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Abstract. In the paper, we apply the moving plane method to prove that if

the right hand sides of equation and Neumann boundary condition are both

independent of one variable, the domain and the solution to the Hessian over-
determined problem are mirror symmetric. Our result generalizes the previous

results on radial symmetry. In the end, we get the mirror symmetry of over-

determined problems for more general equations, which include Weingarten
curvature equation.

1. Introduction. In the theory of elasticity [15], by considering the torsion of
a solid straight bar of cross section, we can get an over-determined problem for
Poisson equation, that is 

∆u = n, x ∈ Ω,

u = 0, x ∈ ∂Ω,
∂u

∂γ
= 1, x ∈ ∂Ω,

(1)

where Ω is a smooth bounded domain in Rn (n ∈ N and n ≥ 2), γ(x) is the outer
unit normal to ∂Ω at x.

This model can also be used to describe a viscous incompressible fluid moving
in straight parallel streamlines through a straight pipe of given cross sectional form
and a liquid rising in a straight capillary tube of cross section.

In 1971, Serrin [13] applied the moving plane method and maximum principle
to prove that: if u ∈ C2(Ω) is a solution to problem (1), then up to a translation,

Ω is a unit ball and u(x) = |x|2−1
2 . In the same year, Weinberger [16] proved the

same conclusion by using Green formula. This conclusion states that, when a solid
straight bar is subject to torsion, the magnitude of the resulting traction which
occurs at the surface of the bar is independent of position if and only if the bar has
a circular cross section.
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After Serrin’s contribution to over-determined problem, lots of results have been
obtained to extend this result. In 2008, Brandolini, Nitsch, Salani and Trombetti
[1] considered over-determined problem for k-Hessian equation (1 ≤ k ≤ n),

σk
(
λ(D2u)

)
=
(
n
k

)
, x ∈ Ω,

u = 0, x ∈ ∂Ω,
∂u

∂γ
= 1, x ∈ ∂Ω,

(2)

where σk
(
λ(D2u)

)
is the k-th elementary symmetric function of the eigenvalues of

D2u and
(
n
k

)
denotes the combinatorial number. They proved that: if u ∈ C2(Ω) is a

solution to problem (2), then up to a translation, Ω is a unit ball and u(x) = |x|2−1
2 .

In particular, when k = 1, problem (2) becomes problem (1); when k = n, problem
(2) is the over-determined problem for Monge-Ampère equation. In the same year,
they studied the stability of problem (2) for k = 1 in [2] and k = n in [3].

Some results about over-determined problems in exterior domains can be found
in [11] and [12]. And there are also many open problems about over-determined
problems which have been proposed in [14].

In [7], B. Gidas, Weiming Ni and L. Nirenberg obtained a significant result about
symmetry of solutions to Dirichlet problem of elliptic equations. For more results
concerning symmetry properties of solutions of elliptic equations, we refer to [6] and
[9].

In this paper, we apply the moving plane method to consider the over-determined
problem for k-Hessian equation (1 ≤ k ≤ n) whose right hand sides of equation and
Neumann condition are both independent of the n-th variable, that is

σk
(
λ(D2u)

)
= f(x′), x ∈ Ω,

u = c, x ∈ ∂Ω,
∂u

∂γ
= ψ(x′), x ∈ ∂Ω,

(3)

where x = (x′, xn) ∈ Rn−1 × R and c is a constant. For k = 1, problem (3) can be
written as 

∆u = f(x′), x ∈ Ω,

u = c, x ∈ ∂Ω,
∂u

∂γ
= ψ(x′), x ∈ ∂Ω.

(4)

Let Φ2,1
k (Ω) = {v ∈ C2,1(Ω) : σi

(
λ
(
D2v (x)

))
> 0, x ∈ Ω, i = 1, 2, · · · , k − 1, k}

and Ω′ be the projection of Ω in the x′ direction. We can obtain the main theorem
as follow.

Theorem 1.1. Let Ω be a C2 open, connected and bounded domain in Rn, f ∈
C0,1(Ω) be positive and ψ ∈ C1,1(Ω). If u ∈ Φ2,1

k (Ω) is a solution to problem (3),
then up to a translation in the xn direction, Ω and u are symmetric about xn = 0.

In the case of Theorem 1.1, Ω must be (k− 1)-convex (as level set of a k-convex
function).

