BIIHEOH ¥ ¥ # B Vol.33, No.5
2004£10H ADVANCES IN MATHEMATICS QOct., 2004

Local Maximum Principle of
Semilinear Nonuniformly Elliptic Equations
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Abstract: We obtain a local maximum principle for the semilinear nonuniformly elliptic
equations in divergence form, and then show the local C'1'! estimate and a Bernstein type result
for the solutions of the Hessian equations.
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1 Introduction

In this paper we show the local second order derivative bound for the solutions of the Hessian
equations of the form

by
(Se(D*w)t = f(z) 9, (1)
where € is a domain in R", Si(D?u) is the k-th elementary symmetric function of the eigenvalues
AL, Az, -+, A, of the Hessian matrix D?u, which is given by
Sp(DPu) = Z Ay Aiy o Ads

iy Lig <o Cig

with £ = 1,2,.--,n, and f is a positive function in 2. We also deduce a Bernstein theorem for
the Hessian equations

Se(D*u) =c¢ in R", (2)

here ¢ is a positive constant.
The special case k = 1 of the equation (1) is the Poisson equations

Au= f(z),
while for & = n, we have the Monge-Ampére equaticns

det D%y = f"(x).
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The equations of this type were treated by Caffarelli, Nirenberg and Spruck!®™% and Ivochkinall,
who demonstrated the existence of the classical solutions for the Dirichiet problem. Chou, Krylov,
Trudinger, Urbas, Wang and others have also discussed the equations, see [CW], [K], [T2], [TW],
[U].

We say u € C3() is k-convex if

S;(D*u(z)) > 0

forany z € Q and j = 1,2,---, k. When &k = 1, the definition is equivalent to the definition of
subharmonic functions, and a function is n-convex if and only if it is convex in Q. If v € C2(£)
is k-convex, then the equation (1) is elliptic and (Sk(Dzu)) g is a concave function of the second
order derivative of u.

The main result of this paper is the following theorem.

Theorem 1  Let u be a C3 k-convex solution of the equation (1), and f € W.7(2) be
positive with = > n. Then for any p > 0 and any concentric balls Br(y) C Bar{y) CC Q we
have .

P

sup |D%u| < C ((R'” + K(R))f |Dzu(m)|%+pdz) , (3)

Brly) Bzr(y)
where C is a positive constant depending only on n,k,p and infg, ¢, f, and

LTSN
Ten

K(R) = (R0 4 RS2y iDg| e,

A result similar to Theorem 1 is included in {U, Theorem 1.6 and 4.5, where the hypotheses
of two theorems are satisfied respectively if

we WoEQ),  fechio),

loc

with p > 0, or
wc O, fec®().

We mention also for f € C11(Q1) Chou and Wang!CW, Theoreml5] have proved an interior second
derivative bound for the solutions which vanish .on the boundary.

To prove Theorem 1 we use a local maximum principle for the semilinear nonuniformly
elliptic equations in divergence form

D; (ai"(m,u)Diu — fi(g)) —g(z) =0 in 9, (4)

that has independent interest and generalizes a local pointwise estimate first proved by De
Giorgil®, also see [GT, Theorem 8.17]. We will assume that the equations (4) is nonuniformly
elliptic in (2, that is, there exist positive constants A, A and nonnegative constants a, 3 such that

Alu)" €7 < @ (z, u)éil; < AlulPig)? (5)

forall z € Q, u € R! and £ € R™. If @ = 8 = 0, the equation (4) becomes uniformly elliptic in
Q. A function u € WL*(£2) with ,
- n(f + 2)
n+ 3
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is said a weak solution (subsolution, supersolution) of the equations (4) respectively in €2 if
/ ((aij(z, u)Diu — fi(z))Djv + vg(a:)) dr=0(<0, 20) (6)
Q

for all nonnegative functions v € '/VDLS(Q). v is a legitimate test function in (6) will be seen in
the beginning of Section 2. The following local maximum principle is proved by using the Moser
technique of iteration from [Mo].

Theorem 2 Let 0 (z,u) satisfy the condition (5}, and u be a'locally bounded subsolution
of the equations (4) in §2, such that

u“Alfj € L{oc(ﬂ)! ua g€ Lloc(Q)

forr >nand j=1,2,---,n. Then we have for any ball Byr(y) CC 1 and

p>max{0,1+ﬁ—-g(a+5)},

sup u < C((R_"+K%)/ u”"'%(“"'ﬁ)(m)d.’c)p, (7)
Brly) Bz2r(y)

where C is a positive constant depending only on n,p, A, A,a, 8 and r, and

K= Z Tl ey + T 9'”1,5(323@))

The ordinary local maximum principle has been known for many years and its value in the
theory of PDEs is well known. The local maximum principle for the uniformly elliptic equations
of the special form

Di{a¥(z)Dju) =0

was established in the pioneering work of de Giorgil®). The proof was extended to the linear
equations

D;(a¥ () Dju+ b (x)u — fi(2)) + (@) Diu 4 dz)u — ga) =0

by MorreyM], Stampacchial®* and to the quasilinear equations
D;A*(z,u, Du) + B(x,u, Du) =

by Ladyzhenskaya and Ural'tsevall¥]. We mention also Trudinger's work on nonuniformly elliptic
equations, see [T1] and its references.

