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LIOUVILLE PROPERTY AND REGULARITY OF
A HESSIAN QUOTIENT EQUATION

By JIGUANG BAO, JINGYI CHEN, BO GUAN, and MIN JI

Abstract. We are concerned with properties of (convex) solutions to the Hessian quotient equation
Sn,k(D2u) = ϕ, 1 ≤ k < n. As our first main result we prove some regularity of strong solutions,
while the second states that for ϕ ≡ 1 an entire convex solution with a quadratic growth bound
must be a quadratic polynomial.

1. Introduction. In this paper we consider local and global properties of
solutions to the Hessian quotient equation in R

n

Sn,k(D2u) = 1, 1 ≤ k < n.(1.1)

Here the operator Sn,k(D2u) is defined as follows. Let Sk(λ) be the kth elementary
symmetric function of λ ∈ R

n and

Sn,k(λ) =
Sn(λ)
Sk(λ)

, λ ∈ R
n.

Then Sn,k(D2u) = Sn,k(λ[D2u]) where λ[D2u] = (λ1, . . . ,λn) denotes the eigenval-
ues of the Hessian, D2u, of a function u defined in R

n.
Equation (1.1) is elliptic at a solution u if D2u > 0, i.e., u is (locally) strictly

convex. It belongs to an important class of fully nonlinear elliptic equations
which has been studied by many authors (cf. [5] and [23]). Such equations are
closely related to problems in differential geometry. In [15], the Hessian quotient
equation on S

n was studied in connection with a geometric problem of prescribing
curvatures. When n = 3 and k = 1, equation (1.1) arises in special Lagrangian
geometry: if u is a solution of (1.1), the graph of Du over R

3 in C
3 is a special

Lagrangian submanifold in C
3, i.e., its mean curvature vanishes everywhere and

the complex structure on C
3 sends the tangent space of the graph to the normal

space at every point. This special case has received much attention.
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In this paper we will first prove a regularity result for strong solutions to
(1.1). Following [4] and [11], we call a function u ∈ W2,p

loc (Ω) for p > n
2 an

admissible strong solution of (1.1) in a domain Ω in R
n if D2u > 0 and (1.1)

is satisfied almost everywhere in Ω. By a classical theorem of Calderón and
Zygmund [7] functions in W2,p

loc (Ω), p > n
2 , are pointwise twice differentiable

almost everywhere (cf. [4]).
Throughout this paper, we set γ = (n − 1)(n − k) if 1 ≤ k ≤ n − 2, and

γ = 2(n − 1) if k = n − 1. Note that γ > n
2 and γ ≥ 2k for all n ≥ 2 and k < n.

THEOREM 1.1. Let Ω be a domain in R
n and p > γ. Then every admissible

strong solution of (1.1) in W2,p
loc (Ω) is smooth.

In Section 2 we will prove Theorem 1.1 for admissible strong solutions of
the more general equation

Sn,k(D2u) = ϕ in Ω, 1 ≤ k < n(1.2)

where ϕ ∈ C∞(Ω) and ϕ > 0.
It would be interesting to determine sharp lower bounds for p in Theorem 1.1.

For the Monge-Ampère equation (k = 0), the optimal bound is n(n − 1)/2; see
[1], [2] and [24]. Related results for the Hessian equation

Sk(D2u) = ϕ(1.3)

may be found in [25] and [26]. We point out that Theorem 1.1 fails in general
if p < n, as we will see at the end of Section 2 where we show that a radially
symmetric admissible solution to (1.1) must be either a quadratic polynomial or
a strong solution in W2,q

loc for all q < n but not in W2,n
loc .

The second part of this paper concerns global solutions of equation (1.1).
A well known theorem due to Jörgens [17] (n = 2), Calabi [6] (n = 3, 4, 5)
and Pogorelov [22] (n ≥ 2) asserts that a smooth strictly convex solution to the
Monge-Ampère equation det D2u = 1 over the entire space R

n must be a quadratic
polynomial. (A more general result is due to Cheng-Yau [9].) This was extended
to viscosity solutions by Caffarelli [3]. In this article we will prove the following
Liouville property of global solutions to (1.1).

