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Abstract We consider the Monge–Ampère equation det(D2u) = f where f is a positive
function in R

n and f = 1 + O(|x |−β) for some β > 2 at infinity. If the equation is globally
defined on R

n we classify the asymptotic behavior of solutions at infinity. If the equation is
defined outside a convex bounded set we solve the corresponding exterior Dirichlet problem.
Finally we prove for n ≥ 3 the existence of global solutions with prescribed asymptotic
behavior at infinity. The assumption β > 2 is sharp for all the results in this article.

Mathematics Subject Classification (1991) 35J96 · 35J67

1 Introduction

It is well known that Monge–Ampère equations are a class of important fully nonlinear equa-
tions profoundly related to many fields of analysis and geometry. In the past few decades many
significant contributions have been made on various aspects of Monge–Ampère equations.
In particular, the Dirichlet problem
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40 J. Bao et al.

{
det (D2u) = f, in D,
u = φ on ∂D

on a convex, bounded domain D is completely understood through the works of Alek-
sandrov [1], Bakelman [2], Nirenberg [4], Calabi [12], Pogorelov [30,32,33], Cheng and
Yau [13], Caffarelli et al. [11], Caffarelli [7], Ivochkina [22–24], Krylov [27], Jian and
Wang [25], Huang [21], Trudinger-Wang [36], Urbas [38],Savin [34,35], Philippis and
Figalli [29] and the references therein. Corresponding to the traditional Dirichlet problem
mentioned above, there is an exterior Dirichlet problem which seeks to solve the Monge–
Ampère equation outside a convex set. More specifically, let D be a smooth, bounded and
strictly convex subset of R

n and let φ ∈ C2(∂D), the exterior Dirichlet problem is to find u
to verify ⎧⎨

⎩
det (D2u) = f (x), x ∈ R

n\D,
u ∈ C0(Rn\D) is a locally convex viscosity solution,
u = φ, on ∂D.

(1.1)

If f ≡ 1 and n ≥ 3, Caffarelli and Li [9] proved that any solution u of (1.1) is very close to
a parabola near infinity. They solved the exterior Dirichlet problem assuming that u equals
φ on ∂D and has a prescribed asymptotic behavior at infinity. For f ≡ 1 and n = 2, Ferrer
et al. [18,19] used a method of complex analysis to prove that any solution u of (1.1) is very
close to a parabola plus a logarithmic function at infinity (see also Delanoë [16]). Recently
the first two authors [3] solved the exterior Dirichlet problem for f ≡ 1 and n = 2. In the first
part of this article we solve the exterior Dirichlet problem assuming that f is a perturbation
of 1 near infinity:

(F A) : f ∈ C0(Rn), 0 < inf
Rn

f ≤ sup
Rn

f < ∞.

∃m ≥ 3, such that Dm f exists outside a compact subset of R
n,

∃β > 2 such that lim|x |→∞ |x |β+k |Dk( f (x)− 1)| < ∞, k = 0, 1, . . . ,m.

Let M
n×n be the set of the real valued, n × n matrices and

A := {A ∈ M
n×n : A is symmetric, positive definite and det (A) = 1}.

Our first main theorem is

Theorem 1.1 Let D be a strictly convex, smooth and bounded set, φ ∈ C2(∂D) and f satisfy
(FA). If n ≥ 3, then for any b ∈ R

n, A ∈ A, there exists c∗(n, D, φ, b, A, f ) such that for
any c > c∗, there exists a unique u to (1.1) that satisfies

lim sup
|x |→∞

|x |min{β,n}−2+k |Dk
(

u(x)−
(

1

2
x ′ Ax + b · x + c

))
| < ∞ (1.2)

for k = 0, . . . ,m + 1. If n = 2, then for any b ∈ R
2, A ∈ A, there exists d∗ ∈ R depending

only on A, b, φ, f, D such that for all d > d∗, there exists a unique u to (1.1) that satisfies

lim sup
|x |→∞

|x |k+σ
∣∣∣∣Dk

(
u(x)−

(
1

2
x ′ Ax + b · x + d log

√
x ′ Ax + cd

)) ∣∣∣∣ < ∞ (1.3)

for k = 0, . . . ,m + 1 and σ ∈ (0,min{β − 2, 2}). cd ∈ R is uniquely determined by
D, φ, d, f, A, b.
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Monge–Ampère equation on exterior domains 41

The Dirichlet problem on exterior domains is closely related to asymptotic behavior
of solutions defined on entire R

n . The classical theorem of Jörgens [26], Calabi [12] and
Pogorelov [31] states that any convex classical solution of det (D2u) = 1 on R

n must be
a quadratic polynomial. See Cheng and Yau [14], Caffarelli [7] and Jost and Xin [17] for
different proofs and extensions. Caffarelli and Li [9] extended this result by considering

det (D2u) = f R
n (1.4)

where f is a positive continuous function and is not equal to 1 only on a bounded set. They
proved that for n ≥ 3, the convex viscosity solution u is very close to quadratic polynomial
at infinity and for n = 2, u is very close to a quadratic polynomial plus a logarithmic term
asymptotically. In a subsequent work [10] Caffarelli and Li proved that if f is periodic, then
u must be a perturbation of a quadratic function.

The second main result of the paper is to extend the Caffarelli and Li results on global
solutions in [9]:

Theorem 1.2 Let u ∈ C0(Rn) be a convex viscosity solution to (1.4) where f satisfies
(F A). If n ≥ 3, then there exist c ∈ R, b ∈ R

n and A ∈ A such that (1.2) holds. If n = 2
then there exist c ∈ R, b ∈ R

2, A ∈ A such that (1.3) holds for d = 1
2π

∫
R2( f − 1) and

σ ∈ (0,min{β − 2, 2}).
Corollary 1.1 Let D be a bounded, open and convex subset of R

n and let u ∈ C0(Rn\D̄)
be a locally convex viscosity solution to

det (D2u) = f, in R
n\D̄ (1.5)

where f satisfies (FA). Then for n ≥ 3, there exist c ∈ R, b ∈ R
n and A ∈ A such that (1.2)

holds. For n = 2, there exist A ∈ A, b ∈ R
n and c, d ∈ R such that for k = 0, . . . ,m + 1

lim sup
|x |→∞

|x |k+σ
∣∣∣∣Dk

(
u(x)−

(
1

2
x ′ Ax + b · x + d log

√
x ′ Ax + c

)) ∣∣∣∣ < ∞

holds for σ ∈ (0,min{β − 2, 2}).
As is well known the Monge–Ampère equation det (D2u) = f is closely related to

the Minkowski problems, the Plateau type problems, mass transfer problems, and affine
geometry, etc. In many of these applications f is not a constant. The readers may see the survey
paper of Trudinger and Wang [37] for more description and applications. The importance of
f not identical to 1 is also mentioned by Calabi in [12].

Next we consider the globally defined equation (1.4) and the existence of global solutions
with prescribed asymptotic behavior at infinity.

Theorem 1.3 Suppose f satisfies (FA). Then for any A ∈ A, b ∈ R
n and c ∈ R, if n ≥ 3

there exists a unique convex viscosity solution u to (1.4) such that (1.2) holds.

