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A B S T R A C T

This paper is devoted to the fractional Laplacian system with critical exponents. We use
the method of moving spheres to derive a Liouville Theorem with at most three radial
solutions, and then prove the solutions in Rn\{0} are radially symmetric and monotonically
decreasing. Together with blow up analysis, we get the upper bound of the local solutions
in B1\{0}. Our results is an extension of the classical works by Caffarelli et al. (1989),
Caffarelli et al. (2014), Chen and Lin (2015) and Guo and Liu (2008).
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1. Introduction

The semilinear elliptic equation {
− ∆u = u

n+2
n−2 in Rn,

u > 0 and u ∈ C2(Rn),
(1.1)

with critical exponent has been studied in many papers, where ∆ :=
∑n

i=1
∂2

∂x2
i

denotes the Laplacian and
n ≥ 3. The following celebrated Liouville Theorem was established by Caffarelli–Gidas–Spruck [4] using the
method of moving planes. There exist a positive constant ε and y ∈ Rn such that any C2 solution of (1.1)
has to be the form

U1(x) := (n(n − 2))
n−2

4

(
ε

ε2 + |x − y|2

)n−2
2

. (1.2)
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With reasonable behavior at infinity, namely u(x) = O(|x|2−n) for large |x|, the result was obtained
earlier by Obata [41] and Gidas–Ni–Nirenberg [21]. The proof of Obata was more geometric, while the proof
of Gidas–Ni–Nirenberg was by the method of moving planes. Li–Zhang [33] developed a rather systematic,
and simpler approach to Liouville Theorem using the method of moving spheres. They can catch the form
of solutions directly, instead of reducing it to the radially symmetry of u and concluding by using ordinary
differential equation.

Such Liouville Theorem has played a fundamental role in the study of semilinear elliptic equations with
critical exponent, which include the Yamabe problem and the Nirenberg problem. Eq. (1.1) is conformally
invariant in the sense that if u is a solution, then after a conformal mapping x p→ y the function

v(y) := u(x)J
2−n
2n (x),

where J is the Jacobian, is also a solution. In view of conformal geometry, a solution u of (1.1) defines
a conformal flat metric gij = u

4
n−2 δij with constant scalar curvature. It is worth mentioning that the

classification of solutions of higher order conformally invariant equations was studied by Wei–Xu [49],
Lu–Wei–Xu [39] and Lu–Wang–Zhu [38].

The works of Schoen and Yau [42–44] on conformal flat manifolds and the Yamabe problem have
highlighted the significance of studying solutions of (1.1) with a nonempty singular set. The issues related
to {

− ∆u = u
n+2
n−2 in Rn\{0},

u > 0 and u ∈ C2(Rn\{0})
(1.3)

have received great interest and have been widely studied in [4,13–15,19,30,37,46] and references therein,
since they are the simplest examples of singular equations. All C2 positive radial solutions of (1.3) had been
described by Fowler [19]. A classification of global solutions was given by Caffarelli–Gidas–Spruck in [4] that
if 0 is a non-removable singular point of u, then u is radially symmetry about the origin.

Remark that the full understanding asymptotical behavior of{
− ∆u = u

n+2
n−2 in B1\{0},

u > 0 and u ∈ C2(B1\{0})

is crucial to construct singular solutions on Riemannian manifolds, where B1 is the unit ball of Rn. Caffarelli–
Gidas–Spruck also proved in the same paper [4] that u is asymptotically symmetric with respect to the origin
and furthermore,

u(x) = u0(x)(1 + o(1)) near x = 0, (1.4)

where u0(x) is a radially symmetric solution of (1.3). Thus, a corollary of (1.4) is that there exist two positive
constants c1 and c2 such that

c1|x|−
n−2

2 ≤ u(x) ≤ c2|x|−
n−2

2 near x = 0.

Moreover, Garćıa–Huidobro–Manásevich–Mitidieri–Yarur [20] obtained the existence and nonexistence of
positive singular solutions for a class of semilinear elliptic systems in B1 \ {0}.

It is worthy of studying coupled exponent problem, including various scalar equations and coupled
systems, because they are challenging in view of mathematics. Classifications of solutions to the system⎧⎪⎪⎨⎪⎪⎩

− ∆u = α1u
n+2
n−2 + βu

2
n−2 v

n
n−2 in Rn,

− ∆v = α2v
n+2
n−2 + βv

2
n−2 u

n
n−2 in Rn,

u, v > 0 and u, v ∈ C2(Rn),

(1.5)
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where α1, α2 and β are positive constants, were studied respectively Chen–Li [8] and Guo–Liu [25].
From [8,25], it follows that u and v are radially symmetric with respect to the same point. Moreover,
(u, v) = (kU1, lU1), where k, l > 0 satisfies

α1k
4

n−2 + βk
4−n
n−2 l

n
n−2 = 1, α2l

4
n−2 + βl

4−n
n−2 k

n
n−2 = 1,

and U1 is defined as (1.2). In fact, more general systems were considered in [8,25] and (1.5) is a special case of
their problems. Moreover, Wei–Weth [48] also studied the other types of systems of two-coupled Schrödinger
equations. Existence and nonexistence of positive radial solutions for a class of semilinear elliptic system in
Rn was discussed by Mitidieri [40] and Chen–Lu [17].

Studying the properties of positive singular solutions to a two-coupled elliptic system with critical expo-
nents is closely related to coupled nonlinear Schrödinger equations for nonlinear optics and Bose–Einstein
condensates. Stimulated by this, Chen–Lin [16] proved that if (u, v) is a singular solution of⎧⎪⎪⎨⎪⎪⎩

− ∆u = α1u
n+2
n−2 + βu

2
n−2 v

n
n−2 in Rn\{0},

− ∆v = α2v
n+2
n−2 + βv

2
n−2 u

n
n−2 in Rn\{0},

u, v > 0 and u, v ∈ C2(Rn\{0}),

then both u and v are radially symmetric about the origin and are strictly decreasing with respect to
r = |x| > 0. With some additional conditions, they also obtained that either 0 is a removable singular
point, or there exist two positive constants c1 and c2 such that

c1|x|−
n−2

2 ≤ u(x), v(x) ≤ c2|x|−
n−2

2 near x = 0.

In recent years, the fractional Laplacian has more and more applications in Physics, Chemistry, Biology,
Probability, and Finance, and has drawn more and more attention from the mathematical community.

It can be understood as the infinitesimal generator of a stable Lévy process [2]. In particular, the fractional
Laplacian with the critical exponent arises in contexts such as the Euler–Lagrangian equations of Sobolev
inequalities [12,31,36], a fractional Yamabe problem [22,23,29], a fractional Nirenberg problem [26,27] and
so on.

The fractional Laplacian takes the form

(−∆)σu(x) := Cn,σ lim
ε→0+

∫
Rn\Bε(x)

u(x) − u(y)
|x − y|n+2σ dy, (1.6)

where σ ∈ (0, 1), n ≥ 2, and

Cn,σ :=
22σσΓ ( n

2 + σ)
π

n
2 Γ (1 − σ)

with the gamma function Γ . The operator (−∆)σ is well defined in the Schwartz space of rapidly decaying
C∞ functions in Rn.

One can also define the fractional Laplacian acting on spaces of functions with weaker regularity. Let the
space

Lσ(Rn) :=
{

u ∈ L1
loc(Rn) :

∫
Rn

|u(x)|
1 + |x|n+2σ dx < ∞

}
,

endowed with the norm
∥u∥Lσ(Rn) :=

∫
Rn

|u(x)|
1 + |x|n+2σ dx.

We can verify that if u ∈ C2(Rn) ∩ Lσ(Rn), the integral on the right hand side of (1.6) is well defined in Rn.
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A feature of {
(−∆)σu = u

n+2σ
n−2σ in Rn,

u > 0 and u ∈ C2(Rn) ∩ Lσ(Rn)
(1.7)

is conformal invariant, and one may refer to [7,24] for its connections to conformal geometry. Since the
radially symmetry property is essential for the development of symmetrization techniques for fractional
elliptic and parabolic partial differential equations, a lot of people are interested in the radially symmetry
results. More recently, Jin–Li–Xiong showed in [26] that a solution of (1.7) has to be the form

Uσ(x) :=
(
Γ (n + σ

2 )
Γ (n − σ

2 )

)n−2σ
4σ

(
2ε

ε2 + |x − y|2

)n−2σ
2

, (1.8)

where ε is a positive constant and y ∈ Rn. By the fact that

Γ (n + 1
2 )

Γ (n − 1
2 )

= n(n − 2)
4 ,

we know that the result is consistent with (1.2). On the other hand, via the corresponding integral equations
Chen–Li–Ou [11,12] classified the solution of the fractional and higher order semilinear partial differential
equations. Lately, Chen–Li–Li [9] developed the approach to study a more general fractional operators on a
bounded domain.

