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NECESSARY AND SUFFICIENT CONDITIONS

ON SOLVABILITY FOR HESSIAN INEQUALITIES

XIAOHU JI AND JIGUANG BAO

(Communicated by Matthew J. Gursky)

Abstract. In this paper, we discuss the solvability of the Hessian inequal-

ity σ
1
k
k (λ(D2u)) ≥ f(u) on the entire space R

n and provide a necessary and
sufficient condition, which can be regarded as a generalized Keller-Osserman
condition.

1. Introduction and main results

Many works have been done on the non-linear partial differential equation

(1.1) ∆u = up, x ∈ R
n,

where

∆u =

n∑
i=1

∂2u

∂x2
i

is the Laplacian of u and p is a positive constant (see [1], [15]).
These problems come from geometry. Briefly speaking, let (M, g) be a Riemann-

ian manifold of dimension n, n ≥ 2, and K(·) be a given function on M . We want
to find a new metric G on M such that K is the scalar curvature of G and G is
conformal to g. In the case n ≥ 3, if we let G = u

4
n−2 g, it is equivalent to the

problem of finding positive solutions of the equation

(1.2)
4(n− 1)

n− 2
∆gu− kgu+Ku

n+2
n−2 = 0,

where ∆g, kg are the Laplacian and scalar curvature with respect to the metric g,
respectively (see [4]). Especially, if we take M = R

n, g = (δij) and K(·) ≡ −1,
then kg = 0 and (1.2) reduces to (1.1) with p = n+2

n−2 . In the case n = 2, if we let

G = e−2ug, it is equivalent to the problem of finding locally bounded solutions of
the equation

(1.3) ∆gu− kg +Ke2u = 0,
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where ∆g, kg are the Laplacian and Gauss curvatures on M with respect to the
metric g, respectively. Similarly, if we take M = R

n, g = (δij) and K(·) ≡ −1, then
(1.3) reduces to the equation

(1.4) ∆u = e2u.

Details can be found in [12].
To state our results, we first need to fix some notation. For k = 1, 2, · · · , n, let

σk(λ) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik , λ = (λ1, · · · , λn) ∈ R
n

denote the kth elementary symmetric function, and define

(1.5) Γk := {λ ∈ R
n : σl(λ) > 0, 1 ≤ l ≤ k}.

For any n× n real symmetric matrix A, we let λ(A) denote the eigenvalues of A.
Assume Ω is a domain in R

n and D2u is the Hessian matrix of u ∈ C2(Ω). It is
easy to see that

σ1(λ(D
2u)) =

n∑
i=1

λi = ∆u

and

σn(λ(D
2u)) =

n∏
i=1

λi = det(D2u).

We call a function u ∈ C2(Ω) k-convex in Ω if λ(D2u) ∈ Γk for all x ∈ Ω, and let
Φk denote the class of k-convex functions, i.e.

Φk(Ω) := {u ∈ C2(Ω) : λ(D2u) ∈ Γk, ∀x ∈ Ω}.
There is a rich literature concerning the equation

(1.6) σ
1
k

k (λ(D2u)) = f,

for a positive function f . Caffarelli, Nirenberg and Spruck [2] established the regu-
larity theory for equation (1.6) for Dirichlet boundary value problems and proved
its existence. Krylov [14] and Evans [5] obtained the regularity for a more gen-
eral class of fully non-linear elliptic equations not necessarily of divergence form.
Trudinger and Xujia Wang ([19], [20], [21]) developed the theory of Hessian mea-
sures. Bo Guan [9] and John Urbas [22] have also made important contributions
to the equation. Some of the techniques in these works can be modified to study
equations in conformal geometry (see [3]).

A function u ∈ Φk(Rn) is called a subsolution of the fully non-linear partial
differential equation

(1.7) σ
1
k

k (λ(D
2u)) = f(u), x ∈ R

n

if u satisfies the inequality

σ
1
k

k (λ(D
2u)) ≥ f(u), x ∈ R

n.

A famous result is that (1.1) has no positive subsolution if p > 1 (see [1]). This
result can be led to by [17], where Osserman considered the necessary and sufficient
condition under which the equation

(1.8) ∆u = f(u), x ∈ R
n,
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has a subsolution, where f is a positive monotone increasing continuous function
on R. It has been proved that the equation (1.8) has a subsolution if and only if
the function f satisfies the Keller-Osserman condition

(1.9)

∫ ∞ (∫ t

0

f(s)ds

)− 1
2

dt = ∞,

where we omit the lower limit to admit an arbitrary positive number. Condi-
tion (1.9) is often used to study the so-called boundary blow-up (explosive, large)
solutions (see [8], [7], [13], [16], [18], [23]).

