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In this paper, we discuss the existence and regularity of multi-valued viscosity solutions
to fully nonlinear uniformly elliptic equations. We use the Perron method to prove the
existence of bounded multi-valued viscosity solutions.
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1. Introduction

In this paper, we study the multi-valued solutions of fully nonlinear uniformly elliptic equations

F
(

D2u
) = f (x),

where F is a map from S
n×n to R, S

n×n denotes the space of n × n real symmetric matrix and f (x) is a known function.
Also, F ∈ C2(Sn×n) satisfies the following conditions:

(i) F is uniformly elliptic, i.e., there exist positive constants λ, Λ such that for any r ∈ S
n×n , ξ ∈ R

n ,

λ|ξ |2 � Fij(r)ξiξ j � Λ|ξ |2,
where Fij = ∂ F/∂ri j .

(ii) F is concave for r, i.e., F is a concave function in S
n×n .

Typical examples of fully nonlinear uniformly elliptic equations satisfying (i), (ii) are the following Pucci equation and
Bellman equation.

1. Pucci equation:

M−(
D2u

) = f (x), M+(
D2u

) = f (x),
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where

M−(r, λ,Λ) = M−(r) = λ
∑
ei>0

ei + Λ
∑
ei<0

ei,

M+(r, λ,Λ) = M+(r) = Λ
∑
ei>0

ei + λ
∑
ei<0

ei,

r ∈ S
n×n and ei = ei(r) are the eigenvalues of r, i = 1,2, . . . ,n.

2. Bellman equation in stochastic control theory:

F
(

D2u
) := inf

α∈A

{
aij
α Diju

} = f (x),

where A is any set, and aij
α ∈ R satisfies

λ|ξ |2 � aij
αξiξ j � Λ|ξ |2, ξ ∈ R

n, α ∈ A.

From the theory of analytic functions, we know the typical two-dimensional examples of multi-valued harmonic func-
tions are

u1(z) = Re
(
z

1
k
)
, z ∈ C\{0},

u2(z) = Arg(z), z ∈ C\{0},
and

u3(z) = Re
(√

(z − 1)(z + 1)
)
, z ∈ C\{±1}.

By 1970s, Almgren [1] had realized that a minimal variety near a multiplicity-k disc could be well approximated by the
graph of a multi-valued function minimizing a suitable analog of the ordinary Dirichlet integral. Many facts about harmonic
functions are also true for these Dirichlet minimizing multi-valued functions. Evans [9–11], Levi [18] and Caffarelli [2,3]
all studied the multi-valued harmonic functions. Evans [10] proved that the conductor potential of a surface with minimal
capacity was a double-valued harmonic function. In [3], Caffarelli proved the Hölder continuity of the multi-valued harmonic
functions.

At the beginning of this century, the multi-valued solutions of Eikonal equation were considered in [15,13], respectively.
Later, Jin et al. provided a level set method for the computation of multi-valued geometric solutions to general quasilinear
PDEs and multi-valued physical observables to semiclassical limit of Schrödinger equations, see [17,16].

In 2006, Caffarelli and Li investigated the multi-valued solutions of Monge–Ampère equations in [6] where they first
introduced the geometric situation of multi-valued solutions and then obtained the existence, boundedness, regularity and
the asymptotic behavior at infinity of multi-valued viscosity solutions. The multi-valued solutions for Dirichlet problem
of Monge–Ampère equations on exterior planar domains were discussed by Ferrer, Martínez and Milán in [12] using the
complex variable methods. Recently, the multi-valued solutions of Hessian equations have been studied in [8] and [7].

The geometric situation of the multi-valued functions was given in [6]. Let D be a bounded regular domain in R
n , and

let Σ ⊂ D be homeomorphic in R
n to an (n − 1)-dimensional closed disc, i.e., there exists a homeomorphism ψ : R

n → R
n

such that ψ(Σ) is an (n − 1)-dimensional closed disc. Let Γ = ∂Σ , the boundary of Σ . Thus Γ is homeomorphic to an
(n − 2)-dimensional sphere for n � 3.

Let Z be the set of integers and

M = (D\Γ ) × Z

denote a covering of D\Γ with the following standard parameterization: fixing an x∗ ∈ D\Γ , and connecting x∗ by a smooth
curve in D\Γ to a point x in D\Γ . If the curve goes through Σ in the positive direction (fixing such a direction) m � 0
times, then we arrive at (x,m) in M . If the curve goes through Σ in the negative direction m � 0 times, then we arrive at
(x,−m) in M .