Caffarelli–Jin–Sire–Xiong studied the global behaviors of solutions of the fractional Yamabe equation{
(−∆)σu = u

n+2σ
n−2σ in Rn\{0},

u > 0 and u ∈ C2(Rn\{0}) ∩ Lσ(Rn)
(1.9)

with an isolated singularity at the origin. They proved in [5] that if the origin is a non-removable isolated
singularity, then the solution u of (1.9) is radially symmetric with respect to the origin and strictly decreasing
with respect to r = |x| > 0. It is consistent with the result of Caffarelli–Gidas–Spruck [4] on Laplacian. Jin–
de Queiroz–Sire–Xiong [28] obtained the similar result if Eq. (1.9) is defined in Rn \ Rk (1 ≤ k ≤ n − 2σ)
and there exists x0 ∈ Rk such that lim supx→(x0,0,...,0) u = +∞.

Furthermore, Caffarelli–Jin–Sire–Xiong [5] also derived the local behaviors of positive solutions of the
fractional Yamabe equation {

(−∆)σu = u
n+2σ
n−2σ in B1\{0},

u > 0 and u ∈ C2(B1\{0}) ∩ Lσ(Rn)
(1.10)

with an isolated singularity at the origin: either 0 is a removable singular point of u, or there exist two
positive constants c1 and c2 such that

c1|x|−
n−2σ

2 ≤ u(x) ≤ c2|x|−
n−2σ

2 near x = 0.

Inspired by the work on Laplacian, the Liouville Theorem for the system⎧⎪⎪⎨⎪⎪⎩
(−∆)σu = α1u

n+2σ
n−2σ + βu

2σ
n−2σ v

n
n−2σ in Rn,

(−∆)σv = α2v
n+2σ
n−2σ + βv

2σ
n−2σ u

n
n−2σ in Rn,

u, v > 0 and u, v ∈ C2(Rn) ∩ Lσ(Rn)

(1.11)

has been studied in [32,51], where α1, α2 and β are positive constants. By the method of moving planes
in the integral form, Zhuo–Chen–Cui–Yuan obtained in [51] that the positive solution of (1.11) is radially
symmetry. But they do not give the form of the solution of the system. Chen–Li [17], and Chen–Li–Ou [10]
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had obtained the classification of solutions for a system of integral equations which is closely related to the
system (1.11). And recently Dai–Liu–Lu [18] studied the Liouville Theorem about the fractional Laplacian
system in half space.

In the present paper, we study the fractional Laplacian systems with critical exponents, and obtain the
Liouville Theorem, the radially symmetry and the upper bound estimates near the isolated singularity. We
point out that the non-locality of the fractional Laplacian makes it difficult to investigate. To deal with it,
we will make use of the extension method which was introduced by Caffarelli–Silvestre [6]. Furthermore,
when the system is concerned, the main difficulty stems from the fact that it is not clear for us to know
where to start moving spheres, since the nonlinearities are coupled each other. In order to start the method,
we make a Kelvin transformation. Such conformal invariance allows us to use the moving spheres method
introduced by Li–Zhu [34]. This observation has also been used in [5,26,28,34,50].

The first main result of our paper is that we shall first catch the exact form and the number of the solutions
using the method of moving spheres, which is consistent with the work of Chen–Li [8] and Guo–Liu [25] on
Laplacian.

Theorem 1.1. Let (u, v) be a solution of (1.11), then (u, v) = (kUσ, lUσ), where Uσ is given by (1.8), and at
most three pairs (k, l) ∈ (0, +∞) × (0, +∞) satisfy

α1k
n+2σ
n−2σ + βk

2σ
n−2σ l

n
n−2σ = k, α2l

n+2σ
n−2σ + βl

2σ
n−2σ k

n
n−2σ = l. (1.12)

Next, we shall investigate the radially symmetry of singular solutions of⎧⎪⎪⎨⎪⎪⎩
(−∆)σu = α1u

n+2σ
n−2σ + βu

2σ
n−2σ v

n
n−2σ in Rn\{0},

(−∆)σv = α2v
n+2σ
n−2σ + βv

2σ
n−2σ u

n
n−2σ in Rn\{0},

u, v > 0 and u, v ∈ C2(Rn\{0}) ∩ Lσ(Rn),

(1.13)

by analogy with the approach taken in Theorem 1.1, which is an extension of Chen–Lin [16] works on
Laplacian.

Theorem 1.2. Let (u, v) be a solution of (1.13) and

lim sup
x→0

u + lim sup
x→0

v = ∞,

then both u and v are radially symmetric and monotonically decreasing with respect to |x|.

Finally, we are also interested in analyzing the local behaviors of solutions of system in a punctured ball⎧⎪⎪⎨⎪⎪⎩
(−∆)σu = α1u

n+2σ
n−2σ + βu

2σ
n−2σ v

n
n−2σ in B1\{0},

(−∆)σv = α2v
n+2σ
n−2σ + βv

2σ
n−2σ u

n
n−2σ in B1\{0},

u, v > 0 and u, v ∈ C2(B1\{0}) ∩ Lσ(Rn).

(1.14)

Theorem 1.3. Let (u, v) be a solution of (1.14), then there exists a positive constant C = C(n, σ) such that

u(x) ≤ C|x|−
n−2σ

2 , v(x) ≤ C|x|−
n−2σ

2 near x = 0.

So far we cannot get the lower bound of the local solutions in B1\{0}. On the one hand, in this case
σ = 1, Chen–Lin [16] obtained the lower bound if the system defined in Rn\{0} with n ≥ 5. By proving the
radially symmetry of positive singular solution, they reduced the system to an ODE by the classical change
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of variables from Fowler [19]. As a result, they established the upper and lower bound using the standard
ODE theory. In our case, we consider the system only in B1\{0}, and we have no idea to reduce this system
to an ODE. On the other hand, compared with the single equation (1.10) our problem is a coupled system,
which turns out to be much more difficult and complicated.

Our paper is organized as follows. Section 2 includes some definitions of basic space and elementary
propositions on nonlinear boundary system which will be used in our following proof. Section 3 is devoted
to obtain the Liouville Theorem with at most three radial solutions. Theorem 1.2 on symmetry of global
solutions of (1.13) is proved in Section 4. Finally, we obtain the upper bound and prove Theorem 1.3 in
Section 5.

2. Preliminaries

2.1. The extension method

The traditional methods on local differential operators, such as on Laplacian, may not work on the
nonlocal operator (−∆)σ. To circumvent this difficulty, Caffarelli and Silvestre [6] introduced the extension
method that reduced this nonlocal equation into a local one in higher dimensions with the conormal
derivative boundary condition.

More precisely, for u ∈ C2(Rn) ∩ Lσ(Rn), define

U(x, t) :=
∫
Rn

Pσ(x − ξ, t)u(ξ)dξ, (2.1)

where
Pσ(x, t) := β(n, σ)t2σ

(|x|2 + t2)(n+2σ)/2

with a constant β(n, σ) such that
∫
Rn Pσ(x, 1)dx = 1. It follows that

U ∈ C2(Rn+1
+ ) ∩ C(Rn+1

+ ), t1−2σ∂tU(x, t) ∈ C(Rn+1
+ ),

and U satisfies
div(t1−2σ∇U) = 0 in Rn+1

+ , (2.2)

U(·, 0) = u on ∂Rn+1
+ .

In addition, by works of Caffarelli and Silvestre [6], it is known that up to a constant,

∂U

∂νσ
= (−∆)σu on ∂Rn+1

+ ,

where
∂

∂νσ
U(x, 0) := − lim

t→0+
t1−2σ∂tU(x, t).

From this and (u, v) is a solution of (1.11), we have

∂U

∂νσ
= α1u

n+2σ
n−2σ + βu

2σ
n−2σ v

n
n−2σ on ∂Rn+1

+ . (2.3)

In order to study the behavior of the solutions of (1.11), we just need to study the behaviors of U defined
by (2.1).
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2.2. A weight Sobolev space

In the proof of main theorems, we shall need some propositions, where weak solutions suffice. Therefore,
we introduce the definition of a Weight Sobolev Space.

