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ON THE EXTERIOR DIRICHLET PROBLEM

FOR HESSIAN EQUATIONS

JIGUANG BAO, HAIGANG LI, AND YANYAN LI

Abstract. In this paper, we establish a theorem on the existence of the solu-
tions of the exterior Dirichlet problem for Hessian equations with prescribed
asymptotic behavior at infinity. This extends a result of Caffarelli and Li
(2003) for the Monge-Ampère equation to Hessian equations.

1. Introduction

In this paper, we consider the solvability of the Dirichlet problem for Hessian
equations

(1.1) σk(λ(D
2u)) = 1

on exterior domains R
n \ D, where D is a bounded open set in R

n, n ≥ 3, and
λ(D2u) denotes the eigenvalues λ1, · · · , λn of the Hessian matrix of u. Here

σk(λ) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik

is the k-th elementary symmetric function of n variations, k = 1, · · · , n. Note that
the case k = 1 corresponds to Poisson’s equation, which is a linear equation. There
has been extensive literature on the exterior Dirichlet problem for linear elliptic
equations of second order; see [19] and the references therein. For 2 ≤ k ≤ n, the
Hessian equation (1.1) is an important class of fully nonlinear elliptic equations.
Especially, for k = n, we have the Monge-Ampère equation det(D2u) = 1.

For the Monge-Ampère equation, a classical theorem of Jörgens ([17]), Calabi
([5]), and Pogorelov ([20]) states that any classical convex solution of det(D2u) = 1
in R

n must be a quadratic polynomial. A simpler and more analytic proof, along the
lines of affine geometry, was later given by Cheng and Yau [6]. Caffarelli [1] extended
the result for classical solutions to viscosity solutions. Another proof of this theorem
was given by Jost and Xin in [18]. Trudinger and Wang [24] proved that if Ω is an
open convex subset of Rn and u is a convex C2 solution of det(D2u) = 1 in Ω with
limx→∂Ω u(x) = ∞, then Ω = R

n and u is quadratic.
Caffarelli and the third author [3] extended the Jörgens-Calabi-Pogorelov theo-

rem to exterior domains. They proved that if u is a convex viscosity solution of
det(D2u) = 1 outside a bounded subset of Rn, n ≥ 3, then there exist an n×n real
symmetric positive definite matrix A, a vector b ∈ R

n, and a constant c ∈ R such
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2 JIGUANG BAO, HAIGANG LI, AND YANYAN LI

that

(1.2) lim sup
|x|→∞

(
|x|n−2

∣∣∣∣ u(x)− (
1

2
xTAx+ b · x+ c

) ∣∣∣∣) < ∞.

With this prescribed asymptotic behavior at infinity, an existence result for the
exterior Dirichlet problem for the Monge-Ampère equation in R

n, n ≥ 3, was
also established in [3]. In this paper, we will extend the existence theorem to the
Dirichlet problem for Hessian equations (1.1) with 2 ≤ k ≤ n − 1 on exterior
domains, with an appropriate asymptotic behavior at infinity. In dimension two,
similar problems were studied by Ferrer, Mart́ınez and Milán in [12, 13] using the
complex variable method. See also Delanoë [11].

We remark that for the case that A = c∗I, where

c∗ = (Ck
n)

−1/k, Ck
n =

n!

(n− k)!k!
,

I is the n × n identity matrix and 1 ≤ k ≤ n, the exterior Dirichlet problem of
Hessian equation (1.1) has been investigated in [9, 10]. For interior domains, there
have been many well-known results on the solvability of Hessian equations. For
instance, Caffarelli, Nirenberg and Spruck [4] established the classical solvability of
the Dirichlet problem, Trudinger [23] proved the existence and uniqueness of weak
solutions, and Urbas [25] demonstrated the existence of viscosity solutions. Jian
[16] studied the Hessian equations with infinite Dirichlet boundary value conditions.

For the reader’s convenience, we recall the definition of viscosity solutions to
Hessian equations (see [2, 25] and the references therein). We say that a function
u ∈ C2(Rn \D) is admissible (or k-convex) if λ(D2u) ∈ Γk in R

n \D, where Γk is
the connected component of {λ ∈ R

n | σk(λ) > 0} containing

Γ+ = {λ ∈ R
n | λi > 0, i = 1, · · · , n}.

It is well known that Γk is a convex symmetric cone with vertex at the origin.
Moreover,

Γk = {λ ∈ R
n | σj(λ) > 0, for all j = 1, · · · , k}.

See [4,22]. Clearly, Γk ⊆ Γj for k ≥ j, and Γ1 is the half space {λ ∈ R
n | λ1+ · · ·+

λn > 0}, while Γn = Γ+. We use the following definitions, which can be found in
[21].

Let Ω ⊂ R
n; we use USC(Ω) and LSC(Ω) to denote respectively the set of upper

and lower semicontinuous real valued functions on Ω.

Definition 1.1. A function u ∈ USC(Rn \D) is said to be a viscosity subsolution
of equation (1.1) in R

n \D (or say that u satisfies σk(λ(D
2u)) ≥ 1 in R

n \D in the
viscosity sense) if for any function ψ ∈ C2(Rn \D) and point x̄ ∈ R

n \D satisfying

ψ(x̄) = u(x̄) and ψ ≥ u on R
n \D,

we have

σk(λ(D
2ψ(x̄))) ≥ 1.

A function u ∈ LSC(Rn\D) is said to be a viscosity supersolution of (1.1) in R
n\D

(or say that u satisfies σk(λ(D
2u)) ≤ 1 in R

n \D in the viscosity sense) if for any
k-convex function ψ ∈ C2(Rn \D) and point x̄ ∈ R

n \D satisfying

ψ(x̄) = u(x̄) and ψ ≤ u on R
n \D,
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we have

σk(λ(D
2ψ(x̄))) ≤ 1.

A function u ∈ C0(Rn \D) is said to be a viscosity solution of (1.1) if it is both a
viscosity subsolution and supersolution of (1.1).

It is well known that a function u ∈ C2(Rn \D) is a viscosity solution (respec-
tively, subsolution, supersolution) of (1.1) if and only if it is a k-convex classical
solution (respectively, subsolution, supersolution).