For k = 2,3, . . . , we introduce an equivalence relation “∼ k” on M as follows: (x,m) and (y, j) in M are “∼ k” equivalent
if x = y and m − j is an integer multiple of k. We let

Mk := M/∼k,

denote the k-sheet cover of D\Γ , and let

∂ ′Mk :=
k⋃ (

∂ D × {m}).

m=1
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For n = 2, we can understand the covering space Mk more clearly from the above example u3. In this example, Γ =
{1,−1} and Σ is the interval (−1,1). Each time the point z goes around −1 or 1, it crosses the interval (−1,1) one time.

We define a distance in Mk as follows: For any (x,m), (y, j) ∈ Mk , let l((x,m), (y, j)) denote a smooth curve in Mk which
connects (x,m) and (y, j), and let |l((x,m), (y, j))| denote its length. Define

d
(
(x,m), (y, j)

) = inf
l

∣∣l((x,m), (y, j)
)∣∣,

where the inf is taken over all smooth curves in Mk connecting (x,m) and (y, j). Then d((x,m), (y, j)) is a distance.

Definition 1.1. We call a function u is continuous at (x,m) in Mk if

lim
d((y, j),(x,m))→0

u(y, j) = u(x,m),

and u ∈ C0(Mk) if for any (x,m) ∈ Mk , u is continuous at (x,m).
Similarly we can define u ∈ Cα(Mk), C0,1(Mk) and C2(Mk), etc.

To the best of our knowledge, there isn’t any result of multi-valued solutions to fully nonlinear uniformly elliptic equa-
tions. In this paper, we study the multi-valued solutions to Dirichlet problem:

F
(

D2u
) = f (x,m), (x,m) ∈ Mk, (1.1)

u = ϕm(x), (x,m) ∈ ∂ ′Mk, (1.2)

where

(H1) f ∈ C0(Mk) and for some constants a and b, a � f � b,
(H2) ϕ1, . . . , ϕk ∈ C0(∂ D).

To state our results, we recall the definition of viscosity solutions, see [4,5].

Definition 1.2. A function u ∈ C0(Mk) is called a viscosity subsolution of (1.1), if for any (y,m) ∈ Mk and any function
ξ ∈ C2(Mk) satisfying

u(x,m) � ξ(x,m), (x,m) ∈ Mk and u(y,m) = ξ(y,m),

we have

F
(

D2ξ(y,m)
)
� f (y,m).

A function u ∈ C0(Mk) is called a viscosity supersolution of (1.1), if for any (y,m) ∈ Mk and any function ξ ∈ C2(Mk)

satisfying

u(x,m) � ξ(x,m), (x,m) ∈ Mk and u(y,m) = ξ(y,m),

we have

F
(

D2ξ(y,m)
)
� f (y,m).

A function u ∈ C0(Mk) is called a viscosity solution of (1.1), if u is both a viscosity subsolution and a viscosity superso-
lution of (1.1).

A function u ∈ C0(Mk ∪ ∂ ′Mk) is called a viscosity subsolution (supersolution, solution) of (1.1), (1.2), if u is a viscosity
subsolution (supersolution, solution) of (1.1) and satisfies u(x,m) � (�,=)ϕm(x) on ∂ ′Mk for m = 1,2, . . . ,k.

Our main result is as follows. Using the Perron method and the properties of Pucci operators, we obtain the existence of
bounded multi-valued viscosity solutions of (1.1), (1.2).

Theorem 1.1. If the conditions (H1) and (H2) hold, then the Dirichlet problem (1.1), (1.2) has at least a bounded viscosity solution
u ∈ C0(Mk ∪ ∂ ′Mk). Furthermore, if f ∈ Cα(Mk), we have u ∈ C2,α(Mk).

This paper is arranged as follows. In Section 2, we derive some lemmas for single-valued solutions to fully nonlinear
uniformly elliptic equations. The existence of bounded multi-valued solutions is proved in Section 3.



L. Dai, J. Bao / J. Math. Anal. Appl. 389 (2012) 314–321 317
2. Preliminaries

For the reader’s convenience, we prove a few lemmas about single-valued solutions which will be used later. We shall
always assume D is a bounded regular domain in R

n .
Substituting f (x) with f (x) − F (0), we may assume F (0) = 0. From [4], we know that for any M ∈ S

n×n ,

F (M) � Trace(AM),

where A ∈ S
n×n and all the eigenvalues of A belong to [λ,Λ]. Hence we can make a linear change of space variables such

that in the new variables,

Trace(AM) = Trace(M).

Therefore, for any ϕ ∈ C2, we may suppose that

F
(

D2ϕ
)
� �ϕ. (2.1)

Lemma 2.1. Let D ′ � D be any open set, V ∈ C0(D),ϕ ∈ C0(∂ D) and c0 be any constant. Then there exists a function u ∈ C0(D) ∩
C2(D) satisfying

F
(

D2u
)
� c0, x ∈ D,

u = ϕ, x ∈ ∂ D,

u � V , x ∈ D ′.

