- ,d,

_ O 2 + (@)
N o(x)

Consequently, by (3.10), (3.11) and (3.15), we have for sufficiently small € and x € Qg,

¢ (2, e + I (a"))]
Cle+[2"]?)

[V ()| +Cl['le2op)s ¥ @ € Qg (3.33)

Cl' (2, e + ha(a'))]
e+ |2’

< Vo2, 2q)| < + Cl[ ¢ |c2opy). (3.34)

Proof. Take w := w; and ¢ := ¢; for simplicity. Given z = (2/,z4) € Qg, making a
o = 5y/,
Tq = 5Z/d7

1 N 1
hi(y') == 3 (e+hi(0y +2"), hE):= gh(éy’ +2).

change of variables

where § = §(z). Define

Then, the region ﬁg(z) becomes @)1, where
Qr={y R | h(y') <ya <h1(y)), Iy| <7}, 0<r<1,

and the top and bottom boundaries of ),- become

If = {y e R [ya=I(y), ly| <7}
and

L= {y e R [ya=h(y), ly/| <},
respectively. From (2.6)(2.9) and the definition of hy and h, it follows that
?11(0/) - B(Ol) =1,
and for |y'| < 1,

IVhi(y)| + [Vh(y) < CO+ ), [V2ha(y)| +V2h(y)| < Cs.
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Since R is small, || e (o) and HiLHCm(W) are small and Q) is approximately a
unit square (or a cylinder-shaped domain) as far as applications of the Sobolev embedding
theorems and classical LP estimates for elliptic systems are concerned.

Let

0y ya) == 0(0y" + 2, 0ya), DY, ya) = w(dY' + 2, 0ya)-
Thus, w(y) satisfies

’Lf}:

Ly = —Lx 0 in Q1,
0, on T'f.

In view of @ = 0 on the upper and lower boundaries of ()1, we have, by Poincaré
inequality, that

@ 1@,y < CIVD L2(@))-

Using the Sobolev embedding theorem and classical WP estimates for elliptic systems
(see e.g. [2], or Theorem 2.5 in [24]), we have, for some p > n,

IVl (@u,e) < Clibllwzr(@,)e) < C (IV@llL2i@r) + 1£xu0ll2= Q1)) -

Since

. N _d
|VwHL°°(Q1/2) = 5||vw||Loo(ﬁ5/2(z))a [V 2,) = 52 ||VwHL2(§6(Z))
and
1ersitllze @) = 1Ll ey

Tracking back to w through the transforms, we have

C _d N
HVU}HLOO(Q(;/Q(Z)) S g ((51 2 va||L2(§5(Z)) + 62”£}‘7MUHL°°(§5(Z))) . (335)

By (3.22) and (3.23), we have

_a C
02 IVl 2@, zy) < %W(zlﬁ +hi ()] + Cle o2y,

and
LA, ;o < —O ues hy (2’ c(||vyt V2!
I A,#v”[ (Qs(2)) \/SWJ (Z e+ h(2)]+ C([VY || + VY| ).

Plugging these estimates above into (3.35) yields (3.33). The proof of Lemma 3.3 is
finished. O
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Proof of Theorem 2.1. By using (3.34) and the decomposition of Vu, (3.2),

Cl(z',e+h
Vol |<Z|w< et Clulouany, o€

Note that for any « € Q\ Qg, by using the standard interior estimates and boundary
estimates for elliptic systems (2.10) (see Agmon et al. [1] and [2]), we have

V][ oo var) < CllYlle20D,)-
The proof of Theorem 2.1 is completed. O

The following finer estimates in 2 will be useful in Section 4 and Section 5. We
assume that [¢[|c2ap;rey = 1 without loss of generality. For problem (2.3), taking

V=1, and U, :=0s, a=1,---.d
in the proof of Lemma 3.1-Lemma 3.3, respectively, we have

Corollary 3.4. Fora=1,2,--- ,d,

Q

V(ua = ta) ()]

IN

.V zeQp (3.36)

B
B

)
Consequently, by the definition of i, and (3.4), we have, fora=1,--- ,d,
C

|Varta(z)| < ) vV x € Qg, (3.37)
o(x)
and
< ()| < 5 7€ (3.39)
Co(z) = ettt =Gy TETE '
Proof. According to the definition of 4, and (3.4), we have
. Cla’|
|Vx/ua(x)| S m, €T € QR,
1

< |Osy ()| < z € Qpg;

Cle+|2'|?) e+ 2’2’

and

|£A,uuoz )| <C Z Ikmlua

h+i<2d
C Cla’
(€+|x’2 (5—1—:30’:2)2) W2 e + h(2))], @ € Qr.

Clearly, (3.36) follows from the proof of Lemma 3.1-Lemma 3.3. O
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For problem (2.4), we decompose the solution ug as

Ug = Ugp1 + Ug2 + * * * + Uod,

where ug;, [ = 1,2,--- ,d, satisfy, respectively,
E)\,;LUOZ =0, in Q,
ugr = 0, on Dy, (3.39)

ug = (0,---,0,0 (z) — ¢'(0),0,---,0)T, on dD.
Similar as (3.7), we define

doy(z) := (0,0, p(z) (&' (2, h(2)) — ¢'(0))

+ (1= p(@)(¢'(2) — " (0)](1 = 0)(2),0,---,0)", Ve
(3.40)

where p € C?(9) is a cutoff function satisfying (3.6) as before. In particular,
o= (0,0, (¢' (2, h(a)) = ' (0)(1 = 9)(@), 0, ,0)", ¥ z € Qp.

Adapting the proofs of Lemma 3.1-Lemma 3.3 to the equation (3.39), we obtain the
following corollary.