Definition 1.2. Let ϕ ∈ C0(∂D). A function u ∈ USC(Rn \D) (u ∈ LSC(Rn \D))
is said to be a viscosity subsolution (supersolution) of the Dirichlet problem

(1.3)

{
σk(λ(D

2u)) = 1, in R
n \D,

u = ϕ, on ∂D

if u is a viscosity subsolution (supersolution) of (1.1) in R
n \D and u ≤ (≥) ϕ on

∂D. A function u ∈ C0(Rn \ D) is said to be a viscosity solution of (1.3) if it is
both a subsolution and a supersolution.

Let

Ak=
{
A
∣∣ A is a real n×n symmetric positive definite matrix, with σk(λ(A))=1

}
.

Our main result is

Theorem 1.1. Let D be a smooth, bounded, strictly convex open subset of R
n,

n ≥ 3, and let ϕ ∈ C2(∂D). Then for any given b ∈ R
n and any given A ∈ Ak

with 2 ≤ k ≤ n, there exists some constant c∗, depending only on n, b, A,D and
‖ϕ‖C2(∂D), such that for every c > c∗ there exists a unique viscosity solution u ∈
C0(Rn \D) of (1.3) and

(1.4) lim sup
|x|→∞

(
|x|θ(n−2)

∣∣∣∣ u(x)− (
1

2
xTAx+ b · x+ c

)∣∣∣∣ ) < ∞,

where θ ∈
[
k−2
n−2 , 1

]
is a constant depending only on n, k, and A.

Remark 1.1. For the two cases (i) k = n, the Monge-Ampère equations with any
A ∈ An, and (ii) 2 ≤ k ≤ n − 1, (1.4) with A = c∗I ∈ Ak, Theorem 1.1 has been
proved by Caffarelli-Li [3] and Dai-Bao [10], respectively, where θ = 1. Moreover,
for the symmetric case A = c∗I, Wang-Bao [26] have proved that for 2 ≤ k ≤ n,
there exists a c̄(k, n) such that there is no classical radial solution of (1.3) and (1.4)
if c < c̄(k, n).

Recall that any real symmetric matrix A has an eigen-decomposition A = OTΛO
where O is an orthogonal matrix and Λ is a diagonal matrix. That is, A may
be regarded as a real diagonal matrix Λ that has been re-expressed in some new
coordinate system, and the eigenvalues λ(A) = λ(Λ). Let

y = Ox and v(y) = u(O−1y).

Then (1.3) and (1.4) become{
σk(λ(D

2
yv)) = 1, in R

n \ D̃,

v = ϕ(O−1y), on ∂D̃
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and

lim sup
|y|→∞

(
|O−1y|θ(n−2)

∣∣∣∣ v(y)− (
1

2
yTΛy + bO−1 · y + c

)∣∣∣∣ ) < ∞,

where D̃ is transformed from D under y = Ox. So, without loss of generality, we
always assume that A is diagonal in this paper.

If A is diagonal and A ∈ An, then σn(λ(A)) = 1, and we can find a diagonal
matrix Q with detQ = 1 such that QAQ = I ∈ An. Clearly, λ(I) is not necessarily
the same as λ(A), but under the transformation y = Qx, we still have

det
(
D2

xu
)
= det

(
QD2

yuQ
)
= det

(
D2

yu
)
.

Therefore, when the Monge-Ampère equation is considered, Caffarelli and Li [3] can
assume without loss of generality that A = I. However, when 2 ≤ k ≤ n − 1, if A
is diagonal and A ∈ Ak, σk(λ(A)) = 1, although we can also find a diagonal matrix
Q such that QAQ = c∗I ∈ Ak, it is clear that λ(A) 	= λ(c∗I) unless A = c∗I, and
for the Hessian operator

σk

(
λ(QD2

yuQ)
)
	= σk(λ(Q))σk

(
λ(D2

yu)
)
σk(λ(Q)).

So, in order to prove Theorem 1.1, we are only allowed to assume that A is diagonal,
but we cannot further assume that A = c∗I.

Definition 1.3. For a diagonal matrix A = diag(a1, a2, · · · , an), we call u a gen-
eralized symmetric function with respect to A if u is a function of

s =
1

2
xTAx =

1

2

n∑
i=1

aix
2
i .

If u is a generalized symmetric function with respect to A and u is a solution
(respectively, subsolution, supersolution) of the Hessian equation (1.1), then we
call u a generalized symmetric solution (respectively, subsolution, supersolution) of
(1.1).

In this paper we often abuse notation slightly by writing u(x) = u( 12x
TAx) for

a generalized symmetric function with respect to A. Clearly, for diagonal matrix
A = diag(a1, a2, · · · , an) ∈ Ak and real constants μ1, μ2, with μk

1 = 1,

(1.5) ω(s) = μ1s+ μ2, s =
1

2

n∑
i=1

aix
2
i

satisfies the Hessian equation (1.1) and ω′′(s) ≡ 0.
First, we will derive a formula of σk(λ(M)) for matrices M of the form

(1.6) M =
(
piδij − β qiqj

)
n×n

,

where p = (p1, p2, · · · , pn), q = (q1, q2, · · · , qn) and β ∈ R.

Proposition 1.2. If M is an n×n matrix of the form (1.6) for p = (p1, p2, · · · , pn),
q = (q1, q2, · · · , qn) and β ∈ R, then we have

(1.7) σk(λ(M)) = σk(p)− β
n∑

i=1

q2i σk−1;i(p),

where σk−1;i(p) = σk−1(p)|pi=0.
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For any A = diag(a1, a2, · · · , an), suppose ω ∈ C2(Rn) is a generalized symmetric
function with respect to A, that is,

ω(x) = ω

(
1

2

n∑
i=1

aix
2
i

)
.

Then

Diω(x) = ω′(s)aixi,

Dijω(x) = ω′(s)aiδij + ω′′(s)(aixi)(ajxj).

We have the following lemma.

