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Abstract. In the paper, we give the positive answer of an open problem of
Li-Nirenberg under the weaker conditions, and we prove a new variation of
the boundary point lemma for second order fully nonlinear ODEs by a new
method. A simpler proof of Li-Nirenberg Theorem is also presented.

1. Introduction. The maximum principle is one of the most useful and best known
tools employed in the study of partial differential equations; see [1] and [2]. In
many cases, the maximum principle enables us to obtain the existence, uniqueness,
stability and regularity of the solutions without their explicit knowledge.

In 1958, A.D.Alexandrov [3] applied the boundary point lemma and the strong
maximum principle to prove a famous theorem by the method of moving planes.
Here it is:

Theorem 1. Let M be a compact smooth hypersurface, embedded in R
n+1 with the

constant mean curvature. Then M is a sphere.

Li and Nirenberg [4] extended Theorem 1 to the case of the monotonic mean
curvature in 2005, and they proved for the case of one dimension.

Theorem 2. Let M be a closed C2 embedded curve in the plane, and stay on one
side of any line parallel to the y-axis that is tangent to M . Assume the curvature
H(x, y) of M satisfies

H(x, a) ≥ H(x, b), (x, a), (x, b) ∈ M, a < b.

Then M is symmetric about some line y = λ0.
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In another paper [5], Li and Nirenberg discussed the case of higher dimension.
To prove Theorem 2, a new version of the boundary point lemma is presented

by Lemma 3.1 in [4].

Theorem 3. Let u, v ∈ C2(0, b) ∩ C1[0, b] satisfying u(0) =
du

dx
(0) = 0, u(x) ≥

v(x) > 0, and

du

dx
> 0,

dv

dx
≥ 0 or

du

dx
≥ 0,

dv

dx
> 0, x ∈ (0, b].

Assume
d2u

dx2
(t)

(

1 +

(

du

dx

)2

(t)

)3/2
≤

d2v

dx2
(s)

(

1 +

(

dv

dx

)2

(s)

)3/2
(1)

if u(t) = v(s) for 0 < t ≤ s < b, then u ≡ v on [0, b].

Compared with the classical boundary point lemma, the difference of intrinsic
quality is that the differential inequality (1) holds in the same functional values
(maybe not the same independent variables). This is a shift idea, and it plays an
important role to enrich theory of differential equations.

After that in [4], Li and Nirenberg extended the curvature operator in Theorem
3 to the divergence operator (K(u′))′, where K ∈ C1(R), and K ′ > 0. An open
problem rises naturally; see Question 5.1 of [4].

Problem 1. Can we replace (K(u′))′ by K(u′, u′′) or K(u, u′, u′′) in Theorem 3?

Li and Nirenberg’s proof of Theorem 3 is done by obtaining an explicit expression
for u, and it depends strongly on the divergence form of (1). Their method is invalid
in the case of fully nonlinear differential operator.

In this paper, we give the positive answer about the above open problem, and
we obtain the new variation of the boundary points lemma for second order fully
nonlinear ordinary differential equations, which is proved by a new method and
under the weaker conditions.

We always assume that K(p, q, r) ∈ C0(R3), K(p, q, r) is C1 in (q, r), and

∂K

∂r
(p, q, r) > 0, (p, q, r) ∈ R

3, (2)

K

(

u(t),
du

dx
(t),

d2u

dx2
(t)

)

≤K

(

v(s),
dv

dx
(s),

d2v

dx2
(s)

)

(3)

if u(t) = v(s) for t, s ∈ (a, b). Our main results are

Theorem 4. Let u, v ∈ C2[a, b] satisfy (3), and

u(a) = v(a),
du

dx
(a) =

dv

dx
(a), (4)

du

dx
> 0,

dv

dx
≥ 0, v(x) > v(a), or

du

dx
≥ 0,

dv

dx
> 0, u(x) > u(a), in (a, b). (5)

Then u ≤ v on [a, b].