It would be interesting to see if Theorem remains valid under weaker regularity
assumptions. For k = 1, we can reduce the regularity of u, f and ψ in Theorem 1.1
and then obtain the following corollary.
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Corollary 1. Let Ω be a C2 open, connected and bounded domain in Rn, f ∈ C0(Ω)
be positive and ψ ∈ C1(Ω). If u ∈ C2(Ω) is a solution to problem (4), then up to a
translation in the xn direction, Ω and u are symmetric about xn = 0.

Remark 1. If we take f and ψ as constants in Theorem 1.1 and Corollary 1, we
can get that Ω and u are symmetric about any hyperplane passing through the
origin. Therefore Ω is a ball and u is radial.

Our paper is organized as follows. In Section 2, we will give some notation and
preliminaries. In Section 3 and 4, we will present the proof of Theorem 1.1 and
Corollary 1 respectively. In Section 5, the moving plane method will be applied to
the over-determined problem for a class of fully non-linear equations, which include
Weingarten curvature equation.

2. Notation and preliminaries.

2.1. Hessian operator. We first introduce the definition of k-th elementary sym-
metric function.

For a = (a1, a2, · · · , an−1, an) ∈ Rn and k ∈ {1, 2, · · · , n−1, n}, the k-th elemen-
tary symmetric function of a is defined as

σk(a) =
∑

1≤i1<i2<···<ik−1<ik≤n

ai1ai2 · · · aik−1aik .

Let A = (aij) be a real symmetric n × n matrix and λ1, λ2, · · · , λn−1, λn be its
eigenvalues. Then

σk(λ(A)) =
∑

1≤i1<i2<···<ik−1<ik≤n

λi1λi2 · · ·λik−1
λik .

It is easy to see that σk(λ(A)) is just the sum of all k × k principal minors of A
(see[1]).

Denoting by

Sk(A) = σk (λ (A)) , (5)

and

Sijk (A) =
∂

∂aij
Sk(A), i, j = 1, 2, · · · , n− 1, n, (6)

then Euler identity for homogeneous functions gives us

Sk(A) =
1

k
Sijk (A)aij ,

here and throughout the paper, we adopt the Einstein summation convention for
repeated indices.

Suppose M is a real symmetric n× n matrix,

M =

(
mij min

mni mnn

)
,

M̃ denotes

M̃ =

(
mij −min

−mni mnn

)
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and D denotes

D =

(
δij 0
0 −1

)
.

Then D−1MD = M̃ , which means M and M̃ are similar. So we have λ(M) = λ(M̃).
It follows that

Sk(M) = Sk(M̃). (7)

For i = 1, 2, · · · , n − 2, n − 1, from differentiating (7) with respect to min, it
follows that

Sink (M) = Sink (M̃)
∂m̃in

∂min
= −Sink (M̃).

So we have

Sink (M) + Sink (M̃) = 0, i = 1, 2, · · · , n− 2, n− 1. (8)

Let Ω be an open subset of Rn and u ∈ C2(Ω). We call Sk(D2u) the k-Hessian
operator of u. It is obvious that

S1(D2u) = ∆u and Sn(D2u) = det(D2u).

The k-th Hessian operators are uniformly elliptic if restricted to the class of k-convex
functions

{v ∈ C2(Ω) : Si
(
D2v (x)

)
> 0, x ∈ Ω, i = 1, 2, · · · , k − 1, k}.

2.2. Moving plane method. Before using the moving plane method to prove
Theorem 1.1 and Corollary 1, we would like to introduce some notation.

Tλ ={x ∈ Rn : xn = λ} the hyperplane,

Hλ ={x : xn > λ} the above half-space,

xλ =(x′, 2λ− xn) the reflection of x about Tλ,

Σ(Tλ) ={x : xλ ∈ Ω ∩Hλ} the reflection domain of Ω about Tλ,

λ0 = sup{xn : x = (x′, xn) ∈ Ω} the xn-extent of Ω.

Let Tλ0
be the starting position and we move Tλ along the negative direction of xn

axis. From [10] we can show that during the motion, Ω contains Σ(Tλ) until one of
the following two events (critical positions) occurs:

(1) ∂Σ(Tλ) becomes internally tangent to ∂Ω at P /∈ Tλ;

(2) Tλ reaches a position where it is orthogonal to ∂Ω at some point Q ∈ Tλ.

