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1. Introduction

In this paper, we consider the solvability of the Dirichlet problem for the Monge–Ampère equation

det(D2u) = 1 (1.1)

on an exterior domain R2
\ D̄, where D is a bounded open convex subset of R2. This equation arises in the context of an affine

differential geometry problem as the equation of a parabolic affine sphere in the unimodular affine real 3-space (see [1]).
Contrary to studies of (1.1) in smooth bounded domains, less is known about the solutions of (1.1) when the domain is
unbounded.

A classical theorem of Jörgens (n = 2 [2]), Calabi (n ≤ 5 [3]), and Pogorelov (n ≥ 2 [4]) states that any classical convex
solution of det(D2u) = 1 in Rn must be a quadratic polynomial. A simpler and more analytic proof, along the lines of affine
geometry, was later given by Cheng and Yau [5]. Caffarelli [6] extended the result for classical solutions to viscosity solutions.
Another proof of this theorem was given by Jost and Xin [7]. Trudinger and Wang [8] proved that if Ω is an open convex
subset of Rn and u is a convex C2 solution of det(D2u) = 1 inΩ with limx→∂Ω u(x) = ∞, thenΩ = Rn and u is quadratic.

Caffarelli and Li [9] extended the Jörgens–Calabi–Pogorelov theorem to exterior domains. Let u be a convex viscosity
solution of det(D2u) = 1 in Rn

\ D̄, then for n ≥ 3, there exist an n × n real symmetric positive definite matrix A, a vector
b ∈ Rn, and a constant c ∈ R such that

lim sup
|x|→∞


|x|n−2

u(x)−


1
2
xTAx + b · x + c

 < ∞; (1.2)

for n = 2, there exist a 2 × 2 real symmetric positive definite matrix A, a vector b ∈ R2, and constants c, d ∈ R such that

lim sup
|x|→∞


|x|
u(x)−


1
2
xTAx + b · x + d ln

√

xTAx + c
 < ∞; (1.3)
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moreover, if D = ∅, then d = 0. The similar asymptotic problems in R2 are studied by Ferrer et al. in [10,11] using the
complex variable method. It is shown that any solution behaves like a quadratic polynomial plus a logarithmic term at
infinity, i.e.

lim sup
|x|→∞

u(x)−


1
2
xTAx + b · x + d ln

√

xTAx + c
 < ∞. (1.4)

See also Delanoë [12]. We remark that the theorem of Jörgens, Calabi, Pogorelov is an easy consequence of the above results.
Indeed, let u ∈ C2 be a convex solution of

det(D2u) = 1 in Rn, n ≥ 3,

then for some c, b, and n × n real symmetric positive definite matrix Awith det(A) = 1,

E(x) := u(x)−


1
2
xTAx + b · x + c


→ 0 as |x| → ∞.

Since

det(A + D2E)− det(A) = det(D2u)− 1 = 0

and (A + D2E) = (D2u) is positive definite, it follows from the mean value theorem that for some positive definite matrix
function (aij(x)),

aijDijE = 0 in Rn, n ≥ 3.

By the maximum principle, E(x) ≡ 0, i.e.,

u(x) ≡
1
2
xTAx + b · x + c.

The above results on asymptotic behavior at infinity of the solutions of (1.1) enable us to study the existence of solutions
for the exterior Dirichlet problem of the Monge–Ampère equation with these prescribed asymptotic behaviors at infinity.
Whereas in dimensions n ≥ 3 the existence theory for the exterior Dirichlet problem of Monge–Ampère equations has
been established in [9] and extended to k-Hessian equations in [13,14], the analogue existence problem for Monge–Ampère
equations in dimension two has not been studied until very recently. In this paper, wewill investigate the existence theorem
to the Dirichlet problem for (1.1) on exterior domains in R2, with an appropriate asymptotic behavior at infinity.