In [11], Qinian Jin, Yanyan Li and Haoyuan Xu proved that a related equation,

(1.10) σ
1
k

k (λ(D2u)) = up, x ∈ R
n,

has no k-convex positive subsolution for any p > 1. However the method they used
cannot verify whether the condition p > 1 is optimal.

In order to answer this question, we pay attention to equation (1.7) and get a
result comparable to that of Osserman ([17]).

Our main theorem is:

Theorem 1.1. If f(t) is a continuous function defined on R and satisfies

(1.11)

{
f(t) > 0 is monotone non-decreasing in (0,+∞),
f(t) = 0 in (−∞, 0],

then equation (1.7) has a positive subsolution u ∈ Φk(Rn) if and only if

(1.12)

∫ ∞ (∫ t

0

fk(s)ds

)− 1
k+1

dt = ∞.

We can see that when k = 1, equation (1.7) becomes equation (1.8), while
condition (1.12) becomes the Keller-Osserman condition (1.9). In fact, equation
(1.7) has a positive radial solution u ∈ Φk(Rn) if and only if the function f in
Theorem 1.1 satisfies condition (1.12).

By the main theorem, we can easily get the corollary below, which solves the
problem of equation (1.10).

Corollary 1.2. If the constant p is positive, (1.10) has a positive subsolution u ∈
Φk(Rn) if and only if p ≤ 1.

If we strengthen the requirement of f from non-negative to positive, then the
global subsolution of (1.7) we considered does not need to be positive. We have the
following theorem:

Theorem 1.3. If f(t) is a positive, continuous and monotone non-decreasing func-
tion defined on R, then equation (1.7) has a subsolution u ∈ Φk(Rn) if and only if
(1.12) holds.

By Theorem 1.3, we get

Corollary 1.4. The equation

σ
1
k

k (λ(D
2u)) = e2u, x ∈ R

n,

has no subsolution in Φk(Rn).

In Section 2 we will introduce some results on radial solutions as preliminaries,
and the proof of the main theorem will be given in Section 3.
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2. Preliminary results on radial solutions

We need some properties of radial functions in the proof of the main theorem.
For R > 0, let BR := {x ∈ R

n : |x| < R}.

Lemma 2.1. Assume ϕ(r) ∈ C2[0, R), with ϕ′(0) = 0. Then for v(x) = ϕ(r),
where r = |x| < R, we have that v(x) ∈ C2(BR),

(2.1) λ(D2v) =

⎧⎨
⎩ (ϕ′′(r),

ϕ′(r)

r
, · · · , ϕ

′(r)

r
), r ∈ (0, R),

(ϕ′′(0), ϕ′′(0), · · · , ϕ′′(0)), r = 0,

and then

(2.2) σk(λ(D
2v)) =

⎧⎪⎪⎨
⎪⎪⎩

(
n− 1

k − 1

)
ϕ′′(r)(

ϕ′(r)

r
)k−1 +

(
n− 1

k

)
(
ϕ′(r)

r
)k, r ∈ (0, R),(

n

k

)
(ϕ′′(0))k, r = 0.

Proof. It is well-known that for x �= 0, 1 ≤ i, j ≤ n,

∂v

∂xi
(x) = (

ϕ′(r)

r
)xi,(2.3)

∂2v

∂xi∂xj
(x) = (

ϕ′′(r)

r2
)xixj − (

ϕ′(r)

r3
)xixj + (

ϕ′(r)

r
)δij .(2.4)

By (2.3) and ϕ′(0) = 0, we have

lim
x→0

∂v

∂xi
(x) = lim

x→0
(
ϕ′(r)− ϕ′(0)

r − 0
)xi = ϕ′′(0) · 0 = 0.

Similarly, using (2.4) we have

lim
x→0

∂2v

∂xi∂xj
(x) = lim

x→0
((ϕ′′(r)− ϕ′(r)

r
)
xixj

r2
+ (

ϕ′(r)

r
)δij) = ϕ′′(0)δij .

Define
∂v

∂xi
(0) = 0,

∂2v

∂xi∂xj
(0) = ϕ′′(0)δij .