The condition (5) is optimal in some sense.
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Remark 1. If we replace

du

dx
> 0,

dv

dx
≥ 0, or

du

dx
≥ 0,

dv

dx
> 0

in (5) by both
du

dx
≥ 0 and

dv

dx
≥ 0 in (a, b), then the conclusion of Theorem 4 may

fail. See Example 1. The similar counterexample can be found in [4].

Example 1. See Figure 1. Let a = 0, b = 4π,

u(x) =

{

0 , x ∈ [0, π],
x − π − sin(x − π), x ∈ (π, 4π],

v(x) =

{

x − sinx, x ∈ [0, 2π),
2π , x ∈ [2π, 4π].

6

-
0 π 2π 3π 4π

Figure 1

2π

v u

v

u

x

y

Remark 2. If there is not the condition v(x) > v(a) or u(x) > u(a) in (5), then
the conclusion of Theorem 4 may also fail. See Example 2.

Example 2. See Figure 2. Let a = 0, b = 2π,

u(x) = x − sinx, x ∈ [0, 2π),

v(x) =

{

0 , x ∈ [0, π],
x − π − sin(x − π), x ∈ (π, 2π].

If we assume u ≥ v and K is the mean curvature operator in Theorem 4, then
we can get Theorem 3 at once, i.e., Lemma 3.1 of [4].

Theorem 4 extends Li-Nirenberg’s result in [4] from the mean curvature operator
and the divergence operator to the most general form of the fully nonlinear ordinary
differential operator of second order. So, we solve completely the open Problem 1.

The rest part of the paper is organized as follows. Theorem 4 is proved in the
next section. In Section 3, we present the new strong and weak maximum principles
of the fully nonlinear second order ordinary differential equations and some remarks.
In the last section, we give a simpler proof of Theorem 2.
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2. Proof of Main Result. In this section, we prove Theorem 4.

Proof of Theorem 4. Let ℵ = {α ∈ [a, b] | u(x) ≤ v(x), x ∈ [α, b]}. If ℵ = φ, then
u(b) > v(b). If ℵ 6= φ, then set β = infℵ. We have u(β) = v(β), and u(x) ≤ v(x),
x ∈ [β, b]. So, we may assume

u(b) ≥ v(b) (6)

without loss of generality.

Case 1.
du

dx
> 0,

dv

dx
≥ 0, and v > v(a) in (a, b).

From the implicit function theorem, we can get t = t(s) ∈ C0[a, b] ∩ C2(a, b),
such that

u(t(s)) = v(s), s ∈ [a, b], (7)

and

t(a) = a, t(s) ∈ [a, b].

Here (6) guarantees the function t(s) well defined on whole interval [a, b]. Differen-
tiating (7) with respect to s, we find

du

dt
(t(s)) · dt

ds
(s) =

dv

ds
(s). (8)

By (3), (7) and the mean value theorem, we have

0 ≥ K

(

u(t(s)),
du

dt
(t(s)),

d2u

dt2
(t(s))

)

− K

(

v(s),
dv

ds
(s),

d2v

ds2
(s)

)

= a(s) ·
(

d2u

dt2
(t(s)) − d2v

ds2
(s)

)

+ b(s) ·
(

du

dt
(t(s)) − dv

ds
(s)

)

, (9)

where

a(s) =

∫ 1

0

∂K

∂r

(

v(s), θ · du

dt
(t(s)) + (1 − θ)· dv

ds
(s), θ · d

2u

dt2
(t(s)) + (1 − θ)· d

2v

ds2
(s)

)

dθ,

b(s) =

∫ 1

0

∂K

∂q

(

v(s), θ · du

dt
(t(s)) + (1 − θ)· dv

ds
(s), θ · d

2u

dt2
(t(s)) + (1 − θ)· d

2v

ds2
(s)

)

dθ.
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Since (2) and u, v ∈ C2[a, b], a(s) and b(s) are bounded functions on [a, b], and
a(s) has a positive lower bound. In view of (8) and (9),

d

ds

(

(

du

dt
(t(s))

)2

−
(

dv

ds
(s)

)2
)

= 2
dv

ds
(s) ·

(

d2u

dt2
(t(s)) − d2v

ds2
(s)

