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1. Introduction
In this paper, we study the multi-valued solutions of fully nonlinear uniformly elliptic equations

F(D*u) = f(x),
where F is a map from S"™*" to R, S"*" denotes the space of n x n real symmetric matrix and f(x) is a known function.

Also, F e C2(S™") satisfies the following conditions:
(i) F is uniformly elliptic, i.e., there exist positive constants A, A such that for any r € S"*", & € R",

ME? < Fij(NEigj < AJE),

where Fij = dF /drj;.

(ii) F is concave for r, i.e., F is a concave function in S™",

Typical examples of fully nonlinear uniformly elliptic equations satisfying (i), (ii) are the following Pucci equation and
Bellman equation.

1. Pucci equation:

M™(D%u) = fo,  MH (D)= f(v),
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where

M A=M (=1 ei+A) e

e;>0 ei<0

M+(r,)\.,A)=M+(r)=AZei+)\Zei’

e;>0 ei<0

re S™M and e; =e;(r) are the eigenvalues of r,i=1,2,...,n.
2. Bellman equation in stochastic control theory:

F(D?u) := inf aiDiul = f(x ,
(0%u) = it {aDyu} = 0
where A is any set, and af{ € R satisfies

MEP <aleE; < AlEP, E€R', ac A

From the theory of analytic functions, we know the typical two-dimensional examples of multi-valued harmonic func-
tions are

u1(2) = Re(z%), z € C\{0},
ux(z) =Arg(z), zeC\{0},

and

u3(z) =Re(v/(z—D(z+1)), zeC\{x1}.

By 1970s, Almgren [1] had realized that a minimal variety near a multiplicity-k disc could be well approximated by the
graph of a multi-valued function minimizing a suitable analog of the ordinary Dirichlet integral. Many facts about harmonic
functions are also true for these Dirichlet minimizing multi-valued functions. Evans [9-11], Levi [18] and Caffarelli [2,3]
all studied the multi-valued harmonic functions. Evans [10] proved that the conductor potential of a surface with minimal
capacity was a double-valued harmonic function. In [3], Caffarelli proved the Hélder continuity of the multi-valued harmonic
functions.

At the beginning of this century, the multi-valued solutions of Eikonal equation were considered in [15,13], respectively.
Later, Jin et al. provided a level set method for the computation of multi-valued geometric solutions to general quasilinear
PDEs and multi-valued physical observables to semiclassical limit of Schrodinger equations, see [17,16].

In 2006, Caffarelli and Li investigated the multi-valued solutions of Monge-Ampére equations in [6] where they first
introduced the geometric situation of multi-valued solutions and then obtained the existence, boundedness, regularity and
the asymptotic behavior at infinity of multi-valued viscosity solutions. The multi-valued solutions for Dirichlet problem
of Monge-Ampére equations on exterior planar domains were discussed by Ferrer, Martinez and Milan in [12] using the
complex variable methods. Recently, the multi-valued solutions of Hessian equations have been studied in [8] and [7].

The geometric situation of the multi-valued functions was given in [6]. Let D be a bounded regular domain in R", and
let ¥ C D be homeomorphic in R" to an (n — 1)-dimensional closed disc, i.e., there exists a homeomorphism ¢ : R" — R"
such that ¥ (X) is an (n — 1)-dimensional closed disc. Let I" = 3%, the boundary of X. Thus I" is homeomorphic to an
(n — 2)-dimensional sphere for n > 3.

Let Z be the set of integers and

M= (D\I') x Z

denote a covering of D\ I" with the following standard parameterization: fixing an x* € D\I", and connecting x* by a smooth
curve in D\I" to a point x in D\I. If the curve goes through X in the positive direction (fixing such a direction) m >0
times, then we arrive at (x,m) in M. If the curve goes through X in the negative direction m > 0 times, then we arrive at
(x, —m) in M.

