
J. Math. Anal. Appl. 448 (2017) 22–43
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Hessian equations on exterior domain ✩

Xu Cao, Jiguang Bao ∗

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and 
Complex Systems, Ministry of Education, Beijing 100875, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 August 2016
Available online 4 November 2016
Submitted by J. Shi

Keywords:
Generalized symmetric function
Exterior Dirichlet problem
k-Hessian equation
Existence
Perron’s method

In the paper, we consider the Hessian equation σk(λ(D2u)) = f(x) where f is a pos-
itive function outside a bounded domain of Rn, n ≥ 3 and f(x) = 1 + O(|x|−β) for 
some β > 2 at infinity. Using the Perron’s method we prove the existence and unique-
ness for viscosity solutions of exterior Dirichlet problem with prescribed asymptotic 
behavior at infinity. There are examples to show that the result is optimal. This is 
an extension of the theorems given by Bao–Li–Li in [2] for f ≡ 1 and Bao–Li–Zhang 
in [3] for k = n.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the exterior Dirichlet problem for Hessian equations

σk(λ(D2u)) = f(x), in R
n \D, (1.1)

u = ϕ(x), on ∂D, (1.2)

where D is a bounded open set in Rn, n ≥ 3, ϕ ∈ C2(∂D), λ(D2u) denotes the eigenvalues λ1, · · · , λn of 
the Hessian matrix of u,

σk(λ(D2u)) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik

is the k-th elementary symmetric function, k = 1, · · · , n, f ∈ C0(Rn \D) is a perturbation of 1 near infinity,
which satisfies:
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f ≥ 0, on R
n \D, (1.3)

there exists a constant β > 2 such that lim sup
|x|→∞

|x|β |f(x) − 1| < ∞. (1.4)

For k = 1, (1.1) corresponds to Poisson’s equation, which is linear. The interior Dirichlet problem 
of Poisson’s equation has been widely discussed. For exterior Dirichlet problem, there also is extensive 
literature. For example, Meyers and Serrin [16] gave a sufficient condition for existence and uniqueness of a 
classical solution.

For k = n, (1.1) corresponds to the Monge–Ampère equation, which is fully nonlinear. The interior 
Dirichlet problem of the Monge–Ampère equations is adequately discussed through the works of Aleksandrov 
[1], Nirenberg [17], Calabi [9], Cheng and Yau [10], Caffarelli, Nirenberg and Spruck [7], Trudinger and Wang 
[21], Urbas [22] and many other works and the references therein. In contrast to the traditional Dirichlet 
problems there is an exterior Dirichlet problem of the Monge–Ampère equation. For example, Caffarelli and 
Li [6] proved an existence result for the exterior Dirichlet problem with the prescribed asymptotic behavior 
at infinity

lim sup
|x|→∞

(
|x|n−2

∣∣∣∣u(x) − (1
2x

TAx + b · x + c)
∣∣∣∣
)

< ∞ (1.5)

for (1.1), (1.2) when f ≡ 1, where c ∈ R, b ∈ R
n and A is an n × n real symmetric positive definite 

matrix with detA = 1. They also gave out the asymptotic behavior of solutions for (1.1) at infinity. Later 
Bao, Li and Zhang [3] extended Caffarelli and Li’s results to the Dirichlet problem det(D2u) = f where 
f is a perturbation of 1 at infinity. Note that the above asymptotic results are extension for a classical 
theorem of Jörgens [14], Calabi [9], and Pogorelov [18], which states that any classical convex solution of 
det(D2u) = 1 in Rn must be a quadratic polynomial. More extensive proofs and outstanding results of this 
classical problem are given by Cheng and Yau [11], Caffarelli [4], Jost and Xin [15] and many other followers.

For 2 ≤ k ≤ n, the Hessian equation (1.1) is an important class of second-order fully nonlinear elliptic 
equations. There have been many well-known results on Hessian equations in the bounded domain. For 
instance, Caffarelli, Nirenberg and Spruck demonstrated the classical solvability of the interior Dirichlet 
problem in [8]. Urbas [23] established the existence of viscosity solutions. In particular, Wang reviewed the 
existence and regularity theory for solutions of the associated Dirichlet problem in [24]. Corresponding to 
the interior Dirichlet problem mentioned above, the exterior Dirichlet problem also captured the attention 
of many researchers. For the case A = c∗I, where c∗ = (Ck

n)− 1
k and I is the n × n identity matrix, the 

exterior Dirichlet problem (1.1), (1.2), (1.5) of Hessian equation has been investigated in [12]. Bao, Li and 
Li [2] extend this to a more general A.