Let D be a domain in Rn+1
+ . Denote by L2(t1−2σ, D) the Banach space of all measurable functions U

defined on D, for which

∥U∥L2(t1−2σ ,D) :=
(∫

D

t1−2σ|U |2dX

) 1
2

< ∞,

and X := (x, t) ∈ Rn+1
+ . We say that U ∈ W 1,2(t1−2σ, D) if U ∈ L2(t1−2σ, D), and its weak derivatives ∇U

exist and belong to L2(t1−2σ, D). The norm of U in W 1,2(t1−2σ, D) is given by

∥U∥W 1,2(t1−2σ ,D) :=
(∫

D

t1−2σ|U |2dX +
∫

D

t1−2σ|∇U |2dX

) 1
2

.

We denote BR(X) as the ball in Rn+1 with radius R and center X, B+
R(X) as BR(X) ∩ Rn+1

+ , and
BR(x) as the ball in Rn with radius R and center x. We also write BR(0), B+

R(0), BR(0) as BR, B+
R , BR

for short respectively. For a domain D ⊂ Rn+1
+ with boundary ∂D, we denote ∂′D := ∂D ∩ ∂Rn+1

+ and
∂′′D := ∂D ∩ Rn+1

+ . It is easy to see that ∂′B+
R(X) = {X = (x, 0) : |x| < R} and ∂′′B+

R(X) = {X = (x, t) :
|X| = R, t > 0}.

Definition 2.1. We say U , V ∈ W 1,2(t1−2σ, D) is a weak solution (resp. supersolution, subsolution) of⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div(t1−2σ∇U) = 0 in D,

div(t1−2σ∇V ) = 0 in D,

∂U

∂νσ
= α1U

n+2σ
n−2σ + βU

2σ
n−2σ V

n
n−2σ on ∂′D,

∂V

∂νσ
= α2V

n+2σ
n−2σ + βV

2σ
n−2σ U

n
n−2σ on ∂′D,

(2.4)

if for every (resp. nonnegative) Φ ∈ C∞
c (D ∪ ∂′D),∫

D

t1−2σ∇U∇ΦdX = (resp. ≥, ≤)
∫

∂′D
(α1U

n+2σ
n−2σ + βU

2σ
n−2σ V

n
n−2σ )Φdx,

and ∫
D

t1−2σ∇V ∇ΦdX = (resp. ≥, ≤)
∫

∂′D
(α2V

n+2σ
n−2σ + βV

2σ
n−2σ U

n
n−2σ )Φdx.

2.3. Preliminary results for system (2.4) with nonlinear boundary conditions

The preliminary results for single equations with linear boundary conditions have been established
in [3,26,45,47]. The following propositions are a version of these results for system (2.4) with nonlinear
boundary conditions.

Proposition 2.2 (W 1,2 Estimates near Boundary). If U , V ∈ W 1,2(t1−2σ, B+
R) is a positive weak solution

of (2.4) in B+
R , there exist a positive constant C depending only on n, σ, α1, α2, β, ∥U(·, 0)∥

L
2n

n−2σ (BR)
, and

∥V (·, 0)∥
L

2n
n−2σ (BR)

such that

∥∇(U + V )∥
L2(t1−2σ ,B+

R/2) ≤ CR−1∥U + V ∥
L2(t1−2σ ,B+

R
). (2.5)
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Proof. By scaling UR(X) := R
n−2σ

2 U(RX), VR(X) := R
n−2σ

2 V (RX), one can assume R = 1. From the
condition, it follows that U + V is the solution of⎧⎨⎩div(t1−2σ∇(U + V )) = 0 in B+

1 ,

∂(U + V )
∂νσ

= α1U
n+2σ
n−2σ + α2V

n+2σ
n−2σ + βV

2σ
n−2σ U

2σ
n−2σ (U + V ) on ∂′B+

1 .

Let η ∈ C∞
c (B+

1 ∪ ∂′B+
1 ) be a cut-off function which is equal to 1 in B+

1/2 and is supported in B+
3/4. By a density

argument, we can choose η2(U + V ) as a test function, then∫
B+

1

t1−2σ∇(U + V )∇(η2(U + V ))

=
∫

∂′B+
1

(α1U
n+2σ
n−2σ + α2V

n+2σ
n−2σ + βV

2σ
n−2σ U

2σ
n−2σ (U + V ))η2(U + V )dx

≤
∫

∂′B+
1

(α1U
4σ

n−2σ + α2V
4σ

n−2σ + βU
2σ

n−2σ V
2σ

n−2σ )η2(U + V )2

=:
∫

∂′B+
1

aη2(U + V )2.

Using Cauchy-inequality, we obtain that∫
B+

1

t1−2ση2|∇(U + V )|2dX ≤ 4
∫

B+
1

t1−2σ(U + V )2|∇η|2 + 2
∫

∂′B+
1

aη2(U + V )2.

From the Trace inequality [26, Proposition 2.1], we have U(·, 0), V (·, 0) ∈ L
2n

n−2σ (B1). As a result, a ∈ L
n

2σ (B1).
The Hölder inequality gives that∫

∂′B+
1

aη2(U + V )2 ≤∥a∥
L

n
2σ (B1)

∥η(U + V )∥2

L
2n

n−2σ (B1)

≤C∥a∥
L

n
2σ (B1)

∥∇(η(U + V ))∥2
L2(t1−2σ ,B1).

If ∥a∥
L

n
2σ (B1)

< δ for some sufficiently small δ, then the conclusion follows immediately. If not, for any x0 ∈ B1/2,
X0 = (x0, 0), we can choose r small such that ∥a∥

L
n

2σ (Br(x0))
< δ. Applying the above result in B+

r (x0), we have

∥U + V ∥
W 1,2(t1−2σ ,B+

r/2(X0)) ≤ C∥U + V ∥
L2(t1−2σ ,B+

1 ),

which implies that

∥∇(U + V )∥
L2(t1−2σ ,B+

r/2(X0)) ≤ C∥U + V ∥
L2(t1−2σ ,B+

1 ).

From the Universal Coverage Theorem (2.5) follows for R = 1. Applying the result to UR(X) and VR(X), we
finish the proof. □

Proposition 2.3 (Local Maximum Principle). If U , V ∈ W 1,2(t1−2σ, B+
R) is a positive weak subsolution of (2.4),

then for all p > 0, there exists a positive constant C depending only on n, σ, p, α1, α2, β, ∥U(·, 0)∥
L

2n
n−2σ (BR)

,

and ∥V (·, 0)∥
L

2n
n−2σ (BR)

such that

sup
B+

R/2

(U + V ) ≤ CR−(n+2−2σ)/p∥U + V ∥
Lp(t1−2σ ,B+

3R/4). (2.6)
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Proof. We also assume R = 1. As the above, a straightforward calculation shows that U +V is a weak subsolution
of ⎧⎨⎩div(t1−2σ∇(U + V )) = 0 in B+

1 ,

∂(U + V )
∂νσ

= a(U + V ) on ∂′B+
1 ,

where

a := α1U
4σ

n−2σ + βU
2σ

n−2σ V
2σ

n−2σ + α2V
4σ

n−2σ ∈ L
n

2σ (B1).

By [26, Lemma 2.8], there exists a sufficiently small δ > 0 which depends only on n and σ such that if
∥a∥

L
n

2σ (B1)
< δ, then

∥(U + V )(·, 0)∥Lp0 (B3/4) ≤ C∥U + V ∥
W (t1−2σ ,B+

1 ) (2.7)

for some p0 > 2n
n−2σ , where C is a positive constant and depends only on n, σ, ∥U(·, 0)∥

L
2n

n−2σ (B1)
, and

∥V (·, 0)∥
L

2n
n−2σ (B1)

. If not, like the proof of Proposition 2.2, which implies that (2.7) follows. As an easy

consequence of U > 0, V > 0, we have U(·, 0), V (·, 0) ∈ Lp0(B3R/4). It follows that a ∈ Lq0(B3R/4) for
some q0 > n

2σ .
By the Local Maximum Principle for single equations with linear boundary conditions [26, Proposition 2.6], we

conclude that for any p > 0, (2.6) holds for R = 1. □

Proposition 2.4 (Weak Harnack Inequality). If U , V ∈ W 1,2(t1−2σ, B+
R) is a positive weak supersolution of

(2.4), then for all 0 < p̃ ≤ (n + 1)/n, there exists a positive constant C depending only on n, σ, p̃, α1, α2, β,
∥U(·, 0)∥

L
2n

n−2σ (BR)
, and ∥V (·, 0)∥

L
2n

n−2σ (BR)
such that

inf
B+

R/2

(U + V ) ≥ CR−(n+2−2σ)/p̃∥U + V ∥
Lp̃(t1−2σ ,B+

3R/4)
. (2.8)