The following example shows that the decay rate assumption β > 2 in (FA) is sharp in all
the theorems. Let f be a radial, smooth, positive function such that f (r) ≡ 1 for r ∈ [0, 1]
and f (r) = 1 + r−2 for r > 2. Let

u(r) = n
1
n

r∫
0

⎛
⎝

s∫
0

tn−1 f (t)dt

⎞
⎠

1
n

ds, r = |x |.
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42 J. Bao et al.

It is easy to check that det (D2u) = f in R
n . Moreover for n ≥ 3, u(x) = 1

2 |x |2 + O(log |x |)
at infinity. For n = 2, u(x) = 1

2 |x |2 + O((log |x |)2) at infinity.
Corresponding to the results in this paper we make the following two conjectures. First

we think the analogue of Theorem 1.3 for n = 2 should also hold.
Conjecture 1: Let n = 2 and f satisfy (FA), then there exists a unique convex viscosity

solution u to (1.4) such that (1.3) holds for d = 1
2π

∫
R2( f − 1) and σ ∈ (0,min{β − 2, 2}).

Conjecture 2: The d∗ in Theorem 1.1 is 1
2π

∫
R2\D( f − 1)− 1

2π area(D).
These two conjectures are closely related in a way that if conjecture one is proved, then

conjecture two follows by the same argument in the proof of Theorem 1.1.
The organization of this paper is as follows: First we establish a useful proposition in

Sect. 2, which will be used in the proof of all theorems. Then in Sect. 3 we prove Theorem 1.1
using Perron’s method. Theorems 1.3 and 1.2 are proved in Sects. 4 and 5, respectively. In
the appendix we cite the interior estimates of Caffarelli, Jian and Wang. The proof of all
the theorems in this article relies on previous works of Caffarelli [5,7], Jian and Wang [25]
and Caffarelli and Li [9]. For example, Caffarelli and Li [9] made it clear that for exterior
Dirichlet problems, convex viscosity solutions are strictly convex. On the other hand for
Monge–Ampère equations on convex domains, Pogorelov has a well known example of a
not-strictly-convex solution. Besides this, we also use the Alexandrov estimates, the interior
estimate of Caffarelli [7] and Jian and Wang [25] in an essential way.

2 A useful proposition

Throughout the article we use Br (x) to denote the ball centered at x with radius r and Br to
denote the ball of radius r centered at 0.

The following proposition will be used in the proof of all theorems.

Proposition 2.1 Let R0 > 0 be a positive number, v ∈ C0(Rn\B̄R0) be a convex viscosity
solution of

det (D2v) = fv R
n\B̄R0

where fv ∈ Cm(Rn)\B̄R0 satisfies

1

c0
≤ fv(x) ≤ c0, x ∈ R

n\BR0

and

|Dk( fv(x)− 1)| ≤ c0|x |−β−k, |x | > R0, k = 0, . . . ,m, (β > 2,m ≥ 3). (2.1)

Suppose there exists ε > 0 such that
∣∣∣∣v(x)− 1

2
|x |2

∣∣∣∣ ≤ c1|x |2−ε, |x | ≥ R0 (2.2)

then for n ≥ 3, there exist b ∈ R
n, c ∈ R and C(n, R0, ε, β, c0, c1) such that,

∣∣∣∣Dk(v(x)− 1

2
|x |2 − b · x − c)

∣∣∣∣
≤ C/|x |min{β,n}−2+k, |x | > R1, k = 0, . . . ,m + 1; (2.3)
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Monge–Ampère equation on exterior domains 43

where R1(n, R0, ε, β, c0, c1) > R0 depends only on n, R0, ε, β, c0 and c1. For n = 2, there
exist b ∈ R

2, d, c ∈ R such that for all σ ∈ (0,min{β − 2, 2})∣∣∣∣Dk(v(x)− 1

2
|x |2 − b · x − d log |x | − c)

∣∣∣∣
≤ C(ε, R0, β, c0, c1)

|x |σ+k
, |x | > R1, k = 0, . . . ,m + 1, (2.4)

where R1 > R0 depends only on ε, R0, β, c0 and c1.

Remark 2.1 ε may be greater than or equal to 2 in Proposition 2.1.

Proof of Proposition 2.1 Proposition 2.1 is proved in [9] for the case that f ≡ 1 outside a
compact subset of R

n . For this more general case, Theorem 6.1 in the appendix (A theorem
of Caffarelli, Jian and Wang) and Schauder estimates play a central role. First we establish
a lemma that holds for all dimensions n ≥ 2. �

Lemma 2.1 Under the assumption of Proposition 2.1, let

w(x) = v(x)− 1

2
|x |2,

then there exist C(n, R0, ε, c0, c1, β) > 0 and R1(n, R0, ε, c0, c1, β) > R0 such that for any
α ∈ (0, 1){ |Dkw(y)| ≤ C |y|2−k−εβ , k = 0, . . . ,m + 1, |y| > R1

|Dm+1w(y1)−Dm+1w(y2)|
|y1−y2|α ≤ C |y1|1−m−εβ−α, |y1| > R1, y2 ∈ B |y1 |

2
(y1)

(2.5)

where εβ = min{ε, β}.
Remark 2.2 The estimate in Lemma 2.1 is much weaker than Proposition 2.1. In order to
improve (2.5), εβ will be removed later. However the approach of Lemma 2.1 will be used
repeatedly later.

Proof of Lemma 2.1 For |x | = R > 2R0, let

vR(y) =
(

4

R

)2

v

(
x + R

4
y

)
, |y| ≤ 2,

and

wR(y) =
(

4

R

)2

w

(
x + R

4
y

)
, |y| ≤ 2.

By (2.2) we have

‖vR‖L∞(B2) ≤ C, ‖wR‖L∞(B2) ≤ C R−ε (2.6)

and

vR(y)−
(

1

2
|y|2 + 4

R
x · y + 8

R2 |x |2
)

= O(R−ε), B2.

Let v̄R(y) = vR(y)− 4
R x · y− 8

R2 |x |2, clearly D2v̄R = D2vR . If R > R1 with R1 sufficiently
large, the set

	1,v = {y ∈ B2; v̄R(y) ≤ 1}
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44 J. Bao et al.

is between B1.2 and Bn . The equation for v̄R is

det (D2v̄R(y)) = f1,R(y) := fv

(
x + R

4
y

)
, on B2. (2.7)

Immediately from (2.1) we have, for any α ∈ (0, 1)

‖ f1,R − 1‖L∞(B2) +
m−1∑
k=1

‖Dk f1,R‖Cα(B2) ≤ C R−β . (2.8)

Applying Theorem 6.1 on 	1,v

‖D2vR‖Cα(B1.1) = ‖D2v̄R‖Cα(B1.1) ≤ C.

Using (2.7) and (2.8) we have

I

C
≤ D2vR ≤ C I on B1.1 (2.9)

for some C independent of R. Then we write (2.7) as

aR
i j∂i jvR = f1,R, B2

where aR
i j = cofi j (D2vR). Clearly by (2.9) aR

i j is uniformly elliptic and

‖aR
i j‖Cα(B̄1.1)

≤ C.