Lemma 1.3. For any A = diag(a1, a2, · · · , an), if ω ∈ C2(Rn) is a generalized
symmetric function with respect to A, then, with a = (a1, a2, · · · , an),

σk(λ(D
2ω)) = σk(a)(ω

′)k + ω′′(ω′)k−1
n∑

i=1

σk−1;i(a)(aixi)
2.(1.8)

If A = c∗I, 2 ≤ k ≤ n, then there exists a family of radially symmetric functions

ωk(s) =

∫ s

1

(
1 + α t−

n
2

) 1
k

dt, α > 0, s > 0,

satisfying

σk(λ(D
2ω)) = 1, in R

n \ {0}.
Such radially symmetric solutions play an important role in the solvability of the
exterior Dirichlet problems studied by Caffarelli-Li [3] and by Dai-Bao [10]. How-
ever, for any given A ∈ Ak with 2 ≤ k ≤ n− 1, it is not enough to prove Theorem
1.1 by only using these radially symmetric functions. Due to the invariance of (1.1)
for k = n, the Monge-Ampère equation, under affine transformations, ωn(

1
2x

TAx)
is a solution of (1.1) in R

n \ {0} for A ∈ An. So the Monge-Ampère equation has
generalized symmetric solutions with respect to A for every A ∈ An. A natural
question is whether (1.1) with 2 ≤ k ≤ n − 1 has generalized symmetric solutions
with respect to A for every A ∈ Ak besides those of the form (1.5).

For this, we have

Proposition 1.4. For A = diag(a1, a2, · · · , an) ∈ Ak, 1 ≤ k ≤ n, and 0 <
α < β < ∞, if there exists an ω ∈ C2(α, β) with ω′′ 	≡ 0 in (α, β), such that
ω(x) = ω( 12

∑n
i=1 aix

2
i ) is a generalized symmetric solution of the Hessian equation

(1.1) in {x ∈ R
n | α < 1

2

∑n
i=1 aix

2
i < β}, then

k = n or a1 = a2 = · · · = an = c∗,

where c∗ = (Ck
n)

−1/k, Ck
n = n!

(n−k)!k! , and vice versa.

This means that for A = diag(a1, a2, · · · , an) ∈ Ak, 2 ≤ k ≤ n− 1, ω( 12x
TAx) is

in general not a solution of (1.1).
To prove Theorem 1.1 for 2 ≤ k ≤ n−1, it suffices to obtain enough subsolutions

with appropriate properties. We construct such subsolutions which are generalized
symmetric functions with respect to A. This is the main new ingredient in our
proof of the theorem.

This paper is set out as follows. In the next section we construct a family of
generalized symmetric smooth k-convex subsolutions of (1.1) in R

n\{0}. In Section
3, we prove Theorem 1.1 using Perron’s method.
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2. Generalized symmetric solutions and subsolutions

In this section, we first derive formula (1.7) and (1.8), then prove Proposition
1.4, and finally construct a family of generalized symmetric smooth k-convex sub-
solutions of (1.1).

For A = diag(a1, a2 · · · , an), we denote λ(A) = (a1, a2 · · · , an) := a. If A ∈ Ak,
then we have ai > 0 (i = 1, 2, · · · , n) and σk(a) = 1. Here we introduce some
notation. For any fixed t-tuple {i1, · · · , it}, 1 ≤ t ≤ n− k, we define

σk;i1···it(a) = σk(a)|ai1
=···=ait=0;

that is, σk;i1···it is the k-th order elementary symmetric function of the n−t variables{
ai
∣∣ i ∈ {1, 2, · · · , n} \ {i1, i2, · · · , it}

}
. The following properties of the functions

σk will be used in this paper:

(2.1) σk(a) = σk;i(a) + aiσk−1;i(a), i = 1, 2, · · · , n,

and

(2.2)
n∑

i=1

aiσk−1;i(a) = kσk(a).

Now we prove Proposition 1.2 to derive a formula of σk(λ(M)) for matrices M
of the form (1.6).

Proof of Proposition 1.2. If β = 0, (1.7) is obvious. If β 	= 0, we work with

M̂ =
1

β
M = (p̂iδij − qiqj), p̂ =

p

β
.

Therefore we only need to prove Proposition 1.2 for β = 1, which we assume in the
rest of the proof.

Denote

(2.3) Dn ({p1, p2, · · · , pn}; {q1, q2, · · · , qn};λ) := det(λI −M).

By direct computations, we have

Dn ({p1, p2, · · · , pn}; {q1, q2, · · · , qn};λ)

=

∣∣∣∣∣∣∣∣∣∣
λ− p1 + q21 q1q2 · · · q1qn−1 q1qn

q2q1 λ− p2 + q22 · · · q2qn−1 q2qn
· · · · · · · · · · · · · · ·

qn−1q1 qn−1q2 · · · λ− pn−1 + q2n−1 qn−1qn
qnq1 qnq2 · · · qnqn−1 λ− pn + q2n

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
λ− p1 + q21 q1q2 · · · q1qn−1 0

q2q1 λ− p2 + q22 · · · q2qn−1 0
· · · · · · · · · · · · · · ·

qn−1q1 qn−1q2 · · · λ− pn−1 + q2n−1 0
qnq1 qnq2 · · · qnqn−1 λ− pn

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
λ− p1 + q21 q1q2 · · · q1qn−1 q1qn

q2q1 λ− p2 + q22 · · · q2qn−1 q2qn
· · · · · · · · · · · · · · ·

qn−1q1 qn−1q2 · · · λ− pn−1 + q2n−1 qn−1qn
qnq1 qnq2 · · · qnqn−1 q2n

∣∣∣∣∣∣∣∣∣∣
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ON THE EXTERIOR DIRICHLET PROBLEM FOR HESSIAN EQUATIONS 7

= (λ− pn)Dn−1 ({p1, p2, · · · , pn−1}; {q1, q2, · · · , qn−1};λ)

+ qn

∣∣∣∣∣∣∣∣∣∣
λ− p1 + q21 q1q2 · · · q1qn−1 q1qn

q2q1 λ− p2 + q22 · · · q2qn−1 q2qn
· · · · · · · · · · · · · · ·

qn−1q1 qn−1q2 · · · λ− pn−1 + q2n−1 qn−1qn
q1 q2 · · · qn−1 qn

∣∣∣∣∣∣∣∣∣∣
.