Proof. Assume R = 1. If (U, V ) is a weak supersolution of (2.4), then U + V is a weak supersolution of⎧⎨⎩div(t1−2σ∇(U + V )) = 0 in B+
1 ,

∂(U + V )
∂νσ

= βU
2σ

n−2σ V
2σ

n−2σ (U + V ) on ∂′B+
1 ,

applying [26, Proposition 2.6] as the above, we obtain (2.8). □

Proposition 2.5 (Harnack Inequality). If U , V ∈ W 1,2(t1−2σ, B+
R) is a positive weak solution of (2.4), then

there exists a positive constant C depending only on n, σ, α1, α2, β, ∥U(·, 0)∥
L

2n
n−2σ (BR)

, and ∥V (·, 0)∥
L

2n
n−2σ (BR)

,

such that

sup
B+

R/2

(U + V ) ≤ C inf
B+

R/2

(U + V ). (2.9)

Proof. The Harnack Inequality follows from Propositions 2.3 and 2.4. □

Proposition 2.6 (Cα Estimates near Boundary). If U , V ∈ W 1,2(t1−2σ, B+
R) is a positive weak solution of (2.4),

there exist α ∈ (0, 1) and a positive constant C, both depending only on n, σ, α1, α2, β, R, ∥U(·, 0)∥L∞(B3R/4),
and ∥V (·, 0)∥L∞(B3R/4) such that

∥U∥
Cα(B+

R/2)
+ ∥V ∥

Cα(B+
R/2)

≤ C. (2.10)
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Proof. Assume R = 1. Consider⎧⎨⎩div(t1−2σ∇U) = 0 in B+
1 ,

∂U

∂νσ
= α1U

n+2σ
n−2σ + βU

2σ
n−2σ V

n
n−2σ on ∂′B+

1 ,

and ⎧⎨⎩div(t1−2σ∇V ) = 0 in B+
1 ,

∂V

∂νσ
= α2V

n+2σ
n−2σ + βV

2σ
n−2σ U

n
n−2σ on ∂′B+

1 ,

respectively. From the Harnack inequality, we conclude that U, V ∈ L∞
loc(B+

1 ∪ ∂′B+
1 ). Then (2.10) obtained with

the help of [26, Proposition 2.6]. □

3. Liouville theorem

In Section 3, we prove Theorem 1.1. To obtain the symmetry and the exact form of solution of (1.11), we
only need to prove by [33, Lemma 11.1] that for any x ∈ Rn, there is a positive constant λ := λ(x) so that

ux,λ = u, vx,λ = v in Rn\{x}. (3.1)

In addition, (3.1) can be reduced to

UX,λ = U, VX,λ = V in Rn+1
+ , (3.2)

where X := (x, 0), U , V are defined as (2.1), and

UX,λ(ξ) :=
(

λ

|ξ − X|

)n−2σ

U

(
x + λ2(ξ − X)

|ξ − X|2

)
is the Kelvin transformation of U with respect to the ball B+

λ (X).
In order to prove (3.2), we introduce

λ̄(x) := sup
{

µ > 0
⏐⏐ UX,λ ≤ U, VX,λ ≤ V in Rn+1

+ \B+
λ (X), ∀ λ ∈ (0, µ)

}
.

First, the following lemma is necessary to guarantee that the set over which we are taking the supremum is
non-empty so that λ̄(x) is well defined.

Lemma 3.1. For all x ∈ Rn there exists λ0 := λ0(x) > 0 such that for all λ ∈ (0, λ0),

UX,λ ≤ U, VX,λ ≤ V in Rn+1
+ \B+

λ (X). (3.3)

Obviously, for a fixed x either λ̄(x) < ∞ or λ̄(x) = ∞.
If λ̄(x) = +∞ for some x, we then obtain that for all λ > 0, UX,λ ≤ U in Rn+1

+ \B+
λ (X). It is not hard to

see

lim
ξ→+∞

|ξ|n−2σ
UX,λ(ξ) = lim

ξ→+∞

|ξ|n−2σ
λn−2σ

|ξ − X|n−2σ U

(
X + λ2(ξ − X)

|ξ − X|2

)
= λn−2σU(X). (3.4)

We thus conclude that
λn−2σU(X) ≤ lim sup

ξ→+∞
|ξ|n−2σ

U(ξ).

Consequently, the arbitrariness of λ > 0 implies

lim sup
ξ→+∞

|ξ|n−2σ
U(ξ) = +∞.

If λ̄(x̂) < +∞ for some x̂, it follows from
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Lemma 3.2. If λ̄(x) < +∞ for some x ∈ Rn, then UX,λ̄(x) = U , VX,λ̄(x) = V in Rn+1
+ .

and (3.4) that

lim sup
ξ→+∞

|ξ|n−2σ
U(ξ) = lim sup

ξ→+∞
|ξ|n−2σ

U
X̂,λ̄(x̂)(ξ) = λ̄n−2σ(x̂)U(X̂) < +∞,

which is a contradiction. Hence, either λ̄(x) < +∞ for all x ∈ Rn, or λ̄(x) = +∞ for all x ∈ Rn.
In the case λ̄(x) = +∞ for all x ∈ Rn, we have by [33, Lemma 11.3] that both U and V are positive

constants. It is clear to see that this case never happens due to Eqs. (1.11). We now conclude that λ̄(x) < +∞
for all x ∈ Rn. This case establishes (3.2) in view of Lemma 3.2 and completes the proof of the first part of
Theorem 1.1.

We now intend to prove Lemmas 3.1 and 3.2. After that, we shall prove the second part of Theorem 1.1,
that is, (1.11) admits at most three solutions.

Proof of Lemma 3.1. For simplicity, we prove (3.3) only for U , since the proof on V is similar. We shall prove
that for fixed x there exist µ := µ(x) and λ0 := λ0(x) satisfying 0 < λ0 < µ such that for λ ∈ (0, λ0),

UX,λ ≤ U in Rn+1
+ \B+

µ (X), (3.5)

and
UX,λ ≤ U in B+

µ (X)\B+
λ (X). (3.6)

As the first step, we prove (3.5). For every 0 < µ < 1, define

ϕ(ξ) :=
(

µ

|ξ − X|

)n−2σ

inf
∂′′B+

µ (X)
U,

which satisfies ⎧⎨⎩div(t1−2σ∇ϕ) = 0 in Rn+1
+ \ B+

µ (X),
∂ϕ

∂νσ
= 0 on ∂′(Rn+1

+ \ B+
µ (X))

and
ϕ = inf

∂′′B+
µ (X)

U ≤ U on ∂′′B+
µ (X).

It is easy to see that limξ→+∞ ϕ(ξ) = 0 ≤ limξ→+∞ U(ξ). By the standard Maximum principle, we conclude that(
µ

|ξ − X|

)n−2σ

inf
∂′′B+

µ (X)
U ≤ U(ξ) in Rn+1

+ \ B+
µ (X). (3.7)

Let

λ0 := µ min

⎧⎪⎨⎪⎩
⎛⎝ inf

∂′′B+
µ (X)

U/ sup
B+

µ (X)
U

⎞⎠ 1
n−2σ

,

⎛⎝ inf
∂′′B+

µ (X)
V/ sup

B+
µ (X)

V

⎞⎠ 1
n−2σ

⎫⎪⎬⎪⎭ . (3.8)

Then for all ξ ∈ Rn+1
+ \ B+

µ (X) and λ ∈ (0, λ0), it follows from (3.7) and (3.8)

UX,λ(ξ) =
(

λ

|ξ − X|

)n−2σ

U(X + λ2(ξ − X)
|ξ − X|2

)

≤
(

λ0

|ξ − X|

)n−2σ

sup
B+

µ (X)
U

≤
(

µ

|ξ − X|

)n−2σ

inf
∂′′B+

µ (X)
U

≤ U(ξ).
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As the second step, we shall prove (3.6). For all λ ∈ (0, λ0), the above inequality gives that UX,λ = U on
∂′′B+

µ (X). Together with UX,λ = U on ∂′′B+
λ (X) implies that for all λ ∈ (0, λ0),

UX,λ ≤ U on ∂′′B+
µ (X) ∪ ∂′′B+

λ (X). (3.9)

We will make use of the narrow domain technique of Berestycki and Nirenberg from [1], and show that for
λ ∈ (0, λ0), UX,λ ≤ U in D := B+

µ (X)\B+
λ (X).