Schauder estimate gives

‖vR‖C2,α(B̄1)
≤ C(‖vR‖L∞(B̄1.1)

+ ‖ f1,R‖Cα(B̄2)
) ≤ C. (2.10)

For any e ∈ S
n−1, applying ∂e to both sides of (2.7), we have

aR
i j∂i j (∂evR) = ∂e f1,R . (2.11)

Since aR
i j , ∂evR and ∂e f1,R are bounded in Cα norm, we have

‖vR‖C3,α(B̄1)
≤ C, (2.12)

which implies

‖aR
i j‖C1,α(B̄1)

≤ C. (2.13)

The difference between (2.7) (with v̄R replaced by vR) and det (I ) = 1 gives

ãi j∂i jwR = f1,R(y)− 1 = O(R−β) (2.14)

where ãi j (y) = ∫ 1
0 cofi j (I + t D2wR(y))dt . By (2.9) and (2.12)

I

C
≤ ãi j ≤ C I, on B1.1, ‖ãi j‖C1,α(B̄1)

≤ C.

Thus Schauder’s estimate gives

‖wR‖C2,α(B1)
≤ C(‖wR‖L∞(B̄1.1)

+ ‖ f1,R − 1‖Cα(B̄1)
) ≤ C R−εβ . (2.15)

Going back to (2.11) and rewriting it as

aR
i j∂i j (∂ewR) = ∂e f1,R .
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Monge–Ampère equation on exterior domains 45

We obtain, by Schauder’s estimate,

‖wR‖C3,α(B̄1/2)
≤ C(‖wR‖L∞(B̄3/4)

+ |D f1,R‖Cα(B̄3/4)
) ≤ C R−εβ , (2.16)

which immediately implies

‖D3vR‖Cα(B̄1/2)
≤ C R−εβ

because ∂i jewR = ∂i jevR . By differentiating on (2.11) with respect to any e1 ∈ S
n−1 we

have

aR
i j∂i j (∂ee1wR) = ∂ee1 f1,R − ∂e1 aR

i j∂i j∂ewR .

(2.16) gives

‖∂e1 aR
i j∂i j∂ewR‖Cα(B̄1/2)

≤ C R−2εβ .

Using (2.8),‖∂ee1 f1,R‖Cα(B̄1)
≤ C R−β and Schauder’s estimate we have

‖wR‖C4,α(B̄1/4)
≤ C R−εβ . (2.17)

Estimates on higher order derivatives can be obtained by further differentiation of the equation
and Schauder estimate. (2.5) can be obtained accordingly. Lemma 2.1 is established. �


Next we prove a lemma that improves the estimates in Lemma 2.1.

Lemma 2.2 Under the same assumptions of Lemma 2.1 and let R1 be the large constant
determined in the proof of Lemma 2.2. If in addition 2ε < 1, then for n ≥ 3{ |Dkw(x)| ≤ C |x |2−2ε−k, |x | > 2R1, k = 0, . . . ,m + 1

|Dm+1w(y1)−Dm+1w(y2)|
|y1−y2|α ≤ C |y1|1−m−2ε−α, |y1| > 2R1, y2 ∈ B|y1|/2(y1)

where α ∈ (0, 1). For n = 2 and any ε̄ < 2ε < 1{ |Dkw(x)| ≤ C |x |2−ε̄−k, |x | > 2R1, k = 0, . . . ,m + 1,
|Dm+1w(y1)−Dm+1w(y2)|

|y1−y2|α ≤ C |y1|1−m−ε̄−α, |y1| > 2R1, y2 ∈ B|y1|/2(y1).

Proof of Lemma 2.2 Applying ∂k to det (D2v) = fv we have

ai j∂i j (∂kv) = ∂k fv (2.18)

where ai j = cofi j (D2v). Lemma 2.1 implies

|ai j (x)− δi j | ≤ C

|x |ε , |Dai j (x)| ≤ C

|x |1+ε , |x | > R1

and for any α ∈ (0, 1)

|Dai j (x1)− Dai j (x2)|
|x1 − x2|α ≤ C |x1|−1−ε−α, |x1| > 2R1, x2 ∈ B|x1|/2(x1).

Then applying ∂l to (2.18) and letting h1 = ∂klv we further obtain

ai j∂i j h1 = ∂kl fv − ∂lai j∂i jkv.

Next we write the equation above as

�h1 = f2 := ∂kl fv − ∂lai j∂i jkv − (ai j − δi j )∂i j h1. (2.19)
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46 J. Bao et al.

For any α ∈ (0, 1) the following estimate follows from (2.1) and Lemma 2.1:{ | f2(x)| ≤ C |x |−2−2ε |x | ≥ 2R1,
| f2(x1)− f2(x2)|

|x1−x2|α ≤ C
|x1|2+2ε+α , x2 ∈ B|x1|/2(x1), |x1| ≥ 2R1.

(2.20)

Note that by Lemma 2.1 h1(x) → δkl as x → ∞. If n ≥ 3, we set

h2(x) = −
∫

Rn\BR1

1

n(n − 2)ωn
|x − y|2−n f2(y)dy

where ωn is the volume of the unit ball in R
n . If n = 2, we set

h2(x) = 1

2π

∫

R2\BR1

(log |x − y| − log |x |) f2(y)dy.

In either case �h2 = f2. By elementary estimate it is easy to get

|D j h2(x)| ≤
{

C |x |−2ε− j , |x | > 2R1, j = 0, 1, n ≥ 3,
C |x |−ε̄− j , |x | > 2R1, j = 0, 1, n = 2

(2.21)

where ε̄ is any positive number less than 2ε. Indeed, for each x , let

E1 := {y ∈ R
n\B2R1 , |y| ≤ |x |/2, },

E2 := {y ∈ R
n\B2R1 , |y − x | ≤ |x |/2, },

E3 = (Rn\B2R1)\(E1 ∪ E2).

Then it is easy to get (2.21). For the estimate of D2h2 we claim that given α ∈ (0, 1), if
n ≥ 3 { |D j h2(x)| ≤ C |x |−2ε− j , j = 0, 1, 2, |x | > 2R1,

|D2h2(x1)−D2h2(x2)||x1−x2|α ≤ C
|x1|2+2ε+α , x2 ∈ B |x1 |

2
(x1), |x1| > 2R1.

(2.22)

Replacing 2ε by ε̄ we get the corresponding estimates of D2h2 for n = 2. The way to obtain
(2.22) is standard. Indeed, for each x0 ∈ R

n\B2R1 , let R = |x0|, we set

h2,R(y) = h2

(
x0 + R

4
y

)
, f2,R(y) = R2

16
f2

(
x0 + R

4
y

)
, |y| ≤ 2.

By (2.20) ‖ f2,R‖Cα(B1) ≤ C R−2ε . Therefore Schauder estimate gives

‖h2,R‖C2,α(B1)
≤ C(‖h2,R‖L∞(B2) + ‖ f2,R‖Cα(B2)) ≤ C R−2ε,

which is equivalent to (2.22). The way to get the corresponding estimate for n = 2 is the
same. Now we have

�(h1 − h2) = 0, R
n\B2R1 .

Since we know h1 − δkl − h2 → 0 at infinity. For n ≥ 3, by comparing with a multiple of
|x |2−n we have

|h1(x)− δkl − h2(x)| ≤ C |x |2−n, |x | > 2R1.

By the estimate on h2 we have

|h1(x)− δkl | ≤ C |x |−2ε, |x | > 2R1.
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Monge–Ampère equation on exterior domains 47

Correspondingly

|D jw(x)| ≤ C |x |2− j−2ε, |x | > 2R1, j = 0, 1, 2, n ≥ 3.

