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1. Introduction

By suitably choosing Cartesian coordinate system x1, . . . , xn , we say a complete surface Σ =
{(x, u(x)): x ∈ R

n} is an improper affine hypersurface if u(x) is a function satisfying the Monge–Ampère
equation

det D2u = const > 0 in R
n.

A celebrated theorem in affine geometry says that
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Theorem 1.1 (Jörgens–Calabi–Pogorelov). A convex improper affine hypersurface is an elliptic paraboloid.

The proof of this result is not trivial. It was given by Jörgens [21] for n = 2, then by Calabi [8] for
n � 5 and eventually by Pogorelov [25] for arbitrary n. A simpler and more analytic proof, along the
lines of affine geometry, of the theorem was later given by Cheng and Yau [11]. Recently, Caffarelli and
Li [7] proved, by using the regular theory for Monge–Ampère equation developed in the fundamental
papers [4] and [5], that this result holds for viscosity solutions. Please see also Chapter 4 of [17] for a
proof. Note that in dimension two, Theorem 1.1 provides an elegant proof of Bernstein’s theorem on
minimal surfaces.

Theorem 1.1 was extended by Gutiérrez and Huang [18] to the solutions of following special
parabolic Monge–Ampère equation

−ut det D2u = 1 in R
n × (−∞,0]. (1.1)

This type differential operator was firstly introduced by Krylov [23] in 1976. It shares a lot of com-
mon features with elliptic Monge–Ampère operator, for instance it can be expressed as the Jacobian
determinant of a mapping, see [9].

One purpose of this paper is to investigate this property for solutions of more general parabolic
Monge–Ampère equations which may include other meaningful forms. Motivated by this, we would
like to study the entire solutions to following parabolic Monge–Ampère equation

ut = ρ
(
log det D2u

)
in R

n × (−∞,0], (1.2)

where ρ(s) ∈ C2(R), ut = Dt u and D2u = D2
x u denote the first order derivative and Hessian of u

with respect to t and x, respectively. Assume that u = u(x, t) is convex in x for every t ∈ (−∞,0]
throughout this paper.

Eq. (1.2) appears in connection with the problem of the deformation of a surface by means of its
nonhomogeneous Gauss curvature (speed is a function of Gauss curvature) which has drawn a great
deal of attentions and undergone a rapid development. In particular, when ρ(s) = es/n or s, then
Eq. (1.2) gives appealing form

ut = (
det D2u

) 1
n (1.3)

or

ut = log det D2u. (1.4)

The above two equations have been studied extensively in the geometric aspect, see [16,13,1,15,26]
and references therein. Moreover, Eq. (1.4) has some applications in Minkowski problems, see [14].
Analytic aspect of Eqs. (1.3) and (1.4) has been investigated by some authors, see [24,20] for relevant
results and a good survey. Finally, if ρ(s) = −e−s , then we arrive at the interesting form (1.1).

As in standard parabolic equations theory, for integer k � 0 we say a function u(x, t) ∈ C2k,k(E) that
means u is 2k-th continuous differentiable with spatial variables x and k-th continuous differentiable
with time variable t for (x, t) ∈ E ⊂ R

n+1. The first result of this paper is the following theorem.

Theorem 1.2. Suppose

ρ ′(s) > 0, ρ ′′(s) � 1

n
ρ ′(s) in R. (1.5)

Let u(x, t) ∈ C4,2(Rn × (−∞,0]) be convex in x and satisfy (1.2). Assume
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0 < m1 = inf
(x,t)∈R

n−

(−ut(x, t)
)
� sup

(x,t)∈R
n−

(−ut(x, t)
) = m2 < ∞, (1.6)

and

∣∣ρ−1(ut)
∣∣ � K < ∞. (1.7)

Then u(x, t) = P (x) + ct, where c is a constant and P (x) is a convex quadratic polynomial.

If we write F (D2u) = ρ(log det D2u), condition (1.5) is necessary to ensure that F (·) is concave.
The convexity or concavity of F (·) can guarantee the interior estimates of second order derivatives
and thus is a vital ingredient in the theory of fully nonlinear elliptic and parabolic equations.

It is easy to see that Theorem 1.2 applies to Eqs. (1.1) and (1.4). Particularly, for Eq. (1.4) the
condition (1.6) can be reduced to |ut | � C0 in R

n × (−∞,0] for some C0 > 0. This result for (1.1) has
been obtained by Gutiérrez and Huang [18].

Corollary 1.1. Let u(x, t) ∈ C4,2(Rn × (−∞,0]) be convex in x and a solution of Eq. (1.3) in R
n × (−∞,0].

Suppose that there exist positive constants m1,m2 such that

m1 � ut(x, t) � m2 for all (x, t) ∈ R
n × (−∞,0]. (1.8)

Then u(x, t) = P (x) + ct.

Proof. Replacing u − (m2 + 1)t to u, (1.3) implies

−ut + exp

{
1

n
log det D2u

}
− (m2 + 1) = 0 in R

n × (−∞,0]

and 1 � −ut � m2 − m1 + 1 in R
n × (−∞,0]. By the theorem above, we complete the proof. �

According to Evans–Krylov estimates and linear parabolic equations theory, we only need the so-
lutions to be C2,1(Rn × (−∞,0]) in Theorem 1.2. Nevertheless, we cannot reduce them to viscosity
solutions, for a counterexample linked to Eq. (1.1) was constructed in [18].