For the second term, multiplying its last row by −qi (i 	= n) and adding to the
i-th row, respectively, we obtain

∣∣∣∣∣∣∣∣∣∣
λ− p1 + q21 q1q2 · · · q1qn−1 q1qn

q2q1 λ− p2 + q22 · · · q2qn−1 q2qn
· · · · · · · · · · · · · · ·

qn−1q1 qn−1q2 · · · λ− pn−1 + q2n−1 qn−1qn
q1 q2 · · · qn−1 qn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
λ− p1 0 · · · 0 0

0 λ− p2 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · λ− pn−1 0
q1 q2 · · · qn−1 qn

∣∣∣∣∣∣∣∣∣∣
= qn(λ− p1)(λ− p2) · · · (λ− pn−1).

Hence

Dn ({p1, p2, · · · , pn}; {q1, q2, · · · , qn};λ)
= (λ− pn)Dn−1 ({p1, p2, · · · , pn−1}; {q1, q2, · · · , qn−1};λ)

+ q2n(λ− p1)(λ− p2) · · · (λ− pn−1).(2.4)

We will deduce from (2.4), by induction, that for n ≥ 2,

Dn ({p1, p2, · · · , pn}; {q1, q2, · · · , qn};λ) =
n∏

i=1

(λ− pi) +
n∑

j=1

⎛⎝q2j
∏
i �=j

(λ− pi)

⎞⎠ .

(2.5)

For n = 2,

D2 ({p1, p2}; {q1, q2};λ) =
∣∣∣∣ λ− p1 + q21 q1q2

q1q2 λ− p2 + q22

∣∣∣∣
= (λ− p1)(λ− p2) + q21(λ− p2) + q22(λ− p1).
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That is, (2.5) holds for n = 2. We now assume (2.5) holds for n− 1 ≥ 2. Then by
(2.4) and the induction hypothesis,

Dn ({p1, p2, · · · , pn}; {q1, q2, · · · , qn};λ)
= (λ− pn)Dn−1 ({p1, p2, · · · , pn−1}; {q1, q2, · · · , qn−1};λ)

+ q2n(λ− p1)(λ− p2) · · · (λ− pn−1)

= (λ− pn)

⎛⎝n−1∏
i=1

(λ− pi) +
n−1∑
j=1

⎛⎝q2j
∏

i �=j,i≤n−1

(λ− pi)

⎞⎠⎞⎠
+ q2n(λ− p1)(λ− p2) · · · (λ− pn−1)

=
n∏

i=1

(λ− pi) +
n∑

j=1

⎛⎝q2j
∏
i �=j

(λ− pi)

⎞⎠ .

We have proved that (2.5) holds for n ≥ 2. Recall the Veite theorem that for any
n× n matrix U ,

(2.6) det(λI − U) =
n∑

i=0

(−1)iσi(λ(U))λn−i.

In particular, if U = diag(p1, p2 · · · , p2),

(2.7)
n∏

i=1

(λ− pi) =
n∑

i=0

(−1)iσi(p)λ
n−i;

here p = (p1, p2 · · · , pn). Using (2.3) and (2.7), (2.5) is written as

det(λI −M) =

n∑
i=0

(−1)iσi(p)λ
n−i +

n∑
j=1

(
q2j

n∑
i=1

(−1)i−1σi−1;j(p)λ
n−i

)

=
n∑

i=0

(−1)i

⎛⎝σi(p)−
n∑

j=1

q2jσi−1;j(p)

⎞⎠λn−i.

Here we used the standard conventions that σ0(p) = 1 and σ−1(p) = 0. Thus, (1.7)
follows from (2.6). The proof of Proposition 1.2 is completed. �

Proof of Lemma 1.3. For any A = diag(a1, a2, · · · , an), if ω ∈ C2(Rn) is a general-
ized symmetric function with respect to A, that is,

ω(x) = ω

(
1

2

n∑
i=1

aix
2
i

)
,

then

Diω(x) = ω′(s)aixi,

(2.8) Dijω(x) = ω′(s)aiδij + ω′′(s)(aixi)(ajxj).

Comparing (1.6) and (2.8), letting β = −ω′′(s), pi = ω′(s)ai and qi = aixi, and
substituting them into (1.7), we have (1.8). �
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Symmetric solutions. For A = c∗I and 2 ≤ k ≤ n,

(2.9) ωk(s) =

∫ s

1

(
1 + α t−

n
2

) 1
k

dt, α > 0, s > 0,

satisfies the ordinary differential equation

(2.10) σk(λ(D
2ω)) = (ω′(s))k + 2s

k

n
ω′′(s)(ω′(s))k−1 = 1, s > 0.

Therefore, ωk

(
c∗

2 |x|2
)
is a solution of (1.1) in R

n \ {0}. In order to prove Propo-

sition 1.4, for every a = (a1, a2, · · · , an) ∈ Γ+, we denote

(2.11) Ai
k(a) = aiσk−1;i(a), i = 1, 2, · · · , n.

From the property of σk, (2.2), we have

(2.12)

n∑
i=1

Ai
k(a) = kσk(a).

Proof of Proposition 1.4. To better illustrate the idea of the proof, we start with

k = 1. For s ∈ (α, β), 1 ≤ i ≤ n, let x = (0, · · · , 0,
√

2s
ai
, 0, · · · , 0). We have, using

A ∈ A1,

1 = Δω(x) = ω′(s)
n∑

j=1

aj + ω′′(s)
n∑

j=1

a2jx
2
j = ω′(s) + 2sω′′(s)ai.

Since ω′′ 	≡ 0 in (α, β), there exists some s̄ ∈ (α, β) such that ω′′(s̄) 	= 0. It follows
that

ai =
1− ω′(s̄)

2s̄ω′′(s̄)

is independent of i. Since A ∈ A1, 1 =
∑n

i=1 ai. So a1 = a2 = · · · = an = 1
n .

Proposition 1.4 for k = 1 is established.
Now we consider the case 2 ≤ k ≤ n. For s ∈ (α, β), 1 ≤ i ≤ n, let x =

(0, · · · , 0,
√

2s
ai
, 0, · · · , 0). We have, using Lemma 1.3,

1 = σk(λ(D
2ω(x)))

= σk(a)(ω
′(s))k + ω′′(s)(ω′(s))k−1σk−1;j(a)(ajxj)

2

= (ω′(s))k + 2sω′′(s)(ω′(s))k−1σk−1;i(a)ai.