THEOREM 1.2. Let u ∈ C∞(Rn) be a strictly convex solution of (1.1) satisfying

u(x) ≤ A(1 + |x|2) ∀x ∈ R
n(1.4)

where A is a constant. Then u is a quadratic polynomial.

Remark 1.3. When k = n − 1, Theorem 1.2 holds without assumption (1.4).
For 1 ≤ k ≤ n− 2, however, it is not clear to the authors whether it is enough to
merely assume that u is strictly convex.
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Theorem 1.2 will be proved in Section 3. From the proof we will obtain a
similar characterization of global solutions to the Hessian equation (1.3) when
the right-hand side function is constant; see Theorem 3.2. We also mention some
related work on Bernstein type results for global special Lagrangian graphs. (We
refer the reader to Osserman’s article [21] for a survey on classical Bernstein
theorems for minimal surfaces in R

n.) Recently, Yuan [27] proved that any convex
entire solution to the special Lagrangian equation

F(D2u) := tan−1 λ1 + · · · + tan−1 λn = c in R
n,

where (λ1, . . . ,λn) are the eigenvalues of the Hessian D2u, is a quadratic poly-
nomial for all n ≥ 2; the case n = 2 was considered earlier by Fu [13]. In [18],
Jost-Xin treated the problem using a different method under the assumption that
|D2u| is bounded. Note that the Hessian quotient equation (1.1) is different from
the special Lagrangian equation except when n = 3, k = 1.

Acknowledgments. The first author would like to thank PIMS and the De-
partment of Mathematics of UBC for providing him with a nice research envi-
ronment, and in particular he would like to thank Professor N. Ghoussoub for
arranging his visit to PIMS. Part of this work was done while the fourth author
was visiting the University of Tennessee. She wishes to thank the Department of
Mathematics for its kind hospitality. The authors are also grateful to the referee
for valuable comments.

2. Local bounds for second derivatives of strong solutions. In this sec-
tion we will prove a slightly more general result that includes Theorem 1.1. The
main step in our argument is to derive a local bound for the second derivatives of
W2,p admissible strong solutions when p > γ. We will need the notion of upper
contact set and the Alexandrov maximum principle. Let Ω be a bounded domain
in R

n and v ∈ C0(Ω). We recall (see [14]) that the upper contact set of v, denoted
Γ+

v (Ω), is defined to be the subset of Ω where the graph of v lies below a support
hyperplane in R

n+1, that is,

Γ+
v (Ω)={x∈Ω : v(z)≤v(x) + ν · (z−x), for all z∈Ω, for some ν∈R

n}.(2.1)

We have the following form of the Alexandrov maximum principle.

LEMMA 2.1. Let (aij) be an n × n matrix which is positive definite a.e. in a
bounded domain Ω ⊂ R

n, and v ∈ W2,q
loc (Ω) ∩ C0(Ω̄) with v = 0 on ∂Ω, where

q > n. Then

sup
Ω

v ≤ Cd

(∫
Γ+

v (Ω)

(− aijDijv)n

det (aij)
dx

) 1
n

,(2.2)
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provided that (aijDijv)/ det (aij)
1
n ∈ Ln(Ω), where d = diam Ω and C is a constant

depending only on n.

This is a slight extension of Lemma 9.3 in [14], which assumes v ∈ C2(Ω)∩
C0(Ω̄). A detailed proof can be found in [8]; so we omit it here. Note that by the
Sobolev embedding theorem W2,q

loc (Ω) ⊂ C1,α(Ω) for α = 1 − n
q when q > n.

We now state the main estimate of this section.