In order to impose some restriction on the behavior of the solution at infinity, itwill beworthwhile to recall some classical
results concerning Laplace’s equation1u = 0 in Rn, n ≥ 2. First of all, in dimensions n ≥ 3 Laplace’s equation has a radial
symmetric solution |x|2−n, which tends to zero as |x| → ∞, while in dimension two the radial symmetric solution is ln |x|,
tending to +∞ as |x| → ∞. Second, in treating the exterior Dirichlet problem for 1u = 0 it is clear that some restriction
on the behavior of the solution at infinity is also necessary in order to insure uniqueness. Indeed, for the case n = 2, it is
well known that the boundedness of solutions alone suffices for uniqueness. So that for some d, c , and ϕ ∈ C2(∂B1), where
B1 = {x ∈ R2

: |x| < 1}, the following exterior Dirichlet problem
1u = 1, in R2

\ B1,

u = ϕ, on ∂B1,

u −


1
4
|x|2 + d ln |x| + c


= O(1), as |x| → ∞

has a unique solution; see [15].
Recently, Wang and Bao in [16] have studied radial solutions of the exterior Dirichlet problem of (1.1). They showed that

for any ρ ∈ R, the Dirichlet problem
det(D2u) = 1, (D2u) > 0, in R2

\ B1,
u = ρ, on ∂B1

(1.5)

has a unique radial solution

u(x) = ρ +
1
2


|x|


|x|2 + d + d ln

|x| +


|x|2 + d


−

1
2

√
1 + d + d ln


1 +

√
1 + d


in C1(R2

\ B1(0)) ∩ C2(R2
\ B1(0)), satisfying

u(x) =
1
2
|x|2 +

d
2
ln |x| + c + O


|x|−2 , x → ∞, (1.6)

if and only if d ≥ −1 and

c = ρ +
d
4
(1 + 2 ln 2)−

1
2

√
1 + d + d ln


1 +

√
1 + d


. (1.7)
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In this paper, we consider the following exterior Dirichlet problem
det(D2u) = 1, in R2

\ D̄,
u = ϕ, on ∂D, (1.8)

where D is a bounded open convex subset of R2 with 0 ∈ D, and ϕ ∈ C2(∂D). Let

A = {A : A is a real 2 × 2 symmetric positive definite matrix, with det(A) = 1} ,

and

Er = {x ∈ R2
: xTAx < r2}.

Then the main result is the following.

Theorem 1.1. Let D be a smooth, bounded, strictly convex open subset of R2, and ϕ ∈ C2(∂D). Then for any given b ∈ R2 and
any given A ∈ A, there exists some constant d∗, depending only on D, ϕ, b, and A, such that for every d > d∗ there exists a unique
local convex function u ∈ C0(R2

\ D) ∩ C∞(R2
\ D̄) that satisfies (1.8) and

O

|x|−2

≤ V (x) ≤ Md + O

|x|−2 as x → +∞, (1.9)

where

V (x) = u(x)−


1
2
xTAx + b · x + d ln

√

xTAx + c(d)

,

Md = osc∂Dϕ + max
∂D

 r̄

√

xT Ax


s2 + d ds,

r̄ = min{r > 0 : D ⊂ Er}, and c(d) is a function of d.

Remark 1.1. In fact, we expect by (1.6) that the solution has the following asymptotic behavior at infinity

lim sup
|x|→∞


|x|2

u(x)−


1
2
xTAx + b · x + d ln

√

xTAx + c
 < ∞, (1.10)

where c is a function of d. Especially, if D is an ellipse with respect to A, i.e., D = Er0 = {x ∈ R2
: xTAx ≤ r02}, and ϕ = ρ, a

constant, then r̄ = r0 and Md = 0. At this moment, (1.9) actually is (1.10).

Remark 1.2. In dimensions n ≥ 3, the corresponding existence theorem could be found in [9], where the asymptotic
formula at infinity is (1.2).

2. Preliminaries

LetΩ be an open subset of R2, g ∈ C0(Ω) a positive function, and u ∈ C0(Ω) a locally convex function. We say that u is
a viscosity subsolution (resp. supersolution) of

det(D2u) = g inΩ (2.1)

or a viscosity solution of

det(D2u) ≥ (resp. ≤) g inΩ

if for every x̄ ∈ Ω and every convex ψ ∈ C2(Ω) satisfying

ψ ≥ (resp. ≤) u onΩ and ψ(x̄) = u(x̄)

we have

det(D2ψ(x̄)) ≥ (resp. ≤) g(x̄).

u is a viscosity solution of (2.1) if u is both a viscosity subsolution and a viscosity supersolution of (2.1). (See, e.g., [17,18].)
Let ϕ ∈ C0(∂D). A function u ∈ C0(R2

\ D) is a viscosity subsolution (resp. supersolution, solution) of the Dirichlet
problem (1.8), if u is a viscosity subsolution (resp. supersolution, solution) of (1.1) and u ≤ (resp. ≥,=) ϕ(x) on ∂D.