In this paper we intend to deal with the existence and uniqueness of viscosity solutions for problem (1.1), 
(1.2), (1.5) in exterior domain for further study, where f is a perturbation of 1 at infinity, and A is a positive 
definite matrix.

To work in the realm of elliptic equations, we have to restrict ourselves to a suitable class of functions, 
that is, the admissible (or k-convex) functions. We say that a function u ∈ C2(Rn \ D) is admissible (or 
k-convex) if λ(D2u) ∈ Γk in Rn\D, where Γk is the connected component of {λ ∈ R

n| σk(λ) > 0} containing

Γ+ = {λ ∈ R
n| λi > 0, i = 1, · · · , n}.

Moreover,

Γk = {λ ∈ R
n| σj > 0, 1 ≤ j ≤ k}.

See [8,20].
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For the reader’s convenience, we recall the definition of viscosity solutions to Hessian equations (see [5,23]
and the references therein). We also use the following definitions, which can be found in [19].

For Ω ⊂ R
n, we use USC(Ω) and LSC(Ω) to denote respectively the set of upper and lower semicontinuous 

real valued functions on Ω.

Definition 1.1. A function u ∈ USC(Rn \D) is said to be a viscosity subsolution of equation (1.1) in Rn \D
(or say that u satisfies σk(λ(D2u)) ≥ f(x) in Rn\D in the viscosity sense) if for any function ψ ∈ C2(Rn\D)
and point x̄ ∈ R

n \D satisfying

ψ(x̄) = u(x̄) and ψ ≥ u on R
n \D,

we have

σk(λ(D2ψ(x̄))) ≥ f(x̄).

A function u ∈ LSC(Rn \D) is said to be a viscosity supersolution of equation (1.1) in Rn \D (or say that 
u satisfies σk(λ(D2u)) ≤ f(x) in Rn \D in the viscosity sense) if for any k-convex function ψ ∈ C2(Rn \D)
and point x̄ ∈ R

n \D satisfying

ψ(x̄) = u(x̄) and ψ ≤ u on R
n \D,

we have

σk(λ(D2ψ(x̄))) ≤ f(x̄).

A function u ∈ C0(Rn \D) is said to be a viscosity solution of (1.1) if it is both a viscosity subsolution 
and supersolution of (1.1).

It is well known that a function u ∈ C2(Rn \D) is a k-convex classical solution (respectively, subsolution, 
supersolution) of (1.1) if and only if it is a C2 viscosity solution (respectively, subsolution, supersolution).

We also give out the definition of viscosity solutions to the exterior Dirichlet problem for Hessian equa-
tions.

Definition 1.2. Let ϕ ∈ C0(∂D). A function u ∈ USC(Rn \D) (u ∈ LSC(Rn \D)) is said to be a viscosity 
subsolution (supersolution) of the Dirichlet problem (1.1), (1.2), if u is a viscosity subsolution (supersolution) 
of (1.1) in Rn \D and u ≤ (≥) ϕ on ∂D. A function u ∈ C0(Rn \D) is said to be a viscosity solution of 
(1.1), (1.2) if it is both a viscosity subsolution and supersolution.

Let

Ak = {A| A is a real n× n symmetric positive definite matrix, with σk(λ(A)) = 1}.