THEOREM 2.2. Let Ω be a domain in R
n and u ∈ W2,p

loc (Ω) an admissible strong
solution of (1.2) where p > γ, ϕ ∈ C1,1(Ω), and ϕ > 0 in Ω. Then u ∈ C1,1(Ω)
and, for any y ∈ Ω and 0 < R < 1 with B3R(y) ⊂ Ω,

sup
BR(y)

|D2u| ≤ C + C(R−n‖∆u‖p
Lp(B3R(y)))

1
q(2.3)

where q = min{n, p−γ} and C > 0 is a constant depending on n, k, p, ‖ϕ‖C1,1(B3R(y))
and infB3R(y) ϕ.

Before presenting the proof of Theorem 2.2 we will derive two technical
lemmas. Following the notations in [20] we set

Sk;i(λ) = Sk(λ)|λi=0 for fixed i ∈ {1, . . . , n}.

For any i we have

∂Sk

∂λi
(λ) = Sk−1;i(λ).(2.4)

It follows that

∂Sn,k

∂λi
(λ) =

Sn−1;i(λ)Sk(λ) − Sn(λ)Sk−1;i(λ)
(Sk(λ))2 .(2.5)

LEMMA 2.3. For all 1 ≤ i ≤ n, 1 ≤ k < n, we have

Sn−1;i(λ)Sk(λ) − Sn(λ)Sk−1;i(λ) = Sn−1;i(λ)Sk;i(λ) on R
n.

Proof. We have

Sn−1;i(λ)Sk(λ) = Sn−1;i(λ)(λiSk−1;i(λ) + Sk;i(λ))

= Sn(λ)Sk−1;i(λ) + Sn−1;i(λ)Sk;i(λ)

from which the desired identity follows.
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By (2.5) and Lemma 2.3 we see that if λ = (λ1, . . . ,λn), λ1 ≥ · · · ≥ λn > 0
then

∂Sn,k

∂λ1
(λ) ≤ · · · ≤ ∂Sn,k

∂λn
(λ).(2.6)

LEMMA 2.4. Let λ = (λ1, . . . ,λn) ∈ R
n satisfy Sn,k(λ) ≥ 1 and λ1 ≥ · · · ≥

λn > 0. Then (
∂Sn,k

∂λn
(λ)
)n

≤ (S1(λ))γ
n∏

i=1

∂Sn,k

∂λi
(λ),(2.7)

where γ = (n − 1)(n − k) if 1 ≤ k ≤ n − 2, and γ = 2(n − 1) if k = n − 1.

Proof. Note that for λ = (λ1, . . . ,λn) ∈ R
n, λ1 ≥ · · · ≥ λn > 0,

Sk;i(λ) ≥
{
λ1 · · ·λi−1λi+1 · · ·λk+1, if i ≤ k,

λ1 · · ·λk, if i > k.

Thus,

n−1∏
i=1

Sk;i(λ) =
k∏

i=1

Sk;i(λ) ·
n−1∏

i=k+1

Sk;i(λ)(2.8)

≥ (λ1 · · ·λk)k−1(λk+1)k · (λ1 · · ·λk)n−k−1

= (λ1 · · ·λk)n−2(λk+1)k,

and by Sn,k(λ) ≥ 1,

n∏
i=1

Sn−1;i(λ) = (Sn(λ))n−1 ≥ (Sk(λ))n−1 ≥ (Sk;n(λ))n−1.(2.9)

When k < n − 1, we have by (2.8) and (2.9) that

(Sn−1;n(λ)Sk;n(λ))n∏n
i=1 (Sn−1;i(λ)Sk;i(λ))

≤ (λ1 · · ·λn−1)nSk;n(λ)∏n
i=1 Sk;i(λ)

=
(λ1 · · ·λn−1)n∏n−1

i=1 Sk;i(λ)

≤ (λ1 · · ·λn−1)n

(λ1 · · ·λk)n−2(λk+1)k

= (λ1 · · ·λk)2(λk+1)n−k(λk+2 · · ·λn−1)n

≤ (S1(λ))(n−1)(n−k),
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while for k = n − 1,

(Sn−1;n(λ)Sk;n(λ))n∏n
i=1 (Sn−1;i(λ)Sk;i(λ))

=
(

(Sn−1;n(λ))n∏n
i=1 Sn−1;i(λ)

)2

≤ (Sn−1;n(λ))2

≤ (S1(λ))2(n−1)

by (2.9). Now (2.7) follows from (2.5) and Lemma 2.3.