)

≤ 2
dv

ds
(s) ·

(

− b(s)

a(s)
·
(

du

dt
(t(s)) − dv

ds
(s)

))

= −A(s) ·
(

(

du

dt
(t(s))

)2

−
(

dv

ds
(s)

)2
)

, (10)

where

A(s) =























2b(s)

a(s)
·

dv

ds
(s)

du

dt
(t(s)) +

dv

ds
(s)

, s ∈ (a, b],

0, s = a,

and A(s) is bounded function on [a, b]. By (10), we have

d

ds

((

(

du

dt
(t(s))

)2

−
(

dv

ds
(s)

)2
)

e

∫ s

a
A(τ)dτ

)

≤ 0.

So,
(

(

du

dt
(t(s))

)2

−
(

dv

ds
(s)

)2
)

e

∫ s

a A(τ)dτ

is a decreasing function of s on [a, b]. Thus from (4),
(

(

du

dt
(t(s))

)2

−
(

dv

ds
(s)

)2
)

e

∫ s

a
A(τ)dτ ≤ 0.

Thereby
du

dt
(t(s)) ≤ dv

ds
(s) =

du

dt
(t(s)) · dt

ds
(s),

dt

ds
(s) ≥ 1, t(s) ≥ s, s ∈ (a, b).

Here we have used the fact that
du

dt
(t(s)) > 0 in (a, b), since v > v(a) and t(s) > a

in (a, b). From the monotone of u again, we know

u(s) ≤ u(t(s)) = v(s), s ∈ [a, b].

We have proved Case 1.

Case 2.
du

dx
≥ 0,

dv

dx
> 0 and u > u(a) in (a, b).

Since
dv

dx
> 0 for x ∈ (a, b), and u(a) = v(a) < v(b) ≤ u(b), there must be

c0 ∈ (a, b] with u(c0) = v(b) by the intermediate value theorem of continuous
functions. Let

c = sup {c0 ∈ (a, b] | u(x) ≤ v(b), x ∈ (a, c0)},



818 WENMIN SUN AND JIGUANG BAO

then u(c) = v(b). By the implicit function theorem, we have s = s(t) ∈ C0[a, c] ∩
C2(a, c), such that

u(t) = v(s(t)), t ∈ [a, c], (11)

and
s(a) = a, s(t) ∈ [a, b].

Here u(c) = v(b) guarantees the function s(t) well defined on whole interval [a, c].
Differentiating (11) with respect to t, we find

du

dt
(t) =

dv

ds
(s(t)) · ds

dt
(t). (12)

By (3), (11) and the mean value theorem, we have

0 ≥ K

(

u(t),
du

dt
(t),

d2u

dt2
(t)

)

− K

(

v(s(t)),
dv

ds
(s(t)),

d2v

ds2
(s(t))

)

= c(t) ·
(

d2u

dt2
(t) − d2v

ds2
(s(t))

)

+ d(t) ·
(

du

dt
(t) − dv

ds
(s(t))

)

, (13)

where

c(t) =

∫ 1

0

∂K

∂r

(

u(t), θ · du

dt
(t) + (1− θ)· dv

ds
(s(t)), θ · d

2u

dt2
(t) + (1− θ)· d

2v

ds2
(s(t))

)

dθ,

d(t) =

∫ 1

0

∂K

∂q

(

u(t), θ · du

dt
(t) + (1− θ)· dv

ds
(s(t)), θ · d

2u

dt2
(t) + (1− θ)· d

2v

ds2
(s(t))

)

dθ.