A celebrated result of Calabil®®!, that generalizes a two dimensional theorem by Jorgens{ 1
asserts that if u is a C® convex solution of the Monge-Ampére equation

det D*u =1 in R® (8)

and n < 5, then u is a quadratic polynomial. This statement was extended to all dimensions
by Pogorelov!Pl and Cheng and Yaul®¥], We also investigate the validity of the results for the
Hessian equations (2). A Bernstein type result is derived by means of Theorem 1 and Evans-
Krylov Theoreml©Cl,
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Theorem 3 Suppose v is a C3 k-convex solution of the equation (2). If there exist
positive constants p and C, such that

f |D?u(z)| ¥ +Pdz < CR (9)
BR(O)

for any R > 0. Then u is a quadratic polynomial.

Theorem 3 extends the Bernstein theorem {S] for the Monge-Ampére equation {8) under the
assumption that D?u is bounded to the Hessian equations (2).

The paper is organized as follows. The local maximum principle for the nonuniformly elliptic
equations (4) is proved in Section 2. The proof of Theorem 1 and 3 are then carried out in Section
3.

The author would like to thank PIMS and the Department of Mathematics of UBC for
providing him a nice research environment, and in particular he would like to thank Professor
N. Ghoussoub for arranging his visit at PIMS.

2 Local Maximum Principle

We hegin with explaining the validity of the relation (6). If

EWLHR), [ eLIT(Q), geLT™(R), veWr(w) (10)
with 0
:"(ﬁ_) d j=1,2-,n,

n+ g
we have by (5} and Hélder inequality{¢7-(7-11)]

la” DiuDjvlliy oy < Alliul®tDull Dol (o

<AIIIMI”JE o721 o 1Pl

@ @) [ DVl s ()-
Ioc

loc

Noting

Bs ns
= n
s—2 n-s °°%

and using Sobolev inequa.lity[GT’(T'zs)], we get that

B
|| L PR
Thus 5
i 1
[l ’Di#DJ'””L;M(n) < €| Dyl ch(n)“D”_IL-(n)’ _
where C = C(n, 3, A). Similarly, we also have
”iji”“L;M(n) 141 rl-r(m“D“l L@y

lovlctgor < ol gt g 91 22, < ol st 10y

Consequently the definition {6) is reasonable under the assumption (10). Now we prove Theorem
2 by using a Moser type iteration.
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Proof of Theorem 2 Replacing ut, Q% = {z € 2 | w(z) > 0} by u,f2, we see that
there is no loss of generality in assuming » > 0. For constant g > 1 and nonnegative cutoff
function 7 € CA{Q), the test function v = p?u?~! is valid in (6). By the definition of the weak
subsclutions, we obtain

0> /(a”Diu — £)D;(nPut Vde +/ 7ul " lgdr
o a
=(q— 1)/ n*ui~%a"” DyuDjudz + 2/ nui~te¥ D;uD nde
Y] Q
—(g—- 1)/ nPui? f;Djudz - 2/ i~ f;Dindz +f 7Pu? Ygdr.
2 e} Q
Using the Cauchy inequality and the ellipticity condition (5), we can estimate
0>q___._l 2,8-200 D D oud 2 905 D.nD.nd
2 =3 nnu a ,ujum—;_—lnua nD;ndz
—{g— 1)[ 7 ud™? f; Djude — 2/ =t f;Dindx +f n*ul ™ lgde
y) Y] :

a
Ma -
> _(Q_.mﬂf nzu"'“_"’jDuizda:— _2£f u”ﬁ]Dnjzdz
2 Q g-1Jq

—(q - I)Lnu g Dju- num;:_?fjdx -'2fnnu e 5 -ux‘?Djndx

+ / n2u?" 'gdr
Q .

