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1 Introduction

In this paper, we study the Dirichlet problem of Hessian equation in exterior
domains:

σk(λ(D2u)) = 1, x ∈ R
n\Ω, (1)

u = ϕ(x), x ∈ ∂Ω, (2)

where Ω ⊂ R
n is a bounded domain and 0 ∈ Ω, ϕ ∈ C2(∂Ω). Here,

σk(λ(D2u)) =
∑

i1<···<ik

λi1 · · · λik (k = 1, . . . , n)

is the kth elementary symmetric function of λ(D2u) = (λ1, . . . , λn), the
eigenvalues of the Hessian matrix D2u.

The Hessian equation (1) is an important class of fully nonlinear elliptic
equations. For k = 1, (1) is the Poisson equation ∆u = 1, and for k = n,
(1) is the Monge-Ampère equation det(D2u) = 1. There exist many excellent
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results in interior domains of Hessian equations, see [3–10] and the references
therein. For instance, Caffarelli et al. [3] established the classical solvability
of the Dirichlet problem of Hessian equations. Trudinger [8] demonstrated the
existence and uniqueness of weak solutions, and Urbas [10] proved the existence
of viscosity solutions.

To work in the realm of elliptic equations, we have to restrict the solutions
to a class of functions. Let

Γk = {λ ∈ R
n | σj(λ) > 0, j = 1, 2, . . . , k}.

Γk is a symmetric cone, that is, any permutation of λ is in Γk if λ ∈ Γk. When
k = 1, Γk is the half space {λ ∈ R

n | λ1 + λ2 + · · · + λn > 0}. When k = n, Γk

is the positive cone

Γ+ = {λ ∈ R
n | λi > 0, i = 1, . . . , n}.

Following [3], we give the definition of k-convex function.

Definition 1 A function u ∈ C2(Rn\Ω) is called k-convex if λ(D2u) ∈ Γk for
all x ∈ R

n\Ω.

It follows from [3] that (1) is degenerate elliptic for the k-convex functions,

and σ
1/j
j (λ(r)), j = 1, 2, . . . , k, is concave for r with λ(r) ∈ Γk.

For the readers’ convenience, we recall the definition of viscosity solutions.

Definition 2 A function u ∈ C0(Rn\Ω) is called a viscosity subsolution to
(1), if for any y ∈ R

n\Ω, ξ ∈ C2(Rn\Ω) satisfying

u(x) 6 ξ(x), x ∈ R
n\Ω; u(y) = ξ(y),

we have
σk(λ(D2ξ(y))) > 1.

A function u ∈ C0(Rn\Ω) is called a viscosity supersolution to (1), if for
any y ∈ R

n\Ω, any k-convex function ξ ∈ C2(Rn\Ω) satisfying

u(x) > ξ(x), x ∈ R
n\Ω; u(y) = ξ(y),

we have
σk(λ(D2ξ(y))) 6 1.

A function u ∈ C0(Rn\Ω) is called a viscosity solution to (1), if u is both a
viscosity subsolution and a viscosity supersolution to (1).

A function u ∈ C0(Rn\Ω) is called a viscosity subsolution (resp. super-
solution, solution) to (1)-(2) if u is a viscosity subsolution (resp. supersolution,
solution) to (1) and u 6 (resp. >, =) ϕ(x) on ∂Ω.

Definition 3 A function u ∈ C0(Rn\Ω) is called k-convex if in the viscosity
sense σj(λ(D2u)) > 0 in R

n\Ω, j = 1, 2, . . . , k.
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Motivated by the work of [1], in this paper, we investigate the Drichlet
problem of Hessian equations in exterior domains. Using the Perron method,
we get the uniqueness and existence of viscosity solutions with prescribed
asymptotic behavior at infinity to Hessian equations.

Theorem 1 For n > 3, let Ω ⊂ R
n be a C2, bounded, and strictly convex

domain; and let 0 ∈ Ω, ϕ ∈ C2(∂Ω). Then there exists c0 such that for any

c > c0, there exists a unique k-convex function u ∈ C0(Rn\Ω) satisfying (1)-(2)
in the viscosity sense and

lim sup
x→∞

(
|x|n−2

∣∣∣u(x) −
(c∗

2
|x|2 + c

)∣∣∣
)

< ∞, (3)

where c∗ = (1/Ck
n)1/k, Ck

n = n!/(k! (n − k)!).