Proof. From [4], let ϕ̃ ∈ C2,α(D) ∩ C0(D) satisfy

M−(
D2ϕ̃

) = 1, x ∈ D,

ϕ̃ = ϕ(x), x ∈ ∂ D,

and let ρ ∈ C2,α(D) satisfy

M−(
D2ρ

) = 1, x ∈ D,

ρ = 0, x ∈ ∂ D.

Define in D , u(x) = ϕ̃(x) + μρ(x), where μ is a positive constant to be determined. Then u ∈ C2(D) ∩ C0(D) and

u(x) = ϕ(x), x ∈ ∂ D. (2.2)

On the other hand, for any function v ∈ C2(D), we have

F
(

D2 v
) = F

(
D2 v

) − F (0)

= Fij
(
θ D2 v

)
Dij v

� λ
∑
ei>0

ei + Λ
∑
ei<0

ei

= M−(
D2 v

)
,

where 0 < θ < 1 and ei are the eigenvalues of D2 v . Therefore, by the concavity of M−

F
(

D2u
) = F

(
D2ϕ̃ + μD2ρ

)
� M−(

D2ϕ̃ + μD2ρ
)

� M−(
D2ϕ̃

) + M−(
μD2ρ

)
= 1 + μ.

Then we can choose μ = μ(c0) such that

F
(

D2u
)
� c0, x ∈ D. (2.3)
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By the strong maximum principle, there exists a constant ρ0 > 0 such that ρ � −ρ0 in D ′ . Thus we can again choose
μ = μ(c0,ρ0, ϕ̃, V , D ′) large such that

u = ϕ̃ + μρ � sup
D ′

ϕ̃ − μρ0 � inf
D ′ V � V , x ∈ D ′. (2.4)

From (2.2), (2.3), (2.4), we know that the lemma holds. �
Lemma 2.2. Let Ω � D be an open set and f ∈ C0(D). Suppose that v ∈ C0(Ω) and u ∈ C0(D) satisfy respectively

F
(

D2 v
)
� f (x), x ∈ Ω,

F
(

D2u
)
� f (x), x ∈ D.

Moreover,

u � v, x ∈ Ω,

u = v, x ∈ ∂Ω. (2.5)

Set

w(x) =
{

v(x), x ∈ Ω,

u(x), x ∈ D\Ω.

Then w ∈ C0(D) satisfies in the viscosity sense

F
(

D2 w
)
� f (x).

Proof. For any x0 ∈ D , ξ ∈ C2(D) satisfying w(x0) = ξ(x0),

w(x) � ξ(x), x ∈ D, (2.6)

by the definition of w , if x0 ∈ Ω , we have

v(x0) = ξ(x0), v(x) � ξ(x), x ∈ Ω.

Then

F
(

D2ξ(x0)
)
� f (x0).

If x0 ∈ D\Ω , we have

u(x0) = ξ(x0), u(x) � ξ(x), x ∈ D\Ω.

From (2.5), (2.6),

u(x) � ξ(x), x ∈ D.

Hence

F
(

D2ξ(x0)
)
� f (x0).

Lemma 2.2 is proved. �
The following lemma may be a known result. But for the readers convenience, we give the lemma and its proof.

Lemma 2.3. Let f ∈ C0(D). Suppose that u ∈ C0(D) satisfies in the viscosity sense

F
(

D2u
)
� f (x), x ∈ D,

then the Dirichlet problem

F
(

D2u
) = f (x), x ∈ D, (2.7)

u = u(x), x ∈ ∂ D (2.8)

has a viscosity solution u ∈ C0(D).
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Proof. By Theorem 3.4 in [14], if (2.7), (2.8) has a viscosity subsolution g and a viscosity supersolution h satisfying g � h
in D , we know that (2.7), (2.8) has a viscosity solution.

Clearly, u is a viscosity subsolution of (2.7), (2.8). So we only need to prove that (2.7), (2.8) has a viscosity supersolution
u satisfying u � u in D .

Let f0 = infD f (x) and u ∈ C2(D) ∩ C0(D) satisfy

�u = f0, x ∈ D,

u = u, x ∈ ∂ D.

Then u satisfies in the viscosity sense

F
(

D2u
)
� f (x), x ∈ D. (2.9)

Indeed, for any x0 ∈ D , ξ ∈ C2(D) satisfying

u(x0) = ξ(x0), u(x) � ξ(x), x ∈ D,

we have

D2(u − ξ)(x0) � 0.

Therefore

F
(

D2u(x0)
)
� F

(
D2ξ(x0)

)
.

By (2.1), we have F (D2u(x0)) � �u(x0). Hence

F
(

D2ξ(x0)
)
� F

(
D2u(x0)

)
� f0 � f (x0),

and then (2.9) holds. Consequently u is a viscosity supersolution of (2.7), (2.8). From the comparison principle, u � u in D .
The lemma is proved. �
3. Existence of bounded multi-valued solutions

In this section, we prove Theorem 1.1. We first introduce a comparison principle in Mk , see [6].