During the proof below, we will discuss the two critical cases and a key ingredient
in the proof is a corner lemma. For readers’ convenience, we will state it below and
the proof can be found in [13].

Let D∗ be a bounded domain with C2 boundary in Rn and let T be a hyperplane
containing the unit outer normal to ∂D∗ at some point Q. And D denotes the
portion of D∗ lying on some particular side of T . We assume the coefficient bi’s
are uniformly bounded in D and there exist three positive constants K1, K2 and K
such that

K1|ξ|2 ≤ âij(x)ξiξj ≤ K2|ξ|2, (9)

and

|âij (x) ξiηj | ≤ K (|ξ · η|+ |ξ|d (x)) , (10)
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where x ∈ D, ξ = (ξ1, ξ2, · · · , ξn−1, ξn) is an arbitrary real vector,
η = (η1, η2, · · · , ηn−1, ηn) is the unit normal to the hyperplane T and d(x) is the
distance from x to T .

Lemma 2.1. Suppose w ∈ C2(D) satisfies

âij(x)
∂2w

∂xi∂xj
+ bi(x)

∂w

∂xi
≥ 0, x ∈ D,

and w ≤ 0 in D and w(Q) = 0. Let s be any direction at Q which enters D
non-tangentially. Then at Q, we have either

∂w

∂s
< 0, or

∂2w

∂s2
< 0,

unless w ≡ 0 in D.

Remark 2. From the above lemma, we can see that if w doesn’t vanish in D, then
either Dw(Q) 6= 0 or D2w(Q) 6= 0.

3. Proof of Theorem 1.1.

Proof of Theorem 1.1. We will divide our proof into four steps.
Step 1. First of all, we define a new function,

v(x) = u(x′, 2λ− xn), x ∈ Σ(Tλ).

Clearly, we can get that v ∈ C2,1
(

Σ(Tλ)
)

. And for each x ∈ Σ(Tλ), we have

Dv(x) = (
∂u

∂x1
,
∂u

∂x2
, · · · , ∂u

∂xn−1
,− ∂u

∂xn
)(x′, 2λ− xn), (11)

D2v(x) =



∂2u

∂x21

∂2u

∂x1∂x2
· · · ∂2u

∂x1∂xn−1
− ∂2u

∂x1∂xn
∂2u

∂x2∂x1

∂2u

∂x22
· · · ∂2u

∂x2∂xn−1
− ∂2u

∂x2∂xn
· · · · · · · · · · · · · · ·
∂2u

∂xn−1∂x1

∂2u

∂xn−1∂x2
· · · ∂2u

∂x2n−1
− ∂2u

∂xn−1∂xn

− ∂2u

∂xn∂x1
− ∂2u

∂xn∂x2
· · · − ∂2u

∂xn∂xn−1

∂2u

∂x2n


· (x′, 2λ− xn), (12)

and
∂v

∂γ
(x) =

∂u

∂γ
(x′, 2λ− xn) = ψ(x′), x ∈ ∂Σ(Tλ) \ Tλ.

Since u is the solution to problem (3), v satisfies
Sk(D2v) = f(x′), x ∈ Σ(Tλ),

v = u, x ∈ ∂Σ(Tλ) ∩ Tλ,
v = c, x ∈ ∂Σ(Tλ) \ Tλ.

where Sk is defined in (5).
Next, we define

w(x) = u(x)− v(x), x ∈ Σ(Tλ),
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then w satisfies 
âij

∂2w

∂xi∂xj
= 0, x ∈ Σ(Tλ),

w = 0, x ∈ ∂Σ(Tλ) ∩ Tλ,
w ≤ 0, x ∈ ∂Σ(Tλ) \ Tλ,

(13)

where

âij (x) =

∫ 1

0

Sijk
(
sD2u(x) + (1− s)D2v(x)

)
ds, i, j = 1, 2, · · · , n− 1, n.