Corollary 3.5. Forl=1,2,--- ,d,

|V('I.Lol — ﬁol)(.’ﬂﬂ < CHQPl”CZ(BD)a x € Qg. (341)
Consequently,
Varuoi ()| < Clé'llc2op), @ € Qr, (3.42)
and
o' (2", h(a")) — ¢ (0)] C|Vaure' (0)]]'] !
< |0y < — 2 s Qg.
05(1‘) = |a duOI(xﬂ = 6(33) +CH<10 HC (8D)s T € R

(3.43)

Proof. For (3.39), it is clear from (3.40) that @ = we = 0 on dD1, g = ue; on OD.
Note that ﬁ’gl =0, if k # [, and for z € Qp,

Vil = = (¢(a', h(a') = ¢'(0)) Vi)
+ [V @ h(@) + Dyf! (@ h(@)) V()| (1 = D) @),

Oyt = — (#'(2', h(2") = ¢'(0)) Bz, 0(2).
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By the Taylor expansion and (2.7)—(2.8),

o' (2’ h(z")) = ' (0) + Var o' (0)2

1
+3" [Viwl(m + 8xdsol(0>v;h<0’>] o'+ O(l'[T7). (3.44)
Hence, using (3.4), we have

ClVare'(0)]]2"]>

Vet (@) < == 50

+ Cll¢'llc2op) < Cl¥'llc2(opy, © € Qr, (3.45)

and

! (&', h(=")) — £'(0)]
Cle + [a'?)

ClVae'(0)]|']
e+ o)

< 0z o (2)] < +Cll¢Ylc2apy, @ € Q.

(3.46)
Adapting the proof of Lemma 3.1-Lemma 3.2 and using (3.44), we obtain

ClVar ! (0)]]]

|V (uor — tior) ()] < + Cll¢!lc2apy < Cli'llc2opy, @ € Qr,
NEERETE

which, together with (3.45) and (3.46), implies that (3.42) and (3.43). O
4. Proof of Proposition 2.4 and estimates of C'™
In this Section, we are devoted to prove Proposition 2.4 under the normalization

lelle2opsrey = 1.
Denote

Oug, o Oug
o= [ Gl v v [

E)Dl aDl

1
g, a’@’:l’g’...’m.
+ 2

Multiplying the first line of (2.3) and (2.4), by ug, respectively, and applying integration
by parts over 2 leads to

GaB = /(Coe(ua),e(u5))d$, bg = 7/(C0€(uo),€(Ug))d’I.
Q Q
By (2.5) and the linearity of e(u),

d(d+1)
2

d
e(u) = Z(Ca —¢*(0))e(uq) + Z C%(uq) +e(ug), in Q.

a=1 a=d+1



608 J.G. Bao et al. / Advances in Mathematics 314 (2017) 583—-629

Then, it follows from the forth line of (2.1) that for § =1,2,--- | d(d;l),
; ah
D (C* = (0)ans + Y C%ans = bg. (4.1)
a=1 a=d+1
Denote

X' = (O =H0), - OO, X = (00 0T

Plz(bl,"' ,bd)T7 P2:(bd+1,"' ,bd(d;l))T,

)

and
a1 . a1q aj d+1 e a’l d(d;l)
A = ) B = )
Qd1 -+ Qdd ad d+1 -+ 4y d(dt1)
Ad+1 d+1 cee a d(d+1)
+ + d+1 =5
D fr—
QA d(d+1 QA d(d+1) d(d+1
AEED d41 ALGED ekl

Thus, by using the symmetry property of asg, (4.1) can be rewritten as

(5 ) () = () as

Lemma 4.1. There exists a positive universal constant C, independent of €, such that

d(d+1)
2
1 d(d+1)
Z aaﬁgag,ﬁ > 67 VEeR =2 |5| =1 (43)
a,B=1

Proof. To emphasize the dependence on ¢, we use Q. := D \ D; and v, to denote the
d(d+1)

corresponding solution of (2.3) with o = 1,--- ,d. For £ € R™ =z with |£| = 1, using
(1.6), we have

d(d+1) d(d;rl) d(d2+1)
> anstato = [ e 3 aut)ie( Y eoup) | o
a,f=1 Q a=1 a=1
d(d+1) 2
1 2
> 5/ o 3 gaus)| dr
Q a=1

We claim that there exists a constant C' > 0, independent of &, such that
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d(d+1) 2

2
1 d(d+1)
QS dr>—=, VE&(ER , =1.
JIe( 32 )| aez g veer™ g

Q

Indeed, if not, then there exist ¢; — 0%, |¢!| = 1, such that

d(d+1) 2

/ e( 22: fguij) dr — 0, asi— oo. (4.4)
a=1

Q

Here and in the following proof, we use the notations D} := { z € R? | x + (0/,¢) €
D; }, Q* := D\ Dj. Since u5 = 0 on 9D, it follows from the second Korn’s inequality
(see Theorem 2.5 in [36]) that there exists a constant C, independent of &;, such that

& 1 @o\Brre) < C,
where 7 > 0 is fixed. Then there exists a subsequence, we still denote {ugi}, such that
US> Uy, in HY(Q\ Br;RY), as i — oo.