Our main result is

Theorem 1.1. Let D be a smooth bounded strictly convex open subset in Rn, n ≥ 3, and let ϕ ∈ C2(∂D). 
Suppose that f satisfies (1.3) and (1.4). Then for any given b ∈ R

n and A ∈ Ak with 2 ≤ k ≤ n, there exists 
some constant c∗, depending only on n, b, A, D, f , and ||ϕ||C2(∂D), such that for every c > c∗ there exists 
a unique viscosity solution u ∈ C0(Rn \D) of (1.1), (1.2) and

lim sup
(
|x|min{ k

Hk
, β}−2 ·

∣∣∣∣u(x) − (1
2x

TAx + b · x + c)
∣∣∣∣
)

< ∞, if β �= k

H
, (1.6)
|x|→∞ k



X. Cao, J. Bao / J. Math. Anal. Appl. 448 (2017) 22–43 25
or

lim sup
|x|→∞

(
|x|

k
Hk

−2(ln |x|)−1 ·
∣∣∣∣u(x) − (1

2x
TAx + b · x + c)

∣∣∣∣
)

< ∞, if β = k

Hk
, (1.7)

where

Hk = max
{
λi(A) ∂

∂λi
σk(λ(A)) | i = 1, · · · , n

}
.

Remark 1.1. Theorem 1.1 is a general extension of the case f ≡ 1 in [2]. For the case k = n, the Monge–
Ampère equations, Theorem 1.1 has been proved by Bao, Li and Zhang [3], but they missed the case (1.7). 
Thus we only need to prove for 2 ≤ k ≤ n − 1.

Remark 1.2. The following example shows that the assumption β > 2 in (1.4) is optimal and the constant 
c∗ cannot be removed. Let A = c∗I, where c∗ = (Ck

n)− 1
k and I is the n × n identity matrix. It is obvious

that λ(A) = (c∗, · · · , c∗). By computation,

λi
∂

∂λi
σk(λ(A)) = λi

∑
1≤j1<···<jk−1≤n,jl �=i

λj1 · · ·λjk−1

= λi

∑
1≤j1<···<jk−1≤n,jl �=i

(c∗)k−1

= Ck−1
n−1(c∗)k

= k

n

is independent of i, thus Hk = k
n . Set D = B1, and f = 1 + r−β , r = |x| ≥ 1. Suppose that u is a radial 

solution of σk(D2u) = f , that is

Ck−1
n−1u

′′(r)(u
′(r)
r

)k−1 + Ck
n−1(

u′(r)
r

)k = f(r).

We have

Ck
nr

n−k(u′(r))k = Ck
n(u′(1))k +

r∫
1

(
ntn−1 + ntn−β−1)dt

=
{
rn + n

n−β r
n−β + d1, β �= k

Hk
= n,

rn + n ln r + d2, β = k
Hk

= n,

where

d1 = Ck
n(u′(1))k − 1 − n

n− β
, d2 = Ck

n(u′(1))k − 1

are constants.
For β �= k

Hk
= n,

u(r) = u(1) +
r∫
c∗t(1 + n

n− β
t−β + d1t

−n) 1
k dt.
1
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Since

lim
r→∞

u(r)
c∗

2 r2 = lim
r→∞

c∗r(1 + n
n−β r

−β + d1r
−n) 1

k

c∗r
= 1,

we rewrite

u(r) = c∗

2 r2 + u(1) − c∗

2 +
r∫

1

c∗t

(
(1 + n

n− β
t−β + d1t

−n) 1
k − 1

)
dt. (1.8)

For β > 2,

u(r) = c∗

2 r2 + C1 −
∞∫
r

c∗t

(
(1 + n

n− β
t−β + d1t

−n) 1
k − 1

)
dt,

where

C1 = u(1) − c∗

2 +
∞∫
1

c∗t

(
(1 + n

n− β
t−β + d1t

−n) 1
k − 1

)
dt < ∞.

By computation, we have

lim
r→+∞

−
∫∞
r

c∗t

(
(1 + n

n−β t
−β + d1t

−n) 1
k − 1

)
dt

r2−β
= nc∗

k(2 − β)(n− β) , for β < n,

and

lim
r→+∞

−
∫∞
r

c∗t

(
(1 + n

n−β t
−β + d1t

−n) 1
k − 1

)
dt

r2−n
= c∗d1

k(2 − n) , for β > n.

Then for d1 �= 0, there exists a constant C �= 0 such that

−
∞∫
r

c∗t

(
(1 + n

n− β
t−β + d1t

−n) 1
k − 1

)
dt = Cr2−min{n,β} + o(r2−min{n,β}), r → +∞.

Thus we have

u(r) = c∗

2 r2 + C1 + Cr2−min{n,β} + o(r2−min{n,β}), r → +∞.