The proof of Theorem 1.1 can be reduced to the establishment of the existence of viscosity solutions of (1.8), based on
the following lemma. (See, e.g., Lemma 3.1 on p. 561 in [9].)

Lemma 2.1. Let u be a locally convex viscosity solution of (1.8), then u is C∞ in R2
\ D̄.
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Recall that any real symmetric matrix A has an eigen-decomposition A = UTΛU where U is an orthogonal matrix, and
Λ is a diagonal matrix. That is, A may be regarded as a real diagonal matrix Λ that has been re-expressed in some new
coordinate system, and the eigenvalues λ(A) = λ(Λ). Let y = Ux and v(y) = u(U−1y), then (1.8) and (1.9) become

det(D2
yv) = 1, in R2

\D,
v = ϕ(U−1y), on ∂D

and

O

|U−1y|−2

≤ v(y)−


1
2
yTΛy + bU−1

· y + d ln

yTΛy + c


≤ Md + O


|U−1y|−2 ,

whereD is transformed from D under y = Ux. So, without loss of generality, we always assume that A is diagonal. Further,
if A is diagonal and A ∈ A, then det(A) = 1, and we can find a diagonal matrix Q with detQ = 1 such that QAQ = I ∈ A.
Clearly, λ(I) is not necessarily the same as λ(A), but under transformation y = Qx, we still have

det

D2
xu


= det

QD2

yuQ


= det

D2
yu

.

Therefore, in the following we assume without loss of generality that A = I . Further, by subtracting a linear function from
u, we only need to prove Theorem 1.1 for the case that A = I, b = 0, and B2(0) ⊂ D. These will be assumed below.

The following lemma holds for n ≥ 2, and its proof can be found in [9].

Lemma 2.2. Let ϕ ∈ C2(∂D). There exists some constant C, depending only on n, the convexity of D, ∥ϕ∥C2(∂D), and the C2 norm
of ∂D, such that, for every ξ ∈ ∂D, there exists x̄(ξ) ∈ Rn satisfying

|x̄(ξ)| ≤ C and wξ < ϕ on D̄ \ {ξ},

where

wξ (x) := ϕ(ξ)+
1
2


|x − x̄(ξ)|2 − |ξ − x̄(ξ)|2


, x ∈ Rn. (2.2)

We remark that this lemma holds for any invertible and symmetric matrix A, where

wξ (x) := ϕ(ξ)+
1
2


(x − x̄(ξ))TA(x − x̄(ξ))− (ξ − x̄(ξ))TA(ξ − x̄(ξ))


, x ∈ Rn

and C depends also on an upper bound of A. The interested readers can refer to [14].

3. Proof of Theorem 1.1

Proof of Theorem 1.1. For r > 0, let Br =

x ∈ R2

: |x| < r

. Fix

r̄ = min {r > 0 : D ⊂ Br} .

For d > 0, α ∈ R, set

ωd(x) = α +


|x|

r̄


s2 + d ds.

Then ωd is a locally convex smooth solution of (1.1) in R2
\ {0},

ωd(x) = α +
1
2


|x|


|x|2 + d + d ln

|x| +


|x|2 + d


−

1
2


r̄

r̄2 + d + d ln


r̄ +


r̄2 + d


. (3.1)

As s → +∞, by Taylor expansion,

s

s2 + d = s2


1 +

d
s2

= s2 +
d
2

−
1
8
d2

s2
+ O


d3

s4


,

and

ln

s +


s2 + d


= ln s + ln


1 +


1 +

d
s2



= ln s + ln 2 +
1
4

d
s2

+ O

d2

s4


.