By (4.4), there exists £ such that

§i%§7, as i — oo, with \£| =1,

and
d(d+1) 2
2 —
/ e( aﬁa) drxr =0
O* a=1
This implies that
d(d+1)
2 —_
e( aﬁa) =0, in Q"
a=1
d(d+1) _
That means that >, % &ata € ¥ in Q. Hence, there exist some constants cg, 8 =
1,2, @, such that
d(d+1) d(d+1)
2 _ 2
allg = Z 051[}5, in Q.
a=1 =1
d(d+1)

Since ) 5% c¢phg = 0 on 9D, it follows from Lemma 6.1 in [16] that ¢ = 0, § =
1,--- ,@. Thus,

)
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d(d+1)

N

d(d+1) _

Restricted on 9D7, it says that Z
Lemma 6.1 in [16], fa =0,a=1,-

a= 1

Lemma 4.2. For d > 2, we have

aha = 0 on OD7. This yields, using again
,d, which contradicts with |¢| = 1. O

1 C
< g < 3 a=1,---,d 4.5
Cpale) pa(€) (4.5)
1 d(d+1)
—< < —dl.-- n
C —_ a o = C’ « d—"_ ) ) 2 b ( 6)
1 1
aap < C, a:1,27~--,d(d2+ >,ﬁ—d+1 d(d+ )a;éﬁ,
(4.7)
and if d = 2, then
|a12] = |az1| < C[logel; (4.8)
if d > 3, then
|aaﬁ|:|a,304|§07 avﬂ:]-a"'adv O[#ﬂ (49)
Consequently,
L deta< L <p<cr (4.10)
A \N\d = € — ) ~ — = . .
C(pa(e))? (pa(e))?” C
Proof. STEP 1. Proof of (4.5). In view of (2.18), (3.37) and (3.38), we have, for a =
17 o 7da

o /@M%)mmm<c/W%mx

C/ e+|x'|

1’
< 0
<C / E+|x,|2+c

|z’|<R
B d—2 C
o=
ZC/—d +C < —0o
e+p? g pa()
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and

Qoo = /((Coe(ua) ))dx > —/|e Uy )|*dx
/\ead o AR

Qg

Notice that u%|op, = Ulop, = 1,ul|op = V|lap = 0, and recalling the definition of v,
v(a’,xq) is linear in x4 for fixed 2, so v(a’,-) is harmonic, hence its energy is minimal,
that is

hi(z')+e hi(z')+e )
X d O, 0|2 drg = :
| Y a‘ Td 2 / | dv| Ld €+ hl(l‘/) . h({L‘/)
h(z’) h(z’)

Integrating on Bg(0') for 2/, we obtain

hi(z')+e
/|8mdug 2dr = / / |0, ul|? d gda’
|z'|<R h(x’)
> > !
e e+ 2|2 = Cpale)’
|z’ |[<R

Estimate (4.5) is proved.
STEP 2. Proof of (4.6) and (4.7). By means of (2.13), for a, 3 =d+1,---, @, we
have

G = / (COe(un), e(us))da < C / Vit [Vus|da

/
c/ (et m+c<c
5+\’|

On the other hand, it follows immediately from Lemma 4.1 that there exists a universal
constant C' such that

1 d(d+1)
(6763 > 0 :d 17'.. YT o
a Z 0 o + 5
We now consider the elements fora =1,2,--- ,d, f=d+1,d+2,--- ,@. We take

the case that o« = 1, 8 = d + 1 for instance. The other cases are the same. Let ¢4y =
(w9, —21,0,---,0)T. Then using (3.37) and the boundedness of |Vu,| on dD; \ Bg, we
have
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ou
ai(d+1) = — — a1
Ovp 1+

0D

/ (MY )7+ (Ve + (V)T )7 - (2, 1,0, 0)"

O0D1NBgr

)\ Z@Ikul nl—i—uz 8x1u1+8mlu1) >x2

=1

+

O0D1NBgr (

)\ Z@mkul ng—i—uz a$2u1+az,u1) )1:1

aDmBR =1

is bounded for d > 2, s0 ay(gq1)-

Thus, estimates (4.6) and (4.7) are established.

STEP 3. Proof of (4.8) and (4.9). Firstly, we estimate |aqg| for o, =1, -+ ,d with
« # . By the definition,

Oug
o =apo == [ G| 05
0D,
_ / AV - tta)ns + i1 (Vi + (Via) Vi) 5

0D,

/ (Z U a) ng +:U'Z aﬂﬁa ot Oz u a)nl'
0D,

Denote
d
Iog = / (Zaﬂu’;> n
oD NBp k=1
and
d
g := Z(amﬁua 8mlua)
oD NBr =1
d—
_ Z(% i+ Do)y + / Do ulng + / O ulm
0D1NBRr =1 OD1NBR 0D1NBR
1
. 11 5—|—II B—i—Haﬁ,
where

(~Vah(a'), 1)
1+ IVIrh(x’)P'

St
Il
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Due to (2.7), for k=1,2,--- ,d — 1,

1
< Cl2'|, and |ng4| = <1. (4.11)
1+ Vo h(z')?

—0,, h(z')
1+ Vo h(a')]2

WH—|

Fora=1,2,---,d, 8=1,2,--- ,d— 1, it follows from (3.37) and (4.11) that

|Ia6|§ <Z x U ]Z{)
O0D1NBRr
! C1 , d=2,
€+ |2'| C, d>3,
O0D1NBRr
while,
d—1
Clz'|
k.| < Bmua—s—mang / — < C,
= 2 (Onat i VT
O0D1NBgr 0D1NBRr
2,4 < & | < / <{C|1°g6| d=2,
B :D[quand 712
\/ >
dD1NBg dD1NBR = |z | d=3,

and by the definition of @, and (3.36),

o< [ fonudnad < [ l@nadnd ¢ [ @l -
0D1NBRr 0D1NBRr O0D1NBRr
C Clloge|, d=2,

< / —F—= <
Ve + |z'|? C, d>3.

dD1NBg
Here we used the fact that @ = 0 if a # (. Hence,
Cllogel|, d=2,
|Ha5| < | |
C, d>3.