In the case of d1 = 0, it follows from (1.8) that

u(r) = c∗

2 r2 + C1 + nc∗

k(2 − β)(n− β)r
2−β + o(r2−β), r → +∞.

For β = 2,
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lim
r→∞

∫ r

1 c∗t

(
(1 + n

n−2 t
−2 + d1t

−n) 1
k − 1

)
dt

ln r

= lim
r→∞

c∗r

(
(1 + n

n−2r
−2 + d1r

−n) 1
k − 1

)
r−1

= lim
r→∞

c∗
(

(1 + n
n−2r

−2 + d1r
−n) 1

k − 1
)

r−2

= lim
r→∞

c∗ 1
k (1 + n

n−2r
−2 + d1r

−n) 1
k−1(− 2n

n−2r
−3 − nd1r

−n−1)
−2r−3

= lim
r→∞

c∗( 2n
n−2 + nd1r

2−n)
2k

= c∗n

k(n− 2) .

Therefore

u(r) = c∗

2 r2 + c∗n

k(n− 2) ln r + C2 + O(r2−min{4,n}) as r → ∞,

where

C2 = u(1) − c∗

2 +
∞∫
1

(
c∗t

(
(1 + n

n− 2 t
−2 + d1t

−n) 1
k − 1

)
− c∗n

k(n− 2) t
−1

)
dt < ∞.

For 0 < β < 2,

lim
r→∞

∫ r

1 c∗t

(
(1 + n

n−β t
−β + d1t

−n) 1
k − 1

)
dt

r2−β

= lim
r→∞

c∗r

(
(1 + n

n−β r
−β + d1r

−n) 1
k − 1

)
(2 − β)r1−β

= lim
r→∞

c∗
(

(1 + n
n−β r

−β + d1r
−n) 1

k − 1
)

(2 − β)r−β

= lim
r→∞

c∗ 1
k (1 + n

n−β r
−β + d1r

−n) 1
k−1(− βn

n−β r
−β−1 − nd1r

−n−1)
(2 − β)(−β)r−β−1

= lim
r→∞

c∗( nβ
n−β + nd1r

β−n)
kβ(2 − β)

= c∗n

k(n− β)(2 − β) .

Therefore

u(r) = c∗
r2 + c∗n

r2−β + u(1) − c∗ + o(r2−β) as r → ∞.
2 k(n− β)(2 − β) 2
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Furthermore, as r → ∞, we have

u(r) =

⎧⎪⎪⎨
⎪⎪⎩

c∗

2 r2 + c∗n
k(n−β)(2−β)r

2−β + C3 + O(r2−min{n,2β}), 1 < β < 2,
c∗

2 r2 + c∗n
k(n−1)r + c∗

k ( 1
k − 1)( n

n−1 )2 ln r + C4 + O(r2−n), β = 1,
c∗

2 r2 + c∗n
k(n−β)(2−β)r

2−β + c∗(k−1)
2k2(1−β) (

n
n−β )2r2−2β + C5 + O(r2−n), 0 < β < 1,

where C3, C4, C5 are some constants.
For β = k

Hk
= n,

u(r) = u(1) +
r∫

1

c∗t(1 + nt−n ln t + d2t
−n) 1

k dt

= c∗

2 r2 + C6 −
∞∫
r

c∗t

(
(1 + nt−n ln t + d2t

−n) 1
k − 1

)
dt,

where

C6 = u(1) − c∗

2 +
∞∫
1

c∗t

(
(1 + nt−n ln t + d2t

−n) 1
k − 1

)
dt < ∞.

By computation, we have

lim
r→+∞

−
∫∞
r

c∗t

(
(1 + nt−n ln t + d2t

−n) 1
k − 1

)
dt

r2−n ln r
= nc∗

k(2 − n) ,

that is,

u(r) = c∗

2 r2 + C3 + nc∗

k(2 − n)r
2−n ln r + o(r2−n ln r) as r → ∞.

From the above example, we can see that β > 2 is optimal. A natural question rises.

Question 1. Does the problem (1.1), (1.2) with

u(r) = c∗

2 r2 + c∗n

k(n− 2) ln r + C2 + O(r2−min{4,n}) as r → ∞,

for β = 2, and

u(r) = c∗

2 r2 + c∗n

k(n− β)(2 − β)r
2−β + u(1) − c∗

2 + o(r2−β) as r → ∞,

for 0 < β < 2 has a viscosity solution?