The story is quite different for elliptic case, see [7]. In fact, for elliptic Monge–Ampère equation, a
result due to Cheng and Yau [12] says that for any convex domain Ω ⊂ R

n there is a unique convex
solution u ∈ C∞(Ω) ∩ C(Ω) to

det D2u = 1 in Ω and u = 0 on ∂Ω,

which plays a crucial role in Caffarelli and Li’s proof [7]. However, to our knowledge, there is no
similar result for parabolic Monge–Ampère equation in bowl-shaped domains (see the definition in
Section 2) so far. For the regularity of weak solutions in Aleksandroff generalized sense of Eq. (1.1),
we refer to [9] and [19].

The other part of this paper is devoted to the removable singularities for Eq. (1.2). This problem
for elliptic Monge–Ampère was also investigated by Jörgens [22] initially in two dimension. His result
was extended to Monge–Ampère with general right hand side by Beyerstedt [2] in two dimensions
as well. Eventually, Beyerstedt [3] and Schulz and Wang [27] established a similar result for higher
dimensions independently. For parabolic Monge–Ampère equation, we have the following theorem.

Theorem 1.3. Let R
n+1− = R

n × (−∞,0) and X0 = (x0, t0) ∈ R
n+1− . Suppose that u(x, t) ∈ C(Rn+1− ) ∩

C4,2(Rn+1− \ X0) is convex with respect to x and satisfies
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−ut det D2u = 1 in R
n+1− \ X0. (1.9)

Then the isolated singularity at X0 is removable if and only if there exists a smooth curve lying on the hyper-
plane {(x, t): t = t0} and passing through the point X0 such that u is C1,0 along it.

Actually, the above result holds for general fully nonlinear parabolic equations with general iso-
lated sets, particularly it is applicable to Eqs. (1.3) and (1.4), see Section 4 of this paper. Note that in
our proof we only need u ∈ C(Rn+1− ) instead of being Lipschitz needed in [2,3,27] and [28].

The organization of the paper is as follows. In Section 2, Pogorelov type estimates are established.
Then we prove Theorems 1.2 and 1.3 in Sections 3 and 4 respectively.

2. Pogorelov type estimates

Let D ⊂ R
n+1 be bounded domain. For a fixed t we write

D(t) = {
x: (x, t) ∈ D

}
, (2.1)

and t0 = inf{t: D(t) �= ∅}. The parabolic boundary of the bounded domain D is defined by

∂p D = (
D(t0) × {t0}

) ⋃
t∈R

(
∂ D(t) × {t}),

where D denotes the closure of D and ∂ D(t) denotes the topological boundary of D(t). We say that
the set D ⊂ R

n+1 is a bowl-shaped domain if D(t) is strict convex for each t and D(t1) ⊂ D(t2) for
t1 � t2.

Definition 2.1. A function u : R
n × R → R, u = u(x, t), is called parabolically convex (or convex-

monotone) if it is continuous, convex in x and non-increasing in t .

From the assumptions in Theorem 1.2, we see that u is parabolically convex.

Theorem 2.2. Let D ⊂ R
n × (−∞,0] be a bounded bowl-shaped domain. Assume that u is a smooth function

satisfying (1.2) and (1.6) in D and u = 0 on ∂p D. Then

∣∣D2u(x, t)
∣∣ � C

|u(x, t)| , x ∈ D,

where C depends on n, m1 , m2 , p, ρ , D and supD{|Du| + |u|}.

Proof. Let

W = sup
(x,t)∈D, ξ∈Sn

∣∣u(x, t)
∣∣Dξξ u(x, t)exp

{
η

2

∣∣Du(x, t)
∣∣2

}

with

η = 1

4(1 + supD |Du|2) .

Since u = 0 on ∂p D and u is strictly convex in D \∂p D with respect to x, it follows that the maximum
W is attained at some point X = (x0, t0) ∈ D \ ∂p D and some unit vector ξ ∈ S

n . We may suppose
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ξ = e1 = (1,0, . . . ,0), then D1 ju(X) = 0 for j > 1. By rotating the coordinates {x2, . . . , xn}, we may
assume D2u(X) is diagonal.

Set F (D2u) = log det D2u, we have

(Fij) =
(

∂ F

∂uij

)
= (

D2u
)−1

,
∂2 F

∂uij∂ukl
= Fij,kl = −Fik F jl.

Let L be the linearized operator at X

L = −Dt + ρ ′(F
(

D2u(X)
))

Fij
(

D2u(X)
)

Dij.