Substituting these expansions into (3.1), we have

ωd(x) =
1
2
|x|2 +

d
2
ln |x| + ν(d)+ O


d2

|x|2


, as x → ∞. (3.2)
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Here

ν(d) = α +
d
4
(1 + 2 ln 2)−

1
2


r̄

r̄2 + d + d ln


r̄ +


r̄2 + d


, (3.3)

with
∂ν

∂d
=

1
2
ln


2

r̄ +
√
r̄2 + d


< 0, for r̄ > 1,

and

lim
d→∞

ν(d) = −∞.

Denote

µ(d, r) = α +

 r

r̄


s2 + d ds −

r2

2
, (3.4)

then

ωd(x) =
1
2
|x|2 + µ(d, |x|). (3.5)

From

∂µ(d, r)
∂r

=


r2 + d − r > 0, (3.6)

it follows that for fixed d > 0, µ(d, r) is strictly increasing in r , and

lim
r→∞

µ(d, r) = +∞.

On the other hand, by calculus,

∂µ(d, r)
∂d

=
1
2

 r

r̄

ds
√
s2 + d

=
1
2
ln


r +

√
r2 + d

r̄ +
√
r̄2 + d


> 0, for r > r̄, (3.7)

which implies that for fixed r > r̄, µ(d, r) is strictly increasing in d. And in view of the definition of µ(d, r), (3.4), we have
for r > r̄

µ(d, r) ∼ O
√

d

, as d → ∞.

Hence

lim
d→∞

µ(d, r) = +∞. (3.8)

It is clear from (3.4) that

µ(0, r) = α −
1
2
r̄2 < α.

Thus, in view of (3.7) and (3.8), for every c > α and r > r̄ , there exists a unique d = d(c, r) such that

µ(d(c, r), r) = c. (3.9)

Recalling (3.6), µ(d, r) is strictly increasing in r , we know that for d > 0,

µ(d, r) ≤ µ(d, 2r̄) for r ≤ 2r̄.

Combining with (3.5), we have, for c > α (or d > d2 = d(α, 2r̄)),

ωd(c,2r̄)(x) =
1
2
|x|2 + µ (d(c, 2r̄), |x|) ≤

1
2
|x|2 + µ(d(c, 2r̄), 2r̄) =

1
2
|x|2 + c, in B2r̄ .

Clearly,

ωd ≤ α, in Br̄ \ D̄, ∀ d > 0. (3.10)

Let

α := min

wξ (x) | ξ ∈ ∂D, x ∈ Br̄ \ D


,

γ := max

wξ (x) | ξ ∈ ∂D, x ∈ Br̄ \ D


,
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wherewξ (x) is given by (2.2). Then by Lemma 2.2, we have

γ ≥ α = min
∂D
ϕ.

Set

w(x) = max

wξ (x) | ξ ∈ ∂D


.

It is clear by Lemma 2.2 that w is a locally Lipschitz function in R2
\ D, and w = ϕ on ∂D. Since wξ is a smooth convex

solution of (1.1),w is a viscosity subsolution of (1.1) in R2
\ D̄. We now fix a number r̂ > 2r̄ , by (3.5),

ωd(x) =
r̂2

2
+ µ(d, r̂) on ∂Br̂

and choose another number d3 > 0, depending only on r̄, r̂,D,max∂D |ϕ|, by (3.8), such that

ωd3(r̂) = min
∂Br̂

ωd3 > max
∂Br̂

w. (3.11)

We now fix the value of

d∗ ≥ max{d2, d3}.

Then for d > d∗, denoting c ′
= ν(d), we have by (3.2)

ωd(x) =
1
2
|x|2 +

d
2
ln |x| + c ′

+ O

|x|−2 , as x → ∞. (3.12)

For d > d∗, from (3.5) and (3.7), it follows that

∂ωd

∂d
> 0 on ∂Br̂ ,

therefore, by (3.11)

ωd(c,r̂) ≥ ωd3 > w, on ∂Br̂ . (3.13)

By (3.10), we have

ωd(c,r̂) ≤ 0 ≤ w, in Br̄ \ D̄. (3.14)

Now we define, for d > d∗,

u(x) =


max


ωd(x), w(x)


, x ∈ Br̂ \ D,

ωd(x), x ∈ R2
\ Br̂ .