Proof of Theorem 2.2. For convenience we write equation (1.2) in the form

F(D2u) ≡ (Sn,k(λ[D2u]))
1

n−k = ϕ
1

n−k .(2.10)

It is known that F is a concave function of D2u when u is convex (cf. [23]).
Let h > 0 be sufficiently small and ξ ∈ R

n a fixed unit vector. We introduce
the second order difference quotient

∆h
ξξu(x) =

u(x + hξ) − 2u(x) + u(x − hξ)
h2 , a.e. x ∈ Ωh,

where Ωh ≡ {x ∈ Ω : dist (x, ∂Ω) > h}. By the concavity of F we obtain from
(2.10) that for a.e. x ∈ Ωh

ϕ
1

n−k (x ± hξ) − ϕ
1

n−k (x) = F(D2u(x ± hξ)) − F(D2u(x))(2.11)

≤ Fij(D2u(x))(Diju(x ± hξ) − Diju(x)).

Here

Fij(M) =
∂F
∂mij

(M)

for any n × n matrix M = (mij).
Let y ∈ Ω with B3R(y) ⊂ Ω. Without loss of generality we may assume ϕ ≥ 1

on B3R(y). For simplicity we will write Br = Br(y) for r > 0 and Fij := Fij(D2u(x))
in the rest of this proof. It follows from (2.11) that

FijDij(∆h
ξξu(x)) ≥ −‖ϕ

1
n−k ‖C1,1(B3R), a.e. x ∈ B2R(2.12)

when h ≤ R. Consider the function

v = η∆h
ξξu,



HESSIAN QUOTIENT EQUATION 307

where

η(x) =

(
1 − |x − y|2

4R2

)β

,

and β > 2 is a constant to be determined later. Direct calculation leads to

|Dη| ≤ β

R
η

1− 1
β , |D2η| ≤ C(n,β)

R2 η
1− 2

β(2.13)

and

FijDijv = Fij(ηDij(∆h
ξξu) + 2DiηDj(∆h

ξξu) + (∆h
ξξu)Dijη)(2.14)

≥ −η‖ϕ
1

n−k ‖C1,1(B3R) + 2FijDiηDj(∆h
ξξu) + (∆h

ξξu)FijDijη

≥ −η‖ϕ
1

n−k ‖C1,1(B3R) − ΛF(2|Dη||D(∆h
ξξu)| + |∆h

ξξu||D2η|)

≥ −Cη − C(n,β)ΛF

R2η
2
β

(v + Rη1+ 1
β |D(∆h

ξξu)|), a.e. x ∈ B2R

by (2.12) and (2.13), where ΛF is the maximum eigenvalue of the matrix (Fij).
Next, for x ∈ Γ+

v (B2R) we take z ∈ ∂B2R with

z − x
|z − x| = − Dv(x)

|Dv(x)| .

Since v = 0 on ∂B2R, it follows from (2.1) that

v(x) ≥ v(z) − Dv(x) · (z − x) = |z − x||Dv(x)| ≥ Rη
1
β |Dv(x)|

as

|x − z| ≥ 2R − |x − y| ≥ Rη
1
β .