Alg-1
> ——(i—)f et~ 2| Dy|?dz — l/‘ uttP| Dy|?de
4 Q g—1Jg

20g -1
- (-—-—(q )+1)/nzuq+"_2|f|2dm~fuq_“|Dn12dw+/n2u‘1_1gdm.
A 0 Q 0

It is clearly from (5} that
AT € AudHP, (11)

and thus we get

_a |2
fn n?]DuH—l dr < C f (W P1Dn? + nPut= (W £]) + u~g])) de, (12)
A ‘

where C, a constant depending only on A, A and g, is bounded when q is bounded away from 1.
Now we have from the Sobolev inequalitylGT: Theorem?.10] 54 (12), (11}

(o)™ o ([ )™ 0) ™
0 o
< C/s; ID (nu";_m)l2 dz
2) dz

< C/n (uP)Dpf? + 7P ut ™ (TSP 4w gl)) de (13)

< C/ (?.l.'i'_c‘|D1',-|2 + 7t ’Dusz_a
Q
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By the Hélder inequality and the interpolation inequality{GT+ (710} we have for any ¢ > 0

L (772 pl—o ((H“_liﬂ)f +u"!g|) )dm

< (f ((uo‘_1|f|)2+u“—1]g|)§ d$>" (/ (quq—a)::_zd;c)
9] Q
< K2 (g (/ nfnzu“('g ;)d:ﬂ) ' +E_r_f“"/ nzu"_“d:c>,
o Q

if suppny C Bag. Hence by the choice of

~ 2CK?’

and substitution into (13), we obtain

/ nese W g <C (/ w8 Dy + K5 / nzuq““d:x:)
o) . ) )

Let g = p + §(a + 8} — 3, we have

nlg - o) == (p+n;2(a+ﬁ)) :__p_

n—2

n-2  n-2 3 2(a+ﬁ)’

and may rewrite by (11) the above inequality

n
n—2

f n%un_"%+%(ﬂ+ﬂ)dz <C ([ yPtEe+8) (IDW|2 + 772K"“ )d:c) ,
Q o

where C is a positive constant, which depends only on n, A, A, @, 3 and p, and is bounded if p is

bounded away from

1+ﬁAg(a+ﬁ).

This inequality (14) can now be iterated to yield the desired estimates. We specify the cutoff

function # and the exponent p more precisely. Writing x = -25. For R >0, j =0,1,2,

p > max {0, 14+.8— g(a -h@)},

get
Rj=(1+27%)R, p;=ps,
;i =1lin Bg;, n; =0in Q\ Bg,_,,
with
2 23+1
0<n <1, |Dpy|L 5——="5 in L

R -E., R
By the inequality (14), we have

2]_._1 2r K
/ wPitEletf gy < C(»— + K== ) (/ upj“+%(“+ﬁ)dw) ,
Br; R Br;_,
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’ L -2 R B
(/ .up_,+%(a+ﬁ)dx> " < (QJFIC(H,K))’rl (/ up.'i—l"'%((l'i-ﬁ)dm) P‘”l, (15)
Br, Ba, ,

where

i 1, .
C(R,A)_C(E+K )

and C is independent of j. By iterating (15) we obtain

1

(/ uPﬁé—'(nw‘—ﬁ)dI) =
Br;

2

1
< (2R K)o (2j’2C(R,K)) o (f um4+%(a+ﬁ>d$) -
Br,_,
< '
i ) ‘ x
< ( (2:.—1C(R’K))P~,: ) (/ u!’n:+'—2‘((m+f3)d$)
i=1 Bay,

i

=2 er ap T
B

S
up+§(a+mdﬂ,> ’

ZR

i
< ZﬁC(R,K)% (/ up+%(u+,@)dm) »
B

IR

(n—212
=2 2:) (

C(R, K)™ [ uf’+%(ﬂ+5)da:) .

Bzr
By means of {5) and the definition of C{R, K), we have

A

(f u?’fdw) s C([ upj+%(<¥+5)dz) "
Br - Br,
1
< C((R”" + Kr”—”n) f up+%(“+ﬁ>dx) °
- Bap

Consequently, letting j tend to infinity, we finally establish the estimate (11) since p; tends to

infinity, and
_ 5
supz = lim uPdz ) .
Bgr p—roo Br

3 Some Estimates to Hessian Equations

In this section, we apply the local maximum principle Theorem 2 to the Hessian equations
(1), and prove Theorem 1, a second derivative bound. Rewrite the equations (1) as

F(D*) = (Se(D%u))* = f(z) i .
In its proof, we introduce the following notations:
. OF g 05k
F = — (D), S = B

Ui Uiy

(D?u).
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First we collect here some results concerning Sk(DQu).
Proposition 4  Suppose u is a C? k-convex function, then

(a) ZS (D*u) = (n— k4 1)Sp_1 (D),

(b) The Newton—Maclaurin inequality

2 2
(%ﬂ) g(%ﬁ) for!=1,2, - k-1

(c ( k— 1+1(D2u)) N (S;J;_[(Dzu»
SkAH_l(DZu) - Sk*!(Dz'UL)
(d) The Reilly formula

, In the sense of matrices, for I =1,2,--- kK —1;