For k=2,3, ..., we introduce an equivalence relation “~ k” on M as follows: (x,m) and (y, j) in M are “~ k” equivalent
if x=y and m — j is an integer multiple of k. We let

My := M/ ~k,
denote the k-sheet cover of D\I', and let

k

O'My = |_J (9D x {m}).

m=1
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For n =2, we can understand the covering space M) more clearly from the above example us. In this example, I' =
{1, —1} and X is the interval (—1, 1). Each time the point z goes around —1 or 1, it crosses the interval (—1, 1) one time.

We define a distance in M, as follows: For any (x, m), (y, j) € My, let I((x,m), (y, j)) denote a smooth curve in M} which
connects (x,m) and (y, j), and let |[((x,m), (y, j))| denote its length. Define

)

d(x.m), (v, ) = il;fll((x, m), (¥, 1))
where the inf is taken over all smooth curves in M} connecting (x,m) and (y, j). Then d((x,m), (y, j)) is a distance.
Definition 1.1. We call a function u is continuous at (x, m) in My if

lim u(y, j) =u(x,m,
d((y.j).(x,m))—0

and u € CO(My) if for any (x,m) € My, u is continuous at (x, m).
Similarly we can define u € C*(My), C%1(My) and C2(My), etc.

To the best of our knowledge, there isn’t any result of multi-valued solutions to fully nonlinear uniformly elliptic equa-
tions. In this paper, we study the multi-valued solutions to Dirichlet problem:

F(D*u) = f(x,m), (x,m)e My, (11)
U=@nX), (xm)ed My, (1.2)

where

(H1) f e C%M,) and for some constants a and b, a < f <b,
(Hz) D1, P € CO(BD).

To state our results, we recall the definition of viscosity solutions, see [4,5].

Definition 1.2. A function u € C°(My) is called a viscosity subsolution of (1.1), if for any (y,m) € My and any function
& € C2(My) satisfying

u(x,m)<&x,m), (x,m)eM; and u(y,m)=E&(y,m),

we have

F(D*t(y.m)) > f(y.m).
A function u € CO(My) is called a viscosity supersolution of (1.1), if for any (y,m) € My and any function & € CZ(My)
satisfying
u(x,my>&(x,m), (x,m)eM, and u(y,m)=E&(y,m),

we have

F(D*€(y,m)) < f(y,m).

A function u € C®(My) is called a viscosity solution of (1.1), if u is both a viscosity subsolution and a viscosity superso-
lution of (1.1).

A function u € CO(M U 8’ My) is called a viscosity subsolution (supersolution, solution) of (1.1
subsolution (supersolution, solution) of (1.1) and satisfies u(x,m) < (=, =)¢m(x) on ' My for m =

), (1.2), if u is a viscosity
1,2,...,k.

Our main result is as follows. Using the Perron method and the properties of Pucci operators, we obtain the existence of
bounded multi-valued viscosity solutions of (1.1), (1.2).

Theorem 1.1. If the conditions (Hy) and (Hy) hold, then the Dirichlet problem (1.1), (1.2) has at least a bounded viscosity solution
u € CO(My U 8’ My). Furthermore, if f € C*(My), we have u € C>%(Mj).

This paper is arranged as follows. In Section 2, we derive some lemmas for single-valued solutions to fully nonlinear
uniformly elliptic equations. The existence of bounded multi-valued solutions is proved in Section 3.
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2. Preliminaries

For the reader’s convenience, we prove a few lemmas about single-valued solutions which will be used later. We shall
always assume D is a bounded regular domain in R".
Substituting f(x) with f(x) — F(0), we may assume F(0) =0. From [4], we know that for any M € S™*",

F(M) < Trace(AM),

where A € S™" and all the eigenvalues of A belong to [A, A]. Hence we can make a linear change of space variables such
that in the new variables,

Trace(AM) = Trace(M).