The last condition in (13) is obtained by the fact that u < c in Ω which is deduced

via strong maximum principle. It follows from u, v ∈ Φ2,1
k

(
Σ(Tλ)

)
that

(
âij(x)

)
is

positive definite.
By strong maximum principle, we can get from problem (13) that either

w < 0, x ∈ Σ(Tλ), (14)

or w ≡ 0 in Σ(Tλ). It is obvious that the latter case means that u and Ω are
symmetric about xn = λ. Therefore, we only need to show that for the two critical
cases mentioned in (1) and (2) of Section 2, (14) is impossible. Assume that (14) is
true, we will consider the two critical cases respectively.

Step 2. Let us consider the first critical case, that is, ∂Σ(Tλ) becomes internally
tangent to ∂Ω at P /∈ Tλ. Since P ∈ ∂Ω ∩ ∂Σ(Tλ), we have u(P ) = v(P ). Thus
w(P ) = u(P )− v(P ) = 0 and

∂w

∂γ
(P ) =

∂u

∂γ
(P )− ∂v

∂γ
(P ) = ψ(P ′)− ψ(P ′) = 0.

However, by applying Hopf’s Lemma (see [8] Lemma 3.4) to the linearized problem
(13) and (14), we have

∂w

∂γ
(P ) > 0,

which is a contradiction. Hence (14) is impossible for the first critical case.
Step 3. Let us consider the second critical case, that is, Tλ reaches a position

where it is orthogonal to ∂Ω at some point Q ∈ Tλ.

We shall use Lemma 2.1 to make contradiction. Since u, v ∈ Φ2,1
k

(
Σ(Tλ)

)
, it is

obvious that (9) in Lemma 2.1 holds in our case. Now let us verify the condition
(10) in Lemma 2.1.

Ifx ∈ ∂Σ(Tλ) ∩ Tλ, by the definition of v, we can get

sD2v(x) + (1− s)D2u(x) = ˜sD2u(x) + (1− s)D2v(x), s ∈ [0, 1]. (15)

And by taking t = 1− s, we have∫ 1

0

Sink
(
sD2u(x) + (1− s)D2v(x)

)
ds =

∫ 1

0

Sink
(
tD2v(x) + (1− t)D2u(x)

)
dt,

i.e.∫ 1

0

Sink
(
sD2u(x) + (1− s)D2v(x)

)
ds =

∫ 1

0

Sink
(
sD2v(x) + (1− s)D2u(x)

)
ds.

(16)
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Then by (16), (15) and (8), for i = 1, 2, · · · , n − 2, n − 1 and x ∈ ∂Σ(Tλ) ∩ Tλ, we
have

2âin(x)

=2

∫ 1

0

Sink
(
sD2u(x) + (1− s)D2v(x)

)
ds

=

∫ 1

0

Sink
(
sD2u(x) + (1− s)D2v(x)

)
ds+

∫ 1

0

Sink
(
sD2v(x) + (1− s)D2u(x)

)
ds

=

∫ 1

0

Sink
(
sD2u(x) + (1− s)D2v(x)

)
ds+

∫ 1

0

Sink

(
˜sD2u(x) + (1− s)D2v(x)

)
ds

=0.

By u, v ∈ C2,1
(

Σ(Tλ)
)

and the definition of âin, we can get âin(x) is Lipschitz

continuous on Σ(Tλ). So there exists L > 0, for x = (x′, xn) ∈ Σ(Tλ) and x0 =
(x′, λ) ∈ ∂Σ(Tλ) ∩ Tλ, such that

|âin(x)| = |âin(x)− âin(x0)| ≤ L|x− x0| = Ld(x),

where d(x) is the distance from x to Tλ. And now the unit outer normal of Tλ is
η = (0, 0, · · · , 0, 1), so for arbitrary vector ξ = (ξ1, ξ2, · · · , ξn−1, ξn), we have

|
n∑

i,j=1

âij(x)ξiηj | = |
n∑
i=1

âin(x)ξi|,

≤
n−1∑
i=1

|âin(x)||ξi|+ |ânn(x)||ξn|

≤ (n− 1)Ld(x)|ξ|+K2|ξ · η|
≤ K (|ξ|d (x) + |ξ · η|) .

This completes the proof of condition (10).
Since w < 0 in Σ(Tλ) and w(Q) = 0, from Lemma 2.1, at Q we obtain that

∂w

∂s
< 0 or

∂2w

∂s2
< 0,

which contradicts with the fact Dw(Q) = 0 and D2w(Q) = 0 that will be obtained
in Step 4. Hence (14) is also impossible for the second critical case.