Since W is achieved at (X, e1), it follows that the function

h = log |u| + log D11u + η

2
|Du|2

also attains its maximum at X , and consequently

Dh(X) = 0, ht(X) � 0, and D2h(X) � 0. (2.2)

Since (Fij(D2u(X))) is diagonal,

L(h)(X) = −Dth(X) + ρ ′ Fii Diih(X) � 0. (2.3)

Now

Dih = Diu

u
+ D11iu

D11u
+ η

n∑
k=1

DkuDkiu, (2.4)

Dijh = Diju

u
− DiuD ju

u2
+ D11i ju

D11u
− D11iuD11 ju

(D11u)2

+ η

n∑
k=1

DkiuDkju + η

n∑
k=1

DkuDkiju, (2.5)

Dth = Dt u

u
+ D11t u

D11u
+ η

n∑
k=1

DkuDkt u. (2.6)

Substituting (2.4), (2.5) and (2.6) into (2.3), we have

−
(

ut

u
+ D11t u

D11u
+ η

n∑
k=1

DkuDkt u

)

+ ρ ′ Fii

(
Diiu

u
− (Diu)2

u2
+ D11iiu

D11u
− (D11iu)2

(D11u)2
+ η

n∑
k=1

(Dkiu)2 + η

n∑
k=1

DkuDkiiu

)
� 0

valid at the point X . By collecting terms we obtain
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−ut

u
+ 1

D11u
L(D11u) + η

n∑
k=1

DkuL(Dku)

+ ρ ′ Fii

(
Diiu

u
− (Diu)2

u2
− (D11iu)2

(D11u)2
+ η(Diiu)2

)
� 0 (2.7)

at X .
Differentiate Eq. (1.2) to obtain at X ,

−Dkt u + ρ ′ Fii Diiku = 0, k = 1, . . . ,n.

That is L(Dku) = 0. Next, let us compute L(D11u)(X). Differentiating Eq. (1.2) twice with respect to x1
yields

−D11t u + ρ ′′ Fij D1i juFkl D1klu + ρ ′ Fij,kl D1i juD1klu + ρ ′ Fij D11i ju = 0.

Therefore, at X we have

L(D11u) = −ρ ′′
(

n∑
i=1

Fii D1iiu

)2

+ ρ ′ Fik F jl Dij1uDkl1u.

Since ρ ′′ � 1
n ρ ′ , we obtain

L(D11u) � ρ ′
(

−1

n

(
n∑

i=1

Fii D1iiu

)2

+ Fik F jl Dij1uDkl1u

)

at X .
Noting again that Fij(D2u(X)) = (D2u)−1(X) is diagonal again and ρ ′ > 0, in view of (2.7), we

have the inequality

nρ ′ − ut

u
+ ρ ′

(
− (Dii1u)2

D11u(Diiu)2
+ (Dij1u)2

D11uDiiuD jju

+ 1

Diiu

(
− (Diu)2

u2
− (D11iu)2

(D11u)2
+ η(Diiu)2

))
� 0,

where we have used the inequality

1

n

(
n∑

i=1

Dii1u

Diiu

)2

�
n∑

i=1

(Dii1u)2

(Diiu)2
.

Since

n∑
i=1

n∑
j=1

(Dij1u)2

D11uDiiuD jju
= 2

n∑
i=1

(D11iu)2

(D11u)2 Diiu
− (D111u)2

(D11u)3

+
n∑

i=2

(Dii1u)2

D11u(Diiu)2
+

n∑
i=2

n∑
j=2, j �=i

(Dij1u)2

D11uDiiuD jju
,
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we have

C

u
− (D111u)2

(D11u)3
+

n∑
i=2

(D11iu)2

(D11u)2 Diiu
−

n∑
i=1

(Diu)2

(Diiu)u2
+ η�u � 0. (2.8)

Since Dih(X) = 0, and D2u(X) is diagonal, it follows from (2.4) that

D111u

D11u
= − D1u

u
− ηD1uD11u,

Diu

u
= − D11iu

D11u
− ηDiuDiiu, i = 2, . . . ,n,

at X . Therefore by (2.8) we get

C

u
− 2(D1u)2

u2 D11u
− 2η

n∑
i=2

DiuD11iu

D11u
− 2η2|Du|2�u + η�u � 0.

Using Dh(X) = 0 again,

−η

n∑
i=2

DiuD11iu

D11u
=

n∑
i=2

(
η(Diu)2

u
+ η2(Diu)2 Diiu

)
.

Hence

C

u
− 2(D1u)2

u2 D11u
− 2η2|Du|2�u + η�u � 0.

By the choice of η,

C

u
− 2(D1u)2

u2 D11u
+ D11u

8(1 + supD |Du|2) � 0.

Multiply the inequality above by 8u2 D11u exp{η|Du|2}(1 + supD |Du|2), we obtain (for a different C )

W � C

valid at the point X . Hence

∣∣D2u(x, t)
∣∣ � C

|u(x, t)| , (2.9)

where C depends on n, m1, m2, p, ρ , D and supD{|Du| + |u|}. This completes the proof of the theo-
rem. �

The proof of Theorem 2.2 is essentially due to Pogorelov [25].
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3. Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2, the essential idea of our proof follows closely from [7]
and [18]. However, different from (1.1) and standard elliptic Monge–Ampère operator, our differential
operator cannot be expressed as Jacobian determinant of a mapping and does not enjoy convenient
scaling form. We find a new normalization approach of the solutions and their level sets. Applying the
Pogorelov type estimates to the normalized solution in the small domains, due to the assumption (1.6)
and then Evans–Krylov estimates, we shall get the C2+α,1+α/2 estimates for the normalized solutions,
where C2+α,1+α/2 is the standard parabolic Hölder space. By rescaling, we show that the Hölder
norms of the first order derivatives in t and second derivatives in x of the solutions must be zero,
then Theorem 1.2 follows.