For n = 2 we have

|h1(x)− δkl − h2(x)| ≤ C |x |−1, |x | > 2R1. (2.23)

Indeed, let h3(y) = h1(
y

|y|2 ) − δkl − h2(
y

|y|2 ), then �h3 = 0 in B1/2R1\{0} and
limy→0 h3(y) = 0. Therefore |h3(y)| ≤ C |y| near 0. (2.23) follows. By fundamental theorem
of calculus,

|D jw(x)| ≤ C |x |2− j−ε̄ , |x | > 2R1, j = 0, 1, 2, n = 2.

Finally we apply Lemma 2.1 to obtain the estimates on higher derivatives. Lemma 2.2 is
established. �

Remark 2.3 m ≥ 3 is used in the estimates of h2 in the proof of Lemma 2.2.

Now we complete the proof of Proposition 2.1 first for Case one: n ≥ 3.
Let k0 be a positive integer such that 2k0ε < 1 and 2k0+1ε > 1 (we choose ε smaller if

necessary to make both inequalities hold). Let ε1 = 2k0ε, clearly we have 1 < 2ε1 < 2.
Applying Lemma 2.2 k0 times we have{ |Dkw(x)| ≤ C |x |2−ε1−k, k = 0, . . . ,m + 1, |x | > 2R1

|Dm+1w(x1)−Dm+1w(x2)||x1−x2|α ≤ C |x1|1−m−ε1−α, |x1| > 2R1, x2 ∈ B|x1|/2(x1).
(2.24)

Let h1 and f2 be the same as in Lemma 2.2. Then we have{ | f2(x)| ≤ C |x |1−m−2ε1 + C |x |−2−β |x | ≥ 2R1,
| f2(x1)− f2(x2)|

|x1−x2|α ≤ C
|x1|m−1+2ε1+α + C

|x |β+2+α , x2 ∈ B|x1|/2(x1), |x1| ≥ 2R1.

Constructing h2 as in Lemma 2.2 (the one for n ≥ 3) we have{ |D j h2(x)| ≤ C |x |−2ε1− j , j = 0, 1, 2, |x | > 2R1,
|D2h2(x1)−D2h2(x2)||x1−x2|α ≤ C

|x1|2+2ε1+α , x2 ∈ B |x1 |
2
(x1), |x1| > 2R1.

(2.25)

As in the proof of Lemma 2.2 by (2.25) we have

|h1(x)− h2(x)| ≤ C |x |2−n, |x | > 2R1.

Since 2ε1 > 1

|h1(x)| ≤ |h2(x)| + C |x |2−n ≤ C |x |−1.

By Theorem 4 of [20], ∂mw(x) → cm for some cm ∈ R as |x | → ∞. Let b ∈ R
n be the limit

of ∇w and w1(x) = w(x)− b · x . The equation for w1 can be written as (for e ∈ S
n−1)

ai j∂i j (∂ew1) = ∂e fv. (2.26)

By (2.24) the equation above can be written as

�(∂ew1) = f3 := ∂e fv − (ai j − δi j )∂i jew1, |x | > 2R1. (2.27)

and we have{
| f3(x)| ≤ C(|x |−β−1 + |x |−1−2ε1) ≤ C |x |−1−2ε1 , |x | > 2R1
| f3(x1)− f3(x2)|

|x1−x2|α ≤ C |x1|−1−2ε1−α, |x1| > 2R1, x2 ∈ B|x1|/2(x1).
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Let h4 solve �h4 = f3 and the construction of h4 is similar to that of h2. Then we have{ |D j h4(x)| ≤ C |x |1−2ε1− j , |x | > 2R1, j = 0, 1, 2,
|D2h4(x1)−D2h4(x2)||x1−x2|α ≤ C |x1|−1−2ε1−α, |x1| > 2R1, x2 ∈ B|x1|/2(x1).

Since ∂ew1 − h4 → 0 at infinity, we have

|∂ew1(x)− h4(x)| ≤ C |x |2−n, |x | > R1. (2.28)

Therefore we have obtained |∇w1(x)| ≤ C |x |1−2ε1 on |x | > R1. Using fundamental theorem
of calculus

|w1(x)| ≤ C |x |2−2ε1 , j = 0, 1, |x | > R1.

Lemma 2.1 applied to w1 gives

|D jw1(x)| ≤ C |x |2− j−2ε1 , j = 0..,m + 1.

Going back to (2.27) we write f3 as{
| f3(x)| ≤ C |x |−β−1 + C |x |−1−4ε1 , |x | > 2R1,
| f3(x1)− f3(x2)|

|x1−x2|α ≤ C(|x1|−β−1−α + |x1|−1−4ε1−α), |x1| > 2R1, x2 ∈ B|x1|/2(x1).

The new estimate of h4 is

|h4(x)| ≤ C(|x |1−β + |x |1−4ε1), |x | > 2R1.

As before (2.28) holds. Consequently

|∇w1(x)| ≤ C(|x |2−n + |x |1−4ε1) ≤ C |x |−1, |x | > 2R1.

By Theorem 4 of [20], w1 → c at infinity. Let

w2(x) = w(x)− b · x − c.

Then we have |w2(x)| ≤ C for |x | > 2R1. Lemma 2.1 applied to w2 gives

|Dkw2(x)| ≤ C |x |−k, k = 0, . . . ,m + 1, |x | > 2R1. (2.29)

The equation for w2 can be written as

det (I + D2w2(x)) = fv.

Taking the difference between this equation and det (I ) = 1 we have

ãi j∂i jw2 = fv − 1, |x | > 2R1

where ãi j satisfies

|D j (ãi j (x)− δi j )| ≤ C |x |−2− j , |x | > 2R1, j = 0, 1.

Using (2.29) this equation can be written as

�w2 = f4 := fv − 1 − (ãi j − δi j )∂i jw2, |x | > 2R1.

(2.29) further gives{
| f4(x)| ≤ C(|x |−β + |x |−4), |x | > 2R1,
| f4(x1)− f4(x2)|

|x1−x2|α ≤ C(|x1|−β−α + |x1|−4−α), |x1| > 2R1, x2 ∈ B|x1|/2(x1).
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Let h5 be defined similar to h2. Then h5 solves �h5 = f4 in R
n\B2R1 and satisfies

|h5(x)| ≤ C(|x |2−β + |x |−2).

As before we have

|w2(x)− h5(x)| ≤ C |x |2−n, |x | > 2R1,

which gives

|w2(x)| ≤ C(|x |2−n + |x |2−β + |x |−2), |x | > 2R1. (2.30)

If |x |−2 > |x |2−n + |x |2−β we can apply the same argument as above finite times to remove
the |x |−2 from (2.30). Eventually by Lemma 2.1 we have (2.3). Proposition 2.1 is established
for n ≥ 3.

Finally we prove Case two: n = 2.
As in the case for n ≥ 3 we let k0 be a positive integer such that 2k0ε < 1 and 2k0+1ε > 1

(we choose ε smaller if necessary to make both inequalities hold). Let ε1 < 2k0ε and we
let 1 < 2ε1 < 2. Applying Lemma 2.2 k0 times then (2.24) holds. Then we consider the
equation forw. By taking the difference between the equation for v and det (I ) = 1 we have

ãi j∂i jw = fv − 1.

We further write the equation above as

�w = f5 := fv − 1 − (ãi j − δi j )∂i jw.

By (2.24)

| f5(x)| ≤ C |x |−2ε1 , |x | > R1.