Z (S"(D2 W=0,i=1,2--,n, ifue >

Here i
nl!
Cl= ——
o (n=0)
From Proposition 4 we obtain immediately the following result.
Corollary 5 For any 0y CC Q, we have

[=1,2,---,n

! D2 k=17
CAu < (SZ(D%u)} < C(Au)* ™I in Qy,

in the sense of matrices, where I is the identify matrix, and C is a positive constant depending
only on n, k,infg, f.
Proof Using Proposition 4 (a) and (b), we have in the sense of matrices

(7 (%) < (2 s:‘:‘wzu)) I

i=1
=(n—k+1)S-,(D*u)]
Si(D2uw)\ !
<(n—k+1)CE? (1(0—1“)) i
< ClAw)* 1T

On the other hand, it follows from Proposition 4 (c) and the equation (1)

(¥ (D%u)) = f—r > 1
! Au” = CAu

Sk(D u)

SIJ 2u
(57 (0") 2 25

Denote the first order difference quotients

_ u(z + hey) — u(z)
fugr) = Mt he) Zule)

and the second order difference quotients

w(z + hey) — 2u(z) + ul(z — he;)
B2

Afju(z) =
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where h > 0, ¢; is the [-th coordinate direction, and { = 1,2,.--,n.

Now we begin to prove Theorem 1.

Proof of Theorem 1  Let x,z + he; € Q for sufficiently small A > 0, we use the concavity
of F to conclude that

F(D*u(z £ hep)) < F(D?u(x)) + FY9(D*u(x)){Dyju(x £ hey) ~ Dyju(z)). (16)

We have by (1) and (16) that N
FYD;(Afu(z)) 2 Aff(2) (17)

forreQandil=1,2,--,n. It follows from
.. 1 L_q _:: 1 .
Fii = 28E 750 = Lokl

that N
S Dij(Afu(x)).2 kf* AL f (). (18)
Thus for all nonnegative functions v € I/VO1 *{Q) with
n(k+1)
n+k—-1’

[ v (s;jpij (Z Aﬁu) — kfht ZAI}f) dz > 0.
2 =1 =1

From Proposition 4(d}, we see by integration and difference by part

/ (Djvs;fpi (Z Aﬁu) ~ky Af(vfk—l)a,hf) dz < 0.
2 i=1

=}

Note -
Djve L*(R), SY(D%*uw), fe LZ.(Q),
Afue W7 (Q), APvel(Q), APf,AF* € Ly (),
and 1 1 n+k-1 1
sTrS Rk TR st

Letting h — 0, we have
fn (Djv (S,‘;jD{(Au) —kf*ip; f) — k(k — Dof*~2|D f|2) dz < 0.
That is, Au is a subsolution of the elliptic equation in the divergenc‘e form
D; (S Di(au) — kf* 7 D; £} + k(k — Df*2|DfP = 0,

and satisfies the following nonuniformly elliptic condition by Corollary 5

2 .
Cﬂu < 5 (DMu)eg; < C(Aw)"gl?

for any « € ©? and £ € R™.
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From Sobolev inequality

k—1 ‘
1 Dl 1oy < (:;upm) DS Nz (Bony £ CRETDUTEND AL (5, )
2R

and

k=2
VDI 8 5,y < (SB“"” ') 12 1i-toum

< CRW=DU=2NDFE, 50

where € depends only on n, k,r. Now we can take in Theorem 2
a=1 G=k-1 fi=kf"1D;f, g=kk-1)*?Ds

and so obtain the desired estimate (3).
Finally, we prove Theorem 3.
Proof of Theorem 3  Set

% wely) = u(ty)

o t>0.

Yy =

We see that DZu = Dgut and u; satisfies the same equation
Se(D2wy) = ¢ in B*,
From Theorem 1, we have for any R > 4

1
P

sup |DZu| < C R‘"/ EDEud”zi*de
} Br(0)

Br(D
;
sclery™ [ Dk
Byr(0)

where C is a positive constant depending only on n, k,p and ¢. By using (9), we get

sup |D3u¢| <C (19)
Br(0)

for some positive constant C independent of ¢. The estimate {19) asserts that the equation (2)
L ;
k

is uniformly elliptic. Recall that S is concave. Now the interior C%® estimate

;'utllc2,n(.§im_)) S C (20)

follows from Evans—Krylov Theorem!(CC Theorem 6.1] " where o € (0,1) and C > 0 are constants
independent of t.
For z € R® and t > |z|, we obtain by (20)
[D2u(z) ~ D2u(®)] = |Duu(y) - Diw(0)| < Clyl* = ¢|F[".
Letting ¢t go to oo, we conclude DZu(x) = D2u(0) for ¢ € R™, and hence » is a quadratic
polynomial. '
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