It is clear from the above that ω′(s) 	= 0, ∀ s ∈ (α, β). Since ω′′ 	≡ 0 in (α, β), there
exists some s̄ ∈ (α, β) such that ω′′(s̄) 	= 0. It follows that

Ai
k(a) = σk−1;i(a)ai =

1− (ω′(s̄))k

2s̄ω′′(s̄)(ω′(s̄))k−1

is independent of i. For 2 ≤ k ≤ n− 1, for any i1, i2 ∈ {1, 2, · · · , n}, by (2.11) and
(2.1) we have

(2.13)

0 = Ai1
k (a)− Ai2

k (a)

= ai1σk−1;i1(a)− ai2σk−1;i2(a)

= ai1 (ai2σk−2;i1i2(a) + σk−1;i1i2(a))− ai2 (ai1σk−2;i1i2(a) + σk−1;i1i2(a))

= (ai1 − ai2)σk−1;i1i2(a).
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10 JIGUANG BAO, HAIGANG LI, AND YANYAN LI

Since ai > 0, i = 1, 2, · · · , n, it follows that σk−1;i1i2(a) 	= 0. By the arbitrariness
of i1, i2, we have a1 = a2 = · · · = an. Using σk(a) = 1, we have

a1 = a2 = · · · = an = (Ck
n)

−1/k.

Proposition 1.4 is proved. �

Generalized symmetric subsolutions. From Proposition 1.4, we see that there
are no generalized symmetric solutions of (1.1) with ω′′(s) 	≡ 0 in the remain-
ing cases. We will construct a family of generalized symmetric smooth functions
satisfying

ω′(s) > 0, ω′′(s) ≤ 0,

and

σk(λ(D
2ω)) ≥ 1 and σm(λ(D2ω)) ≥ 0, 1 ≤ m ≤ k − 1.

For A = diag(a1, a2, · · · , an) ∈ Ak, denote a = (a1, a2, · · · , an), and consider

hk(a) := max
1≤i≤n

Ai
k(a).(2.14)

Since Ai
n(a) = aiσn−1;i(a) = σn(a) for every i, we have hn(a) = 1. By (2.11), (2.1)

and (2.12), we have, for 1 ≤ k ≤ n− 1,

Ai
k(a) = aiσk−1;i(a) < σk(a) = 1, ∀ i,

and

nhk(a) ≥
n∑

i=1

Ai
k(a) = kσk(a) = k.

We see from the above that

(2.15)
k

n
≤ hk(a) < 1,

where “ = ” holds if and only if Ai
k(a) is independent of i, i.e., in view of (2.13),

a1 = a2 = · · · = an = c∗. For n ≥ 3 and 2 ≤ k ≤ n, in view of (2.15) and hn(a) = 1,
we have

(2.16)
k

2hk(a)
> 1.

By a simple computation, the ordinary differential equation

(2.17)

{
(ω′(s))k + 2hk(a)sω

′′(s)(ω′(s))k−1 = 1, s > 0,

ω′(s) > 0, ω′′(s) ≤ 0

has a family of solutions

(2.18) ωα(s) = β +

∫ s

s̄

(
1 + α t

− k
2hk(a)

) 1
k

dt, α > 0, s > 0,

where β ∈ R and s̄ > 0. It follows from (2.16) that

ωα(s) = β + s− s̄+

∫ s

s̄

((
1 + α t

− k
2hk(a)

) 1
k − 1

)
dt

= s+ μ(α) +O
(
s

(2−n)θ
2

)
, as s → ∞,(2.19)

where

μ(α) = β − s̄+

∫ ∞

s̄

((
1 + α t

− k
2hk(a)

) 1
k − 1

)
dt < ∞
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ON THE EXTERIOR DIRICHLET PROBLEM FOR HESSIAN EQUATIONS 11

and

θ =
1

n− 2

(
k

hk(a)
− 2

)
.

We see from (2.15) that θ ∈
(

k−2
n−2 , 1

]
if 2 ≤ k ≤ n− 1 and θ = 1 if k = n.

Proposition 2.1. For n ≥ 3 and 2 ≤ k ≤ n, A ∈ Ak, let ωα(x) = ωα

(
1
2x

TAx
)

be given in (2.18). Then ωα is a smooth k-convex subsolution of (1.1) in R
n \ {0}

satisfying

(2.20) ωα(x) =
1

2
xTAx+ μ(α) +O

(
|x|θ(2−n)

)
, as x → ∞.

Proof. Obviously, (2.20) follows from (2.19). By computation,

ω′
α(s) =

(
1 + α s

− k
2hk(a)

) 1
k

> 1,

ω′′
α(s) = − 1

2hk(a)s
· α

s
k

2hk(a) + α
· ω′

α(s) < 0.(2.21)

It is clear from Lemma 1.3, (2.14) and (2.17) that

σk(λ(D
2u)) ≥ σk(a)(ω

′
α)

k + hk(a)ω
′′
α(ω

′
α)

k−12s = 1, in R
n \ {0}.

By Lemma 1.3, (2.21) and (2.14), we have, for any 1 ≤ m ≤ k − 1,

σm(λ(D2u)) = σm(a)(ω′
α)

m + ω′′
α(ω

′
α)

m−1
n∑

i=1

σm−1;i(a)(aixi)
2

= (ω′
α)

m

(
σm(a)− 1

2shk(a)
· α

s
k

2hk(a) + α

n∑
i=1

σm−1;i(a)(aixi)
2

)

≥ (ω′
α)

m

(
σm(a)− 1

2s
· α

s
k

2hk(a) + α

n∑
i=1

σm−1;i(a)(aixi)
2

aiσk−1;i(a)

)
.

In order to show σm(λ(D2u)) ≥ 0, it suffices to prove, for each 1 ≤ i ≤ n,

(2.22) σm(a)σk−1;i(a) ≥ σm−1;i(a).