In spite of a coordinate translation, any real symmetric matrix A can be regarded as a real diagonal 
matrix, which has the same eigenvalues of A. Thus in this paper, without loss of generality, we always 
assume that A is diagonal. For k = n, we have A ∈ An and σn(λ(A)) = 1, and can find a diagonal matrix 
O such that OTAO = I ∈ An. Though λ(A) may not be the same as λ(I), we still have

det(D2
xu) = det(OTD2

yuO) = det(D2
yu)
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under the transformation y = Ox. This is not true for 2 ≤ k ≤ n − 1 except the case A = c∗I. Thus we 
could only assume that A is diagonal but not of the form A = c∗I.

The organization of this paper is as follows. In Section 2 we construct a family of generalized symmetric 
smooth k-convex subsolutions of (1.1) in Rn \ {0} and in Section 3, we prove Theorem 1.1 using Perron’s 
method.

2. Generalized symmetric functions and subsolutions

In this section, we construct a family of generalized symmetric smooth subsolutions of (1.1). First we 
have to give out the definition of generalized symmetric functions and generalized symmetric solutions.

Definition 2.1. For a diagonal matrix A = diag(a1, · · · , an), we call u a generalized symmetric function with 
respect to A if u is a function of

s = 1
2x

TAx = 1
2

n∑
i=1

aix
2
i .

If u is a generalized symmetric function with respect to A and u is a solution (subsolution, supersolution) 
of the Hessian equation (1.1), then we call u a generalized symmetric solution (subsolution, supersolution) 
of (1.1).

We abuse the notation slightly by writing u(x) = u(1
2x

TAx) for a generalized symmetric function with 
respect to A when it is unambiguous.

Denote a = (a1, · · · , an). If A ∈ Ak, then we have ai > 0 (i = 1, · · · , n) and σk(a) = 1. Here we first 
quote several notations for convenience. For any fixed t-tuple {i1, · · · , it} ⊂ {1, · · · , n}, 1 ≤ t ≤ n − k, we 
define

σk;i1···it(a) = σk(a) |ai1=···=ait=0;

that is, σk;i1···it(a) is the k-th order elementary symmetric function of the n −t variables { ai |i ∈ {1, · · · , n} \
{i1, · · · , it}}. The following properties of the functions σk will be used in this paper:

σk(a) = σk;i(a) + aiσk−1;i(a), i = 1, · · · , n, (2.1)

and

n∑
i=1

aiσk−1;i(a) = kσk(a). (2.2)

Next we give out a useful proposition proved by Bao, Li and Li [2].

Proposition 2.1. For any A = diag(a1, · · · , an), if ω ∈ C2(Rn) is a generalized symmetric function with 
respect to A, then, with a = (a1, · · · , an),

σk(λ(D2ω)) = σk(a)(ω′)k + ω′′(ω′)k−1
n∑

i=1
σk−1;i(a)(aixi)2. (2.3)

To prove Theorem 1.1 for 2 ≤ k ≤ n − 1, it suffices to obtain enough subsolutions with appropriate 
properties. We construct such subsolutions, which are generalized symmetric functions with respect to A.
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Recall that f ∈ C0(Rn \D) can be continuously extended to the entire space, we assume that f ≥ 0 is
defined in Rn. Let f be a smooth, positive function of s = 1

2x
TAx such that f ≥ f in Rn and satisfying

(1.3) and (1.4). Without loss of generality, we can assume that f = 1 + C0s
− β

2 for s > s0, where C0, s0 are 
positive constants and s0 is large enough. Then we only need to find enough solutions or subsolutions with 
appropriate properties of

σk(λ(D2ω)) = f, (2.4)

which are obviously subsolutions of (1.1).
If A = c∗I, where c∗ = (Ck

n)− 1
k , 2 ≤ k ≤ n, then A satisfies σk(λ(A)) = 1 and (2.3) becomes

σk(λ(D2ω)) = σk(a)(ω′)k + 2sk
n
ω′′(ω′)k−1.