Let

h6(x) = 1

2π

∫

R2\BR1

(log |x − y| − log |x |) f5(y)dy.

Then elementary estimate gives

|h6(x)| ≤ C |x |ε2 , |x | > R1

for some ε2 ∈ (0, 1). Since w− h6 is harmonic on R
2\BR1 and w− h6 = O(|x |2−ε1), there

exist b ∈ R
2 and d1, d2 ∈ R such that

w(x)− h6(x) = b · x + d1 log |x | + d2 + O(1/|x |) |x | > 2R1. (2.31)

Equation (2.31) is standard. For the convenience of the readers we include the proof. Let
zl(r) be the projection of w − h6 on sin lθ for l = 1, 2, . . .. Then zl satisfies

z′′
l (r)+ 1

r
z′

l(r)− l2

r2 zl(r) = 0, r > 2R1.

Clearly zl(r) = c1lr l + c2lr−l . Since zl(r) ≤ Cr2−ε1 we have c1l = 0 for all l ≥ 2. Thus
zl(r) = c2lr−l . Let C be a constant such that maxB2R1

|w − h6| ≤ C . Then |zl(2R1)| ≤ C ,

which gives |c2l | ≤ C(2R1)
l . The estimate for the projection ofw− h6 over cos lθ for l ≥ 2

is the same. The term d1 log |x | + d2 comes from the projection onto 1. The projection onto
cos θ and sin θ gives b · x . (2.31) is established.
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Let

w1(x) = w(x)− b · x .

Then it holds |w1(x)| ≤ C |x |ε2 . Lemma 2.1 gives

|Dkw1(x)| ≤ C |x |ε2−k, k = 0, . . . ,m + 1, |x | > 2R1.

The equation for w1 can be written as

�w1 = O(|x |−β)+ O(|x |2ε2−4).

Let

h7(x) = 1

2π

∫

R2\B2R1

(log |x − y| − log |x |)�w1(y)dy.

Then

|h7(x)| ≤ C(|x |2−β+ε + |x |2ε2−2+ε)

for ε > 0 arbitrarily small. Since w1 − h7 is harmonic on R
2\B2R1 and w1(x) − h7(x) =

O(|x |ε2), we have, for some d, c ∈ R

w1(x)− h7(x) = d log |x | + c + O(1/|x |).
Using the estimates on h7 we have

w1(x) = d log |x | + c + O(|x |2ε2−2+ε)+ O(|x |2−β+ε). (2.32)

To obtain (2.4) we finally let

v1(x) = v(x)− b · x − c

and

H(x) = 1

2
|x |2 + d log |x |.

Clearly det (D2v1(x)) = fv(x) and det (D2 H(x)) = 1 − d2

|x |4 . Let w2(x) = v1(x)− H(x).
By (2.32) we already have

|w2(x)| ≤ C |x |−ε3 , |x | > 2R1

for some ε3 > 0. Using Theorem 6.1 as well as Schauder estimate as in the proof of Lemma 2.1
we obtain

|Dkw2(x)| ≤ C |x |−ε3−k |x | > 2R1, k = 0, 1, 2. (2.33)

Thus the equation of w2 can be written as

�w2(x) = O(|x |−4−2ε3)+ O(|x |−β).
Let

h8(x) = 1

2π

∫

R2\BR1

(log |x − y| − log |x |)�w2(y)dy.
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Then

|D j h8(x)| = O(|x |−2− j + |x |ε5+2−β− j ), j = 0, 1, |x | > R1 (2.34)

for all ε5 > 0. Then we have w2(x) − h8(x) = O(|x |−2) because of (2.33), (2.34) and the
argument in the proof of (2.31). Consequently

w2(x) = O(|x |−2 + |x |ε6+2−β), |x | > R1

for all ε6 > 0. The estimates on higher derivatives of w2 can be obtained by Lemma 2.1.
Proposition 2.1 is established for n = 2 as well. �


3 Proof of Theorem 1.1

Without loss of generality we assume that B2 ⊂ D ⊂ Br̄ . First we prove a lemma that will
be used in the proof for n ≥ 3 and n = 2.

Lemma 3.1 There exists c1(n, φ, D) such that for every ξ ∈ ∂D, there exists wξ such that⎧⎨
⎩

det (D2wξ (x)) ≥ f (x) R
n\D,

wξ (ξ) = φ(ξ), wξ (x) < φ(x), ∀x ∈ ∂D, x �= ξ,

wξ (x) ≤ 1
2 |x |2 + c1, x ∈ (Rn\D) ∩ B(0, 10diam(D)).

Proof of Lemma 3.1 Let f1 be a smooth radial function on R
n such that f1 > f on R

n\D
and f1 satisfies (FA). Let

z(x) =
|x |∫

0

⎛
⎝

s∫
0

ntn−1 f1(t)dt

⎞
⎠

1
n

ds.

Then det (D2z(x)) = f1(x) on R
n and

|z(x)− 1

2
|x |2| ≤

{
C, n ≥ 3,
C log(2 + |x |), n = 2

x ∈ R
n .

Since D is strictly convex, we can put ξ as the origin using a translation and a rotation and
then assume that D stays in {xn > 0}. Let xn = ρ(x ′) (x ′ = (x1, . . . , xn−1)) be the part of
boundary around ξ . By the strict convexity we assume

ρ(x ′) = 1

2

∑
1≤α,β≤n−1

Bαβ xαxβ + o(|x ′|2)

where (Bαβ) ≥ δ I for some δ > 0. By subtracting a linear function from z we obtain zξ that
satisfies {

det (D2zξ ) ≥ f, R
n\D,

zξ (0) = φ(ξ), ∇zξ (0) = ∇φ(ξ)
and ∣∣∣∣zξ (x)− 1

2
|x |2

∣∣∣∣ ≤ C |x |, x ∈ R
n\D.

Next we further adjust zξ by defining

wξ (x) = zξ (x)− Aξ xn
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for Aξ large to be determined. When evaluated on ∂D near 0,

wξ (x
′, ρ(x ′))− φ(x ′, ρ(x ′)) ≤ C |x ′|2 − Aξ ρ(x

′).

Therefore for |x ′| ≤ δ1 for some δ1 small we have wξ (x ′, ρ(x ′)) < φ(x ′, ρ(x ′)). For
|x ′| > δ1, the convexity of ∂D yields

xn ≥ δ3
1, ∀x ∈ ∂D\{(x ′, ρ(x ′)) : |x ′| < δ1.}.

Then by choosing Aξ possibly larger (but still under control) we have wξ (x) < φ(x) for all
x ∈ ∂D. Clearly Aξ has a uniform bound for all ξ ∈ ∂	. Lemma 3.1 is established. �

Let

w(x) = max
{
wξ (x)

∣∣ ξ ∈ ∂D
}
.

It is clear by Lemma 3.1 that w is a locally Lipschitz function in B2r̄\D, and w = ϕ on
∂D. Since wξ is a smooth convex solution of (1.1), w is a viscosity subsolution of (1.1) in
B2r̄\D. Let c1 be the constant determined in Lemma 3.1. Then we have

w(x) ≤ 1

2
|x |2 + c1, B2r̄\D̄.