Step 4. We shall show that Dw(Q) = 0 and D2w(Q) = 0. By (11) and (12), it
is obvious that at Q

∂w

∂xl
=0,

∂w

∂xn
=2

∂u

∂xn
,

∂2w

∂xk∂xl
=
∂2w

∂x2n
=

∂2w

∂xn∂x1
=0,

∂2w

∂xn∂xl
=2

∂2u

∂xn∂xl
,
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for k, l = 1, 2, · · · , n− 2, n− 1. So we only need to prove that at Q

∂w

∂xn
=0,

∂2w

∂xn∂xl
=0, l = 1, 2, · · · , n− 2, n− 1.

Since ∂Ω ∈ C2,1, we consider a rectangular coordinate frame with origin at Q,
the x1 axis being directed along the inward normal to ∂Ω at Q and the xn axis
being normal to Tλ. In this frame we can represent ∂Ω locally by the equation

x1 = φ(x2, x3, · · · , xn), φ ∈ C2,1, φ(0′) = 0, D′φ(0′) = 0,

where D′ denotes ( ∂
∂x2

, ∂
∂x3

, · · · , ∂
∂xn−1

, ∂
∂xn

). Since u ∈ C2,1(Ω), the Dirichlet

boundary condition u = c on ∂Ω can be expressed as a twice differentiable identity

u(φ, x2, x3, · · · , xn) ≡ c. (17)

Differentiating (17) with respect to xk, k = 2, 3 · · · , n− 1, n, we obtain that

∂u

∂xk
+

∂u

∂x1

∂φ

∂xk
= 0. (18)

By D′φ(0′) = 0, we find that for k = 2, 3, · · · , n− 1, n,

∂u

∂xk
(0) = 0,

in particular,
∂w

∂xn
(0) = 2

∂u

∂xn
(0) = 0.

Similarly, the Neumann boundary condition ∂u
∂γ = ψ(x′) on ∂Ω can also be writ-

ten locally as an identity

∂u

∂x1
−

n∑
k=2

∂u

∂xk

∂φ

∂xk
≡ −ψ(x′){1 +

n∑
k=2

(
∂φ

∂xk
)2} 1

2 . (19)

Next differentiating (19) with respect to xn and evaluating at 0, we can get

∂2u

∂x1∂xn
(0)−

n∑
k=2

∂u

∂xk
(0)

∂2φ

∂xk∂xn
(0′) = − ∂ψ

∂xn
(0′),

i.e.
∂2w

∂x1∂xn
(0) = 2

∂2u

∂x1∂xn
(0) = 0.

Now it remains to prove that

∂2w

∂xn∂xl
(0) = 0, l = 2, 3, · · · , n− 2, n− 1.

We do this by using the following Taylor expansion of w at 0. For ξ ∈ Σ(Tλ), and
ξ → 0, we have

w(ξ) =w(0) +

n∑
l=1

∂w

∂xl
(0)ξl +

1

2

n∑
k,l=1

∂2w

∂xk∂xl
(0)ξlξk + o(|ξ|2),

=

n−1∑
l=2

∂2w

∂xn∂xl
(0)ξlξn + o(|ξ|2).
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Fix l ∈ {2, 3, · · · , n−2, n−1}, define ξ(δ) = δ(1, 0, · · · , 0,±1, 0, · · · , 0,−1) for δ > 0,

where ±1 is the l-th component of ξ and when ∂2w
∂xn∂xl

(0) ≤ 0 plus sign is taken,

when ∂2w
∂xn∂xl

(0) > 0 minus sign is taken. Now we choose δ sufficiently small, such

that ξ(δ) ∈ Σ(Tλ). It follows from the Taylor expansion that

w(ξ(δ)) = δ2| ∂2w

∂xn∂xl
(0)|+ o(δ2), δ → 0 + .

Since w < 0 in Σ(Tλ), we see that it forces ∂2w
∂xn∂xl

(0) = 0. So far we have proved

that Dw(0) = 0 and D2w(0) = 0.

4. Proof of Corollary 1.

Proof of Corollary 1. We can define v and w the same as Step 1 in the proof of
Theorem 1.1. And we can also find that w satisfies

∆w = 0, x ∈ Σ(Tλ),

w = 0, x ∈ ∂Σ(Tλ) ∩ Tλ,
w ≤ 0, x ∈ ∂Σ(Tλ) \ Tλ.