This paper is arranged as follows. In Section 2, we give some lemmas which
will be used later. In Section 3, we prove Theorem 1.

2 Preliminaries

The following lemma can be found in [2].

Lemma 1 Let Ω be a bounded strictly convex domain in R
n, ∂Ω ∈ C2, ϕ ∈

C2(Ω). Then there exists a constant c only depending on n, ϕ and Ω such that

for any ξ ∈ ∂Ω, there exists x(ξ) ∈ R
n satisfying

|x(ξ)| 6 c, wξ < ϕ, x ∈ Ω\{ξ},

where

wξ(x) := ϕ(ξ) +
1

2
(|x − x(ξ)|2 − |ξ − x(ξ)|2), x ∈ R

n.

Lemma 2 Let Ω be a domain in R
n, and let f ∈ C0(Rn) be nonnegative.

Assume that k-convex functions v ∈ C0(Ω), u ∈ C0(Rn) satisfy, respectively,

σk(λ(D2v)) > f(x), x ∈ Ω,

σk(λ(D2u)) > f(x), x ∈ R
n.

Moreover,

u 6 v, x ∈ Ω, (4)

u = v, x ∈ ∂Ω.

Set

w(x) =

{
v(x), x ∈ Ω,

u(x), x ∈ R
n\Ω.

Then w ∈ C0(Rn) is a k-convex function and satisfies, in the viscosity sense,

σk(λ(D2w)) > f(x), x ∈ R
n.
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Proof Let y ∈ R
n, ξ ∈ C2(Rn) satisfying w(y) = ξ(y),

w(x) 6 ξ(x), x ∈ R
n. (5)

If y ∈ Ω, then we have

v(y) = w(y) = ξ(y), v(x) = w(x) 6 ξ(x), x ∈ Ω.

Therefore,
σj(λ(D2ξ(y))) > 0, 1 6 j 6 k,

σk(λ(D2ξ(y))) > f(y).

If y ∈ R
n\Ω, then we have

u(y) = w(y) = ξ(y), u(x) = w(x) 6 ξ(x), x ∈ R
n\Ω.

By (4) and (5),
u(x) 6 ξ(x), x ∈ R

n.

Therefore,
σj(λ(D2ξ(y))) > 0, 1 6 j 6 k,

σk(λ(D2ξ(y))) > f(y).

This completes the proof. �

The following existence result for viscosity solutions on a ball can be found
in [5].

Lemma 3 Let B be a ball in R
n, and let f ∈ C0(B) be nonnegative. Suppose

that u, u ∈ C0(B) are, respectively, viscosity subsolution and supersolution of

σk(λ(D2u)) = f(x), x ∈ B,

and satisfy

u|∂B = u|∂B = ϕ ∈ C0(∂B).

Then there exists a unique k-convex function u ∈ C0(B) satisfying

σk(λ(D2u)) = f(x), x ∈ B,

u = ϕ(x), x ∈ ∂B.

Lemma 4 Let B be a ball in R
n, and let f ∈ C0(B) be nonnegative. Suppose

that u ∈ C0(B) satisfies, in the viscosity sense,

σk(λ(D2u)) > f(x), x ∈ B.

Then the Dirichlet problem

σk(λ(D2u)) = f(x), x ∈ B, (6)
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u = u(x), x ∈ ∂B (7)

has a unique k-convex viscosity solution u ∈ C0(B).

Proof Clearly, u is a viscosity subsolution of (6)-(7). From Lemma 3, we
only need to prove (6)-(7) has a viscosity supersolution u ∈ C0(B) satisfying
u = u on ∂B.

Let v ∈ C2(B) ∩ C0(B) satisfy

∆v = 0, x ∈ B,

v = u, x ∈ ∂B.

We claim that v is a viscosity supersolution of (6). Indeed, suppose that v is
not a viscosity supersolution of (6). Then there exist y ∈ B and some k-convex
function ξ ∈ C2(B) such that

v(x) > ξ(x), x ∈ B, v(y) = ξ(y), (8)

but
σk(λ(D2ξ(y))) > f(y).

By the k-convexity of ξ and the Newton-Maclaurin inequality

σ1(λ) > n(σk(λ)/Ck
n)1/k, λ ∈ Γk,

we know
∆ξ(y) > n(f(y)/Ck

n)1/k > 0.

But from (8), we get
D2v(y) > D2ξ(y).

Hence,
∆ξ(y) 6 ∆v(y) = 0.