Let u be a solution to (1.2) satisfying the assumptions in Theorem 1.2. For convenience, we rewrite
(1.6) below

m1 � −ut(x, t) � m2 in R
n × (−∞,0]. (3.1)

Owing to (1.7), there exist two positive constants λ1, λ2 (depending only on m1, m2 and ρ) such that

0 < λ1 � det D2u � λ2 in R
n × (−∞,0]. (3.2)

By subtracting a linear function on x, we may also assume that

u(0,0) = 0, Du(0,0) = 0 (3.3)

is valid in the following.
We state a normalization theorem of John–Cordoba and Gallegos and refer to [17] for a proof.

Lemma 3.1. If Ω ⊂ R
n is a bounded convex set with nonempty interior and E is the ellipsoid of minimum

volume containing Ω centered at the center of mass of Ω , then

αn E ⊂ Ω ⊂ E,

where αn = n− 3
2 and αE denotes the α-dilation of E with respect to its center.

Given H > 0, let

Q H = {
(x, t): u(x, t) < H

}
and Q H (t0) = {

x: (x, t0) ∈ Q H
}
. (3.4)

Let xH be the mass center of Q H (0), E the ellipsoid of minimum volume containing Q H (0) with
center xH , and T H an affine transform that normalizes the Q H (0), that is T H (E) = B1(0) and

Bαn (0) ⊂ T H Q H (0) ⊂ B1(0). (3.5)

The following lemma gives an estimate for the shape of Q H .
The following results about elementary properties of level sets of Monge–Ampère equations are

not new, particularly Lemmas 3.2, 3.3, 3.6 and Corollary 3.1 are essentially contained in [19], for
completeness we give proofs of them.
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Lemma 3.2. Let u be parabolically convex and satisfy (3.1), (3.2) and (3.3). Then there exist constants ε0, ε1 ,
and ε2 such that for all H > 0

ε0 E × [−ε1 H,0] ⊂ Q H ⊂ E × [−ε2 H,0], (3.6)

where εi (i = 0,1,2) depend only on ρ , p, n, m j ( j = 1,2).

Proof. Let (x, t) ∈ Q H . Since u(0,0) = 0, u � 0, we have u(x, t)− u(x,0) � H . It follows from (3.1) that
t � −H/m1. Hence, (x, t) ∈ E × [−H/m1,0]. Then the second inclusion follows with ε2 = 1/m1.

On the other hand, by elliptic Monge–Ampère equation theory (see Lemma 3.3.1 of [17]), we have

γ Q H (0) ⊂ Q (1−(1−γ )αn/2)H (0),

where 0 < γ < 1, αn as in Lemma 3.1. Setting γ = 1/2 and noting that αn E ⊂ Q H (0), then we have

u(x, t) � u(x,0) − m2t � (1 − αn/4)H − m2t < H,

if (x, t) ∈ 1
2 αn E × [−ε1 H,0] and ε1 = αn/8m2. Thus the first inclusion follows with ε0 = αn/2, ε1 =

αn/8m2. �
For the convenience, throughout the paper, we use the symbol a ≈ b to denote that the quality

a/b is bounded by two positive universal constants from above and below.

Lemma 3.3. Let u be parabolically convex and satisfy (3.1), (3.2) and (3.3). Let H, T H be the same as in (3.5),
then

|det T H |− 2
n ≈ H .

Proof. For y = T H x ∈ T H Q H (0), let

v(y) = |det T H | 2
n
(
u
(
T −1

H (y,0)
) − H

)
,

then v(y) is convex and v(y) = 0 for y ∈ ∂(T H (Q H (0))). We have

det D2 v(y) = det D2u
(
T −1

H y,0
)
.

So

λ1 � det D2 v � λ2. (3.7)

Hence, the Monge–Ampère measure M with density det D2 v(y) has the doubling property

M
(
T H

(
Q H (0)

))
� 2nλ2

λ1
M

(
1

2
T H

(
Q H (0)

))
.

Indeed,
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M
(
T H

(
Q H (0)

)) =
∫

T H (Q H (0))

det D2 v(y)dy

�
∫

T H (Q H (0))

λ2 dy

= 2nλ2

λ1

∫
1
2 T H (Q H (0))

λ1 dy

� 2nλ2

λ1
M

(
1

2
T H

(
Q H (0)

))
.

We may then apply Proposition 3.2.3 of [17] to obtain

M
(
T H

(
Q H (0)

)) ≈
∣∣∣ min

T H (Q H (0))
v(y)

∣∣∣n
,

with comparison constants depending only on the dimension n and λ2
λ1

. Since u(0,0) = 0 and u � 0,
we have that

min
T H (Q H (0))

v(y) = −|det T H | 2
n H .

On the other hand, by (3.7) and the normalization of Q H (0) we get

M
(
T H

(
Q H (0)

)) =
∫

T H (Q H (0))

det D2 v(y)dy ≈ 1.