A direct calculation gives that⎧⎨⎩div(t1−2σ∇(UX,λ − U)) = 0 in D,

∂(UX,λ − U)
∂νσ

= α1(u
n+2σ
n−2σ
x,λ − u

n+2σ
n−2σ ) + β(u

2σ
n−2σ
x,λ v

n
n−2σ
x,λ − u

2σ
n−2σ v

n
n−2σ )on ∂′D.

(3.10)

Let (UX,λ −U)+ := max(0, UX,λ −U) which equals to 0 on ∂′′D by (3.9). Multiplying the first equation in (3.10)
by (UX,λ − U)+ and integrating by parts in D. With the help of the Mean Value Theorem, we have∫

D

t1−2σ|∇(UX,λ − U)+|2

=
∫

∂′D
β(u

2σ
n−2σ
x,λ v

n
n−2σ
x,λ − u

2σ
n−2σ v

n
n−2σ )(ux,λ − u)+ +

∫
∂′D

α1(u
n+2σ
n−2σ
x,λ − u

n+2σ
n−2σ )(ux,λ − u)+

= : I1 + I2.

(3.11)

By the Mean Value Theorem, there exists θ ∈ (0, 1) such that

I1 ≤ 2σβ

n − 2σ

∫
∂′D

(θux,λ + (1 − θ)u)
4σ−n
n−2σ (θvx,λ + (1 − θ)v)

n
n−2σ ((ux,λ − u)+)2

+ nβ

n − 2σ

∫
∂′D

(θux,λ + (1 − θ)u)
2σ

n−2σ (θvx,λ + (1 − θ)v)
2σ

n−2σ (vx,λ − u)+(vx,λ − u)+.

Since
x + λ2(y − x)

|y − x|2
∈ Bλ(x) ⊂ Bµ(x) ⊂ B1(x) on ∂′D,

it follows that
I1 ≤ C

∫
∂′D

((ux,λ − u)+)2 + (vx,λ − v)+(ux,λ − u)+,

where C is a positive constant depending on n, σ, β and the upper and lower bounds for u, v on B1(x). Applying
the Hölder inequality, we discover that

I1 ≤C|Bµ(x)|
2σ
n

(∫
∂′D

(
(ux,λ − u)+) 2n

n−2σ

)n−2σ
n

+ C|Bµ(x)|
2σ
n

(∫
∂′D

(
(ux,λ − u)+) 2n

n−2σ

)n−2σ
2n

(∫
∂′D

(
(vx,λ − v)+) 2n

n−2σ

)n−2σ
2n

.

Therefore, the Trace inequality [26, Proposition 2.1] gives that

I1 ≤Cµ2σ

∫
D

t1−2σ|∇(UX,λ − U)+|2

+ Cµ2σ

(∫
D

t1−2σ|∇(UX,λ − U)+|2
) 1

2
(∫

D

t1−2σ|∇(VX,λ − V )+|2
) 1

2
.

(3.12)

Here C is a positive constant independent on µ.
By the similar argument, it follows that

I2 ≤ Cµ2σ

∫
D

t1−2σ|∇(UX,λ − U)+|2, (3.13)
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where C is a positive constant independent on µ. In view of (3.11)–(3.13), we have

(1 − Cµ2σ)∥∇(UX,λ − U)+∥L2(t1−2σ ,D) ≤ Cµ2σ∥∇(VX,λ − V )+∥L2(t1−2σ ,D).

It follows that from µ sufficiently small,

∥∇(UX,λ − U)+∥L2(t1−2σ ,D) ≤ 1
2∥∇(VX,λ − V )+∥L2(t1−2σ ,D). (3.14)

By the same argument, we can also obtain that

∥∇(VX,λ − V )+∥L2(t1−2σ ,D) ≤ 1
2∥∇(UX,λ − U)+∥L2(t1−2σ ,D). (3.15)

Combining (3.14) with (3.15), we have

∇(UX,λ − U)+ = 0 in D.

Then returning to (3.9) we conclude that (UX,λ − U)+ = 0 on D. This implies (3.6) and Lemma 3.1 is proved. □

Proof of Lemma 3.2. From the definition of λ̄(x), it is obviously that for all λ ∈ (0, λ̄(x)),

UX,λ ≤ U in Rn+1
+ \B+

λ (X). (3.16)

For ξ ∈ B+
λ (X)\{X}, we derive X + λ2(ξ−X)

|ξ−X|2 ∈ Rn+1
+ \B+

λ (X). Applying (3.16), we get

(
|ξ − X|

λ

)n−2σ

U(ξ) = UX,λ

(
X + λ2(ξ − X)

|ξ − X|2

)
≤ U

(
X + λ2(ξ − X)

|ξ − X|2

)
,

that is,
U ≤ UX,λ in B+

λ (X)\{X}. (3.17)

We prove Lemma 3.2 by contradiction. Without loss of generality, we suppose UX,λ̄(x) ̸≡ U . By the above
argument, We shall prove that there exists a positive constant ε such that (3.17) is established for all λ ∈
(λ̄(x), λ̄(x) + ε), which contradicts with the definition of λ̄(x). As a result, Lemma 3.2 follows.

We next claim that UX,λ̄(x) ̸≡ U implies VX,λ̄(x) ̸≡ V . In fact, if VX,λ̄(x) ≡ V , a direct calculation gives that

0 =
∂(VX,λ̄(x) − V )

∂νσ
(x, 0) = β

(
u

2σ
n−2σ

x,λ̄(x) − u
2σ

n−2σ

)
v

n
n−2σ ̸= 0,

which is a contradiction. Now, let us divide the region B+
λ (X)\{X} into three parts,

K1 :=
{

ξ ∈ B+
λ (X)

⏐⏐ 0 < |ξ − X| < δ1

}
,

K2 :=
{

ξ ∈ B+
λ (X)

⏐⏐ δ1 ≤ |ξ − X| ≤ λ̄ − δ2

}
,

K3 :=
{

ξ ∈ B+
λ (X)

⏐⏐ λ̄ − δ2 ≤ |ξ − X| ≤ λ
}

,

where δ1, δ2 will be fixed later. It suffices to prove that (3.17) holds respectively on K1, K2, K3.
Combining ⎧⎪⎨⎪⎩

div(t1−2σ∇(UX,λ̄(x) − U)) = 0 in B+
λ̄(x)(X),

∂(UX,λ̄(x) − U)
∂νσ

≥ 0 on ∂′B+
λ̄(x)(X) \ {X},



14 Y. Li and J. Bao / Nonlinear Analysis 191 (2020) 111636

with the fact that UX,λ̄(x) ̸≡ U , we conclude in view of the strong Maximum principle that

UX,λ̄(x) − U > 0 in B+
λ̄(x)(X) ∪ ∂′B+

λ̄(x)(X)\{X}.

By [26, Proposition 3.1], we have lim infξ→X(UX,λ̄(ξ) − U(ξ)) > 0. As a result, there exist two positive constants
δ1 and C1 such that

UX,λ̄(x) − U > C1 in K1. (3.18)

Choose ε1 < δ1 small such that for all λ ∈ (λ̄(x), λ̄(x) + ε1),

UX,λ̄(x)

(
X + λ

2(x)
λ2 (ξ − X)

)
− UX,λ̄(x)(ξ) > −C1

2 in K1, (3.19)

and (
λ̄(x)

λ̄(x) + ε1

)n−2σ (
U(ξ) + C1

2

)
≥ U(ξ) + C1

4 . (3.20)

A direct calculation gives

UX,λ(ξ) =
(

λ̄(x)
λ

)n−2σ

UX,λ̄(x)

(
X + λ

2(x)
λ2 (ξ − X)

)
It follows that from (3.18)–(3.20),

UX,λ(ξ) ≥
(

λ̄(x)
λ̄(x) + ε1

)n−2σ

UX,λ̄(x)

(
X + λ

2(x)
λ2 (ξ − X)

)

≥
(

λ̄(x)
λ̄(x) + ε1

)n−2σ (
U (ξ) + C1

2

)
≥ U(ξ) + C1

4 .