Consequently on Γ+
v (B2R)

η|D(∆h
ξξu)| = |Dv − (∆h

ξξu)Dη| ≤ |Dv| + (∆h
ξξu)|Dη| ≤ (1 + β)v

Rη
1
β

(2.15)

and, by (2.14) and the concavity of v on Γ+
v (B2R),

0 ≤ −FijDijv ≤ Cη +
CΛFv

R2η
2
β

, a.e. in Γ+
v (B2R),(2.16)
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where C > 0 is a constant depending only on n, β and ‖ϕ
1

n−k ‖C1,1(B3R). Note that

{Fij} is positive definite with eigenvalues

∂

∂λi
(Sn,k(λ[D2u]))

1
n−k , i = 1, . . . , n.

We have

det (Fij) =
n∏

i=1

∂

∂λi
(Sn,k(λ[D2u]))

1
n−k =

ϕ
n

n−k−n

(n − k)n

n∏
i=1

∂

∂λi
Sn,k(λ[D2u])(2.17)

by (2.10). Since Sn,k(λ) ≥ 1,

λk+1 ≥ 1 and Sk(λ[D2u]) ≤ Cλ1 · · ·λk ≤ CSk;n(λ[D2u])(2.18)

where λ[D2u] = (λ1, . . . ,λn), λ1 ≥ · · · ≥ λn > 0. From (2.17), (2.5) and
Lemma 2.3 we have

det (Fij) =
ϕ

n
n−k−n

(n − k)nSk(λ[D2u])2n

n∏
i=1

Sn−1;i(λ[D2u])Sk;i(λ[D2u])(2.19)

≥ Sk;n(λ[D2u])
CSk(λ[D2u])n+1 · (λ1 · · ·λk)n−2(λk+1)k

≥ 1
CSk(λ[D2u])2

≥ 1
C(∆u)2k

by (2.8), (2.9), (2.18) and the Newton-Maclaurin inequality

1
n

S1(λ) ≥ · · · ≥
(

k!(n − k)!
n!

Sk(λ)
) 1

k
≥ · · · ≥ (Sn(λ))

1
n .

Next, by Lemma 2.4, (2.6) and (2.17)

Λn
F

det (Fij)
≤ S1(λ[D2u])γ = (∆u)γ .(2.20)

Inserting (2.19) and (2.20) into (2.16) we obtain

0 ≤ −FijDijv

det (Fij)
1
n
≤ Cη(∆u)

2k
n +

Cv(∆u)
γ
n

R2η
2
β

a.e. in Γ+
v (B2R),(2.21)

where C depends on n, β and ‖ϕ
1

n−k ‖C1,1(B3R).



HESSIAN QUOTIENT EQUATION 309

Choosing β = 2n
p−γ , we see from Lemma 2.1 and (2.21) that

sup
B2R

v ≤ CR

(∫
Γ+

v (B2R)

( − FijDijv)n

det (Fij)
dx

) 1
n

≤ CR

(∫
Γ+

v (B2R)
(∆u)2k dx

) 1
n

+ CR−1

(∫
Γ+

v (B2R)
(∆u)γ(η−2/βv)n dx

) 1
n

≤ CR

(∫
B2R

(∆u)2k dx

) 1
n

+ CR−1

(∫
B2R

(∆u)γ(∆h
ξξu)p−γ dx

) 1
n

.

By the inequality

‖∆h
ξξu‖Lp(B2R) ≤ ‖∆u‖Lp(B3R), if h < R,

we have∫
B2R

(∆u)γ(∆h
ξξu)p−γ dx ≤ ‖∆u‖γLp(B2R)‖∆h

ξξu‖p−γ
Lp(B2R) ≤ ‖∆u‖p

Lp(B3R)

and therefore,

sup
B2R

v ≤ CR‖∆u‖
2k
n

L2k(B2R)
+ CR−1( sup

B2R

v)1− 2
β ‖∆u‖

p
n
Lp(B3R)(2.22)

≤ C(R + R−1( sup
B2R

v)1− 2
β )‖∆u‖

p
n
Lp(B3R)

where the constant C depends on n, k, p and ‖ϕ
1

n−k ‖C1,1(B3R). If supB2R
v < 1,

Theorem 2.2 holds trivially. So one may assume supB2R
v ≥ 1. If p ≤ n + γ then

1 − 2
β ≥ 0 and

sup
B2R

v ≤ C(R + R−1)( sup
B2R

v)1− 2
β ‖∆u‖

p
n
Lp(B3R).