By simple computation, the ordinary differential equation

σk(a)(ω′)k + 2sk
n
ω′′(ω′)k−1 = f(s) (2.5)

has a family of solutions

ωk(s) =
s∫

1

(
η−

n
2

η∫
0

n

2 t
n
2 −1f(t)dt + αη−

n
2

) 1
k

dη,

where α > 0, s > 0. That is, ωk( c
∗

2 |x|2) is a solution of (2.5) in Rn \ {0}.
For k = n, ωn( c

∗

2 |x|2) is a solution of (2.4) in Rn \ {0} under affine transformations. Thus the Monge–
Ampère equation has generalized symmetric solutions with respect to A, which are also radially symmetric 
for every A ∈ An. However, for any given A ∈ Ak with 2 ≤ k ≤ n − 1, it is not enough to attain generalized 
symmetric solutions of (2.4) by only using these radially symmetric functions. A natural question is that 
whether (2.4) with 2 ≤ k ≤ n − 1 has generalized symmetric solutions with respect to A for every A ∈ Ak?

To answer this question, we have

Proposition 2.2. For any A = diag(a1, · · · , an) ∈ Ak, 1 ≤ k ≤ n. If there exists an ω ∈ C2(α, β) with 0 <
α < β < ∞ such that ω(1

2x
TAx) is a generalized symmetric solution of (2.4) in {x ∈ R

n|α < 1
2x

TAx < β}, 
then

k = n or a1 = · · · = an = c∗

where c∗ = (Ck
n)− 1

k .

Proof. We first deal with the case ω′′ ≡ 0. If ω′′ ≡ 0 holds, we have ω = c1s + c2 with constants c1, c2 ∈ R. 
Combined with (2.3) we get f = (ω′)k = (c1)k. It is a contradiction. Thus in the following proof, we assume 
that ω′′ �≡ 0 ∈ (α, β), that is, there exists s̄ ∈ (α, β) such that ω′′(s̄) �= 0.

For k = 1 and 1 ≤ i ≤ n, set x = (0, · · · , 0, 
√

2s̄
ai
, 0, · · · , 0). Since A ∈ A1, we have

f(s̄) = Δω(x)

= ω′(s̄)Σn
j=1aj + ω′′(s̄)

n∑
j=1

(ajxj)2

= ω′(s̄) + 2ais̄ω′′(s̄).
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It follows that

ai = f(s̄) − ω′(s̄)
2s̄ω′′(s̄)

is independent of i. By A ∈ A1, we have a1 = · · · = an = 1
n .

For 2 ≤ k ≤ n − 1 and 1 ≤ i ≤ n, set x = (0, · · · , 0, 
√

2s̄
ai
, 0, · · · , 0). We get

f(s̄) = σk(λ(D2ω)) = σk(a)(ω′(s̄))k + ω′′(s̄)(ω′(s̄))k−1
n∑

j=1
σk−1;j(a)(ajxj)2

= (ω′(s̄))k + 2s̄ω′′(s̄)(ω′(s̄))k−1σk−1;i(a)ai.

It is obvious that ω′ �= 0 in (α, β). It follows that

σk−1;i(a)ai =
f(s̄) −

(
ω′(s̄)

)k
2s̄ω′′(s̄)

(
ω′(s̄)

)k−1 .

We denote Ai
k(a) = σk−1;i(a)ai, then Ai

k(a) is independent of i. By A ∈ Ak, for i1 �= i2, we have

0 = Ai1
k (a) −Ai2

k (a)

= σk−1;i1(a)ai1 − σk−1;i2(a)ai2
= ai1(ai2σk−2;i1i2(a) + σk−1;i1i2(a)) − ai2(ai1σk−2;i1i2(a) + σk−1;i1i2(a))

= (ai1 − ai2)σk−1;i1i2(a).

Recall that ai > 0, i = 1, · · · , n, σk−1;i1i2(a) > 0, which means ai1 = ai2 . By the arbitrariness of i1 and i2, 
we have a1 = · · · = an = c∗. �

From Proposition 2.2 we find out that there is no generalized symmetric solution of (2.4) for 2 ≤ k ≤ n −1
when A �= c∗I. We will construct a family of generalized symmetric smooth functions satisfying

ω′(s) > 0, ω′′(s) < 0,

and

σk(λ(D2ω)) ≥ f and σm(λ(D2ω)) ≥ 0, 1 ≤ m ≤ k − 1.