Then it is straightforward to show that v(x) ∈ C2(BR).
Let

a =

⎧⎨
⎩

ϕ′′(r)

r2
− ϕ′(r)

r3
, r ∈ (0, R),

0, r = 0,

b =

⎧⎨
⎩

ϕ′(r)

r
, r ∈ (0, R),

ϕ′′(0), r = 0,

and I denote the unit matrix; then

(2.5) D2v(x) = axTx+ bI.

By calculations of linear algebra we know that the eigenvalues of a matrix such
as (2.5) is (ar2 + b, b, · · · , b). Hence (2.1) is proved. Equation (2.2) can thus be
obtained easily from the definition of σk. �
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In order to make the presentation simpler, if ϕ′(0) = 0, since

lim
r→0

ϕ′(r)

r
= ϕ′′(0),

we will always think
ϕ′(r)

r
|r=0 = ϕ′′(0)

in the following passages. For example, we can exchange (2.1) for

λ(D2v) = (ϕ′′(r),
ϕ′(r)

r
, · · · , ϕ

′(r)

r
), r ∈ [0, R).

Hence v(x) = ϕ(r) is a radial solution of equation (1.7) if and only if ϕ(r) is a
solution of the ODE equation

(2.6)

(
n− 1

k − 1

)
ϕ′′(r)(

ϕ′(r)

r
)k−1 +

(
n− 1

k

)
(
ϕ′(r)

r
)k = fk(ϕ(r)).

Furthermore, the following fact will be used, too.

Lemma 2.2. Let f(t) be a continuous function defined on R and satisfying (1.11).
For any positive number a, assume ϕ(r) ∈ C0[0, R) ∩ C1(0, R) is a solution of the
Cauchy problem

(2.7)

⎧⎪⎨
⎪⎩

ϕ′(r) =

(
rk−n

C0

∫ r

0

sn−1fk(ϕ)ds

) 1
k

, r > 0,

ϕ(0) =a,

where C0 =
(n− 1)!

k!(n− k)!
. Then ϕ(r) ∈ C2[0, R), and it satisfies equation (2.6) with

ϕ′(0) = 0 and

(2.8) λr := (ϕ′′(r),
ϕ′(r)

r
, · · · , ϕ

′(r)

r
) ∈ Γk

for 0 ≤ r < R.

Proof. It is easy to see that ϕ(r) ∈ C2(0, R). Since

0 ≤ rk−n

∫ r

0

sn−1fk(ϕ)ds ≤ rk−1

∫ r

0

fk(ϕ)ds → 0, r → 0,

we have

lim
r→0

ϕ(r)− ϕ(0)

r − 0
= lim

r→0
ϕ′(ξ) = lim

ξ→0

(
ξk−n

C0

∫ ξ

0

sn−1fk(ϕ)ds

) 1
k

= 0,

where ξ = ξ(r) ∈ (0, r). Hence ϕ′(0) = 0, and ϕ(r) ∈ C1[0, R). One can see that

lim
r→0

ϕ′(r)− ϕ′(0)

r − 0
= lim

r→0

(∫ r

0
sn−1fk(ϕ)ds

C0rn

) 1
k

= lim
r→0

(
rn−1fk(ϕ(r))

nC0rn−1

) 1
k

=

((
n

k

)−1

fk(a)

) 1
k

.
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Consequently ϕ(r) ∈ C2[0, R).
A direct calculation using (2.7) leads to

ϕ′′(r) =
ϕ′(r)1−k

k

(
(k − n)rk−n−1

C0

∫ r

0

sn−1fk(ϕ)ds+
rk−1

C0
fk(ϕ(r))

)

= (1− n

k
)
ϕ′(r)

r
+

1

C0k
(
ϕ′(r)

r
)1−kfk(ϕ(r)).

(2.9)

By using (2.9), it is easy to verify that ϕ(r) satisfies equation (2.6).
By (2.7), ϕ′(r) ≥ 0. Since f and ϕ are both monotone non-decreasing, for r ∈

(0, R),

ϕ(r) ≥ ϕ(0) = a > 0,

and then

f(ϕ(r)) ≥ f(a) > 0.