Lemma 3.1. Let u,υ ∈ C0(Mk) ∩ L∞(Mk) satisfy �u � 0 � �υ in Mk and

lim inf
dist((x,m),∂ ′Mk)→0

(
u(x,m) − υ(x,m)

)
� 0,

then u � υ in Mk.

Proof of Theorem 1.1. We divide the proof into three steps.
Step 1. We construct a viscosity subsolution of (1.1), (1.2).
Let P ∈ C2(D) ∩ C0(D) satisfy

F
(

D2 P
) = b, x ∈ D,

P = c, x ∈ ∂ D, (3.1)

where a � f � b and

c = inf
x∈∂ D

min
1�m�k

{
ϕm(x)

}
.

By Lemma 2.1, we know that there exist functions u1, . . . , uk ∈ C0(D) ∩ C2(D) satisfying

F
(

D2um

)
� b, x ∈ D,

um = ϕm, x ∈ ∂ D,

um < P , x ∈ D ′,

where D ′ is an open set satisfying Σ � D ′ � D .
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Define

u(x,m) = max
{

um(x), P (x)
}
, x ∈ D.

Then u(x,m) = ϕm(x) on ∂ D ,

u(x,m) = P (x), x ∈ D ′, (3.2)

and u ∈ C0(Mk ∪ ∂ ′Mk) is a viscosity subsolution of (1.1), (1.2).
Step 2. We define the Perron solution of (1.1).
Let S denote the set of viscosity subsolutions v ∈ C0(Mk ∪ ∂ ′Mk) of (1.1), (1.2) satisfying

lim sup
x→x

max
1�m�k

[
v(x,m) − h̃(x,m)

]
� 0, x ∈ Γ,

where h̃ ∈ C0(Mk) ∩ L∞(Mk) [6] satisfies

�h̃ = a, (x,m) ∈ Mk,

h̃ = ϕm(x), x ∈ ∂ D.

Therefore by (2.1),

�h̃ = a � �P , x ∈ D\Γ,

P = c � ϕm = h̃, x ∈ ∂ D.

Then from Lemma 3.1,

P � h̃, (x,m) ∈ Mk.

Thus in view of (3.2), u ∈ S and S �= ∅.
Define in Mk ,

u(x,m) = sup
{

v(x,m)
∣∣ v ∈ S

}
.

Then from [14], u ∈ C0(Mk ∪ ∂ ′Mk) and u is a viscosity subsolution of (1.1). Because u � u in Mk and u = ϕm on ∂ ′Mk for
m = 1,2, . . . ,k, then

u(x,m) = ϕm(x), (x,m) ∈ ∂ ′Mk.

Step 3. We prove that u is a viscosity solution of (1.1).
For any x0 ∈ D\Γ , fix ε > 0 such that B = Bε(x0) ⊂ D\Γ . The lifting of B into Mk is the union of k disjoint balls denoted

as {B(i)}k
i=1. Then, in each B(i) , the Dirichlet problem

F
(

D2ũ
) = f , (x,m) ∈ B(i),

ũ = u, (x,m) ∈ ∂ B(i) (3.3)

has a viscosity solution ũ ∈ C0(B(i)). From the comparison principle,

u � ũ, (x,m) ∈ B(i). (3.4)

Define in Mk ,

w(x,m) =
{

ũ(x,m), (x,m) ∈ B(i),

u(x,m), (x,m) ∈ Mk\{B(i)}k
i=1.

Then w ∈ C0(Mk ∪ ∂ ′Mk).
From (3.4) and Lemma 2.2, we know in the viscosity sense,

F
(

D2 w
)
� f , (x,m) ∈ Mk.

Moreover,

w(x,m) = u(x,m) = ϕm(x), x ∈ ∂ D.

Consequently w is a viscosity subsolution of (1.1), (1.2). By (2.1), we have
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�h̃ � �u, (x,m) ∈ Mk,

u � h̃, (x,m) ∈ ∂ ′Mk.

Then Lemma 3.1 leads to

u � h̃, (x,m) ∈ Mk.

As a result, w ∈ S.
According to the definition of u, we have u � w in Mk , and then ũ � u in B(i) . By (3.4),

u = ũ, (x,m) ∈ B(i).

Because ũ ∈ C0(B(i)) is a viscosity solution of (3.3) and x0 is arbitrary, then u ∈ C0(Mk ∪ ∂ ′Mk) is a viscosity solution to (1.1),
(1.2).

Furthermore, if f ∈ Cα(Mk), we have ũ ∈ C2,α(B(i)), therefore u ∈ C2,α(Mk). Theorem 1.1 is completed. �
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