Consequently, for any λ ∈ (λ̄(x), λ̄(x) + ε1),

UX,λ ≥ U in K1. (3.21)

Since K2 is compact, there exists a positive constant C2 such that UX,λ̄(x) − U > C2 in K2. By the uniform
continuity of U on compact sets, there exists a positive constant ε2 small such that for all λ ∈ (λ̄(x), λ̄(x) + ε2),
UX,λ − UX,λ̄(x) > −C2/2 in K2. Hence, for all λ ∈ (λ̄(x), λ̄(x) + ε2),

UX,λ − U > C2/2 in K2. (3.22)

Now let us focus on the region K3. Using the narrow domain technique as that in Lemma 3.1, we can choose
δ2 small (notice that we can choose ε as small as we want less then ε1 and ε2 such that for λ ∈ (λ̄(x), λ̄(x) + ε),

U ≤ UX,λ, V ≤ VX,λ in K3. (3.23)

Together with (3.21)–(3.23), we can see that the moving spheres procedure may continue beyond λ̄(x) where we
reach a contradiction. And we complete the proof of Lemma 3.2. □

Finally, we consider the solvability of the nonlinear algebraic system (1.12).
Case 1: For n = 4σ, (1.12) can be written as

α1k2 + βl2 = 1, α2l2 + βk2 = 1.
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A direct calculation shows that

(β2 − α1α2)l2 = β − α1, (β2 − α1α2)k2 = β − α2.

Obviously, the nonlinear algebraic system (1.12) has at most one positive solution.
Case 2: For n > 4σ, we first write (1.12) as

α1 + βk
−n

n−2σ l
n

n−2σ = k
−4σ

n−2σ , α2l
n

n−2σ k
−n

n−2σ + β = l
n−4σ
n−2σ k

−n
n−2σ ,

and set x := (l/k)
1

n−2σ . It follows that (α1 + βxn)/(α2xn + β) = x−n+4σ. Consider

f(x) := α1 + βxn − α2x4σ − βx−n+4σ in (0, +∞).

It suffices to prove that f(x) = 0 at most has three roots.
A direct calculation shows that

f ′(x) = nβxn−1 − 4α2σx4σ−1 + (n − 4σ)βx−n+4σ−1

= x4σ−1(nβxn−4σ − 4α2σ + (n − 4σ)βx−n)
=: x4σ−1g(x).

Then we can get the monotonicity of f(x) by analyzing the function g(x). Since

g′(x) = n(n − 4σ)βx−1(xn−4σ − x−n), g′(1) = 0,

we have
g′ < 0 in (0, 1); g′ > 0 in (1, +∞).

In view of
g(0 + 0) = +∞, g(+∞) = +∞, (3.24)

we see that if g(1) ≥ 0, then g ≥ 0, f ′ ≥ 0 in (0, +∞). Together with

f(0 + 0) = −∞, f(+∞) = +∞, (3.25)

we conclude that f = 0 has only one solution in (0, +∞). If g(1) < 0, we deduce by (3.24) that there exist
0 < x1 < 1 < x2 such that g(x1) = g(x2) = 0. Thus

g > 0 in (0, x1); g < 0 in (x1, x2); g(x) > 0 in (x2, +∞).

That is
f ′ > 0 in (0, x1); f ′ < 0 in (x1, x2); f ′ > 0 in (x2, +∞).

We deduce using (3.25) that f = 0 has at most three solutions in (0, +∞).
Case 3: For 2σ < n < 4σ, as in the previous proof, we also know that f = 0 has at most three solutions

in (0, +∞).

4. Radially symmetry of singular global solutions

In the fourth section, we prove Theorem 1.2. Analogous to Section 3, we just give a proof for u. To prove
that u is radially symmetric and monotonically decreasing it suffices to show that u is symmetric about any
hyperplane which through the origin and it is monotone decreasing along the normal direction. Without
loss of generality, we shall verify that u is symmetric about the hyperplane {y1 = 0} and it is monotone
decreasing along the y1 axis.
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Assume that for all x ∈ Rn \ {0}, λ ∈ (0, |x|),

ux,λ ≤ u in Rn\(Bλ(x) ∪ {0}). (4.1)

Let t, s ∈ R satisfy t ≤ s, t + s > 0 and m > max{s, st
s+t }, then 0 < (m − s)(m − t) < m2. With the help of

(4.1), choosing y = te1, x = me1 and λ2 = (m − s)(m − t), we have(√
(m − s)(m − t)

m − t

)n−2σ

u

[(
m + (m − s)(m − t)

t − m

)
e1

]
≤ u(te1),

where the unite vector e1 = (1, 0, . . . , 0) ∈ Rn. That is,(
m − s

m − t

)n−2σ
2

u (se1) ≤ u(te1).

After sending m → ∞, it follows that
u(se1) ≤ u(te1),

which implies that u is monotone decreasing along the axis of y1 due to 0 < t < s. For s > 0, let t → −s,
we obtain that

u(se1) ≤ u(−se1).

Instead of e1 with −e1, we have
u(−se1) ≤ u(se1).

We deduce from the above inequality that u is symmetric about the hyperplane {y1 = 0}.
Therefore, to finish the proof of Theorem 1.2, we only need to obtain (4.1).
Let U , V be defined as (2.1), and from the previous argument we first notice that U , V ∈ C2(Rn+1

+ ) ∩
C(Rn+1

+ \ {0}) and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div(t1−2σ∇U) = 0 in Rn+1
+ ,

div(t1−2σ∇V ) = 0 in Rn+1
+ ,

∂U

∂νσ
= α1u

n+2σ
n−2σ + βu

2σ
n−2σ v

n
n−2σ on ∂Rn+1

+ \{0},

∂V

∂νσ
= α2v

n+2σ
n−2σ + βv

2σ
n−2σ u

n
n−2σ on ∂Rn+1

+ \{0}.

(4.2)

To obtain (4.1), it suffices to prove that for any x ∈ Rn \ {0}, and any λ ∈ (0, |x|)

UX,λ ≤ U, VX,λ ≤ V in Rn+1
+ \B+

λ (X), (4.3)

where X := (x, 0), and UX,λ, VX,λ denote the Kelvin transformation of U , V .
For the sake of (4.3), define

λ̄(x) := sup
{

µ ∈ (0, |x|)
⏐⏐ UX,λ ≤ U, VX,λ ≤ V in Rn+1

+ \B+
λ (X), ∀ λ ∈ (0, µ)

}
.

The following lemma is necessary to guarantee that the set over which we are taking the supremum is
non-empty and then λ̄(x) is well defined.

Lemma 4.1. For all x ∈ Rn\{0}, there exists λ0 := λ0(x) ∈ (0, |x|) such that for all λ ∈ (0, λ0),

UX,λ ≤ U, VX,λ ≤ V in Rn+1
+ \B+

λ (X). (4.4)
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To get (4.3), it is just remaining to prove

Lemma 4.2. For all x ∈ Rn\{0},
λ̄(x) = |x|. (4.5)

Now we begin to prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. We are going to show that there exist µ := µ(x) and λ0 := λ0(x) satisfying 0 < λ0 < µ

such that for all λ ∈ (0, λ0),
UX,λ ≤ U in Rn+1

+ \B+
µ (X),

and
UX,λ ≤ U in B+

µ (X)\B+
λ (X),

respectively. The proof of Lemma 4.1 follows almost exactly the proof of Lemma 3.1. Since there is an isolated
singularity at the origin, we just need to notice that we conclude (3.7) using [35, Proposition 4.1]. □

Proof of Lemma 4.2. By Lemma 4.1, λ̄(x) is well defined, and we also know that for x ̸= 0, λ̄(x) ≤ |x|.
We prove Lemma 4.2 by contradiction. Suppose λ̄(x) < |x| for some x ̸= 0, we want to prove that there exists
ε ∈ (0, |x|−λ̄(x)

2 ) such that for any λ ∈ (λ̄(x), λ̄(x) + ε),

UX,λ ≤ U, VX,λ ≤ V in Rn+1
+ \B+

λ (X), (4.6)

which contradicts with the definition of λ̄(x). Hence, Lemma 4.2 follows.
Without loss of generality, we assume that lim supx→0 u = ∞. We now divide the region Rn+1

+ \B+
λ (X) into

two parts,
K1 :=

{
ξ ∈ Rn+1

+
⏐⏐ |ξ − X| ≥ λ̄(x) + δ2

}
,

K2 :=
{

ξ ∈ Rn+1
+

⏐⏐ λ ≤ |ξ − X| ≤ λ̄(x) + δ2
}

,

where δ2 will be fixed later. To obtain (4.6) it suffices to prove it holds respectively on K1, K2.
In view of the definition of λ̄(x), it is easy to see that

UX,λ̄(x) ≤ U, VX,λ̄(x) ≤ V in Rn+1
+ \B+

λ̄(x)(X). (4.7)