This is a contradiction. The lemma is proved. �

3 Proof of Theorem 1

In this section, we prove Theorem 1. We divide the proof into six steps.

Step 1 We construct a viscosity subsolution wa of (1)-(2).

Let a > −1. Set

wa(x) = min
∂Ω

ϕ −
∫ r

|√c∗x|
(sn + a)1/nds, x ∈ R

n,

where r = 2
√

c∗ diam Ω. Then wa ∈ C0(Rn), and

wa 6 ϕ, x ∈ ∂Ω, (9)
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and

wa(x) =
c∗
2
|x|2 + µ(a) −

∫ ∞

|√c∗x|
s
[(

1 +
a

sn

)1/n
− 1

]
ds, x ∈ R

n, (10)

where

µ(a) := min
∂Ω

ϕ +

∫ ∞

r
s
[(

1 +
a

sn

)1/n
− 1

]
ds − 1

2
r2.

A direct calculation gives

Dijwa = (|y|n + a)
1

n
−1c∗

[(
|y|n−1 +

a

|y|
)
δij −

ayiyj

|y|3
]
, |x| > 0,

where y =
√

c∗ x. By rotating the coordinates, we may set y = (R, 0, . . . , 0)T,
and therefore,

D2wa = (Rn + a)
1

n
−1c∗diag

(
Rn−1, Rn−1 +

a

R
, . . . , Rn−1 +

a

R

)
,

where R = |y|. Consequently, λ(D2wa) ∈ Γk for |x| > 0. By Newton-Maclaurin
inequality,

σk(λ(D2wa)) > Ck
n(σn(λ(D2wa)))

k/n = Ck
n(cn

∗ )k/n = 1, |x| > 0. (11)

Step 2 We define the Perron solution uc of (1).

Fix a0 > −1 such that c0 := µ(a0) > c1. For any c > c0 and x ∈ R
n\Ω,

let Sc,x denote the set of k-convex functions w ∈ C0(Rn\Ω) satisfying, in the
viscosity sense,

σk(λ(D2w)) > 1, y ∈ R
n\Ω,

w 6 ϕ, y ∈ ∂Ω,

and for any y ∈ R
n\Ω, |y − x| 6 2 diam Ω,

w(y) 6
c∗
2
|y|2 + c.

Then, for all µ−1(c0) < a < µ−1(c), by (11), (9), and (10), wa ∈ Sc,x.
Consequently, Sc,x 6= ∅. Define

uc(x) = sup{w(x) : w ∈ Sc,x}, x ∈ R
n\Ω.

Step 3 We prove uc can be extended to a continuous function in R
n\Ω and

uc = ϕ on ∂Ω.

By the expression of wξ(x) in Lemma 1, we can fix some constant c1 such
that for any ξ ∈ ∂Ω,

wξ(x) 6
c∗
2
|x|2 + c1, dist(x, ∂Ω) 6 1, x ∈ R

n\Ω. (12)
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By (12), for ξ ∈ ∂Ω and x ∈ R
n\Ω, x sufficiently close to ξ, we have

wξ ∈ Sc,x. Consequently, uc(x) > wξ(x) for x sufficiently close to ξ. Thus,

lim inf
x→ξ

uc(x) > lim inf
x→ξ

wξ(x) = ϕ(ξ).

On the other hand,
lim sup

x→ξ

uc(x) 6 ϕ(ξ).

Indeed, if along a sequence xi → ξ,

lim
i→∞

uc(xi) > ϕ(ξ) + 3δ

for some δ > 0, then by the definition of uc, there exists wi ∈ Sc,xi
such that

wi(xi) > ϕ(ξ) + 2δ

for large i. But wi ∈ C0(Rn\Ω), then for any ξ close to ξ,

wi(ξ) 6 ϕ(ξ) + δ.

This is a contradiction.

Step 4 We prove uc satisfies (1).

By the definition of uc, uc is a viscosity subsolution of (1). We only need to
prove that uc is a viscosity supersolution of (1).

For any x ∈ R
n\Ω, fix 0 < ε < 2 diam Ω such that

B = Bε(x) ⊂ R
n\Ω.

From Lemma 4, the Dirichlet problem

σk(λ(D2ũ)) = 1, y ∈ B,

ũ = uc, y ∈ ∂B,
(13)

has a unique k-convex viscosity solution ũ ∈ C0(B). By the comparison
principle, uc 6 ũ in B. Define

w̃(y) =

{
ũ(y), y ∈ B,

uc(y), y ∈ (Rn\Ω)\B.