Hence, for r ∈ [0, R), we know that
ϕ′(r)

r
> 0 and

σk(λr) =

(
n− 1

k − 1

)
(
ϕ′(r)

r
)k−1

(
ϕ′′(r) +

n− k

k

ϕ′(r)

r

)
= fk(ϕ(r)) > 0,

which means

ϕ′′(r) +
n− k

k

ϕ′(r)

r
> 0,

and then for 1 ≤ l ≤ k,

σl(λr) =

(
n− 1

l − 1

)
(
ϕ′(r)

r
)l−1

(
ϕ′′(r) +

n− l

l

ϕ′(r)

r

)

≥
(
n− 1

l − 1

)
(
ϕ′(r)

r
)l−1

(
ϕ′′(r) +

n− k

k

ϕ′(r)

r

)
> 0.

This implies that (2.8) is valid on [0, R). �

Finally we need to give a proof of the local existence of (2.7) near r = 0. The
equipment we use is Euler’s break line, and the process is similar to the proof of
the classic ODE existence theorem (see [10]).

Lemma 2.3. Let f(t) be a continuous function defined on R and satisfying (1.11).
For any positive number a, there exists a positive number R such that the Cauchy
problem (2.7) has a solution in [0, R].

Proof. Define a functional F (·, ·) on
R := [0, l]× {ϕ ∈ C2[0, l] : a− h < ϕ < a+ h}

as

F (r, ϕ) :=

(
rk−n

C0

∫ r

0

sn−1fk(ϕ)ds

) 1
k

,

where l and h are small enough positive constants and C0 is the same as in (2.7).
Then (2.7) can be rewritten as

ϕ′(r) = F (r, ϕ).

It is easy to see that F > 0 for r > 0.
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We defined a Euler’s break line on [0, l] as

(2.10)

{
ψ(0) = a,

ψ(r) = ψ(ri−1) + F (ri−1, ψ(ri−1))(r − ri−1), ri−1 < r ≤ ri,

where 0 = r0 < r1 < · · · < rm = l.
Without loss of generality, we can assume that every point on Euler’s break line

that we defined above always lies in R. Moreover, we can see from the following
discussion that it lies below a straight line in R. What we shall do is make sure
that ψ(r) < a+ h for all r ∈ [0, l], i.e. (r, ψ) ∈ R.

In fact, for any (r, ϕ) ∈ R, we have

F (r, ϕ(r)) ≤
(
rk−n

C0

∫ r

0

sn−1ds

) 1
k

f(a+ h)

=
r

C
f(a+ h)

≤ l

C
f(a+ h).

(2.11)

It implies

M := max
R

F (r, ϕ) ≤ l

C
f(a+ h).

Hence, for the break line (r, ψ), we have

0 ≤ ψ(r) ≤ a+Mr ≤ a+
l2

C
f(a+ h).

Therefore, once h is fixed, we can choose l sufficiently small to make sure that

0 ≤ ψ(r) < a+ h.

In the next step, we will prove that Euler’s break line ψ is an ε-approximation
solution of (2.7). To do this, we only need to prove that for any small ε > 0, we
can choose appropriate points {ri}i=1,...,m to make the break line satisfy

(2.12) |dψ(r)
dr

− F (r, ψ(r))| < ε, r ∈ [0, l].

As a matter of fact, by (2.11) it is easy to see that

lim
r→0

F (r, ϕ) = 0

is valid uniformly for any ϕ ∈ C2[0, l], a − h < ϕ < a + h. Then for each ε > 0,
there exists r ∈ (0, l) such that for 0 ≤ r < r, we have

F (r, ψ) <
ε

2
.

Then

|dψ(r)
dr

− F (r, ψ(r))| = |F (ri−1, ψ(ri−1))− F (r, ψ(r))| < ε.
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For r ≤ r ≤ l,

|dψ(r)
dr

− F (r, ψ(r))|

= |F (ri−1, ψ(ri−1))− F (r, ψ(r))|

= C|
(
rk−n
i−1

∫ ri−1

0

sn−1fk(ψ)ds

) 1
k

−
(
rk−n

∫ r

0

sn−1fk(ψ)ds

) 1
k

|

≤ C|rk−n
i−1

∫ ri−1

0

sn−1fk(ψ)ds− rk−n

∫ r

0

sn−1fk(ψ)ds| 1k

≤ C

(
|rk−n

i−1 − rk−n|
∫ ri−1

0

sn−1fk(ψ)ds+ rk−n

∫ r

ri−1

sn−1fk(ψ)ds

) 1
k

≤ C
(
|rk−n

i−1 − rk−n|lnfk(a+ h) + rk−n(rn − rni−1)f
k(a+ h)

) 1
k .