Note that the Newtonian inequalities may be expressed as

σk+1(a)

Ck+1
n

· σk−1(a)

Ck−1
n

≤
(
σk(a)

Ck
n

)2

,

for 1 ≤ k ≤ n− 1. Since

Ck−1
n Ck+1

n

Ck
nC

k
n

=
(n− k)k

(n− k + 1)(k + 1)
< 1,

it follows that
σk+1(a)

σk(a)
≤ σk(a)

σk−1(a)
,

which shows that the Hessian quotient σk+1(a)
σk(a)

is decreasing with respect to k. So

we have for any m ≤ k, and each 1 ≤ i ≤ n,

σm;i(a)σk−1;i(a) ≥ σm−1;i(a)σk;i(a).
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12 JIGUANG BAO, HAIGANG LI, AND YANYAN LI

Then by the property (2.1), it follows that

σm(a)σk−1;i(a) = (σm;i(a) + aiσm−1;i(a))σk−1;i(a)

≥ σm−1;i(a) · σk;i(a) + σm−1;i(a) · aiσk−1;i(a)

= σm−1;i(a)σk(a)

= σm−1;i(a),

i.e. (2.22) is proved. Hence ωα is a smooth k-convex subsolution of (1.1) in
R

n \ {0}. �

3. Proof of Theorem 1.1

The following lemma holds for any invertible and symmetric matrix A, and where
A is not necessarily diagonal or in Ak, 2 ≤ k ≤ n.

Lemma 3.1. Let ϕ ∈ C2(∂D). There exists some constant C, depending only on
n, ‖ϕ‖C2(∂D), the upper bound of A, the diameter and the convexity of D, and the

C2 norm of ∂D, such that, for every ξ ∈ ∂D, there exists x̄(ξ) ∈ R
n satisfying

|x̄(ξ)| ≤ C and wξ < ϕ on D \ {ξ},

where

wξ(x) := ϕ(ξ) +
1

2

(
(x− x̄(ξ))TA(x− x̄(ξ))− (ξ − x̄(ξ))TA(ξ − x̄(ξ))

)
, x ∈ R

n.

Proof. Let ξ ∈ ∂D. By a translation and a rotation, we may assume without loss
of generality that ξ = 0 and ∂D is locally represented by the graph of

xn = ρ(x′) = O(|x′|2),

and ϕ locally has the expansion

ϕ(x′, ρ(x′)) = ϕ(0) + ϕx1
(0)x1 + · · ·+ ϕxn

(0)xn +O(|x|2)
= ϕ(0) + ϕx1

(0)x1 + · · ·+ ϕxn−1
(0)xn−1 +O(|x′|2),

where x′ = (x1, · · · , xn−1).
Since A is invertible, we can find x̄ = x̄(t) ∈ R

n such that, for appropriate t to
fit our need later,

Ax̄(t) =
(
−ϕx1

(0), · · · ,−ϕxn−1
(0), t

)T
.

Let

w(x) = ϕ(0) +
1

2

(
(x− x̄)TA(x− x̄)− x̄TAx̄

)
, x ∈ R

n.

Then

(3.1) w(x) = ϕ(0) +
1

2
xTAx− xTAx̄ = ϕ(0) +

1

2
xTAx+

n−1∑
α=1

ϕxα
(0)xα − txn.

It follows that

(w − ϕ)(x′, ρ(x′)) =
1

2
xTAx− tρ(x′) +O(|x′|2)

≤ C
(
|x′|2 + ρ(x′)2

)
− tρ(x′),
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where C depends only on the upper bound of A, ‖ϕ‖C2(∂D), and the C2 norm of
∂D. By the strict convexity of ∂D, there exists some constant δ > 0 depending
only on D such that

(3.2) ρ(x′) ≥ δ|x′|2, ∀ |x′| < δ.

Clearly, for large t, we have

(w − ϕ)(x′, ρ(x′)) < 0, ∀ 0 < |x′| < δ.

The largeness of t depends only on δ, A, ‖ϕ‖C2(∂D), and the C2 norm of ∂D.
On the other hand, by the strict convexity of ∂D and (3.2),

xn ≥ δ3, ∀ x ∈ ∂D \ {(x′, ρ(x′))
∣∣ |x′| < δ}.

It follows from (3.1) that

w(x) ≤ C − δ3t, ∀ x ∈ ∂D \ {(x′, ρ(x′))
∣∣ |x′| < δ},

where C depends only on A, diam(D), and ‖ϕ‖C2(∂D). By making t large (still
under control), we have

w(x)− ϕ(x) < 0, ∀ x ∈ ∂D \ {(x′, ρ(x′))
∣∣ |x′| < δ}.

Lemma 3.1 is established. �

By an orthogonal transformation and by subtracting a linear function from u, we
only need to prove Theorem 1.1 for the case that A = diag(a1, a2, · · · , an), where
ai > 0 (1 ≤ i ≤ n), b = 0.

Proof of Theorem 1.1. Without loss of generality, we assume that 0 ∈ D. For s > 0,
let

E(s) :=

{
x ∈ R

n
∣∣ 1
2
xTAx < s

}
.

Fix s̄ > 0 such that D ⊂ E(s̄). For α > 0, β ∈ R, set

ωα(x) = β +

∫ 1
2x

TAx

s̄

(
1 + αt

− k
2hk(a)

) 1
k

dt,

as in (2.18). We have by Proposition 2.1 that ωα is a smooth k-convex subsolution
of (1.1) in R

n \ {0} and that

ωα(x) =
1

2
xTAx+ μ(α) +O

(
|x|θ(2−n)

)
, as x → ∞.

Here

μ(α) = β − s̄+

∫ ∞

s̄

((
1 + α t

− k
2hk(a)

) 1
k − 1

)
dt, θ ∈

[
k − 2

n− 2
, 1

]
.

Clearly, μ(α) is strictly increasing in α, and

(3.3) lim
α→∞

μ(α) = ∞.

On the other hand,

(3.4) ωα ≤ β, in E(s̄) \D, ∀ α > 0.

Let

β := min
{
wξ(x)

∣∣ ξ ∈ ∂D, x ∈ E(s̄) \D
}
,

b̂ := max
{
wξ(x)

∣∣ ξ ∈ ∂D, x ∈ E(s̄) \D
}
,
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14 JIGUANG BAO, HAIGANG LI, AND YANYAN LI

where wξ(x) is given by Lemma 3.1. We will fix the value of c∗ in the proof. First

we require that c∗ satisfies c∗ > b̂. It follows that

μ(0) = β − s̄ < β ≤ b̂ < c∗.