Therefore

H ≈ |det T H |− 2
n . �

Set

T H (x, t) =
(

T H x,
t

|det T H |−2/n

)
, T H (Q H ) = Q ∗

H .

Then Lemmas 3.2 and 3.3 imply that

Bε0 × [−ε1,0] ⊂ Q ∗
H ⊂ B1 × [−ε2,0], (3.8)

where εi (i = 0,1,2) depend only on ρ , p, n, m j ( j = 1,2). Let

u∗(y, s) = |det T H | 2
n
(
u
(

T −1
H (y, s)

) − H
)
,

then for (y, s) ∈ Q ∗
H

∂u∗(y, s) = ∂u (
T −1

H (y, s)
)
, det D2u∗(y, s) = det D2u

(
T −1

H (y, s)
)
.

∂s ∂t
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So

m1 � −u∗
s � m2, λ1 � det D2u∗ � λ2 in Q ∗

H (3.9)

and

u∗ = 0 on ∂p Q ∗
H .

The following lemma and its proof can be found in [7].

Lemma 3.4. Let Ω ⊂ R
n be a convex open domain with diam(Ω) � 1, and let v be a convex solution of

det D2 v � 1 in Ω, v = 0 on ∂Ω.

Then

v(x) �
{−C(n)dist(x, ∂Ω)2/n for any x ∈ Ω, n � 3,

−C(α)dist(x, ∂Ω)α for any x ∈ Ω, n = 2, 0 < α < 1.

Lemma 3.5. Given ε > 0, let Ωε = {(x, t) ∈ Q ∗
H : u∗(x, t) < −ε}. Assume that u satisfies the assumptions in

Theorem 1.2. Then

∣∣Du∗(x, t)
∣∣ � C for (x, t) ∈ Ωε, (3.10)∣∣D2u∗(x, t)
∣∣ � C for (x, t) ∈ Ω3ε, (3.11)

where C > 0 depends only on ρ , p, n, ε, m j ( j = 1,2).

Proof. Let v(x, t) = λ
− 1

n
2 u∗(x, t). By (3.2), we have det D2 v � 1. Since Q ∗

H is a bowl-shaped domain, it
follows from Lemma 3.4 and (3.5) that for (x0, t0) ∈ Ωε

dist
(
x0, ∂ Q ∗

H (t0)
)2/n � − v(x0, t0)

C(n)
� ε

C(n)λ
1
n
2

, n � 3,

and

dist
(
x0, ∂ Q ∗

H (t0)
)α � − v(x0, t0)

C(α)
� ε

C(α)λ
1
n
2

, n = 2.

Hence, dist(x0, ∂ Q ∗
H (t0)) > C(ε). The function u∗(x, t0) is convex in Q ∗

H (t0) and u∗(x, t0) = 0 on
∂ Q ∗

H (t0). Hence by Lemma 3.2.1 of [17] we obtain

∣∣Du∗(x0, t0)
∣∣ � −u∗(x0, t0)

dist(x0, ∂ Q ∗
H (t0))

� C,

where we have used the fact

−u∗(x0, t0) = −|det T H | 2
n
(
u
(

T −1
H (y, s)

) − H
)
� |det T H | 2

n H ≈ 1.

Thus (3.10) follows.
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Next, consider the function ω(x, t) = u∗(x, t) + 2ε. From (3.10), we have |Dω(x, t)| � C for
(x, t) ∈ Ω2ε . Note that ω(x, t) = u∗ + 2ε < −3ε + 2ε = −ε, i.e., |ω(x, t)| > ε for (x, t) ∈ Ω3ε . Apply-
ing Theorem 2.2 to ω on the set Ω2ε , then we obtain (3.11). �
Corollary 3.1. There exist constants C1 , C2 depending on ρ , p, n, ε, m j ( j = 1,2) such that

C1 I � D2u∗(x, t) � C2 I for all (x, t) ∈ Ωε. (3.12)

Proof. Since u∗ = 0 on ∂p Q ∗
H , then Ωε/3 ⊂ Q ∗

H . Applying (3.11) of Lemma 3.5 to u∗ on Ωε/3, we have
D2u∗ � C2 I . Since det D2u∗ � λ1, we obtain

λmin
(

D2u∗) � λ1

Cn−1
2

=: C1

where λmin(D2u∗) is the minimum eigenvalue of D2u∗ . �
Recall that E is the ellipsoid of minimum volume containing Q H (0) center at xH the mass center

of Q H (0). By rotating the coordinate system, we may suppose that the axes of the ellipsoid E coincide
with the coordinate axes. If T = T H is an affine transformation that normalizes Q H (0), then T (E) =
B1(0), T (xH ) = 0, and T x = A(x − xH ), A = AH = diag{μ1, . . . ,μn}.

Lemma 3.6. Let A and μi , i = 1, . . . ,n be as above, then

λmin

C2
� Hμ2

i � λmax

C1
, i = 1, . . . ,n, (3.13)

where C1 , C2 are the same as in Corollary 3.1 and λmax, λmin > 0 denotes the maximum and the minimum
eigenvalue of D2u(0), respectively.