Then w̃ ∈ Sc,x. Indeed, by the definition of uc,

uc(y) 6
c∗
2
|y|2 + c, y ∈ B.

Let
ṽ(y) =

c∗
2
|y|2 + c.



228 Limei DAI, Jiguang BAO

Then
σk(λ(D2ũ)) = 1 = σk(λ(D2ṽ)), y ∈ B,

ũ = uc 6 ṽ, y ∈ ∂B.

From the comparison principle, for any y ∈ B,

ũ 6 ṽ,

i.e.,

ũ(y) 6
c∗
2
|y|2 + c.

By Lemma 2,
σk(λ(D2w̃)) > 1, y ∈ R

n\Ω.

Therefore, w̃ ∈ Sc,x. And thus, by the definition of uc, uc > w̃ in R
n\Ω and

uc > ũ in B. Hence,
uc ≡ ũ, y ∈ B. (14)

However, ũ satisfies (13), we have, in the viscosity sense,

σk(λ(D2uc)) = 1, y ∈ B.

Because x is arbitrary, we know that uc is a viscosity supersolution of (1).

Step 5 We prove uc satisfies (3).

By the definition of uc,

uc(x) 6
c∗
2
|x|2 + c, x ∈ R

n\Ω.

Then,

uc(x) − c∗
2
|x|2 − c 6 0 6

1

|x|n−2
, x ∈ R

n\Ω. (15)

On the other hand, from (10), as |x| → ∞,

wa(x) =
c∗
2
|x|2 + µ(a) − O(|x|2−n).

Because wa ∈ Sc,x, as |x| → ∞,

uc(x) − c∗
2
|x|2 − µ(a) > −O(|x|2−n).

Let a → µ−1(c). Then

uc(x) − c∗
2
|x|2 − c > −O(|x|2−n). (16)

And thus, from (15) and (16), for some constant C, we have

∣∣∣uc(x) −
(c∗

2
|x|2 + c

)∣∣∣ 6
C

|x|n−2
.
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Then
lim sup

x→∞

(
|x|n−2

∣∣∣uc(x) −
(c∗

2
|x|2 + c

)∣∣∣
)

< ∞.

Step 6 We prove the uniqueness.

Suppose that u and v satisfy (1)–(3). By the comparison principle of
viscosity solutions to Hessian equations and

lim
x→∞

(u − v) = 0,

we know u ≡ v in R
n\Ω.

The proof is completed. �

We conclude this paper with a brief examination of radially symmetric
solutions to (1)–(3).

Example 1 Let Ω = B1(0) be the unit ball in R
n. Then for any constant C,

there exists a constant c0, such that for any c > c0, the Dirichlet problem

σk(λ(D2u)) = 1, x ∈ R
n\B1(0), (17)

u = C, x ∈ ∂B1(0), (18)

has a radial solution satisfying (3).

Proof Assume that
u = u(r) = u(|x|)

is the radial solution of (17)-(18). A direct calculation gives that

σk(λ(D2u)) = Ck−1
n−1

r1−n

k
(rn−k(u′)k)′ = 1.

Then, we have

u = c∗

∫ |x|

1

(sk + ask−n)1/kds + C,

where c∗ = (1/Ck
n)1/k, and a > −1 is a constant to be determined.

Consequently,

u = c∗

∫ |x|

1

{
s
[(

1 +
a

sn

)1/k
− 1

]
+ s

}
ds + C

=
c∗
2
|x|2 + C − c∗

2
+ c∗

∫ ∞

1

s
[(

1 +
a

sn

)1/k
− 1

]
ds

− c∗

∫ ∞

|x|
s
[(

1 +
a

sn

)1/k
− 1

]
ds

=
c∗
2
|x|2 + C − c∗

2
+ c∗

∫ ∞

1

s
[(

1 +
a

sn

)1/k
− 1

]
ds + O(|x|2−n)

=
c∗
2
|x|2 + µ0(a) + O(|x|2−n),
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where

µ0(a) = C − c∗
2

+ c∗

∫ ∞

1

s
[(

1 +
a

sn

)1/k
− 1

]
ds, a > −1.

Clearly, µ0(a) is strictly increasing on [−1,+∞) and µ0(+∞) = +∞. For
c0 = µ0(−1) and c > c0, we have a constant a > −1 such that c = µ0(a), and
then (3) holds. �
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