Thus, in view of (3.3), for every c > c∗ there exists a unique α(c) such that

(3.5) μ(α(c)) = c.

So ωα(c) satisfies

(3.6) ωα(c)(x) =
1

2
xTAx+ c+O

(
|x|θ(2−n)

)
, as x → ∞.

Set

w(x) = max
{
wξ(x)

∣∣ ξ ∈ ∂D
}
.

It is clear by Lemma 3.1 that w is a locally Lipschitz function in R
n \D and that

w = ϕ on ∂D. Since wξ is a smooth convex solution of (1.1), w is a viscosity

subsolution of (1.1) in R
n \ D. We fix a number ŝ > s̄ and then choose another

number α̂ > 0 such that

min
∂E(ŝ)

ωα̂ > max
∂E(ŝ)

w.

We require that c∗ also satisfies c∗ ≥ μ(α̂). We now fix the value of c∗.
For c ≥ c∗, we have α(c) = μ−1(c) ≥ μ−1(c∗) ≥ α̂, and therefore

(3.7) ωα(c) ≥ ωα̂ > w, on ∂E(ŝ).

By (3.4), we have

(3.8) ωα(c) ≤ β ≤ w, in E(s̄) \D.

Now we define, for c > c∗,

u(x) =

{
max

{
ωα(c)(x), w(x)

}
, x ∈ E(ŝ) \D,

ωα(c)(x), x ∈ R
n \ E(ŝ).

We know from (3.8) that

(3.9) u = w, in E(s̄) \D,

and in particular

(3.10) u = w = ϕ, on ∂D.

We know from (3.7) that u = ωα(c) in a neighborhood of ∂E(ŝ). Therefore u is
locally Lipschitz in R

n \ D. Since both ωα(c) and w are viscosity subsolutions of

(1.1) in R
n \D, so is u.

For c > c∗,

u(x) :=
1

2
xTAx+ c

is a smooth convex solution of (1.1). By (3.8),

ωα(c) ≤ β ≤ b̂ < c∗ < u, on ∂D.

We also know by (3.6) that

lim
|x|→∞

(
ωα(c)(x)− u(x)

)
= 0.
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ON THE EXTERIOR DIRICHLET PROBLEM FOR HESSIAN EQUATIONS 15

Thus, in view of the comparison principle for smooth k-convex solutions of (1.1)
(see [4]), we have

(3.11) ωα(c) ≤ u, on R
n \D.

By (3.7) and the above, we have, for c > c∗,

wξ ≤ u, on ∂(E(ŝ) \D), ∀ ξ ∈ ∂D.

By the comparison principle for smooth convex solutions of (1.1), we have

wξ ≤ u, in E(ŝ) \D, ∀ ξ ∈ ∂D.

Thus

w ≤ u, in E(ŝ) \D.

This, combined with (3.11), implies that

u ≤ u, in R
n \D.

For any c > c∗, let Sc denote the set of v ∈ USC(Rn \ D) which are viscosity
subsolutions of (1.1) in R

n \D satisfying

(3.12) v = ϕ, on ∂D,

and

(3.13) u ≤ v ≤ u, in R
n \D.

We know that u ∈ Sc. Let

u(x) := sup {v(x) | v ∈ Sc} , x ∈ R
n \D.

By (3.6) and the definitions of u and u,

(3.14) u(x) ≥ u(x) = ωα(c)(x) =
1

2
xTAx+ c+O

(
|x|θ(2−n)

)
, as x → ∞,

and

u(x) ≤ u(x) =
1

2
xTAx+ c.

The estimate (1.4) follows.
Next, we prove that u satisfies the boundary condition. It is obvious from (3.10)

that

lim inf
x→ξ

u(x) ≥ lim
x→ξ

u(x) = ϕ(ξ), ∀ ξ ∈ ∂D.

So we only need to prove that

lim sup
x→ξ

u(x) ≤ ϕ(ξ), ∀ ξ ∈ ∂D.

Let ω+
c ∈ C2(E(s̄) \D) be defined by⎧⎪⎪⎨⎪⎪⎩

Δω+
c = 0, in E(s̄) \D,

ω+
c = ϕ, on ∂D,

ω+
c = max

∂E(s̄)
u = s̄+ c, on ∂E(s̄).

It is easy to see that a viscosity subsolution v of (1.1) satisfies Δv ≥ 0 in the
viscosity sense. Therefore, for every v ∈ Sc, by v ≤ ω+

c on ∂(E(s̄) \D), we have

v ≤ ω+
c , in E(s̄) \D.
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16 JIGUANG BAO, HAIGANG LI, AND YANYAN LI

It follows that

u ≤ ω+
c , in E(s̄) \D,

and then

lim sup
x→ξ

u(x) ≤ lim
x→ξ

ω+
c (x) = ϕ(ξ), ∀ ξ ∈ ∂D.

Finally, we prove that u is a viscosity solution of (1.1). The following ingredients
for the viscosity adaptation of Perron’s method (see [14]) are available.

Lemma 3.2. Let Ω ⊂ R
n be a bounded open set, u ∈ LSC(Ω) and v ∈ USC(Ω) are

respectively viscosity supersolutions and subsolutions of (1.1) in Ω satisfying u ≥ v
on ∂Ω. Then u ≥ v in Ω.

Under the assumptions u, v ∈ C0(Ω), the lemma was proved in [25], based on
Jensen approximations (see [15]). The proof remains valid under the weaker regu-
larity assumptions on u and v.

Lemma 3.3. Let Ω ⊂ R
n be an open set, and let S be a nonempty family of

viscosity subsolutions (supersolutions) of (1.1) in Ω. Set

u(x) = sup (inf) {v(x) | v ∈ S}

and let

u∗ (u∗) (x) = lim
r→0

sup
Br

(inf
Br

) u

be the upper (lower) semicontinuous envelope of u. Then, if u∗ < ∞ (u∗ > −∞)
in Ω, u∗ (u∗) is a viscosity subsolution (supersolution) of (1.1) in Ω.