It follows that

sup
B2R

v ≤ C(R + R−1)
n
q ‖∆u‖

p
q
Lp(B3R).

From (2.22) we see that this still holds when p ≥ n + γ as 1− 2
β ≤ 0. We finally

conclude that for h < R

sup
BR

∆h
ξξu ≤

(
4
3

) 2n
p−γ

sup
B2R

v ≤ C + C(R−n‖∆u‖p
Lp(B3R))

1
q .

As ξ is an arbitrary unit vector in R
n, this completes the proof of Theorem 2.2.
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Theorem 1.1 is a special case of the following.

THEOREM 2.5. Let Ω be a domain in R
n and u ∈ W2,p

loc (Ω) an admissible strong
solution of (1.2) where p > γ, ϕ ∈ C∞(Ω), and ϕ > 0. Then u ∈ C∞(Ω).

Proof. Let Ω′ be a bounded subdomain of Ω, Ω′ ⊂ Ω. By Theorem 2.2 we
have u ∈ C1,1(Ω′). As (2.10) is concave and uniformly elliptic in a strictly convex
solution with bounded second derivatives, the Evans-Krylov regularity theorem
([12], [19]) then implies that u ∈ C2,α(Ω′) for some 0 < α < 1. The smoothness
of u now follows from the standard elliptic regularity theory.

We conclude this section with a brief examination of radially symmetric
solutions to (1.1). Let u = u(r) be such a solution of (1.1). Then u satisfies

u′′
(

u′

r

)n−k

=
(n − 1)!

(k − 1)!(n − k)!
u′′ +

(n − 1)!
k!(n − k − 1)!

u′

r
,(2.23)

which we integrate to obtain

(u′)n − n!
k!(n − k)!

rn−k(u′)k = a,(2.24)

where a is an arbitrary constant. If a = 0 then

u(r) = c or u(r) =
1
2

(
n!

k!(n − k)!

) 1
n−k

r2 + c,

where c is a constant. Therefore u is a constant or quadratic polynomial in this
case. Now assume a > 0. For r sufficiently small, take a positive solution u′ for
the polynomial equation (2.24). Letting r → 0 in (2.24) and (2.23) we see that

lim
r→0

u′(r) = a
1
n , lim

r→0
u′′(r) = δk(n−1),

where δk(n−1) is the Kronecker delta for k, n − 1. We can verify that u′′ > 0 for
small r, which implies that u is convex near the origin. It follows that

lim
r→0

r∆u = lim
r→0

(ru′′(r) + (n − 1)u′(r)) = (n − 1)a
1
n �= 0

and therefore, ∆u ∈ Lq
loc for all q < n but ∆u /∈ Ln

loc. This also shows that
Theorem 1.1 fails for p < n.

3. Liouville property of solutions. In this section we prove Theorem 1.2.
Let u ∈ C∞(Rn) be a strictly convex solution of (1.1) which satisfies (1.4). We
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assume that u ≥ 0, u(0) = 0 without loss of any generality, and furthermore

u(x) ≤ A|x|2, ∀x ∈ R
n(3.1)

where A is a constant. We will make use of some known interior estimates for
solutions to the Hessian equations. The Hessian quotient and Hessian equations
are related by the Legendre transformation. In order to define the Legendre trans-
form of u on the entire space, it is necessary to have a positive lower bound on
u which grows faster than linear functions.