Since (2) and u, v ∈ C2[a, b], so c(t) and d(t) are bounded functions on [a, c], and
c(t) has a positive lower bound. In view of (12) and (13),

d

dt

(

(

du

dt
(t)

)2

−
(

dv

ds
(s(t))

)2
)

(14)

= 2
du

dt
(t) ·

(

d2u

dt2
(t) − d2v

ds2
(s(t))

)

≤ 2
du

dt
(t) ·

(

−d(t)

c(t)
·
(

du

dt
(t) − dv

ds
(s(t))

))

= −B(t)

(

(

du

dt
(t)

)2

−
(

dv

ds
(s(t))

)2
)

, (15)

where

B(t) =























2d(t)

c(t)
·

du

dt
(t)

du

dt
(t) +

dv

ds
(s(t))

, t ∈ (a, c],

0, t = a,

and B(t) is bounded on [a, c]. By (15)

d

dt

((

(

du

dt
(t)

)2

−
(

dv

ds
(s(t))

)2
)

e

∫ t

a B(τ)dτ

)

≤ 0.

So,
(

(

du

dt
(t)

)2

−
(

dv

ds
(s(t))

)2
)

e

∫ t

a B(τ)dτ
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is a decreasing function of t on [a, c]. Thus from (1.4)
(

(

du

dt
(t)

)2

−
(

dv

ds
(s(t))

)2
)

e

∫ t

a B(τ)dτ ≤ 0.

Thereby
dv

ds
(s(t)) · ds

dt
(t) =

du

dt
(t) ≤ dv

ds
(s(t)),

ds

dt
≤ 1, s(t) ≤ t, t ∈ (a, c).

Here we have used the fact that
dv

ds
(s(t)) > 0 in (a, c), since u > u(a) and s(t) > a

in (a, c). Because of monotone of v again, we have

u(t) = v(s(t)) ≤ v(t), t ∈ [a, c].

In particular, v(b) = u(c) ≤ v(c). Since v is strictly monotone, c = b. Now we gain

u(t) ≤ v(t), t ∈ [a, b].

We have proved Case 2.
So far we have completed the proof of Theorem 4.

3. New Strong and Weak Maximum Principles. We can use the similar
method as in Section 2 to prove the new variations of strong maximum princi-
ple (Lemma 5.1 of [4]) and weak maximum principle (Lemma 5.2 of [4]) for (3).
Their proofs will be omitted.

Theorem 5. (New Strong Maximum Principle) Let u, v ∈ C2(a, b) satisfying (3),
u(x) ≥ v(x) in (a, b), and

max{du

dx
,
dv

dx
} > 0, in (a, b). (16)

Then u > v or u ≡ v in (a, b).

Remark 3. If we replace (16) by both
du

dx
≥ 0 and

dv

dx
≥ 0 in (a, b), then the

conclusion of Theorem 5 may fail. See Example 3.

Example 3. See Figure 3. Let a = 0, b = 3π,

u(x) = x − sinx, x ∈ [0, 3π],

v(x) =

{

x − sinx, x ∈ [0, 2π),
2π , x ∈ [2π, 3π].

Theorem 6. (New Weak Maximum Principle) Let u, v ∈ C2(a, b)∩C0[a, b] satis-
fying (3), u(a) ≥ v(a), u(b) > v(x), x ∈ (a, b), and

du

dx
> 0 or

dv

dx
> 0 in (a, b). (17)

Then u ≥ v on [a, b].

Remark 4. If we replace (17) by both
du

dx
≥ 0 and

dv

dx
≥ 0 in (a, b), then the

conclusion of Theorem 6 may fail. See Example 1.
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6

-
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Figure 3
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Remark 5. If we have not the condition u(b) > v(x), x ∈ (a, b), then the conclusion
of Theorem 6 may fail. See Example 4.

Example 4. See Figure 4. Let a = 0, b =
7π

8
,

u(x) = x, x ∈ [0,
7π

8
],

v(x) =
3
√

2π

4
· sinx, x ∈ [0,

7π

8
].

6

-

Figure 4

x

y

u

v

7π/80

4. A New Proof of Theorem 2. We first give the main lemma for the proof of
Theorem 2.

Lemma 1. Let u, v ∈ C2(a, b) satisfying

u′′

(1 + u′2)3/2
≤ v′′

(1 + v′2)3/2
, x ∈ (a, b). (18)
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Suppose that there exists ξ ∈ (a, b), such that

u(ξ) = v(ξ), u′(ξ) = v′(ξ). (19)

Then u ≤ v in (a, b).