We know from (3.14) that

u = w, in Br̄ \ D̄, (3.15)

and in particular

u = w = 0, on ∂D. (3.16)

We know from (3.13) that u = ωd in a neighborhood of ∂Br̂ . Therefore u is locally Lipschitz in R2
\ D. Since both ωd and w

are viscosity subsolutions of (1.1) in R2
\ D̄, so is u.

For d > d∗,

ū(x) := ωd(x)+ Md (3.17)

is a locally convex solution of (1.1), where

Md = osc∂Dϕ + max
∂D

 r̄

|x|


s2 + d ds.

Then we have

ωd ≤ ū, on R2
\ D. (3.18)

By (3.13) and the above, we have, for d > d∗,

wξ ≤ ū, on ∂(Br̂ \ D),∀ ξ ∈ ∂D.
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By the comparison principle for smooth convex solutions of (1.1), we have

wξ ≤ ū, in Br̂ \ D̄, ∀ ξ ∈ ∂D.

Thus

w ≤ ū, in Br̂ \ D̄.

This, combining with (3.18), implies that

u ≤ ū, in R2
\ D.

For any d > d∗, let Sd denote the set of v ∈ C0(R2
\ D)which are viscosity subsolutions of (1.1) in R2

\ D̄ satisfying

v = ϕ, on ∂D, (3.19)

and

u ≤ v ≤ ū, in R2
\ D. (3.20)

We know that u ∈ Sd. Let

u(x) := sup {v(x) | v ∈ Sd} , x ∈ R2
\ D.

Then u is a subsolution. By (3.12), and the definitions of u and ū,

u(x) ≥ u = ωd(x) =
1
2
|x|2 +

d
2
ln |x| + c ′

+ O

|x|−2 , as x → ∞, (3.21)

and

u(x) ≤ ū =
1
2
|x|2 +

d
2
ln |x| + c ′

+ Md + O

|x|−2 , as x → ∞,

where c ′
= ν(d). The estimate (1.9) follows.

Next, we prove that u satisfies the boundary condition. It is obvious from (3.16) that

lim inf
x→ξ

u(x) ≥ lim
x→ξ

u(x) = ϕ(ξ), ∀ ξ ∈ ∂D.

So we only need to prove that

lim sup
x→ξ

u(x) ≤ ϕ(ξ), ∀ ξ ∈ ∂D.

Let ω+
c ∈ C2(Br̄ \ D) be defined by
1ω+

c = 0, in Br̄ \ D̄,
ω+

c = ϕ, on ∂D,
ω+

c = max
∂Br̄

ū, on ∂Br̄ .

It is easy to see that a viscosity subsolution v of (1.1) satisfies 1v ≥ 0 in viscosity sense. Therefore, for every v ∈ Sc , by
v ≤ ω+

c on ∂(Br̄ \ D), we have

v ≤ ω+

c in Br̄ \ D̄.

It follows that

u ≤ ω+

c in Br̄ \ D̄,

and then

lim sup
x→ξ

u(x) ≤ lim
x→ξ

ω+

c (x) = ϕ(ξ), ∀ ξ ∈ ∂D.

Finally, we prove that u is a supersolution of (1.1). For x̄ ∈ R2
\ D̄, fix some ϵ satisfying 0 < ϵ < 2diam(D) and

Bϵ(x̄) ⊂ R2
\ D̄. By the definition of u, u ≤ ū. It is well-known that there is a unique convex viscosity solutionu ∈ C0(Bϵ(x̄))

to 
det(D2u) = 1, x ∈ Bϵ,u = u, x ∈ ∂Bϵ .
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By the maximum principle (see, e.g., [9]),u ≥ u on Bϵ . Define

w(y) =

u(y), if y ∈ Bϵ,
u(y), if y ∈ R2

\ (D ∪ Bϵ(x̄)).

Clearly, w ∈ Sd. So, by the definition of u, u ≥ w on Bϵ(x̄). It follows that u ≡u on Bϵ(x̄). Therefore u is a viscosity solution
of (1.1). By Lemma 2.1, Theorem 1.1 is established. �
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