Besides, by the fact

lim
ξ→0

UX,λ̄(x)(ξ) = lim
ξ→0

(
λ̄(x)

|ξ − X|

)n−2σ

U

(
X + λ̄(x)2(ξ − X)

|ξ − X|2

)

=
(

λ̄(x)
|X|

)n−2σ

U

(
X − λ̄(x)2X

|X|2

)
< ∞,

we conclude from the strong Maximum principle that

UX,λ̄(x) < U, VX,λ̄(x) < V in Rn+1
+ \B+

λ̄(x)(X). (4.8)

Via a calculation, we have⎧⎨⎩
div(t1−2σ∇(U − UX,λ̄(x))) = 0 in K1,

∂(U − UX,λ̄(x))
∂νσ

= α1(u
n+2σ
n−2σ − u

n+2σ
n−2σ

x,λ̄(x)) + β(u
2σ

n−2σ v
n

n−2σ − u
2σ

n−2σ

x,λ̄(x)v
n

n−2σ

x,λ̄(x)) on ∂′K1.
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Through a combination of [35, Proposition 4.1] and (4.8), we find that

(U − UX,λ̄(x))(ξ) ≥
(

λ̄(x) + δ2

|ξ − X|

)n−2σ

inf
∂′′B+

λ̄(x)+δ2
(X)

(U − UX,λ̄(x)) > 0 in K1. (4.9)

We first claim that there exists ε1 < |x|−λ̄(x)
2 small such that for any λ ∈ (λ̄(x), λ̄(x) + ε1),

|UX,λ̄(x) − UX,λ| ≤ 1
2

(
λ̄(x) + δ2

|ξ − X|

)n−2σ

inf
∂′′B+

λ̄(x)+δ2
(X)

(U − UX,λ̄(x)) in K1. (4.10)

Indeed, notice that

ξλ̄(x) := X + λ̄2(x)(ξ − X)
|ξ − X|2

, ξλ := X + λ2(ξ − X)
|ξ − X|2

∈ B+
|x|+λ̄(x)

2
(X)

and

|UX,λ̄(x)(ξ) − UX,λ(ξ)| =

⏐⏐⏐⏐⏐
(

λ̄(x)
|ξ − X|

)n−2σ

U(ξλ̄(x)) −
(

λ

|ξ − X|

)n−2σ

U (ξλ)

⏐⏐⏐⏐⏐
≤
(

λ̄(x)
|ξ − X|

)n−2σ ⏐⏐⏐U(ξλ̄(x)) − U (ξλ)
⏐⏐⏐+ λn−2σ − λ̄n−2σ(x)

|ξ − X|n−2σ U (ξλ)

≤
(

λ̄(x) + δ2

|ξ − X|

)n−2σ ⏐⏐⏐U(ξλ̄(x)) − U (ξλ)
⏐⏐⏐

+
(

λ̄(x) + δ2

|ξ − X|

)n−2σ
λn−2σ − λ̄n−2σ(x)
(λ̄(x) + δ2)n−2σ

U (ξλ) .

By the uniform continuity of U on compact sets, we can choose ε1 sufficiently small, such that for all λ ∈
(λ̄(x), λ̄(x) + ε1), ⏐⏐⏐U(ξλ̄(x)) − U (ξλ)

⏐⏐⏐ ≤ 1
4 inf

∂′′B+
λ̄(x)+δ2

(X)
(U − UX,λ̄(x)),

and
λn−2σ − λ̄n−2σ(x)
(λ̄(x) + δ2)n−2σ

U (ξλ) ≤ 1
4 inf

∂′′B+
λ̄(x)+δ2

(X)
(U − UX,λ̄(x)).

Then (4.10) follows.
We conclude from (4.9), (4.10) that for any λ ∈ (λ̄(x), λ̄(x) + ε1), UX,λ ≤ U in K1. Hence, we have

UX,λ ≤ U, VX,λ ≤ V on ∂′K2.

Using the narrow domain technique as that the proof of (3.6), we can choose δ2 small (notice that we can choose
ε as small as we want less then ε1 such that for λ ∈ (λ̄(x), λ̄(x) + ε) such that

UX,λ ≤ U, VX,λ ≤ V in K2. (4.11)

From the above argument, we can see that the moving spheres procedure may continue beyond λ̄(x) where we
reach a contradiction. □
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5. A upper bound near an isolated singularity

We shall prove Theorem 1.3 by the blow-up analysis and the method of moving spheres. Suppose the
contrary that there exists a sequence {xj} ⊂ B1 such that xj → 0 as j → ∞, and

|xj |
n−2σ

2 (u + v)(xj) → ∞ as j → ∞. (5.1)

Write w := u + v. Consider

hj(x) := (|xj |/2 − |x − xj |)
n−2σ

2 w(x) in B|xj |/2(xj).

Let |x̄j − xj | < |xj |/2 satisfy hj(x̄j) = max|x−xj |≤|xj |/2 hj(x), and define 2µj := |xj |/2 − |x̄j − xj |. Then

0 < 2µj ≤ |xj |/2 and |xj |/2 − |x − xj | ≥ µj in Bµj
(xj). (5.2)

By the definition of hj , we have

(2µj)
n−2σ

2 w(x̄j) = hj(x̄j) ≥ hj ≥ (µj)
n−2σ

2 w in Bµj
(xj). (5.3)

Therefore,
w(x̄j)−1w ≤ 2

n−2σ
2 in Bµj

(x̄j). (5.4)

On the other hand,

(2µj)
n−2σ

2 w(x̄j) = hj(x̄j) ≥ hj(xj) = (|xj |/2)
n−2σ

2 w(xj) → ∞ as j → ∞. (5.5)

Now, set
w̃j := w(x̄j)

2
n−2σ , X̄w

j := (−x̄jw(x̄j)
2

n−2σ , 0),

Uj(y, t) := w−1(x̄j)U
(
x̄j + yw̃−1

j , tw̃−1
j

)
in B+

w̃j/2
(X̄w

j ),

Vj(y, t) := w−1(x̄j)V
(
x̄j + yw̃−1

j , tw̃−1
j

)
in B+

w̃j/2
(X̄w

j ),

A calculation gives that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

div(t1−2σ∇Uj) = 0 in B+
w̃j/2

(X̄w
j ),

div(t1−2σ∇Vj) = 0 in B+
w̃j/2

(X̄w
j ),

∂Uj

∂νσ
= α1U

n+2σ
n−2σ

j + βU
2σ

n−2σ
j V

n
n−2σ

j on ∂′B+
w̃j/2

(X̄w
j )\{X̄w

j },

∂Vj

∂νσ
= α2V

n+2σ
n−2σ

j + βV
2σ

n−2σ
j U

n
n−2σ

j on ∂′B+
w̃j/2

(X̄w
j )\{X̄w

j },

and (Uj + Vj)(0) = 1.
By Propositions 2.2 and 2.5, there exists some ν ∈ (0, 1) such that for R > 1,

∥Uj∥
W 1,2(t1−2σ ,B+

R
) + ∥Vj∥

W 1,2(t1−2σ ,B+
R

) + ∥Uj∥
Cν (B+

R
)

+ ∥Vj∥
Cν (B+

R
)

≤ C(R). (5.6)

From (5.6), we obtain that after passing to a subsequence, there exist two nonnegative functions Ũ , Ṽ ∈
W 1,2

loc (t1−2σ,Rn+1
+ ) ∩ Cν

loc(Rn+1
+ ) such that{

Uj ⇀ Ũ, Vj ⇀ Ṽ weakly in W 1,2
loc (t1−2σ,Rn+1

+ ),
Uj → Ũ , Vj → Ṽ in C

ν/2
loc (Rn+1

+ ),
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Moreover, Ũ and Ṽ satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

div(t1−2σ∇Ũ) = 0 in Rn+1
+ ,

div(t1−2σ∇Ṽ ) = 0 in Rn+1
+ ,

∂Ũ

∂νσ
= α1Ũ

n+2σ
n−2σ + βŨ

2σ
n−2σ Ṽ

n
n−2σ on ∂Rn+1

+ ,

∂Ṽ

∂νσ
= α2Ṽ

n+2σ
n−2σ + βṼ

2σ
n−2σ Ũ

n
n−2σ on ∂Rn+1

+ ,

and (Ũ + Ṽ )(0) = 1. By Theorem 1.1, we have

(ũ + ṽ)(x) = (Ũ + Ṽ )(x, 0) =
(

1
1 + |x|2

)n−2σ
2

(5.7)

modulo some multiple, scaling and translation.
On the other hand, let us arbitrarily fix x0 ∈ Rn, and λ0 > 0. Then for all j large, we have |x0| <

Rj/10, 0 < λ0 < Rj/10. For X0 = (x0, 0), if we have proved that for any λ ∈ (0, λ0),

(Uj + Vj)X0,λ ≤ Uj + Vj in B+
w̃j/2

(X̄w
j )\B+

λ (X0). (5.8)

Sending j → ∞, by the arbitrariness of x0, λ0, we obtain that for any x0 ∈ Rn and any λ > 0,

(ũ + ṽ)x0,λ ≤ ũ + ṽ in Rn\Bλ(x0).