Lemma 3.3 can be proved by standard arguments; see e.g. [8]. With these
ingredients, an application of the Perron process (see e.g. Lemma 4.4 in [8]) gives
that u ∈ C0(Rn \D) is a viscosity solution of (1.3). Theorem 1.1 is established. �
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[17] Konrad Jörgens, Über die Lösungen der Differentialgleichung rt − s2 = 1 (German), Math.
Ann. 127 (1954), 130–134. MR0062326 (15,961e)

[18] J. Jost and Y. L. Xin, Some aspects of the global geometry of entire space-like submanifolds,
Results Math. 40 (2001), no. 1-4, 233–245. Dedicated to Shiing-Shen Chern on his 90th
birthday. MR1860371 (2002i:53070)

[19] Norman Meyers and James Serrin, The exterior Dirichlet problem for second order elliptic
partial differential equations, J. Math. Mech. 9 (1960), 513–538. MR0117421 (22 #8200)

[20] A. V. Pogorelov, On the improper convex affine hyperspheres, Geometriae Dedicata 1 (1972),
no. 1, 33–46. MR0319126 (47 #7672)

[21] Neil S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Ra-
tional Mech. Anal. 111 (1990), no. 2, 153–179, DOI 10.1007/BF00375406. MR1057653
(91g:35118)

[22] Neil S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995),
no. 2, 151–164, DOI 10.1007/BF02393303. MR1368245 (96m:35113)

[23] Neil S. Trudinger, Weak solutions of Hessian equations, Comm. Partial Differential Equations
22 (1997), no. 7-8, 1251–1261, DOI 10.1080/03605309708821299. MR1466315 (99a:35077)

[24] Neil S. Trudinger and Xu-Jia Wang, The Bernstein problem for affine maximal hypersur-
faces, Invent. Math. 140 (2000), no. 2, 399–422, DOI 10.1007/s002220000059. MR1757001
(2001h:53016)

Licensed to Beijing Normal University. Prepared on Fri Sep  5 22:28:12 EDT 2014 for download from IP 210.31.71.66.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1953651
http://www.ams.org/mathscinet-getitem?mr=1953651
http://www.ams.org/mathscinet-getitem?mr=806416
http://www.ams.org/mathscinet-getitem?mr=806416
http://www.ams.org/mathscinet-getitem?mr=0106487
http://www.ams.org/mathscinet-getitem?mr=0106487
http://www.ams.org/mathscinet-getitem?mr=859275
http://www.ams.org/mathscinet-getitem?mr=859275
http://www.ams.org/mathscinet-getitem?mr=1835381
http://www.ams.org/mathscinet-getitem?mr=1835381
http://www.ams.org/mathscinet-getitem?mr=1118699
http://www.ams.org/mathscinet-getitem?mr=1118699
http://www.ams.org/mathscinet-getitem?mr=2801627
http://www.ams.org/mathscinet-getitem?mr=2801627
http://www.ams.org/mathscinet-getitem?mr=2780888
http://www.ams.org/mathscinet-getitem?mr=1172619
http://www.ams.org/mathscinet-getitem?mr=1172619
http://www.ams.org/mathscinet-getitem?mr=1679973
http://www.ams.org/mathscinet-getitem?mr=1679973
http://www.ams.org/mathscinet-getitem?mr=1762061
http://www.ams.org/mathscinet-getitem?mr=1762061
http://www.ams.org/mathscinet-getitem?mr=973743
http://www.ams.org/mathscinet-getitem?mr=973743
http://www.ams.org/mathscinet-getitem?mr=920674
http://www.ams.org/mathscinet-getitem?mr=920674
http://www.ams.org/mathscinet-getitem?mr=2244597
http://www.ams.org/mathscinet-getitem?mr=2244597
http://www.ams.org/mathscinet-getitem?mr=0062326
http://www.ams.org/mathscinet-getitem?mr=0062326
http://www.ams.org/mathscinet-getitem?mr=1860371
http://www.ams.org/mathscinet-getitem?mr=1860371
http://www.ams.org/mathscinet-getitem?mr=0117421
http://www.ams.org/mathscinet-getitem?mr=0117421
http://www.ams.org/mathscinet-getitem?mr=0319126
http://www.ams.org/mathscinet-getitem?mr=0319126
http://www.ams.org/mathscinet-getitem?mr=1057653
http://www.ams.org/mathscinet-getitem?mr=1057653
http://www.ams.org/mathscinet-getitem?mr=1368245
http://www.ams.org/mathscinet-getitem?mr=1368245
http://www.ams.org/mathscinet-getitem?mr=1466315
http://www.ams.org/mathscinet-getitem?mr=1466315
http://www.ams.org/mathscinet-getitem?mr=1757001
http://www.ams.org/mathscinet-getitem?mr=1757001


18 JIGUANG BAO, HAIGANG LI, AND YANYAN LI

[25] John I. E. Urbas, On the existence of nonclassical solutions for two classes of fully
nonlinear elliptic equations, Indiana Univ. Math. J. 39 (1990), no. 2, 355–382, DOI
10.1512/iumj.1990.39.39020. MR1089043 (92h:35074)

[26] C. Wang and J. G. Bao: Necessary and sufficient conditions on existence and convexity of
solutions for Dirichlet problems of Hessian equations on exterior domains, Proc. Amer. Math.
Soc. 141 (2013), no. 4, 1289–1296. MR3008876

School of Mathematical Sciences, Beijing Normal University, Laboratory of Math-

ematics and Complex Systems, Ministry of Education, Beijing 100875, People’s Republic

of China

E-mail address: jgbao@bnu.edu.cn

School of Mathematical Sciences, Beijing Normal University, Laboratory of Math-

ematics and Complex Systems, Ministry of Education, Beijing 100875, People’s Republic

of China

E-mail address: hgli@bnu.edu.cn

Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscat-

away, New Jersey 08854

E-mail address: yyli@math.rutgers.edu

Licensed to Beijing Normal University. Prepared on Fri Sep  5 22:28:12 EDT 2014 for download from IP 210.31.71.66.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1089043
http://www.ams.org/mathscinet-getitem?mr=1089043
http://www.ams.org/mathscinet-getitem?mr=3008876

	1. Introduction
	2. Generalized symmetric solutions and subsolutions
	Symmetric solutions
	Generalized symmetric subsolutions

	3. Proof of Theorem 1.1
	Acknowledgements
	References