This, together with (4.12), the boundedness of |Vu,| on dD; \ Bg, and the symmetry
of anp = aga, implies that for o, 5 =1, - ,d with o # 3,

Clloge|, d=2,

aag| = |agal < A1 +MIIoz +C <
|aas] = lagal < [A[Lap| + ][I Lag] {Q i>3

Therefore, (4.8) and (4.9) are proved. (4.10) is an immediate consequence of (4.5)—(4.9).
The proof of the Lemma 4.2 is finished. O
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Lemma 4.3.

d(d+1)

(4.13)
Consequently,

|PlI< O, i=1,2 (4.14)

Proof. STEP 1. To estimate |bg| for 5 =1,--- ,d. We take § = 1 for instance. The other
cases are the same. Denote

Ouygy d
z/ o=

=15D,

where ug;, I = 1,2, ,d, is defined by (3.39). By definition,

Ougy
b = —_— .
11 / o |4 W1
oD,
= / [)\(V . u01)n1 +u ((V’LL(n + (VUol)T)ﬁ)l]
oD,
d d A
= / lkzaxkuglnl JF#Z(axlUBl Jr@xiuél)ni] :
oD, k=1 i=1
Denote
I:= / Z@xkumnl /Zaxk%l”l"' / Oy ulding =:T) +To,
0D,
and

Z(awlué1 + 8Iiu(1)1)ni

(3961“01 + O ufy )i + / Oy ufyma + / D U1 N
i=1 8D, 8D,

= IIl + II2 + IIg

According to (3.42)—(3.43),

d—1
| < /Z@mkulglnl < / Cla'| +C < C;
oD, k=1

O0D1NBR
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CIVae' (0)]]2"]?

d T

L] < / Oz ugini| < / e 2P +C<C.
0D aDlﬁBR

So that,
1 < || + 1] < €.

By (3.42), (4.11) and the definition of @1,

d—1
<] [ YO+ o < [ cwlrosc
oD, =1

OD1NBRr

and

L) < / 10y i 4]
0D

< [ loadbma+ [ 10u (s~ and + C
0D1NBg 0D1NBR

<C|oD; N Br|+C < C.

Now, we need only to estimate II3. Note that

Il = D, Up Mg + O, (udy — by )ng =: 115 + 112,

0D1NBR 0D1NBRr

By the definitions of %}, and v,

Bzyligy = — (9" (2, h(a")) — " (0))Dy, 0 = — €+ hi(a') — h(z')

P, ha')) = ¢ (0)

615

(4.15)

(4.16)

(4.17)

From the expression of D1 N Br : x4 = ¢ + hi(2), |2'| < R, we have dS =

/14 |Vahi(z')|?dz’. Then, by the Taylor expansion (3.44), we have

I} = / Dy U1 Mg
0D1NBRr
_ / —(¢' (', h(2")) — wl(O))dx,
e+ hi(a") — h(z')

|z'|[<R

L[ Teor o,
e+ hi(a') — h(z') '

|z'|<R
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Since
1 1 c
= = I < 418
Cle+]2'?) = e+ (@) —h(@) ~ e+ |2']> 2’| < R, (4.18)
it follows that
O(|"[*) )
dz'| < C.
/ €+h1($/)—h(gj/) a| <0
lo'|<R
While, according to (4.18), we have
/ Vo' (0)a &
e+ (@) — h(z)
|z’|<R
VI'@l (0).’1/'/ ,
- 1T /2 ; /da:
e+ 327 (Vi (ha — h)(0))x
o' |[<R
7134
M / LT Ol ) dz’.
o EF TV = W)+ I (a) = b))
/' |<R

For the positive matrix (V2,(hy — h)(0')), there exists orthogonal matrix O, such that

O"(V2,(hy — h)(0'))O = diag(A1, -+, Aa—1),

where \; > k1, i =1,--- ,d — 1. Under the orthogonal transform ' = Ox’, we obtain
Varpt(0)a! Vo' (0)0Ty
/ _ p (0)z de’ — socg_)l Yy =0,
e+ 22/7(V2,(hy — h)(0))a’ e+ X \y?
lz'|<R ly'|<R
and
O /34y
) wl <o
(e + 52" (V3 (h1 — h)(0")2") (e + hi(2") — h(2'))

|z |<R

Therefore,

13| = / Du, b na| < C. (4.19)

BDlnBR

On the other hand, in view of (3.41),
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13| < / Oua(ufy — Ufy)na| < C.

6D1FTBR
This, together with (4.19), implies that
15| < C.

Combining (4.15)—(4.17) and (4.20), we have

|b11] < C.
Next, for [ =2,--- ,d,
Bum
by = T
Y / vy |+
9D
= / AV - ug)na + p (Vg + (VUOZ)T)E)J
9D
d d 4
= / lAZaIkuglnl + MZ(&HUBZ + axi“(lu)ni] .
oD k=1 i=1

Similarly, making use of (3.42), (3.43) and (4.11), we have

d d—1
/Z@iku’glnl < /Z@wkulglnl + /Bl.duglnl <,

oD, k=1 oD, k=1 oDy

and recalling the definition of g, and @, = 0,

d
Z ; 1
(5x1U61 + 8fbiu0l)ni

oD, =1

d—1

; 1 d _ ~d
< E (O, ugy + O, ug)ni| + /8:101(“01_“01)%

oD, =1 oDy

+ /awlﬂgznd + /awd(u(l)z—@él)nd

0D, oDy

<C.
This implies that

byl <C, 1=2--.d.

617

(4.20)

(4.21)
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Hence,
1| < C.

STEP 2. To estimate |bs| for 8 = d + 1,---, % By using (2.13) and (2.14), we
have

bl = | [ (€0eluo).e(us)) ds
Q

SC’/|Vu0HVu,g|dar
Q

IV (0)][2) (e + |o/])
<
</ Crlopy e

R

<C.
The proof of Lemma 4.3 is completed. O

Proof of Proposition 2.4. Step 1. Proof of (2.15).
Let u® be the solution of (2.1). By Theorem 6.6 in the appendix in [15], u® is the
minimizer of

1

Iolu] == 3 / (CO%(u), e(u)) dz

Q

on A defined by (1.4). It follows that
14172 0y < Clle(u)lI72(q) < Clulu’] < C.
By the Sobolev trace embedding theorem,

lu®| 29Dy nBR) < C.