An elementary calculus lemma [33, Lemma 11.3] gives that ũ + ṽ ≡ constant. This contradicts to (5.7).
Therefore, we finish the proof of Theorem 1.3.

For simplicity, we denote Hj := Uj + Vj , Hj,X0,λ := (Uj + Vj)X0,λ, and define

λ̄(x) := sup
{

µ ∈ (0, λ0)
⏐⏐Hj,X0,λ ≤ Hj in B+

w̃j/2
(X̄w

j )\B+
λ (X0), ∀λ ∈ (0, µ)

}
.

From what has been discussed in Sections 3 and 4 , it is clear to know that in order to obtain that (5.8), we
just need to prove λ̄(x) = λ0. Thus, we first get

Lemma 5.1. There exists λ1 ∈ (0, λ0) such that for any λ ∈ (0, λ1),

Hj,X0,λ ≤ Hj in B+
w̃j/2

(X̄w
j )\B+

λ (X0).

Then we give that

Lemma 5.2.
λ̄(x) = λ0.

Proof of Lemma 5.1. The proof consists of two steps. In the first step, we prove Uj,X0,λ ≤ Uj , Vj,X0,λ ≤ Vj

in B+
µ (X0)\B+

λ (X0). It follows that

Hj,X0,λ ≤ Hj in B+
µ (X0)\B+

λ (X0).

We shall prove as the second step that

Hj,X0,λ ≤ Hj in B+
w̃j/2

(X̄w
j )\B+

µ (X0).
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The proof of the step 1 is almost precisely like that of (3.6) of Lemma 3.1. Notice that the difference is that we
choose

λ1 = µ min

⎧⎨⎩
( inf

∂′′B+
µ (X) Uj

supB+
µ (X) Uj

) 1
n−2σ

,

( inf
∂′′B+

µ (X) Vj

supB+
µ (X) Vj

) 1
n−2σ

,

( inf
∂′′B+

µ (X) Hj

supB+
µ (X) Hj

) 1
n−2σ

⎫⎬⎭ ,

instead of (3.8). We just prove the step 2.
Since

inf
∂′′B+

w̃j /2
(X̄w

j
)
Hj = 1

w(x̄j) inf
∂′′B+

1/2

(U + V ) ≥ 1
w(x̄j) inf

B+
3/4\B+

1/4

(U + V ),

and from Proposition 2.5 that

inf
B+

3/4\B+
1/4

(U + V ) ≥ 1
C

sup
B+

3/4\B+
1/4

(U + V ) ≥ 1
C

min
∂B1/2

(u + v).

In addition, by the continuous of u and v, we have u + v ≥ C0 on ∂B1/2 for some positive constant C0. Hence, it
follows that

Hj ≥ C0

Cw(x̄j) >
C0

Cw3/2(x̄j)
> 0 on ∂′′B+

w̃j/2
(X̄w

j ).

On the other hand, since |xj |
2 ≤ |x̄j | ≤ 3|xj |

2 ≪ 1
2 , for any ξ ∈ ∂′′B+

w̃j/2
(X̄w

j ), i.e.,
⏐⏐⏐X̄j + ξw(x̄j)

−2
n−2σ

⏐⏐⏐ = 1
2 , we

have

|ξ| ≈ 1
2w(x̄j)

2
n−2σ → +∞ as j → +∞.

Thus, (
µ

|ξ − X0|

)n−2σ

≈
(µ

2

)n−2σ 1
w2(x̄j) on ∂′′B+

w̃j/2
(X̄w

j ).

A combination of the above argument, we get

Hj(ξ) >

(
µ

|ξ − X0|

)n−2σ

inf
∂′′B+

µ (X0)
Hj on ∂′′B+

w̃j/2
(X̄w

j ). (5.9)

By the same argument as before, we obtain that

Hj(ξ) ≥
(

µ

|ξ − X0|

)n−2σ

inf
∂′′B+

µ (X0)
Hj in B+

w̃j/2
(X̄w

j )\B+
µ (X0). (5.10)

Then for all ξ ∈ B+
w̃j/2

(X̄w
j )\B+

µ (X0), λ ∈ (0, λ1), we conclude using (5.10) that

Hj,X0,λ(ξ) =
(

λ

|ξ − X0|

)n−2σ

Hj(X0 + λ2(ξ − X0)
|ξ − X0|2

)

≤
(

λ1

|ξ − X0|

)n−2σ

sup
B+

µ (X0)
Hj

≤
(

µ

|ξ − X0|

)n−2σ

inf
∂′′B+

µ (X0)
Hj ≤ Hj(ξ).

Lemma 5.1 is proved. □
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Proof of Lemma 5.2. We argue by contradiction. Were that λ̄(x) < λ0, we shall show that there exists a positive
constant ε such that for all λ ∈ (λ̄(x), λ̄(x) + ε),

Hj,X0,λ ≤ Hj in B+
w̃j/2

(X̄w
j ) \ B+

λ (X0), (5.11)

which contradicts with the definition of λ̄(x).
The region B+

w̃j/2
(X̄w

j )\B+
λ (X) is divided into three parts. For δ, δ1 > 0 small, which will be fixed later, denote

K1 := {ξ ∈ B+
w̃j/2

(X̄w
j )|0 < |ξ − X̄w

j | ≤ δ1},

K2 := {ξ ∈ B+
w̃j/2

(X̄w
j )||ξ − X̄w

j | ≥ δ1, |ξ − X0| ≥ λ̄(x) + δ},

K3 := {ξ ∈ B+
w̃j/2

(X̄w
j )|λ ≤ |ξ − X0| ≤ λ̄(x) + δ}.

In order to obtain (5.11), we just need to prove that it holds respectively on K1, K2, K3.
Similar to (5.9), we have

Hj ≥ C0

Cw(x̄j) >

(
λ0

|ξ − X0|

)n−2σ

sup
B+

λ0
(X0)

Hj ≥ Hj,X0,λ̄(x) on ∂′′B+
w̃j/2

(X̄w
j ).

We say from the Strong Maximum Principle that

Hj,X0,λ̄(x) < Hj in B+
w̃j/2

(X̄w
j ) \ B+

λ̄(x)(X0).

Using [35, Proposition 4.1], there exist two positive constants δ1, C1 such that Hj −Hj,X0,λ̄(x) > C1 in K1. Choose
a positive constant ε1 small such that for all λ ∈ (λ̄(x), λ̄(x)+ε1), Hj,X0,λ̄(x) −Hj,X0,λ > −C1/2 in K1. Hence,

Hj − Hj,X0,λ > C1/2 in K1. (5.12)

Together with Hj > Hj,X0,λ̄(x) in K2 and the compactness of K2, there exists a positive constant C2 such that
Hj − Hj,X0,λ̄(x) > C2 in K2. By the uniform continuity of Hj on compact sets, there exists a positive constant ε2

small such that for all λ ∈ (λ̄(x), λ̄(x) + ε2), Hj,X0,λ̄(x) − Hj,X0,λ > −C2/2 in K2. Therefore,

Hj − Hj,X0,λ > C2/2 in K2. (5.13)

Now let us focus on the region K3. Using the narrow domain technique as that in Lemma 3.1, we can choose δ

small (notice that we can choose ε as small as we want) such that

Uj,X0,λ ≤ Uj , Vj,X0,λ ≤ Vj in K3.

Thus,
Hj,X0,λ ≤ Hj in K3. (5.14)

Combining (5.12)–(5.14), we obtain that there exists a positive constant ε such that for all λ ∈ (λ̄(x), λ̄(x) + ε),
Hj,X0,λ ≤ Hj in B+

w̃j/2
(X̄w

j )\B+
λ (X0), which contradicts with the definition of λ̄(x). Lemma 5.2 is proved. □
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[4] L. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,

Comm. Pure Appl. Math. 42 (1989) 271–297.
[5] L. Caffarelli, T. Jin, Y. Sire, J. Xiong, Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities,

Arch. Ration. Mech. Anal. 213 (2014) 245–268.
[6] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007)

1245–1260.
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