We finish the proof of Theorem 1.1 in two cases.
Case one: n ≥ 3. Clearly we only need to prove the existence of solutions for A = I and

b = 0, as the general case can be reduced to this case by a linear transformation. Let f̄ and
f be smooth, radial functions such that f < f < f̄ in R

n\D and suppose f and f̄ satisfy
(FA). For d > 0 and β1, β2 ∈ R, set

ud(x) = β1 +
r∫

r̄

( s∫
1

ntn−1 f̄ (t)dt + d

) 1
n

ds, r = |x | > 2,

and

ud(x) = β2 +
r∫

2

( s∫
1

ntn−1 f (t)dt + d

) 1
n

ds, r = |x | > 2.

Clearly

det(D2ud) = f̄ ≥ f, R
n\D̄,

and

det(D2ud) = f ≤ f, R
n\D̄.

On the other hand,

ud(x) ≤ β1, in Br̄\D, ∀ d > 0. (3.1)

and

ud(x) ≥ β2, in Br̄\D, ∀ d > 0. (3.2)

Let

β1 : = min{w(x) ∣∣ x ∈ Br̄\D} − 1 < min
∂D

ϕ,

β2 : = max
∂D

ϕ + 1.
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This shows that ud and ud are continuous convex subsolution and supersolution of (1.5),
respectively. By the definition of ud by choosing d large enough, say d ≥ d0, we can make

ud > w(x)+ 1, |x | = r̄ + 1.

By (3.1) and the above, the function

u1,d(x) =
⎧⎨
⎩

ud , |x | ≥ r̄ + 1,
w(x), x ∈ Br̄\D,
max{w(x), ud}, x ∈ Br̄+1\Br̄

is a viscosity subsolution of (1.5) if d ≥ d0.
Next we consider the asymptotic behavior of ud and ūd when d is fixed. Using (FA) it is

easy to obtain

ud(x) = 1

2
|x |2 + μ1(d)+ O(|x |2−min{β,n}),

and

ud(x) = 1

2
|x |2 + μ2(d)+ O(|x |2−min{β,n}),

where

μ1(d) = β1 − r̄2

2
+

∞∫
r̄

⎛
⎜⎝

⎛
⎝

s∫
1

ntn−1 f̄ (t)dt + d

⎞
⎠

1
n

− s

⎞
⎟⎠ ds,

and

μ2(d) = β2 − 2 +
∞∫

2

⎛
⎜⎝

⎛
⎝

s∫
1

ntn−1 f (t)dt + d

⎞
⎠

1
n

− s

⎞
⎟⎠ ds.

It is easy to see that μ1(d) and μ2(d) are strictly increasing functions of d and

lim
d→∞μ1(d) = ∞, and lim

d→∞μ2(d) = ∞. (3.3)

Let c∗ = μ1(d0), recall that for d > d0, u1,d is a viscosity subsolution. For every c > c∗,
there exists a unique d(c) such that

μ1(d(c)) = c. (3.4)

So ud(c) satisfies

ud(c)(x) = 1

2
|x |2 + c + O(|x |2−min{β,n}), as x → ∞. (3.5)

Also there exists d2(c) such that μ2(d2(c)) = c and

ud2(c)(x) = 1

2
|x |2 + c + O(|x |2−min{β,n}), as x → ∞. (3.6)

By (3.5) and (3.6)

lim|x |→∞(ud(c)(x)− ud2(c)(x)) = 0.

123



54 J. Bao et al.

On the other hand, by the definition of β1 we have ūd2(c) > u1,d(c) on ∂D. Thus, in view
of the comparison principle for smooth convex solutions of Monge–Ampère, (see [11]), we
have

u1,d(c) ≤ ūd2(c), on R
n\D. (3.7)

For any c > c∗, let Sc denote the set of v ∈ C0(Rn\D) which are viscosity subsolutions of
(1.5) in R

n\D satisfying

v = ϕ, on ∂D, (3.8)

and

u1,d(c) ≤ v ≤ ūd2(c), in R
n\D. (3.9)

We know that u1,d(c) ∈ Sc. Let

u(x) := sup {v(x) | v ∈ Sc} , x ∈ R
n\D.

Then u is convex and of class C0(Rn\D). By (3.5), and the definitions of u1,d(c) and ūd2(c)

u(x) ≥ u1,d(c)(x) = 1

2
|x |2 + c + O(|x |2−min{β,n}), as x → ∞ (3.10)

and

u(x) ≤ ud2(c)(x) = 1

2
|x |2 + c + O(|x |2−min{β,n}).

The estimate (1.2) for k = 0 follows.
Next, we prove that u satisfies the boundary condition. It is obvious from the definition

of u1,d(c) that

lim inf
x→ξ

u(x) ≥ lim
x→ξ

u1,d(c)(x) = ϕ(ξ), ∀ ξ ∈ ∂D.

So we only need to prove that

lim sup
x→ξ

u(x) ≤ ϕ(ξ), ∀ ξ ∈ ∂D.

Let ω+
c ∈ C2(Br̄\D) be defined by⎧⎪⎨

⎪⎩
�ω+

c = 0, in Br̄+1\D,
ω+

c = ϕ, on ∂D,
ω+

c = max
∂Br̄+1

ud2(c), on ∂Br̄+1.

It is easy to see that a viscosity subsolution v of (1.5) satisfies �v ≥ 0 in viscosity sense.
Therefore, for every v ∈ Sc, by v ≤ ω+

c on ∂(Br̄\D), we have

v ≤ ω+
c in Br̄\D.

It follows that

u ≤ ω+
c in Br̄\D,

and then

lim sup
x→ξ

u(x) ≤ lim
x→ξ

ω+
c (x) = ϕ(ξ), ∀ ξ ∈ ∂D.
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Finally, we prove u is a solution of (1.1). For x̄ ∈ R
n\D, fix some ε > 0 such that Bε(x̄) ⊂

R
n\D. By the definition of u, u ≤ ū. We claim that there is a convex viscosity solution to

ũ ∈ C0(Bε(x̄)) to
{

det(D2ũ) = f, x ∈ Bε(x̄),
ũ = u, x ∈ ∂Bε(x̄).

Indeed, let φk be a sequence of smooth functions on ∂Bε(x̄) satisfying

u ≤ φk ≤ u + 1

k
.

Let fk be a sequence of smooth positive functions tending to f and fk ≤ f . Let ψk be the
convex solution to {

det (D2ψk) = fk Bε(x̄),
ψk = φi on ∂Bε(x̄).

Clearly ψk ≥ u. On the other hand, let hk be the harmonic function on Bε(x̄) with hk = φk

on ∂Bε(x̄). Then we have uk ≤ hk . Therefore |ψk | is uniformly bounded over any compact
subset of Bε(x̄).|∇ψk | is also uniformly bounded over all compact subsets of Bε(x̄) by the
convexity. Thus ψk converges along a subsequence to ũ in Bε(x̄). By the closeness between
hk to u on ∂Bε(x̄), ũ can be extended as a continuous function to B̄ε(x̄). By the maximum
principle, u ≤ ũ ≤ ūd2(c) on Bε . Define

w(y) =
{

ũ(y), if y ∈ Bε,
u(y), if y ∈ R

2\(D ∪ Bε(x̄)).

Clearly, w ∈ Sc. So, by the definition of u, u ≥ w on Bε(x̄). It follows that u ≡ ũ on Bε(x̄).
Therefore u is a viscosity solution of (1.1). We have proved (1.2) for k = 0. The estimates
of derivatives follow from Proposition 2.1. Theorem 1.1 is established for n ≥ 3.