Recalling that
d(d+1)

u® = Z C%y, on 0D;.
a=1

d(d+1)
2

Ifc:=(Ct,c?....C ) = 0, there is nothing to prove. Otherwise,

d(d2+1)
c=lel| > Cata : (4.22)

a=l L2(8D1NBR)
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619
where C,, = % and |C| = 1. It is casy to see that
d(d+1)
~ 5 1
> Cota > (4.23)
a=1

L2(6D1 ﬁBR)
Indeed, if not, along a subsequence ¢ — 0, éa — C,, and

d(d+1)
2

Z aoﬂpa =0,
a=1

L2(dD*NBR)
where OD7 is the limit of D; as ¢ — 0 and |C| = 1. This implies

d(d+1)

2
> Cuatha =0 on dD; N Bg.
a=1

But {¢a|ap:nBy } is easily seen to be linear independent, according to Lemma 6.1 in the

appendix of [16], we must have C' = 0. This is a contradiction. (2.15) follows from (4.22)
and (4.23).

Step 2. Proof of (2.16). According to Lemma 4.1, the matrix

(5 5)

is positive definite, so invertible. Moreover,

1
A> Efdxd, D> EId(d;l) x dd=1) . (4.24)

Therefore, from (4.2), we have

X\ (A B\ /P
x2)~\BT D p2)-
For d > 4, it is easy to see from Lemma 4.1 and Lemma 4.3 that

X' < C.

Next, we prove (2.16) for d = 2,3. By Lemma 6.2 in Appendix of [16] and Lemma 4.2,

A B\ _ (A 0
(BT D) :( 0 D1)+(Errors),
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where
[(Errors)| ~ o(pa(e)). (4.25)
Then,
(i‘;) = <A01 DO_1> <§;> + (Errors) <£;> = (é—?;;) + (Errors).
Therefore,
X' = A7 P! 4 Errors = de%cAA*Pl + Errors, (4.26)

where A* = (az ﬂ> is the adjoint matrix of A. Following Lemma 4.2, it is clear that
(pa(e))d=1 (pa(e))d=1

1 c
0(—<pd(s>>471) T Galeya T

for some constants ¢, # 0,a = 1,--- ,d, independent of €. In view of (4.10) and (4.14),
we obtain

[ X! < Cpale).
Therefore,
|CY — o*(0)] < Cpale), a=1,---,d.
Proposition 2.4 is established. O

5. Proof of Theorem 1.3 (Lower bound)

In order to prove Theorem 1.3, we first prove bg — bg, as e - 0,5 =1,--- ,d.
Lemma 5.1. Ford >3, 5 =1,2,--- ,d,
b5 — b1 < C (IVre(0)] + V3¢l L am) ) 7%
for d =2, if V,p?(0) =0 for B =1 or 2, then, for a # 3,
lbs — 3] < C (IVare®(0)] + IV ll L~ (am)) €7,

where
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d—2
, d=>3,
Na = {2(d1)

1 _
L d=2.

Consequently,
bg = bs, ase—0, B=1,2,--,d

Proof. We here prove the case 8 = 1 for instance. The other cases are the same. It
follows from the definitions of ug and w; and the integration by parts formula (1.5) that

= [ 20 = [ (et ctu) = [ 2 (oto) — oi0),
oD, Q oD

Similarly,

8D oD
where u} satisfies
Ly ui =0, in Q*,
uj =11, on 9D7 \ {0}, (5.1)
uj =0, on 0D.

Thus,

b] - bT = / 78(1111 _ ul)

81/0 ‘+

“(p(x) = ¢(0)).

oD

Similarly as before, in order to estimate the difference u; — uj, we introduce two
auxiliary functions

v v
0 0

’L~L1 = . 5 and aI = . 5
0 0

where v is defined in Section 3, and v* satisfies v* = 1 on D7 \ {0}, v* = 0 on 9D, and

¥ = Td — h($/) * —x
S @) =y e 15"l c>@vaz 5 < C
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where O := { z €

|2’| <r }, for r < R. By (2.7) and (2.8), we have, for z € QF,

1 . C
V(g —a7")] < [’ (5.2)

and

~1 ~x1\| _ 1 _ 1 Ce
Oea (0 = BN = |5 o R~ s ) —h@) | S WP ) Y

Applying Corollary 3.4 to (5.1), we obtain

. c )
IV(ui —a7)(@)| < Eak z € Op; (5.4)
and
* c . C .
Vo) < i) < oy 0 € D (55)

Define a cylinder

C, = {xeRd | |2/ <70 < @, <e+2max hl(av’)}7

ja’|=r

for r < Ry. Next, we divide into two steps to estimate the difference u; — uj.
STEP 1. Notice that u; — u} satisfies

Lau(m —ui) =0, in D\ (DyUDY),
up —uj =1 —uj, on 0D; \ D7,
up — uf =uy — P, on 0D7\ (D1 U{0}),

up —uj =0, on dD.

We first estimate |u; — uj| on 9(Dq U D7) \ Cev, where 0 < v < 1/2 to be determined
later. For ¢ sufficiently small, in view of the definition of uj,

|0z,ui(2)| < C, 2z € Q°\ Qp,
we have, for € 9D, \ Dy,
l(u1 — ui) (2, 2q)| = [ui (2, 2q — &) —ui (2, 24)| < Ce. (5.6)
For z € D7 \ (D1 UCv), by (2.12),
i — )&, 2)| = (' 24) — (o, 70+ )|

Ce 1—39
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By using (5.3), (3.36) and (5.4), we have, for z € QF, with |2/| = €7,

|04 (ur — ul) (@', 2a)| = |0y (1 — GT) + Ory (ur — G1) + Ou, (uf — A7)| (2, 24)

Ce C
< = 4=
T Pe+ 2 ?) |2

C C
~ ety + =

Thus, for x € QF with |2/| = &7, recalling u; —uj =0 on 9D, we have

[(ur — ui)(2', 2q)| = [(ur — ui)(@', za) — (w1 — ui) (@', h(z'))]
< s (Ol —u)wa)] s (@) — A
h(z")< zqg< hi(z’)
C C

S(mmt o) e <CET+e), (5.8)

Letting 1 — 2y = v, we take v = 1/3. Combining (5.6), (5.7) and (5.8), and recalling
u; —uj =0 on 0D, we obtain

[(u1 — u})(z)| < C/3, 2 €d(D\ (D1 UD;UCy)).