LEMMA 3.1. Under assumption (3.1), there exists a constant a > 0 depending
only on A and n such that

u(x) ≥ a|x|2, ∀x ∈ R
n.(3.2)

When k = n − 1, this holds for a = n/2 without assumption (3.1).

Proof. By the Newton-Maclaurin inequality

1
n

S1(λ) ≥ · · · ≥
(

k!(n − k)!
n!

Sk(λ)
) 1

k
≥ · · · ≥ (Sn(λ))

1
n

we obtain from (1.1)

det (D2u(x)) ≥ 1, ∀x ∈ R
n.(3.3)

For L > 0 let Ω = {x ∈ R
n : u(x) < L}. Since u is strictly convex Ω is a

nonempty convex open set. Let Γ be the ellipsoid of smallest volume containing
Ω. By John’s lemma (cf. [1])

Γ′ ≡ 1
n

Γ ⊂ Ω ⊂ Γ.

Therefore u ≤ L in Γ′.
Suppose Γ′ is defined by

n∑
i=1

(xi − x0
i )2

a2
i

≤ 1, a1 ≥ · · · ≥ an > 0,

where x0 = (x0
1, . . . , x0

n) ∈ R
n. Consider the function

v(x) =
1
2

(a1 · · · an)
2
n

(
n∑

i=1

(xi − x0
i )2

a2
i

− 1

)
, x ∈ R

n.
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We have det (D2v) = 1 in Γ′ and v = 0 on ∂Γ′. Consequently, u− L ≤ v in Γ′ by
the comparison principle for Monge-Ampère equations (cf. [14]). In particular,

L ≥ L − u(x0) ≥ −v(x0) =
1
2

(a1 · · · an)
2
n .(3.4)

By assumption (3.1) we have Bρ(0) ⊂ Ω where ρ =
√

L/A. Thus ρ ≤ nai for all
i. It follows from (3.4) that

a1 ≤ (2L)
n
2

a2 · · · an
≤ (2L)

n
2

(ρ/n)n−1 ≤ C0

√
L(3.5)

where C0 depends only on A and n. Note that 0 ∈ Ω hence |x| ≤ 2na1 for all
x ∈ Ω. We obtain from (3.5) that

u(x) = L ≥
(

a1

C0

)2

≥ a|x|2, ∀x ∈ ∂Ω,

for some positive constant a depending on A, n but not on L. Notice that the level
set Ω depends on the level L which is arbitrary. This proves (3.2).

Finally, when k = n − 1 we note that by (1.1) all eigenvalues of D2u are
greater than or equal to one everywhere and therefore u(x) ≥ 1

2 |x|2.

Let w be the Legendre transform of u, which is given by

w(y) := sup
x∈Rn

{x · y − u(x)}, y ∈ R
n.

By Lemma 3.1,

sup
x∈Rn

{x · y − u(x)} ≤ sup
x∈Rn

{x · y − a|x|2} =
1

4a
|y|2.(3.6)

So w(y) is defined for all y ∈ R
n. By the strict convexity of u we see that w is

smooth and strictly convex. Moreover, we have w(0) = 0, Dw(0) = 0 and

D2
yw(y) = (D2

xu(x))−1(3.7)

where x = Dw(y). Consequently,

Sn−k(D2w) = 1 in R
n(3.8)

and, in order to prove Theorem 1.2 it is enough to show that w is a quadratic
polynomial.
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We first note that if k = n − 1 then ∆w = 1 on R
n and w is convex. This

implies that D2
ξξw is a nonnegative harmonic function on R

n for any unit vector
ξ, hence D2

ξξw is a constant by Liouville Theorem for harmonic functions. In
turn, we conclude that w is a quadratic polynomial. In what follows we therefore
assume n ≥ 3 and k ≤ n − 2. Similarly to (3.6), by (3.1) we have

w(y) = sup
x∈Rn

{x · y − u(x)} ≥ sup
x∈Rn

{x · y − A|x|2} =
1

4A
|y|2, ∀y ∈ R

n.(3.9)

For a fixed constant R > 0 we define v ∈ C∞(Rn) by

v(x) := R−2w(Rx), x ∈ R
n

and for t > 0 set

Ωt := {x ∈ R
n : 4Av(x) < t}.