Proof. Since T = T H normalizes Q H (0) and by (3.2) the Monge–Ampère measure with density
det D2u(x,0) is doubling, by Theorem 3.3.8 of [17] applied to the sections Q H (0), Q τ H (0) with
0 < τ < 1, we get that

B
(
T (0), Kτ

) ⊂ T Q τ H (0),

where K is a constant depending on n, λ1, λ2. Let η > 0, then as in the proof of Lemma 3.2, we obtain

Q τ H (0) ×
[
−ηH

m2
,0

]
⊂ Q (τ+η)H .

By applying T H we have for some ε1 > 0 depending on ρ , p, n, ε, m j ( j = 1,2)

B
(
T (0), Kτ

) × [−ε1η,0] ⊂ T H Q (τ+η)H ,

where we have used the fact |det T H |−2/n ≈ H . If we pick η such that τ + η < 1 then

T H Q (τ+η)H ⊂ {
(x, t): u∗(x, t) < −(1 − τ − η)H|det T H |2/n}.

Setting τ = 1/2 and η = 1/4, we obtain

B
(
T (0), c0

) × [−c1,0] ⊂ Ωε = {
(x, t): u∗(x, t) < −ε

}
, (3.14)
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provided c0 = K/2, c1 = ε1/4 and ε � δ0 := 1
4 H|det T H |2/n . On the other hand,

D2u∗(T (0),0
) = |det T |2/n(A−1)t

D2u(0,0)A−1. (3.15)

Combining (3.12) and (3.15), we obtain

C1 I � |det T |2/n(A−1)t
D2u(0,0)A−1 � C2 I.

Note that A−1 = diag{1/μ1, . . . ,1/μn} and (3.2), therefore

C1

λmax
� |det T |2/n

μ2
i

� C2

λmin
, i = 1, . . . ,n.

Thus (3.13) follows. �
Proof of Theorem 1.2. Given ε > 0, from (3.9) and (3.11), we have∥∥u∗∥∥

C2,1(Ωε)
� C(ε).

From (1.5), we see that G(M) := ρ(log det M) is concave for symmetric positive definite matrix M .
By (3.14) and Evans–Krylov estimates (see [24] or [18]), we have

[
Diju

∗]
Cα(B(T (0),c0)×[−c1,0]) � C(ε), (3.16)[

u∗
s

]
Cα/2(B(T (0),c0)×[−c1,0]) � C(ε), (3.17)

where α ∈ (0,1). Since

u∗(y, s) = |det T H |2/n
[

u

((
y1

μ1
, . . . ,

yn

μn

)
+ xH , |det T H |−2/ns

)
− H

]
,

then

Diju
∗(y, s) = |det T H |2/n

μiμ j
Di ju

((
y1

μ1
, . . . ,

yn

μn

)
+ xH , |det T H |−2/ns

)

and

u∗
s (y, s) = ut

((
y1

μ1
, . . . ,

yn

μn

)
+ xH , |det T H |−2/ns

)
.

From (3.16) and (3.17), we obtain

[Diju]Cα(T H )−1(B(T (0),c0)×[−c1,0]) � C
μiμ j

|det T H |2/n

(
max

i
μi

)α
,

[ut]Cα/2(T H )−1(B(T (0),c0)×[−c1,0]) � C
(|det T H |2/n)α/2

.

By Lemma 3.6, together with T (0) = −AxH , it follows that

B
(
0, c2 H1/2) × [−c3 H,0] ⊂ (T H )−1(B(T (0), c0) × [−c1,0]),
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where

c2 = c0

(
C2

λmin

)−1/2

, c3 = c1|det T H |−2/n

H
.

Recalling the fact |det T H |−2/n ≈ H again, consequently we obtain

[Diju]Cα(B(0, c2 H1/2)×[−c3 H,0]) � C H−α/2,

and

[Dt u]Cα/2(B(0, c2 H1/2)×[−c3 H,0]) � C H−α/2.

By letting H → ∞ we obtain that Diju and ut are constants on each bounded set and the proof is
complete. �
4. Isolated singularities of parabolic Hessian equation

Let λ1, λ2, . . . , λn be eigenvalues of D2u, then

ρ
(
log det D2u

) = ρ

(
n∑

i=1

log λi

)

if λi > 0. In view of this, we consider more general equation

−ut + f
(
λ
(

D2u
)) = 0. (4.1)

The Dirichlet problem of (4.1) of elliptic type was studied by Caffarelli, Nirenberg and Spruck [6]. We
say Eq. (4.1) is parabolic if f (λ(M1)) > f (λ(M2)) for any M1, M2 ∈ Γ, M1 > M2, where Γ is a convex
cone of symmetric matrices S

n×n . We call u an admissible solution to (4.1), if D2u(x, t) ∈ Γ .
There are several interesting particular forms of f in our setting, for instance,

f
(
λ
(

D2u
)) = Sk

(
λ
(

D2u
)) =

∑
i1<···<ik

λi1 · · ·λik

is the k-th elementary symmetric polynomial. The parabolic k-Hessian equation includes the heat
equations (k = 1)

−ut + �u = 0

and parabolic Monge–Ampère equation (k = n)

−ut + det D2u = 0.