(20)

By strong maximum principle, we can get from problem (20) that either

w < 0, x ∈ Σ(Tλ), (21)

or w ≡ 0 in Σ(Tλ). It is obvious that the latter case means that u and Ω are
symmetric about xn = λ. Therefore, we only need to show that for the two critical
cases, (21) is impossible. Assume that (21) is true, we will consider the two critical
cases respectively.

The argument of the first critical case is completely the same as Step 2 in the
proof of Theorem 1.1. Now we consider the second critical case. A same argument
can turn out that Dw(Q) = 0 and D2w(Q) = 0. Since w satisfies problem (20), we
can take âij(x) = δij , i, j = 1, 2, · · · , n − 1, n in Lemma 2.1. Then it is obvious
that conditions (9) and (10) hold. So by Lemma 2.1, at Q we have

∂w

∂s
< 0 or

∂2w

∂s2
< 0,

which contradicts with Dw(Q) = 0 and D2w(Q) = 0. Hence (21) is also impossible
for the second critical position.

5. Over-determined problems for more general equations. In this section,
we want to show that our method can also be applied to the over-determined prob-
lem for a class of fully non-linear elliptic equations, which can be regarded as a
generalization of Theorem 1.1.

Now we consider the over-determined problem

F (D2u,Du) = f(x′), x ∈ Ω,

u < c, x ∈ Ω,

u = c, x ∈ ∂Ω,
∂u

∂γ
= ψ(x′), x ∈ ∂Ω,

(22)

where F ∈ C2(Rn×n × Rn satisfying the ellipticity condition(
F ij (M,p)

)
> 0, (23)
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where F ij (M,p) = ∂F
∂mij (M,p) and

F (M,p) = F (M̃, p̃), (24)

for any real symmetric n × n matrix M = (mij), p = (p1, p2, · · · , pn−1, pn) ∈ Rn
and p̃ = (p1, p2, · · · , pn−1,−pn). For M and p bounded, F is uniformly elliptic.

Then we can obtain the following theorem:

Theorem 5.1. Let Ω be a C2 open, connected and bounded domain in Rn, f ∈
C0,1(Ω) and ψ ∈ C1,1(Ω). If u ∈ C2,1(Ω) is a solution to problem (22), then up to
a translation in the xn direction, Ω and u are symmetric about xn = 0.

Remark 3. If we take f and ψ as constants in Theorem 5.1, we can get that Ω
and u are symmetric about any hyperplane passing through the origin. Therefore
Ω is a ball and u is radial.

Remark 4. If we take F (M,p) = σk (λ (M)), k = 1, 2, · · · , n − 1, n, then it is
obvious that Theorem 5.1 reduces to Theorem 1.1.

Remark 5. This F (M,p) in Theorem 5.1 also includes so called Weingarten cur-
vature equation, see Subsection 5.2.

5.1. Proof of Theorem 5.1. The proof is similar with the proof of Theorem 1.1,
so we will only give a sketch.

We can define v and w the same as Step 1 in the proof of Theorem 1.1. Thus w
satisfies 

aij
∂2w

∂xi∂xj
+ bi

∂w

∂xi
= 0, x ∈ Σ(Tλ),

w = 0, x ∈ ∂Σ(Tλ) ∩ Tλ,
w ≤ 0, x ∈ ∂Σ(Tλ) \ Tλ,

(25)

where

aij(x) =

∫ 1

0

F ij
(
sD2u(x) + (1− s)D2v(x), sDu(x) + (1− s)Dv(x)

)
ds,

and

bi(x) =

∫ 1

0

∂F

∂pi
(
sD2u(x) + (1− s)D2v(x), sDu(x) + (1− s)Dv(x)

)
ds,

for i, j = 1, 2, · · · , n − 1, n. Then we can make the same argument as the proof of
Theorem 1.1 except using Lemma 2.1. It remains to verify that

(
aij(x)

)
satisfies

the condition (10). In order to show this, we only need to prove that

ain(x) = 0, x ∈ ∂Σ(Tλ) ∩ Tλ.