We see that Ωt ⊂ B1 for all 0 < t ≤ 1 by (3.9) and

det (vij(x)) = det (wij(Rx)) ≤ 1, ∀x ∈ R
n(3.10)

by (3.8) and the Newton-Maclaurin inequality.
It follows from Lemma 1 of [1] (see also Theorem 1.4.2 in [16]) that

v(x) ≥ t
4A

− C0{dist (x, ∂Ωt)}
2
n , ∀x ∈ Ωt,(3.11)

where C0 is independent of t ∈ (0, 1]. In particular,

{dist (Ω t
2
, ∂Ωt)}

2
n ≥ t

8C0A
.(3.12)

Using the convexity of v we obtain from (3.11)

|Dv(x)| ≤ t − 4Av(x)
4A dist (x, ∂Ωt)

≤ C0{dist (x, ∂Ωt)}
2−n

n , x ∈ Ωt.(3.13)

From (3.12) and (3.13) we derive an a priori gradient bound

|Dv| ≤ C1 in Ω 1
2
.(3.14)

We next apply the interior second derivative estimates due to Chou-Wang [10],
combined with (3.12) for t = 1

2 , to obtain

|D2v| ≤ C2 in Ω 1
4
.(3.15)
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It follows from the Evans-Krylov theorem (and, again, using (3.12) for t = 1
4 )

that

|D2v|Cα(Ω 1
8

) ≤ C3, 0 < α < 1.(3.16)

Finally, for L > 0 we take R =
√

32AL to obtain from (3.16)

|D2w|Cα({w≤L}) ≤ CL−α
2 ,(3.17)

where C is a constant independent of L. Letting L → ∞, we have |D2w|Cα(Rn) = 0.
Consequently, w is a quadratic polynomial. This completes the proof of Theo-
rem 1.2.

Indeed, we have proved the following characterization of global solutions to
the Hessian equation.

THEOREM 3.2. Let u ∈ C∞(Rn) be a convex solution of the Hessian equation

Sk(D2u) = 1, 1 ≤ k ≤ n.(3.18)

Suppose

u(x) ≥ b|x|2 − B ∀x ∈ R
n(3.19)

where b, B > 0 are constant. Then u is a quadratic polynomial.

It would be interesting to see if Theorem 3.2 remains valid under weaker or
without growth assumptions, or for k-convex solutions.

In light of Theorem 2.2 we have:

COROLLARY 3.3. Suppose u ∈ W2,p
loc (Rn) is an entire admissible strong solution

of (1.1) where p > γ. If there exists a positive constant C such that for all large R

∫
BR(0)

|D2u|p dx ≤ CRn,

then u is a quadratic polynomial.

DEPARTMENT OF MATHEMATICS, BEIJING NORMAL UNIVERSITY, BEIJING 100875, CHINA

E-mail: jgbao@bnu.edu.cn

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER,
BC V6T 1Z2, CANADA

E-mail: jychen@math.ubc.ca



HESSIAN QUOTIENT EQUATION 315

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996
E-mail: guan@math.utk.edu

INSTITUTE OF MATHEMATICS, ACADEMIA SINICA, BEIJING 100080, CHINA

E-mail: jimin@math08.math.ac.cn

REFERENCES

[1] L. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their
strict convexity, Ann. of Math. 131 (1990), 129–130.

[2] , Interior W2,p estimates for solutions of the Monge-Ampr̀e equation, Ann. of Math. 131
(1990), 135–150.

[3] , Monge-Ampère equation, div-curl theorems in Lagrangian coordinates, compression and
rotation, lecture notes, 1997.
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