Applying the maximum principle for Lamé systems, see [35],

|(uy —u})(x)| < CeY3, in D\ (D, UD; UCyz)-

Then using the standard interior and boundary estimates for Lamé system, we have, for
any 0 < 4 < 1/3,

|V(uy —uj)(z)| < Ce¥, in D\ (DyUD? UCE%_W).

This implies that

ou O(up —uj .
= | [ A et - e < 0 (5.9
Vo +

OD\C 1 _.
e3
where 0 < ¥ < 1/3 will be determined later.
STEP 2. In the following, we estimate

gr= [ A o) - )
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:/M
aV()

oDNC 1
e3
O(wy — wy)
. — (0
A T G R0
oDNC 1 .
e3 7
=:Bz;+ By,
where wy = u; — 41, w] = uj — 4. By definition,
d
Ba = {A > 0s, (@ — a7 ni (9" () — ©*(0))
aDNC 4 k=1

d
Y O (@ = A1) [ (¢ (@) = 5 (0) + (et (@) — 61(0)] }
k=1

=:A(By+B2)+up(Bs+Bs+ B+ BY),

where
d-1
Bl .= Oa, (i — @7 )" () — ©F(0)),
apnC 1 k=1
B2 = O, (@] — @1 na(e®(z) — 0%(0)),
oDNC 1 _
3
d—1
Bj = Ouy (17 — W )na (0" () — ©*(0)),
opnc , . k=1
B; = / O, (0] — @3 )na (% () — 0%(0)),
oDNC 1
d—1
B — By (@} — @i (' (x) — 1(0)),
oDpNC 4 _ k=1
and
BS = Dy, (0} — @} —¢'(0
0= g (U1 — Uy )nae (x) — ¢ (0))
oDNC %_,7

According to (5.2), (5.3) and the Taylor expansion of ¢*(z),
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B3| + B2 + |83

C
< [ W+ [ Il P
oDNC 1 _ . obDNC 1_5
e3 3
< C|Vz'¢(0)|€(%_:’)d 1 Cela=N+1) V20l < aD); (5.10)
C
52| < / o [V’ + / CIV?oll 1= om) ||
oDNC 1 _ . oDNC 1 _ .
3 Y 3 Y
< CO|Varp(0)[eEVUED 4 OV oo 90y e TV (5.11)
and
4 O / / 2 /
B2 < ] Va0l + ClIV3¢| L (op) 2]
oDNC %7,y obNC 1_5
< COIVarp(0)[e3™ D 1 OV 1o 9pyets 7. (5.12)
For d = 2 if V' (0) = 0, we have
|BS| < / C|IV*!| L= (ap) < C||V2<P1HLoc(aD)f(%fﬁ)(d*l)- (5.13)
aDﬂCE%

If d > 3, we have

C
Bl [ el [ CIVleen)

2|2
oDNC %_,Y oDNC 1_5
< O|Varp(0)|eE DU 4 O V20| poo (g pye 5 TP, (5.14)

Hence, combining (5.10)—(5.14) yields that for ¢ > 0 sufficiently small, if d = 2 and
Vw“pl(o) =0,

[Ba| < C (IVare(0)] + 1V ¢ll L= (o)) €577 (5.15)
and if d > 3,
|Ba| < C (IVarp(0)] + V26| (o0)) €5 D2, (5.16)
We now estimate B,,. It follows from Corollary 3.4 that

[V (z)] <

. 0<|2/| <R, (5.17)
6(x)
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and
. c /
|Vwi (z)] < PR 0<|z'| <R. (5.18)
By definition,

d
B, = / A Z Oy (W — wiF)ny (! () — '(0))
opnC ;. kl=1

3

d
Y [0 (wh = wik) 4 0ny (wh — wih)ni(e" (z) — ©*(0))
k=1

By (5.17), (5.18) and the Taylor expansion of ¢ (z),

C
1Bu| < / (1T d O] + V2 | 1 o) |2 ?)

< OV (0)[eG=DED 4 [V || Lo (9 pyets —)1
< C(IVarp(0)] + | V20 e (o)) €3 D@D, (5.19)

This, together with (5.15), implies that, for d = 2, if V,¢*(0) = 0,
|B™| < Ba| + [Bul| < C (|Varp(0)] + V20l (o)) €377

Combining with (5.9), we now simply choose ¥ = 72 = 1/6, such that 1 —~2 = 72. Thus,
we have, for d = 2,

b1 = 07| < [B™| + B < C (IVar®(0)] + V2l L= (o)) £'/°.
For d > 3, combining (5.19) together with (5.16) yields that
|B™| < |Bs| + |Bu| < C (|Varp(0)] + [V L (o)) €577,

Therefore, using (5.9) again and picking ¥ = v4 = % (such that (§—v4)(d—2) = 74),
we have, for d > 3,

b1 = b1| < B+ (B < C (IVarp(0)] + V¢ L= (ap)) €74
The proof of Lemma 5.1 is completed. O

Proof of Theorem 1.3. Under the assumptions of Theorem 1.3 that by # 0 for some
integer 1 < kg < d, it follows from Lemma 5.1 that there exists a universal constant
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Cy > 0 and a sufficiently small number g9 > 0, such that, for 0 < ¢ < &y,