In fact, by differentiating (24) with respect to min, we have

F in(M,p) + F in(M̃, p̃) = 0, i = 1, 2, · · · , n− 2, n− 1. (26)

And by the definition of v, we can get that for x ∈ ∂Σ(Tλ) ∩ Tλ,

sD2v(x) + (1− s)D2u(x) = ˜sD2u(x) + (1− s)D2v(x), s ∈ [0, 1], (27)

and

sDv(x) + (1− s)Du(x) = ˜sDu(x) + (1− s)Dv(x), s ∈ [0, 1]. (28)
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And by taking t = 1− s, we have∫ 1

0

F in
(
sD2u(x) + (1− s)D2v(x), sDu(x) + (1− s)Dv(x)

)
ds

=

∫ 1

0

F in
(
tD2v(x) + (1− t)D2u(x), tDv(x) + (1− t)Du(x)

)
dt,

i.e. ∫ 1

0

F in
(
sD2u(x) + (1− s)D2v(x), sDu(x) + (1− s)Dv(x)

)
ds

=

∫ 1

0

F in
(
sD2v(x) + (1− s)D2u(x), sDv(x) + (1− s)Du(x)

)
ds.

(29)

Then by (29), (27), (28) and (26), for i = 1, 2, · · · , n−2, n−1 and x ∈ ∂Σ(Tλ)∩Tλ,
we have

2ain(x) =2

∫ 1

0

F in
(
sD2u(x) + (1− s)D2v(x), sDu(x) + (1− s)Dv(x)

)
ds

=

∫ 1

0

F in
(
sD2u(x) + (1− s)D2v(x), sDu(x) + (1− s)Dv(x)

)
ds

+

∫ 1

0

F in
(
sD2v(x) + (1− s)D2u(x), sDv(x) + (1− s)Du(x)

)
ds

=

∫ 1

0

F in
(
sD2u(x) + (1− s)D2v(x), sDu(x) + (1− s)Dv(x)

)
ds

+

∫ 1

0

F in
(

˜sD2u(x) + (1− s)D2v(x), ˜sDu(x) + (1− s)Dv(x)
)
ds

=0.

And then we can follow the proof of Theorem 1.1 to complete our proof.

5.2. An application: Weingarten curvature equation. In Theorem 5.1, if
we take F (M,p) = σk (λ (A (M,p))), k = 1, 2, · · · , n − 1, n, where A(M,p) =(
aij (M,p)

)
,

aij(M,p) =
1

h
{mij− piplmlj

h(1 + h)
− p

jpkmki

h(1 + h)
+
pipjplpkmlk

h2(1 + h)2
}, i, j = 1, 2, · · · , n−1, n,

and h = (1 + |p|2)
1
2 . Then the equation in (22) becomes

σk
(
λ
(
A
(
D2u,Du

)))
= f(x′), x ∈ Ω,

which is called as Weingarten curvature equation. This equation was studied by
L.Caffarelli, L.Nirenberg and J.Spruck in [5].

By the computations from Section 1 in [4], the eigenvalues of the real symmetric
matrix A

(
D2u(x), Du(x)

)
=
(
aij(x)

)
denote the principal curvatures of the C2

graph (x, u (x)). For k = 1,

σ1
(
λ
(
A
(
D2u,Du

)))
= div

(
Du

(1 + |Du|2)
1
2

)
,

which denotes the mean curvature of the hypersurface, see [8]. And for k = n,

σn
(
λ
(
A
(
D2u,Du

)))
=

detD2u

(1 + |Du|2)
n+2
2

,
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which denotes the Gauss curvature of the hypersurface, also see [8].
If u ∈ C2,1(Ω) and for i = 1, 2, · · · , k − 1, k,

σi
(
λ
(
A
(
D2u (x) , Du (x)

)))
> 0, x ∈ Ω,

then the Weingarten curvature equation satisfies the ellipticity condition (23) and
the condition u < c in Ω can be deduced by the equation and Dirichlet boundary
condition in problem (22) via strong maximum principle. Since

aij(M,p) =aij(M̃, p̃), i, j < n and i = j = n,

aij(M,p) =− aij(M̃, p̃), i < n, j = n and j < n, i = n,

we can get that

σk (λ (A (M,p))) = σk

(
λ
(
A
(
M̃, p̃

)))
.

Thus, by applying Theorem 5.1, the mirror symmetry of Ω and the solution to the
over-determined problem for Weingarten curvature equation can be obtained.
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