(2.13)

Since functions rk−n and rn are both Liptchitz continuous on [r, l], for the above
ε there exists δ(ε) > 0 such that

|r′k−n − r′′k−n| <
(
lnfk(a+ h)

)−1
(
ε

2C
)k,

|r′n − r′′n| <
(
rk−nfk(a+ h)

)−1
(
ε

2C
)k,

(2.14)

where r′, r′′ ∈ [r, l] and |r′ − r′′| < δ(ε).
Noting that δ(ε) is independent of the definition of ψ, we can assume r1 = r and

max
2≤i≤m

|ri−1 − ri| < min{r, δ(ε)};

then we get (2.12).
Thus, Euler’s break line ψ is an ε-approximation solution of (2.7).
The next step is to find a solution of (2.7) by the Euler break line we defined.

Assume {εj}∞j=1 is a positive constant sequence converging to 0. For εj , there is an
εj-approximation solution ψj on [0, l], defined as above. It is easy to know that

|ψj(r
′)− ψj(r

′′)| ≤ M |r′ − r′′|,
where r′, r′′ ∈ [0, l]. That is to say, {ψj} is equicontinuous and uniformly bounded.
Therefore by the Ascoli-Arzela Lemma, we can find a uniformly convergent subse-
quence, still denoted as {ψj}, without loss of generality.

Assume limj→∞ ψj = ϕ. Then ϕ(0) = a, and ϕ′(0) = 0.
Since ψj is an εj-approximation solution, we have

(2.15)
dψj(r)

dr
= F (r, ψj(r)) +
j(r),

where |
j(r)| < εj , for r ∈ [0, l]. Integrating (2.15) from 0 to r(≤ l), we have

ψj(r) = a+

∫ r

0

F (s, ψj(s))ds+

∫ r

0


j(s)ds.

Let j → ∞,

ϕ(r) = a+ lim
j→∞

(∫ r

0

F (s, ψj(s))ds+

∫ r

0


j(s)ds

)

= a+

∫ r

0

F (s, ϕ(s))ds.

(2.16)
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Since ψj is continuous, we know that ϕ is continuous. By (2.16), ϕ is continuously
differentiable. Differentiating (2.16), we can see that ϕ satisfies equation (2.7) in
[0, l]. �

In fact, a local solution also exists for any real number a if we do not consider
only the positive ones. Once a is positive, it is easy to know the solution ϕ is
positive, too.

3. Proof of the main theorem

We will prove the main theorem by three lemmas:

Lemma 3.1. Let f(t) be a monotone non-decreasing continuous function defined
on R. Suppose there exists a function ϕ(r) ∈ C2[0, R) satisfying (2.6) and (2.8)
for r ∈ [0, R), with ϕ′(0) = 0 and ϕ(r) → ∞ as r → R. Then if u(x) ∈ Φk(Rn) is
a positive subsolution of (1.7), we have u(x) ≤ ϕ(|x|) at each point in BR.

Proof. Let v(x) = ϕ(r), and then by Lemma 2.1, we know λ(D2v(x)) ∈ Γk for
x ∈ BR. Therefore v(x) ∈ Φk(BR).

Let L[w] = σ
1
k

k (λ(D2w))−f(w). If u > v somewhere, then there is some constant
a > 0 such that u − a touches v from below, which means u − a − v ≤ 0 in BR.
Suppose u− a touches v at some interior point x0 in BR. Then there is R′ ∈ (0, R)
such that x0 ∈ BR′ . Since v(x) = ϕ(|x|) → ∞ as x → ∂BR and u is bounded in
BR, we can assume sup∂BR′ (u− a− v) < 0.

It follows from (1.11) that in BR′

L[u− a] = σ
1
k

k (λ(D
2(u− a)))− f(u− a)

= (σ
1
k

k (λ(D
2u))− f(u)) + (f(u)− f(u− a))

≥ 0 = L[v].

Now u−a is a subsolution and v is a solution (with respect to L). By the maximum
principle,

0 = sup
BR′

(u− a− v) = sup
∂BR′

(u− a− v) < 0,

which is impossible. �

Lemma 3.2. Let the continuous function f(t) satisfy (1.11) on R. Then equation
(1.7) has a positive subsolution u ∈ Φk(Rn) if and only if the Cauchy problem (2.7)
has a positive solution ϕ(r) ∈ C2[0,∞) for some positive number a.