C
bk, | > —° > 0. (5.20)

By the definition of A* = (a,5)axd, Where aj, 5 is the cofactor of ang, and Lemma 4.2,
we have

1 . 1
Yo (e TS e gy 0F S B2

According to (4.13), (4.25), (4.26), (5.20) and (5.21), for sufficiently small ¢,

1
|Cko _ (pko (0)‘ = I tA [akokobko + Z ak‘gﬂbﬂ:| + Errors

B ko
11 pale)
> §detAakoko| k0| 2 ol (522)
On the other hand, in view of Corollary 3.4, we obtain
-k k
‘&muko‘ - |azdukg + 8%1( - ukﬁ)'
_ - 1
> [0, 11| — 0, (ng — )| > ———, TEQR. (5.23)

Cle+[a'?)
At the same time, since @%° = 0 if o # ko, it is easy to see from Corollary 3.4 that
|06 | = 100,88 + O, (ul? — g0
C
Ve+ 2

Therefore, by a combination of the estimates (5.22), (5.23), (5.24), we get, for (0/,z4) €
P1P,

= [0, (ul? — al?)| <

« 7& ko, x¢€ Qg. (524)

d d
D (€% = ™ (0)Vuua| = |37 (C* = 0™ (0))0,ul?
a=1 a=1
d
> |(C% = R (0)Dh,ufs| — | 3 (€ = ¢*(0))0,u
a#kg
> Pile) (5.25)

Ce

Here we used the assumption that b, = 0 for o # kg, 1 < a < d when d > 4. By means
of Corollary 2.3, (2.15), Lemma 4.2 and Lemma 4.3, especially for z = (0', z4) € P, P,
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d(d+1)
2 /
3 OV, < CE(%I'?TJ) <c (5.26)
a=d+1
/
Vo] < VPO (5.27)

e+ |2

Combining (5.25), (5.26), (5.27) and (2.5) immediately yields that for x = (0', z4) € P, P,

[Vu(0',zq)] > pdc(:), 0<zg<e.

Theorem 1.3 is thus established. O
Acknowledgment

H.G. Li would like to thank Professor YanYan Li for his encouragements and constant
supports.

References

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial
differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959)
623-727.

[2] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial
differential equations satisfying general boundary conditions. IT, Comm. Pure Appl. Math. 17 (1964)
35-92.

[3] H. Ammari, E. Bonnetier, F. Triki, M. Vogelius, Elliptic estimates in composite media with smooth
inclusions: an integral equation approach, Ann. Sci. Ec. Norm. Supér. (4) 48 (2) (2015) 453-495.

[4] H. Ammari, G. Ciraolo, H. Kang, H. Lee, K. Yun, Spectral analysis of the Neumann—Poincaré
operator and characterization of the stress concentration in anti-plane elasticity, Arch. Ration.
Mech. Anal. 208 (2013) 275-304.

[5] H. Ammari, G. Dassios, H. Kang, M. Lim, Estimates for the electric field in the presence of adjacent
perfectly conducting spheres, Quart. Appl. Math. 65 (2) (2007) 339-355.

[6] H. Ammari, P. Garapon, H. Kang, H. Lee, A method of biological tissues elasticity reconstruction
using magnetic resonance elastography measurements, Quart. Appl. Math. 66 (1) (2008) 139-175.

[7] H. Ammari, H. Kang, M. Lim, Gradient estimates for solutions to the conductivity problem, Math.
Ann. 332 (2) (2005) 277-286.

[8] H. Ammari, H. Kang, K. Kim, H. Lee, Strong convergence of the solutions of the linear elasticity and
uniformity of asymptotic expansions in the presence of small inclusions, J. Differential Equations
254 (12) (2013) 4446-4464.

[9] H. Ammari, H. Kang, H. Lee, J. Lee, M. Lim, Optimal estimates for the electrical field in two
dimensions, J. Math. Pures Appl. 88 (2007) 307-324.

[10] H. Ammari, H. Kang, H. Lee, J. Lee, H. Zribi, Optimal estimates for the electric field in two
dimensions, J. Math. Pures Appl. (9) 88 (4) (2007) 307-324.

[11] H. Ammari, H. Kang, H. Lee, M. Lim, H. Zribi, Decomposition theorems and fine estimates for
electrical fields in the presence of closely located circular inclusions, J. Differential Equations 247 (11)
(2009) 2897-2912.

[12] I. Babuska, B. Andersson, P. Smith, K. Levin, Damage analysis of fiber composites. I. Statistical
analysis on fiber scale, Comput. Methods Appl. Mech. Engrg. 172 (1-4) (1999) 27-77.

[13] E.S. Bao, Y.Y. Li, B. Yin, Gradient estimates for the perfect conductivity problem, Arch. Ration.
Mech. Anal. 193 (1) (2009) 195-226.

[14] E.S. Bao, Y.Y. Li, B. Yin, Gradient estimates for the perfect and insulated conductivity problems
with multiple inclusions, Comm. Partial Differential Equations 35 (11) (2010) 1982-2006.


http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414431s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414431s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414431s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414432s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414432s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414432s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib41425456s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib41425456s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib41434B4C59s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib41434B4C59s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib41434B4C59s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib41444B4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib41444B4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib41474B4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib41474B4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4B4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4B4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4B4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4C4C4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4C4C4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4C4C655As1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4C4C655As1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4C4C695As1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4C4C695As1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib414B4C4C695As1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4241534Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4241534Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib424C5931s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib424C5931s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib424C5932s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib424C5932s1

J.G. Bao et al. / Advances in Mathematics 314 (2017) 583—-629 629

[15] J.G. Bao, H.G. Li, Y.Y. Li, Gradient estimates for solutions of the Lamé system with partially
infinite coefficients, Arch. Ration. Mech. Anal. 215 (2015) 307-351.