Therefore, for any ¢ € €2, we may suppose that

F(D%*p) < Ag. (2.1)

Lemma 2.1. Let D’ € D be any open set, V € C°(D), ¢ € C%(dD) and cqy be any constant. Then there exists a function u € C°(D) N
C2(D) satisfying

F(D?*u) >co, x€D,
u=¢, xedD,

ugV, xeD.
Proof. From [4], let ¢ € C>%(D) N C%(D) satisfy
M~ (D?@)=1, xeD,
¢=¢x), xe€dD,
and let p € C2%(D) satisfy
M~ (D*p) =1, xeD,
p=0, xeoaD.

Define in D, u(x) = @(x) + j0(x), where j is a positive constant to be determined. Then u € C?(D) N C%(D) and

ux)=¢(x), xecaD. (2.2)
On the other hand, for any function v € C2(D), we have
F(D*v) = F(D*v) — F(0)
= Fij(QDZV)DijV

2)\2614-/1261

ei>0 ei<0
=M~ (D?v),
where 0 <@ < 1 and e; are the eigenvalues of D2?v. Therefore, by the concavity of M~
F(D%u) = F(D*@ + uD?p)
> M~ (D*¢ + uD?p)
> M~ (D?@) + M~ (uD?p)
=14+pu.

Then we can choose = w(co) such that

F(D*u) >co, x€D. (2.3)
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By the strong maximum principle, there exists a constant pg > 0 such that p < —pg in D’. Thus we can again choose
= wu(co, po, P, vV, D’) large such that

U=¢+up <SUpP — pupo <infv <V, xeD'. (2.4)
D’ !
From (2.2), (2.3), (2.4), we know that the lemma holds. O

Lemma 2.2. Let 2 € D be an open set and f e CO(D). Suppose that v € C°(2) and u e C°(D) satisfy respectively

F(D*) > f(»), xe%2,
F(D*u) > f(x), xeD.
Moreover,

u<v, xe8,

u=v,x €0952. (2.5)
Set
{v(x), Xe S,
w(x) = —
u(x), xe D\S2.

Then w € CO(D) satisfies in the viscosity sense

F(D?w) > f(x).

Proof. For any xo € D, £ € C%(D) satisfying w(xp) = £(xp),
w(x) <§(x), xeD, (2.6)
by the definition of w, if xg € £2, we have

V(x0) = &(X0), v(x) <E(X), x€82.
Then

F(D?5(x0)) > f (x0)-
If xo € D\£2, we have

u(xp) =&(x0),  u <&x), xeD\f.
From (2.5), (2.6),

ux)<&é&x), xeD.
Hence

F(D?&(x0)) > f(x0).

Lemma 2.2 is proved. O
The following lemma may be a known result. But for the readers convenience, we give the lemma and its proof.

Lemma 2.3. Let f € CO(D). Suppose that u € C°(D) satisfies in the viscosity sense
F(D?u) > f(v. xeD,

then the Dirichlet problem
F(D*u)=f(x), xeD, (2.7)
u=u(x), xe€aD (2.8)

has a viscosity solution u € C%(D).
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Proof. By Theorem 3.4 in [14], if (2.7), (2.8) has a viscosity subsolution g and a viscosity supersolution h satisfying g <h
in D, we know that (2.7), (2.8) has a viscosity solution.

Clearly, u is a viscosity subsolution of (2.7), (2.8). So we only need to prove that (2.7), (2.8) has a viscosity supersolution
u satisfying u > u in D.

Let fo=infp f(x) and i € C2(D) N CO(D) satisfy

Au= fy, xeD,
u=u, xeadD.
Then u satisfies in the viscosity sense
F(D*1) < f(x), xeD. (2.9)
Indeed, for any xq € D, & € C%(D) satisfying
u(xo) =&(x0), u(x)=&x), xeD,
we have
D?(ii — £)(x0) > 0.
Therefore
F(D?i(x0)) > F(D%t(x0)).
By (2.1), we have F(D2ii(xg)) < Aii(xg). Hence

F(D%*t(x0)) < F(D?ii(x0)) < fo < f(x0),

and then (2.9) holds. Consequently u is a viscosity supersolution of (2.7), (2.8). From the comparison principle, & > u in D.
The lemma is proved. 0O

3. Existence of bounded multi-valued solutions
In this section, we prove Theorem 1.1. We first introduce a comparison principle in My, see [6].