Proof. First, the sufficient condition is obvious. If there exists such a solution
ϕ(r) of (2.7) for R = +∞, let v(x) = ϕ(|x|). By Lemma 2.1 and Lemma 2.2,
σk(λ(D

2v(x))) = fk(v(x)) and λ(D2v(x)) ∈ Γk for x ∈ R
n. Thus v(x) ∈ Φk(Rn) is

a required solution of (1.7).
Next, we will prove the necessary condition. On the contrary, suppose that

no such function ϕ(r) exists globally. By Lemma 2.3, for any positive number
a, (2.7) has a positive solution ϕ(r) on some interval which cannot be a global
solution. Hence we assume [0, R) is the maximal interval in which the solution
exists. Since ϕ′(r) > 0 for r > 0, we know ϕ(r) → ∞ as r → R. Then ϕ(|x|)
satisfies (2.6) and (2.8) in BR by Lemma 2.2. By Lemma 3.1, any positive solution
u(x) ∈ Φk(Rn) of (1.7) would satisfy u(x) ≤ ϕ(|x|) for x ∈ BR. In particular we
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have u(0) ≤ ϕ(0) = a. However, since a is arbitrary, we take a =
u(0)

2
for granted

and obtain a contradiction, which means the necessary condition holds. �

Lemma 3.3. If f(t) is a continuous function defined on R and satisfies (1.11),
then the Cauchy problem (2.7) has a positive solution ϕ(r) ∈ C2[0,∞) for some
positive number a if and only if (1.12) holds.

Proof. First, we will prove the sufficient condition. Suppose no such solution of
(2.7) exists. As in the proof of Lemma 3.2, the problem (2.7) has a solution ϕ(r)
with a = 1, valid on the maximal existence interval [0, R), and ϕ(r) → ∞ as r → R.
By Lemma 2.2, we know that ϕ satisfies equation (2.6).

For 0 < r < R, since ϕ′(r) > 0, by (2.6), we have(
n− 1

k − 1

)
ϕ′′(r)(ϕ′(r))k−1 < rk−1fk(ϕ(r)) ≤ Rk−1fk(ϕ(r)).

Multiplying by ϕ′(r) on both sides, we get

(3.1) ϕ′′(r)(ϕ′(r))k < CRk−1fk(ϕ(r))ϕ′(r).

Here the constant C depends only on n and k. Moreover, to simplify the presen-
tation, in the sequel we will use C to denote some constant that depends only on
n and k unless we mention its value specifically. Integrating (3.1) from 0 to r and
using ϕ′(0) = 0 and ϕ(0) = 1, we get

(ϕ′(r))k+1 < CRk−1

∫ ϕ(r)

1

fk(s)ds,

i.e.

(3.2)

(∫ ϕ

1

fk(s)ds

)− 1
k+1

dϕ < CR
k−1
k+1 dr.

Integrating (3.2) on r from 0 to R and using the fact that ϕ(0) = 1 and ϕ(R) = ∞,
we have ∫ ∞

1

(∫ ϕ

1

fk(s)ds

)− 1
k+1

dϕ < CR
2k

k+1 < ∞.

This contradicts (1.12).
Second, we will prove the necessary condition. On the contrary, suppose

(3.3)

∫ ∞ (∫ t

0

fk(s)ds

)− 1
k+1

dt < +∞.

Set

g(t) =

(∫ t

0

fk(s)ds

)− 1
k+1

.

Since

∫ ∞
g(t)dt < ∞, we have

∫ ∞

s

g(t)dt → 0 as s → ∞. Observe furthermore

that g is decreasing in (0,∞). Therefore

tg(t) ≤ 2

∫ t

t
2

g(s)ds < 2

∫ ∞

t
2

g(s)ds → 0,
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as t → ∞. Thus as t → ∞, we have

(3.4) t−(k+1)

∫ t

0

fk(s)ds → ∞.

Since f is non-decreasing,

(3.5) t−(k+1)

∫ t

0

fk(s)ds ≤ t−(k+1)(t− 0)fk(t) = (
f(t)

t
)k.