[16] J.G. Bao, H.G. Li, Y.Y. Li, Gradient estimates for solutions of the Lamé system with partially
infinite coefficients in dimensions greater than two, Adv. Math. 305 (2017) 298-338.

[17] E. Bonnetier, F. Triki, Asymptotics in the Presence of Inclusions of Small Volume for a Conduc-
tion Equation: A Case with a Non-smooth Reference Potential, in: Imaging Microstructures, in:
Contemp. Math., vol. 494, Amer. Math. Soc., Providence, RI, 2009, pp. 95-111.

[18] E. Bonnetier, F. Triki, On the spectrum of the Poincaré variational problem for two close-to-touching
inclusions in 2D, Arch. Ration. Mech. Anal. 209 (2) (2013) 541-567.

[19] E. Bonnetier, M. Vogelius, An elliptic regularity result for a composite medium with “touching”
fibers of circular cross-section, STAM J. Math. Anal. 31 (3) (2000) 651-677.

[20] B. Budiansky, G.F. Carrier, High shear stresses in stiff fiber composites, J. Appl. Mech. 51 (1984)
733-735.

[21] H.J. Dong, Gradient estimates for parabolic and elliptic systems from linear laminates, Arch. Ration.
Mech. Anal. 205 (1) (2012) 119-149.

[22] H.J. Dong, J.G. Xiong, Boundary gradient estimates for parabolic and elliptic systems from linear
laminates, Int. Math. Res. Not. IMRN (17) (2015) 7734-7756.

[23] H.J. Dong, H. Zhang, On an elliptic equation arising from composite materials, arXiv:1505.01042.

[24] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,
Annals of Mathematics Studies, vol. 105, Princeton University, Princeton, N.J., 1983.

[25] Y. Gorb, A. Novikov, Blow-up of solutions to a p-Laplace equation, Multiscale Model. Simul. 10
(2012) 727-743.

[26] H. Kang, M. Lim, K. Yun, Asymptotics and computation of the solution to the conductivity equation
in the presence of adjacent inclusions with extreme conductivities, J. Math. Pures Appl. (9) 99 (2)
(2013) 234-249.

[27] H. Kang, H. Lee, K. Yun, Optimal estimates and asymptotics for the stress concentration between
closely located stiff inclusions, Math. Ann. 363 (3-4) (2015) 1281-1306.

[28] J.B. Keller, Stresses in narrow regions, Trans. ASME J. Appl. Mech. 60 (1993) 1054-1056.

[29] J.B. Keller, Conductivity of a medium containing a dense array of perfectly conducting spheres or
cylinders or nonconducting cylinders, J. Appl. Phys. 3 (1963) 991-993.

[30] H.G. Li, Y.Y. Li, E.S. Bao, B. Yin, Derivative estimates of solutions of elliptic systems in narrow
regions, Quart. Appl. Math. 71 (3) (2014) 589-596.

[31] Y.Y. Li, L. Nirenberg, Estimates for elliptic systems from composite material, in: Dedicated to the
memory of Jiirgen K. Moser, Comm. Pure Appl. Math. 56 (7) (2003) 892-925.

[32] Y.Y. Li, M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with
discontinuous coefficients, Arch. Ration. Mech. Anal. 153 (2) (2000) 91-151.

[33] M. Lim, K. Yun, Blow-up of electric fields between closely spaced spherical perfect conductors,
Comm. Partial Differential Equations 34 (10-12) (2009) 1287-1315.

[34] X. Markenscoff, Stress amplification in vanishingly small geometries, Comput. Mech. 19 (1996)
77-83.

[35] V.G. Maz’ya, A.B. Movchan, M.J. Nieves, Uniform asymptotic formulae for Green’s tensors in
elastic singularly perturbed domains, Asymptot. Anal. 52 (2007) 173-206.

[36] O. Oleinik, A. Shamaev, G. Yosifian, Mathematical Problems in Elasticity and Homogenization,
Studies in Mathematics and Its Applications, vol. 26, North-Holland Publishing Co., Amsterdam,
1992.

[37] K. Yun, Estimates for electric fields blown up between closely adjacent conductors with arbitrary
shape, SIAM J. Appl. Math. 67 (3) (2007) 714-730.

[38] K. Yun, Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-
sections, J. Math. Anal. Appl. 350 (1) (2009) 306-312.


http://refhub.elsevier.com/S0001-8708(16)30994-X/bib424C4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib424C4Cs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib424C4C32s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib424C4C32s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4254s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4254s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4254s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib425432s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib425432s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4256s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4256s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4243s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4243s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib646F6E67s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib646F6E67s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4458s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4458s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib646F6E677A68616E67s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib47s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib47s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib474Es1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib474Es1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4B4C59s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4B4C59s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4B4C59s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4B4C5932s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4B4C5932s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4B31s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4B32s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4B32s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4C4C4259s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4C4C4259s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4C4Es1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4C4Es1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4C56s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4C56s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4C59s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4C59s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4Ds1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4Ds1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4D4D4Es1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4D4D4Es1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4Fs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4Fs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib4Fs1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib5931s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib5931s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib5932s1
http://refhub.elsevier.com/S0001-8708(16)30994-X/bib5932s1

	Optimal boundary gradient estimates for Lamé systems with partially inﬁnite coefﬁcients
	1 Introduction and main results
	2 Outline of the proof of Theorem 1.1 (Upper bound)
	3 Proof of Theorem 2.1 and estimates of |∇uα|
	4 Proof of Proposition 2.4 and estimates of Cα
	5 Proof of Theorem 1.3 (Lower bound)
	Acknowledgment
	References