Lemma 3.1. Let u, v € CO(My) N L (M) satisfy Au > 0> Av in My and

liminf ~ (u(x,m) —v(x,m)) <0,
dist((x,m),d'M)—0

then u < v in M.
Proof of Theorem 1.1. We divide the proof into three steps.

Step 1. We construct a viscosity subsolution of (1.1), (1.2).
Let P € C2(D) N C%D) satisfy

F(D’P)=b, xeD,
P=c, xe€aD, (31)

where a < f <b and

c= inf min {gn(x)}.
xedD 1<m<k

By Lemma 2.1, we know that there exist functions uj, ...,u, € C°(D) N C?(D) satisfying
F(D*u,)>b, xeD,
Uy, =¢m, Xx€0D,
u, <P, xeD,

where D’ is an open set satisfying ¥ € D’ € D.
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Define

u(x,m) = max{u,(x), P(x)}, xeD.

Then u(x, m) = @pn(x) on aD,

u(x,m)y="P(x), xeD,

and u € CO(M, U 8'M,) is a viscosity subsolution of (1.1), (1.2).
Step 2. We define the Perron solution of (1.1).
Let S denote the set of viscosity subsolutions v € CO(Mj U 8’ Mj) of (1.1), (1.2) satisfying

limsup max [v(x,m)— h(x, m] <0, Xxer,
x—x 1<m<k

where 1 € CO(My) N L® (M) [6] satisfies
AH:av (Xv m) EMkv
h= ¢Ym(x), xe€0dD.
Therefore by (2.1),
Ah=a< AP, xeD\TI,
P:cg(pmzﬂ, xeaD.
Then from Lemma 3.1,
P < fl, (x, m) € M.

Thus in view of (3.2), u €S and S # @.
Define in My,

u(x,m)=sup{v(x,m) | v e S}.

(3.2)

Then from [14], u € C®(M U 3’M;) and u is a viscosity subsolution of (1.1). Because u < u in My and u = ¢, on 3 My for

m=1,2,...,k, then

ux,m) =pn(x), (x,m)ed M.

Step 3. We prove that u is a viscosity solution of (1.1).

For any xo € D\TI, fix € > 0 such that B = B.(xp) C D\I". The lifting of B into M is the union of k disjoint balls denoted

as {(B}¥_ . Then, in each B, the Dirichlet problem
F(D?*i)=f, (x,m)eB®,
fi=u, (x,m) eaB®

has a viscosity solution i € CO(W). From the comparison principle,
u<i, (xm)eB®.

Define in My,

i(x,m), (x,m)eB®,

w(x,m) = { u(x.m), (x.m) e M\(BVY_ .

Then w € CO(Mj U 9'My).
From (3.4) and Lemma 2.2, we know in the viscosity sense,

F(D*w) > f, (x,m)e My.
Moreover,

wx,m) =u(x,m) =@n(x), xecaD.

Consequently w is a viscosity subsolution of (1.1), (1.2). By (2.1), we have

(3.3)

(3.4)
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Ah < Au, (x,m) € My,
u< fl’ (x,m) € 3'M.

Then Lemma 3.1 leads to

u< fl, (x,m) € M.

As a result, w €S. )
According to the definition of u, we have u > w in My, and then @i <u in B®. By (3.4),

u=1i, (xm)eB®.

Because i € CO(W) is a viscosity solution of (3.3) and xg is arbitrary, then u € CO(M; Ud’M,) is a viscosity solution to (1.1),
(1.2). ‘
Furthermore, if f € C%(My), we have ii € C2%(BY), therefore u € C>%(My). Theorem 1.1 is completed. O
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