By (3.4) and (3.5), we have

(3.6)
f(t)

t
→ ∞,

as t → ∞. Hence there exists t1 > 0 such that f(t) > t − ϕ(0) for t > t1. Since
ϕ(r) > ϕ(0) = a, f is positive and non-decreasing in (0,∞), and ϕ satisfies equation
(2.6), we have

C0

(
(ϕ′(r))krn−k

)′
= rn−1fk(ϕ(r)) ≥ rn−1fk(a).

After integrating, we have
(ϕ′(r))krn−k ≥ Crn,

i.e.
(ϕ′(r))k ≥ Crk.

Hence
ϕ(r) ≥ Cr2 + a.

There exists r1 > 0 such that ϕ(r) > t1 for r > r1. Therefore, for r > r1, we have

(3.7) f(ϕ(r)) > ϕ(r)− a.

Then by (2.6), (
n− 1

k − 1

)
ϕ′′(r)(ϕ′(r))k < rk−1fk(ϕ(r))ϕ′(r),

which comes to(
n− 1

k − 1

)
(ϕ′(r))k+1 < (k + 1)

∫ r

0

sk−1fk(ϕ(s))ϕ′(s)ds

< (k + 1)rk−1

∫ r

0

fk(ϕ(s))ϕ′(s)ds.

This, together with (3.7), implies that(
n− 1

k − 1

)
(
ϕ′(r)

r
)k+1 <

k + 1

r2

∫ ϕ(r)

a

fk(t)dt

<
k + 1

r2
(ϕ(r)− a)fk(ϕ(r))

<
k + 1

r2
fk+1(ϕ(r)).

Therefore, there exists r2 > max{r1, 1} such that for r > r2 we have

(3.8)

(
n− 1

k

)
(
ϕ′(r)

r
)k <

1

2
fk(ϕ(r)).

By (2.6) and (3.8), we have(
n− 1

k − 1

)
ϕ′′(r)(

ϕ′(r)

r
)k−1 >

1

2
fk(ϕ(r)).
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Then for r > r2 > 1,

ϕ′′(r)(ϕ′(r))k−1 >
1

2

(
n− 1

k − 1

)−1

rk−1fk(ϕ(r)) >
1

2

(
n− 1

k − 1

)−1

fk(ϕ(r)).

Similar to the discussion above, we will use C to denote some constant which
depends only on n, k in the sequel. Since

ϕ′′(r)(ϕ′(r))k > Cfk(ϕ(r))ϕ′(r),

it is easy to know

(ϕ′(r))k+1 > C

∫ ϕ(r)

a

fk(t)dt,

i.e. (∫ ϕ

a

fk(t)dt

)− 1
k+1

dϕ > Cdr.

Hence, we have

(3.9)

∫ ∞

ϕ(r2)

(∫ t

a

fk(s)ds

)− 1
k+1

dt ≥
∫ ϕ

ϕ(r2)

(∫ t

a

fk(s)ds

)− 1
k+1

dt > C(r − r2).

For t > 2a, we have∫ a

0

fk(s)ds ≤ afk(a) <
t

2
fk(

t

2
) ≤

∫ t

t
2

fk(s)ds.

Then

(3.10)

∫ t
2

0

fk(s)ds <

∫ t

a

fk(s)ds.

By (3.9) and (3.10), we have

C(r − r2) <

∫ ∞

ϕ(r2)

(∫ t

a

fk(s)ds

)− 1
k+1

dt

<

∫ ∞

ϕ(r2)

(∫ t
2

0

fk(s)ds

)− 1
k+1

dt

= 2

∫ ∞

ϕ(r2)
2

(∫ t

0

fk(s)ds

)− 1
k+1

dt.

(3.11)

Since r can be arbitrarily large, we get a contradiction between (3.3) and (3.11),
which completes the proof. �

We give a brief proof of Theorem 1.1.

Proof of Theorem 1.1. If f(t) is a continuous function defined on R and satisfies
(1.11), then by Lemma 3.2, equation (1.7) has a positive subsolution u ∈ Φk(Rn)
if and only if the Cauchy problem (2.7) has a positive solution ϕ(r) ∈ C2[0,∞) for
some positive number a, which is equivalent to condition (1.12) by Lemma 3.3.

The proof of Theorem 1.3 is quite similar to that of Theorem 1.1. Most of the
properties we need are almost the same as we have discussed. Since f is now a
positive, continuous and monotone non-decreasing function defined on R, we don’t
need a to be positive in Lemma 2.2, Lemma 2.3 and Lemma 3.2 to get similar
conclusions. �
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