Case two: n = 2.
As in case one we let f̄ be a radial function such that f̄ (|x |) ≥ f (x) in R

2\D, and f̄ also
satisfies (FA). Let

ud(x) = β1 +
r∫

r̄

( s∫
1

2t f̄ (t)dt + d

) 1
2

ds

for d ≥ 0 and r > 1. Here we choose β1 = min∂D φ − 1. Clearly

ud(x) < w(x) Br̄\D, ∀d ≥ 0.

Then we choose d∗ large so that for all d ≥ d∗, ud(x) > w(x) on ∂Br̄+1. Let

u1,d(x) =
⎧⎨
⎩
w(x), Br̄\D̄
max{w(x), ud}, Br̄+1\B̄r̄ ,

ud , R
2\Br̄+1.

Then u1,d is a convex viscosity subsolution of (1.5). Let

Ad = d − 1 +
∞∫

1

2t ( f̄ (t)− 1)dt.
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Then elementary computation gives

ud(x) = 1

2
|x |2 + Ad log |x | + O(1).

Next we let f be a radial function such that f (|x |) ≤ f (x) for x ∈ R
2\D̄. Suppose f also

satisfies (FA) and is positive and smooth on R
2. Let

ūd(x) = β2 +
r∫

2

( s∫
1

2t f (t)dt + d

) 1
2

ds.

Let

Ld = d − 1 +
∞∫

1

2t ( f (t)− 1)dt.

Then the asymptotic behavior of ūd at infinity is

ūd(x) = 1

2
|x |2 + Ld log |x | + O(1).

Thus for all d > d∗, we can choose d1 such that Ld1 = Ad . Then we choose β1 such
that ūd1 > φ on ∂D and ūd1 > ud at infinity. As in case one, by taking the supremum of
subsolutions we obtain a solution u that is equal to φ on ∂D and

u(x) = 1

2
|x |2 + Ad log |x | + O(1).

By Proposition 2.1

u(x) = 1

2
|x |2 + Ad log |x | + c + o(1).

The following lemma says the constant term is uniquely determined by other parameters.

Lemma 3.2 Let u1, u2 be two locally convex smooth functions on R
2\D̄ where D satisfies

the same assumption as in Theorem 1.1. Suppose u1 and u2 both satisfy
{

det (D2u) = f in R
2\D̄,

u = φ, on ∂D

with f satisfying (FA) and for the same constant d

ui (x)− 1

2
|x |2 − d log |x | = O(1), x ∈ R

2\D̄, i = 1, 2. (3.11)

Then u1 ≡ u2.

Proof of Lemma 3.2 By Proposition 2.1 we see that when (3.11) holds, we have

D2ui (x) = I + O(|x |−2+ε), i = 1, 2

for ε > 0 small and |x | large. For the proof of this lemma we only need

D2ui (x) = I + O(|x |− 3
2 ), |x | > 1, i = 1, 2. (3.12)
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By Proposition 2.1,

ui (x) = 1

2
|x |2 + d log |x | + ci + O(1/|x |σ ), i = 1, 2

for σ ∈ (0,min{β − 2, 2}). Without loss of generality we assume c1 > c2. If c1 = c2 we
know u1 ≡ u2 by maximum principle. Since u1 = u2 on ∂D, we have, u1 > u2 in R

2\D̄.
Let w = u1 − u2, then w satisfies

ai j∂i jw = 0, R
2\D̄

where

ai j (x) =
1∫

0

cofi j (t D2u1 + (1 − t)D2u2)dt.

By the assumption of Lemma 3.2 and (3.12), ai j is uniformly elliptic and

ai j (x) = δi j + O(|x |− 3
2 ), x ∈ R

2\D̄. (3.13)

Let a0 <
1
2 a1 be positive constants to be determined. We set hε = ε log(|x | − a0) over

a1 < |x | < ∞. Direct computation shows, by (3.13) that

ai j∂i j hε = �hε + (ai j − δi j )∂i j hε

≤ − εa0

(|x | − a0)2|x | + Cε|x |−7/2,

≤ −4εa0

|x |3 + Cε|x |−7/2, |x | > a1 > a0.

By choosing a0 sufficiently large and a1 > 2a0 we have

ai j∂i j hε < 0, a1 < |x | < ∞.

Let R > a1 and MR = max|x |=R w. Let v = w − MR , then clearly for all ε > 0, hε is
greater than v on ∂BR and at infinity. Thus for any compact subset K ⊂⊂ R

2\B̄R, v < hε .
Let ε → 0 we have

w(x) ≤ MR, ∀|x | ≥ R.

Taking any R1 > R, we have max|x |=R1 w ≤ MR . Strong maximum principle implies that
either max|x |=R1 w < MR for all R1 > R or w is a constant. w is not a constant, therefore
we have max|x |=R1 w < MR for all R1 > R. However, this means over the region BR1\D̄,
the maximum ofw is attained at an interior point, a contradiction to the elliptic equation that
w satisfies. Thus Lemma 3.2 is established. �


Lemma 3.2 uniquely determines the constant in the expansion, then by Proposition 2.1
we obtain (1.3). Thus Theorem 1.1 for the case n = 2 is established. �


4 Proof of Theorem 1.3

We only need to consider the existence part as the uniqueness part follows immediately
from maximum principles. For the existence part we only need to consider the case that
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A = I, b = 0 and c = 0, because the general case can be reduced to this case by a linear
transformation. Consider u R that solves{

det (D2u R) = f, BR,

u R = R2

2 , ∂BR .
(4.1)

We shall bound u R above and below by two radial functions. Let h be a smooth radial
function, then at the point (|x |, 0, ..., 0)

D2h(x) = diag(h′′(r), h′(r)/r, ..., h′(r)/r), r = |x |.
Thus det (D2h)(x) = h′′(r)(h′(r)/r)n−1.

We first construct a subsolution h−(r): Let f̄ be a radial function such that f̄ > f and f̄
satisfies (FA).

h−(r) =
r∫

0

⎛
⎝

s∫
0

ntn−1 f̄ (t)dt

⎞
⎠

1
n

ds.

Clearly det (D2h−) = f̄ in R
n and since f̄ (t) = 1 + O(t−β) it is easy to verify that

h−(r) = 1

2
|x |2 + O(1).

Next we construct a super solution. Let f be a radial function less than f (x) and f also
satisfy (FA),

h+(r) =
r∫

0

⎛
⎝

s∫
0

ntn−1 f (t)dt

⎞
⎠

1
n

ds.

Similarly we have det (D2h+) = f in R
n and h+(r) = 1

2r2 + O(1) for r large. Let β− be a

constant such that h−(|x |)+ β− ≤ 1
2 |x |2, β+ be a constant such that h+(|x |)+ β+ ≥ 1

2 |x |2.
Then by maximum principle

h−(r)+ β− ≤ u R(x) ≤ h+(r)+ β+, |x | ≤ R. (4.2)

Let R → ∞ and the sequence u R converges to a global solution u that satisfies det (D2u) = f
in R

n and u − 1
2 |x |2 = O(1). For this convergence, we use the fact that for any K ⊂⊂

R
n, |u R(x)− 1

2 |x |2| ≤ C(K ) and by Caffarelli’s C1,α estimate [6], ‖∇u R‖L∞(K ) ≤ C(K ).
Thus u R converges to a convex viscosity solution u to det (D2u) = f in R

n with the property
that ∣∣∣∣u(x)− 1

2
|x |2

∣∣∣∣ ≤ C, R
n .