See [24] for a complete description and related results of parabolic Hessian equations.
Let E ⊂ R

n+1− be a bounded closed measurable set and u ∈ C4,2(Rn+1− \ E) be an admissible solution
to

−ut + f
(
λ
(

D2u
)) = 0 in R

n+1− \ E. (4.2)
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In the following, we consider the problem of what assumptions imposed on u and E are enough to
ensure that u is a smooth solution in entire R

n+1− . For this, we have

Theorem 4.1. Assume u and E are as above. Let Q be a bowl-shaped domain satisfying E � Q . Let v ∈
C4,2(Q ) be an admissible solution to

{
−vt + f

(
λ
(

D2 v
)) = 0 in Q ,

v = u on ∂p Q .
(4.3)

Suppose there exists a nonnegative integer l � n − 2 such that dim E(t) � l for any t < 0, where dim E(t) is
the Hausdorff dimension of E(t) in R

n+1 . Suppose further that for any (x, t) ∈ E, there are l + 2 independent
C2 curves (ci(s), t) lying on R

n × {t} and passing through (x, t) such that u(ci(s), t) ∈ C1 . Then u ≡ v on Q .

Under some assumptions of f , the Dirichlet problem (4.3) is well studied, see [24]. Particularly,
when f = Sk and Q is a cylinder with a strict convex bottom, then there exists a unique solution
of (4.3).

Recall that E(t) = {x: (x, t) ∈ E}. Similar result for elliptic equations was obtained by [28], but it
further needed u is locally Lipschitz continuous. To prove the theorem, we need a special version of
Aleksandroff maximum principle (see Lemma 4.3).

Let Q be a bowl-shaped domain in R
n+1 and u ∈ C(Q ). For (x0, t0), (x, t) ∈ Q , the parabolic nor-

mal mapping of u is the set value function defined by

Φx0(x, t) = {
(p,h) ∈ R

n+1: u(y, s) � u(x, t) + p(y − x),

h = u(x, t) − p · (x − x0), for any y ∈ Q (s) with s � t
}
.

We call the set

Γu = {
(x, t) ∈ Q : Φx0(x, t) �= ∅}

contact set of u. It is not difficult to see that the contact set of u is independent of the choice of
(x0, t0). Denote

Φx0(Q ) = Φx0(Γu) =
⋃

(x,t)∈Γu

Φx0(x, t).

Lemma 4.1. Assume u ∈ C2,1(Q ) ∩ C(Q ), then we have for (x, t) ∈ Γu

p = Dxu(x, t), h = u(x, t) − Dxu(x, t)(x − x0),

Dt u(x, t) � 0, −D2
x u(x, t) � 0,

where (p,h) ∈ Φx0 (x, t).

Proof. By the definition of Φx0 (y, t), it is easy to see that this lemma holds. �
Lemma 4.2. Let E � Q be a closed measurable set, u ∈ C4,2(Q \ E) ∩ C(Q ), Γu be the contact set of u, and
0 � g ∈ C(Rn). If |Φx0 (E ∩ Γu)|n+1 = 0, where | · |n+1 is the (n + 1)-dimension Lebesgue measure, then

∫
Φx0 (Γu)

g(p)dp dh �
∫

Γu\E

g(Du)ut det
(−D2u

)
dx dt. (4.4)
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Proof. Denote the Jacobian determinant of the mapping Φx0 by J (x, t) = |det DΦx0 | = ut det(−D2u).
Let A = {(x, t) ∈ Q T \ E: J (x, t) = 0}. According to Sard Theorem, |Φx0 (A)|n+1 = 0. Therefore, in view
of Lemma 4.1, J (x, t) > 0 in B := Γu \ (A ∪ E).

At the first step, we assume B is open. Thus there exists a sequence of cubes {Ci}∞i=1, Ci ∩ C j = ∅
if i �= j such that B = ⋃∞

i=1 Ci , and Φx0 : Ci → Φx0 (Ci) is a diffeomorphism. Hence,

∫
Φx0 (Ci)

g(p)dp dh =
∫
Ci

g(Du)ut det
(−D2u

)
dx dt

and

∫
Φx0 (B)

g(p)dp dh �
∑

i

∫
Φx0 (Ci)

g(p)dp dh

=
∑

i

∫
Ci

g(Du)ut det
(−D2u

)
dx dt

=
∫
B

g(Du)ut det
(−D2u

)
dx dt.

Next, if B is only a measurable set, there exists an open set G ⊂ Q such that G ⊃ B and J (x, t) > 0
in G . Since B is measurable, one can choose an open set sequence {O i}∞i=1 such that B ⊂ O i and
|O i \ B|n+1 → 0 when i → ∞. For the open set G ∩ O i , due to the proof above, we obtain

∫
Φx0 (G∩O i)

g(p)dp dh �
∫

G∩O i

g(Du)ut det
(−D2u

)
dx dt.

Let i → ∞, it follows that

∫
Φx0 (B)

g(p)dp dh =
∫
B

g(Du)ut det
(−D2u

)
dx dt

�
∫

Γu\E

g(Du)ut det
(−D2u

)
dx dt.