Proof. Set

f(q) =
q

√

1 + q2
, q ∈ R.

Then

f ′(q) =

(

q
√

1 + q2

)

′

=
1

(1 + q2)3/2
> 0, q ∈ R, (20)

which implies that f(q) is strictly increasing in R. Let

F (x) = f(u′(x)) − f(v′(x)) =
u′(x)

√

1 + u′(x)2
− v′(x)
√

1 + v′(x)2
, x ∈ (a, b).

So F (ξ) = 0, and by (18)

F ′(x) = f ′(u′)u′′ − f ′(v′)v′′ =
u′′(x)

(1 + u′2(x))3/2
− v′′(x)

(1 + v′2(x))3/2
≤ 0, x ∈ (a, b).

It follows that F (x) ≥ 0 in (ξ, b), that is,

u′

√
1 + u′2

≤ v′√
1 + v′2

in (ξ, b).

Therefore we have by (20) u′ ≤ v′ and then u ≤ v in (ξ, b), since u(ξ) = v(ξ). It
can be proved in similar fashion that u ≤ v in (a, ξ).

Remark 6. The condition (19) in Lemma 1 may be replaced by

lim
x→a+0

u(x) = lim
x→a+0

v(x), and

lim
x→a+0

u′(x) = lim
x→a+0

v′(x) = −∞, (21)

or
lim

x→b−0
u(x) = lim

x→b−0
v(x), and

lim
x→b−0

u′(x) = lim
x→b−0

v′(x) = +∞. (22)

Now we present a simpler proof of Theorem 2 than Li-Nirenberg’s, without turn
in the picture as in [3] or [4].

New Proof of Theorem 2. Our proof relies only on Lemma 1 and Remark 6. The
condition (M stays on one side of any line parallel to the y-axis that is tangent to
M) of Theorem 2 implies that there are just two lines, say x = a and x = b with
a < b, parallel to the y-axis which are tangent to M. We carry out the moving plane
method in strip-shaped domain {(x, y) | x ∈ [a, b], y ∈ (−∞, +∞)}, which is similar
to those in the proof of Theorem 1.4 in [4].

Let M be the boundary of an open set U in the plane. For λ less than, but close
to, max

M
y, take

Sλ = {(x, y) ∈ M | y > λ},
and reflect it in the line y = λ. The reflected piece of curve, S′

λ, lies in U . Decrease

λ and continue to reflect Sλ so that S′

λ continues to lie in U . There will be a first

value λ0 of λ, such that for any λ < λ0, S′

λ does not lie in U . Note that it is allowed
for M to have some flat segment. We then obtain the following.
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Case 1. See Figure 5. S′

λ0
touches M at some point (ξ, η) with a < ξ < b and

η < λ0.

y = λ0

(ξ, η)

ξ

Figure 5

Sλ0

S ′

λ0 u

v

x

•
•

•

- x

6

y

0 a b

M•

Case 2. See Figure 6. At the point (a, λ0) or (b, λ0), S′

λ0
and M are tangent to

each other.

- x

6

y

0

u

v

Figure 6

y = λ0

(a, λ0)

a b

S ′

λ0

Sλ0

x

M

•

By the condition of Theorem 2, we may describe S′

λ0
and M on [a, b] as graphs

of functions u, v ∈ C2(a, b) ∩ C0[a, b] with

u(x) ≥ v(x) and u(ξ) = v(ξ) = η for some ξ ∈ [a, b],

and
u′′

(1 + u′2)3/2
≤ v′′

(1 + v′2)3/2
, x ∈ (a, b).

In Case 1, ξ ∈ (a, b), u(ξ) = v(ξ), u′(ξ) = v′(ξ). In Case 2,

ξ = a, u(a) = v(a), u′(a + 0) = v′(a + 0) = −∞, or
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ξ = b, u(b) = v(b), u′(b − 0) = v′(b − 0) = +∞.

Therefore we have that the conditions (19), (21) or (22) hold. By Lemma 1 and
Remark 6 it follows that u ≤ v, and then u ≡ v in (a, b). This is the desired
symmetry.
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