By Proposition 2.1, there exists a c∗ ∈ R such that

lim|x |→∞ |x |min{β,n}−2+k
(

Dk(u(x)− 1

2
|x |2 − c∗)

)
< ∞

for k = 0, . . . ,m + 1. After a translation the solution with the desired asymptotic behavior
can be found. Theorem 1.3 is established. �
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5 The proof of Theorem 1.2

Without loss of generality we assume u(0) = 0 = minRn u. The goal is to show that
there exists a linear transformation T such that v = u · T satisfies (2.2). Then we employ
Proposition 2.1 to finish the proof. The proof of v satisfying (2.2) is by the argument of
Caffarelli and Li.

Suppose c−1
0 ≤ infRn f ≤ sup

Rn f < c0, only under this assumption it is proved in [9]
that for M large and

	M := {x ∈ R
n; u(x) < M}

there exists aM ∈ A such that

BR/C ⊂ aM (	M ) ⊂ BC R, (5.1)

where R = √
M and C > 1 is a constant independent of M . Let

O := {y; a−1
M (Ry) ∈ 	M }.

Then B1/C ⊂ O ⊂ BC . Set

ξ(y) := 1

R2 u(a−1
M (Ry)),

then we have {
det (D2ξ) = f (a−1

M (Ry)), in O,
ξ = 1, on ∂O.

(5.2)

Let ξ̄ solve
{

det (D2ξ̄ ) = 1, in O,
ξ̄ = 1, on ∂O.

By Pogorelov’s estimate

1

C
I ≤ D2ξ̄ ≤ C I, |D3ξ̄ (x)| ≤ C, x ∈ O, dist (x, ∂O) ≥ δ.

We claim that there exists C > 0 independent of M such that

|ξ(x)− ξ̄ (x)| ≤ C/R, x ∈ O. (5.3)

Indeed, by the Alexandrov estimate ([8])

− min
Ō
(ξ − ξ̄ ) ≤ C

( ∫
S+

det (D2(ξ − ξ̄ ))

)1/n

where

S+ := {x ∈ O; D2(ξ − ξ̄ ) > 0 }.
On S+

D2ξ

2
= D2(ξ − ξ̄ )

2
+ D2ξ̄

2
,
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so the concavity of det
1
n on positive definite symmetric matrices implies

det (D2(ξ − ξ̄ ))
1
n ≤ f (a−1

M (Ry))
1
n − 1.

Thus

− min
Ō
(ξ − ξ̄ ) ≤ C

( ∫
S+

| f (a−1
M (Ry))

1
n − 1|ndy)

1
n .

Let z = a−1
M (Ry), i.e. aM z = Ry then dz = Rndy

( ∫
S+

| f (a−1
M (Ry))

1
n − 1)n |dy

) 1
n ≤ 1

R

( ∫
BC R

| f (z)
1
n − 1|ndz

) 1
n

.

By the assumption (FA) the integral is finite, thus we have proved that

− min
Ō
(ξ − ξ̄ ) ≤ C/R, x ∈ O

Similarly we also have − minŌ (ξ̄ − ξ) ≤ C/R. (5.3) is proved.
Next we set

EM := {x; (x − x̄)′ D2ξ(x̄)(x − x̄) ≤ 1}
where x̄ is the minimum of ξ̄ . By Theorem 1 of [5] x̄ is the unique minimum point of ξ̄ . Then
by the same argument as in [9] we have the following: There exist k̄ and C depending only
on n and f such that for ε = 1

10 ,M = 2(1+ε)k, 2k−1 ≤ M ′ ≤ 2k ,

(
2M ′

R2 − C2− 3εk
2

) 1
2

EM ⊂ 1

R
aM (	M ′) ⊂

(
2M ′

R2 + C2− 3εk
2

) 1
2

EM , ∀k ≥ k̄,

which is

√
2M ′

(
1 − C

2εk/2

)
EM ⊂ aM (	M ′) ⊂ √

2M ′
(

1 + C

2εk/2

)
EM .

Let Q be a positive definite matrix such that Q2 = D2ξ̄ (x̄), O be an orthogonal matrix such
that Tk := O QkaM is upper triangular. Then clearly det (Tk) = 1 and by Proposition 3.4 of
[9] we have

‖Tk − T ‖ ≤ C2− εk
2 .

Let v = u · T , then clearly

det (D2v(x)) = f (T x).

For v and some k̄ large we have

√
2M ′

(
1 − C

2εk/2

)
B ⊂ {x; v(x) < M ′} ⊂ √

2M ′
(

1 + C

2εk/2

)
B ∀M ′ ≥ 2k̄ .

Consequently ∣∣∣∣v(x)− 1

2
|x |2

∣∣∣∣ ≤ C |x |2−ε . (5.4)
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Clearly f (T ·) also satisfies (FA). Proposition 2.1 gives the asymptotic behavior of u and
the estimates on its derivatives. the constant d in the estimate in two dimensional spaces is
determined similarly as in [9]. Theorem 1.2 is established. �

Remark 5.1 Corollary 1.1 follows from Theorem 1.2 just like in [9] so we omit the proof.

Appendix: Interior estimate of Caffarelli and Jian–Wang

The following theorem is a combination of the interior estimate of Caffarelli [7] and an
improvement by Jian and Wang [25].

Theorem 6.1 (Caffarelli, Jian and Wang) Let u ∈ C0(	) be a convex viscosity solution of

det (D2u) = f, 	,

u = 0 on ∂	,

where 	 is a convex bounded domain satisfying B1 ⊂ 	 ⊂ Bn. Assume that f is Dini
continuous on 	 and

1

c0
≤ f ≤ c0, 	.

Then u ∈ C2(B1/2) and ∀x, y ∈ B1/2

|D2u(x)− D2u(y)| ≤ C

⎛
⎝d +

d∫
0

ω f (r)

r
+ d

1∫
d

ω f (r)

r2

⎞
⎠ (6.1)

where d = |x − y|,C > 0 depends only on n and c0, ω f is the oscillation function of f
defined by

ω f (r) := sup{| f (x)− f (y)| : |x − y| ≤ r}.
It follows that (i) If f is Dini continuous, then u ∈ C2(B1/2), and the modulus of convexity
of D2u can be estimated by (6.1). (ii) If f ∈ Cα(	) and α ∈ (0, 1), then

‖D2u‖Cα(B1/2) ≤ C

(
1 + ‖ f ‖Cα(	)

α(1 − α)

)
.

(iii) If f ∈ C0,1(	), then

|D2u(x)− D2u(y)| ≤ Cd(1 + ‖ f ‖C0,1(	)| log d|).
Here we recall that f is Dini continuous if the oscillation function ω f satisfies∫ 1

0 ω f (r)/rdr < ∞.

Remark 6.1 Note that in Caffarelli’s interior estimate u = 0 is assumed on ∂	. Since 	 is
very close to a ball, by [5,6] u is strictly convex in 	. But there is no explicit formula that
describes how the higher order derivatives of u depend on f . In Jian-Wang’s theorem, this
dependence is given as in (6.1) but instead of assume u = 0 on ∂	, they assumed u is strictly
convex and their constant depends on the strict convexity. We feel the way that Theorem 6.1
is stated is more convenience for application. We only used the (i i) and (i i i) of Theorem 6.1
in this article.
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