Taking into account that |Φx0 (E ∩ Γu)|n+1 = |Φx0 (A)|n+1 = 0, we complete the proof. �
Lemma 4.3. Assume u ∈ C4,2(Q \ E) ∩ C(Q ) and u|∂p Q T � 0. If |Φx0 (E ∩ Γu)|n+1 = 0, then

sup
Q T

u �
(

n + 1

ωn

) 1
n+1

d
n

n+1

( ∫
Γu\E

ut det
(−D2u

)
dx dt

) 1
n+1

, (4.5)

where ωn is the volume of n-dimension unite ball, d = diam Ω .
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Proof. Assume M := supQ u > 0, otherwise, there is nothing to prove. Since u|∂p Q � 0, there is a
point (x0, t0) ∈ Q such that u(x0, t0) = M . At this point, consider the parabolic normal mapping Φx0 .
We claim

N =
{
(p,h) ∈ R

n+1: |p| < M

d
, d|p| < h < M

}
⊂ Φx0(Γu). (4.6)

Indeed, for any point (p,h) ∈ N , in the (n + 2)-dimensional Euclidean space R
n+2 with coordinates

(x, t, z) we move the n-dimensional hyperplane z = p(x − x0) + h in positive direction of t . Note that
the hyperplane lies above the surface z = u(x, tmin) on Q (tmin)×{tmin} and h < u(x0, t0), where tmin =
inf{t: Q (t) �= ∅}. In the process of moving, let t1 be the first time when the hyperplane touches the
surface z = u(x, t) and (x1, t1) be one of the touching points. Since u|∂p Q � 0 and |p(x − x0) + h| > 0,
we have (x1, t1) ∈ Q , tmin < t1 � t0. Note that

u(x, t) � p(x − x0) + h for t � t1, (4.7)

u(x1, t1) = p(x1 − x0) + h. (4.8)

Substituting (4.8) into (4.7), we have

u(x, t) � p(x − x0) + u(x1, t1) − p(x1 − x0)

= u(x1, t1) − p(x − x1) for t � t1. (4.9)

Combining (4.8) and (4.9), it follows that (x1, t1) ∈ Γu and (p,h) ∈ Φx0 (x1, t1). Thus we proved the
claim.

According to Lemma 4.2, we have

∫
Γu\E

ut det
(−D2u

)
dx dt �

∣∣Φx0(Γu)
∣∣
n+1 � |N |n+1

= nωn

Md−1∫
0

rn−1 dr

M∫
rd

dh

= ωn Mn+1

(n + 1)dn
.

This completes the proof. �
The use of moving hyperplane in the above proof follows from Chen [10]. As remarked in [10],

the original proof of Tso (see [24]) making use of moving paraboloid may fail to find the contact
point (x1, t1). Therefore, here the parabolic normal mapping Φ is a little bit different from standard
definition.

Proof of Theorem 4.1. Suppose w(x, t) := u − v . First of all, we verify |Φx0 (E ∩ Γw)|n+1 = 0. For any
point (y0, t0) ∈ E ∩ Γw , let (ci(s), t0) with 1 � i � l + 2 be the independent curves passing through
(y0, t0) and lying on Ω × {t0} such that w(ci(s), t0) ∈ C1. Without loss of generality, we may assume
ci(0) = y0. Let (p,h) ∈ Φx0 (y0, t0), then

w
(
ci(s), t0

)
� p

(
ci(s) − y0

) + w(y0, t0)
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which implies

dw(ci(s), t0)

ds

∣∣∣∣
s=0

= p
dci(s)

ds

∣∣∣∣
s=0

.

Since ci(s) are independent, by the knowledge of linear algebra Φx0 (y0, t0) is a subset in a subspace
of dimension n + 1 − (l + 2) = n − l − 1. It follows that

dimΦx0(E ∩ Γw) � 1 + l + n − l − 1 = n < n + 1.

Consequently, |Φx0 (E ∩ Γw)|n+1 = 0.
On the other hand, for any point (x, t) ∈ Γw \ E , owing to Lemma 4.1 we obtain

wt(x, t) � 0, −D2 w(x, t) � 0.

If wt(x, t)det(−D2 w(x, t)) > 0, then

ut(x, t) > vt(x, t), D2u(x, t) < D2 v(x, t).

It follows that

0 = −ut + f
(
λ
(

D2u
))

< −vt + f
(
λ
(

D2 v
)) = 0.

This contradiction leads to

wt det
(−D2 w

) = 0 in Γw \ E.

Now, applying Lemma 4.3 to w , we have

u − v = w � 0.

By the same procedure, one can prove v − u � 0. In combination, we complete the proof. �
Proof of Theorem 1.3. In view of Theorem 4.1, we only need to show that there exists a bowl-shaped
domain Q ⊂ R

n+1− such that X0 ∈ Q and the Dirichlet problem

{−vt det D2 v = 1 in Q ,

v = u on ∂p Q ,

is solvable. This is a well-known result, see [24] or [19]. �
It is easy to see that isolated point X0 in Theorem 1.3 can be replaced by a closed set E as in

Theorem 4.1. For Eqs. (1.3) and (1.4), their first boundary value problem has been well established.
Therefore, Theorem 1.3 applies to them.
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