For A = diag(a1, · · · , an) ∈ Ak, denote a = (a1, · · · , an) and define

Hk(a) := max
1≤i≤n

Ai
k(a). (2.6)

Since Ai
n(a) = aiσn−1;i(a) = σn(a) = 1 for every i, then Hn(a) = 1 holds. By (2.1) and (2.2) we have

Ai
k(a) = aiσk−1;i(a) < σk(a) = 1, 1 ≤ i ≤ n, k ≤ n− 1,

and

nHk(a) ≥
n∑

Ai
k(a) = kσk(a) = k.
i=1
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Thus we have

k

n
≤ Hk(a) < 1 (2.7)

for 1 ≤ k ≤ n − 1, where “=” holds if and only if a1 = · · · = an = c∗. When n ≥ 3 and 2 ≤ k ≤ n, we know 
from above that

n

2 ≥ k

2Hk(a)
> 1. (2.8)

By a simple computation, the ordinary differential equation

(ω′)k + 2sHk(a)ω′′(ω′)k−1 = f(s) (2.9)

has a family of solutions

ωα(s) = β1 +
s∫

s0

(
η
− k

2Hk(a)

η∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αη
− k

2Hk(a)

) 1
k

dη,

where β1 ∈ R and s0, α, s > 0. Then we have

ω′
α(s) =

(
s
− k

2Hk(a)

s∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αs
− k

2Hk(a)

) 1
k

> 0,

ω′′
α(s) = − 1

2Hk(a)

(
s
− k

2Hk(a)

s∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αs
− k

2Hk(a)

) 1
k−1

· s−
k

2Hk(a)−1
(
α +

s∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt− s
k

2Hk(a) f(s)
)
.

ω′′
α(s) ≤ 0 holds if and only if

α +
s∫

2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt− s
k

2Hk(a) f(s) ≥ 0.

Clearly, in order to obtain ω′′
α(s) ≤ 0 we only need to prove

α +
s∫

s0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt− s
k

2Hk(a) f(s) ≥ 0

since f > 0. Denote

F (s) = α +
s∫

s0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt− s
k

2Hk(a) f(s).

When s < s0, if
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α ≥ s
k

2Hk(a)
0 sup

Rn

f +
s0∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt,

then we have F (s) ≥ 0.
When s > s0, for k

Hk(a) �= β,

F (s) = α +
s∫

s0

k

2Hk(a)
t

k
2Hk(a)−1(1 + C0t

−β
2 )dt− s

k
2Hk(a) (1 + C0s

− β
2 )

= α− s
k

2Hk(a)
0 + C0

β
2

k
2Hk(a) −

β
2
s

k
2Hk(a)−

β
2 − C0

k
2Hk(a)
k

2Hk(a) −
β
2
s

k
2Hk(a)−

β
2

0 .

Set

α > s
k

2Hk(a)
0 − C0

β
2

k
2Hk(a) −

β
2
s

k
2Hk(a)−

β
2

0 + C0

k
2Hk(a)
k

2Hk(a) −
β
2
s

k
2Hk(a)−

β
2

0 ,

then we have F (s) ≥ 0.
For k

Hk(a) = β,

F (s) = α +
s∫

s0

k

2Hk(a)
t

k
2Hk(a)−1(1 + C0t

−β
2 )dt− s

k
2Hk(a) (1 + C0s

− β
2 )

= α− s
k

2Hk(a)
0 + k

2Hk(a)
C0(ln s− ln s0) − C0.

Set α > s
k

2Hk(a)
0 + C0, then we have F (s) ≥ 0.

In conclusion, we can find a positive constant C1 such that when α > C1, we have F (s) ≥ 0, i.e., ω′′
α(s) ≤ 0

holds for s > 0, β1 ∈ R.
Then the ordinary differential equation⎧⎪⎪⎨

⎪⎪⎩
(ω′(s))k + 2sHk(a)ω′′(ω′)k−1 = f(s), s > 0,
ω′(s) > 0, s > 0,
ω′′(s) ≤ 0, s > 0,

has a family of solutions

ωα(s) = β1 +
s∫

s0

(
η
− k

2Hk(a)

η∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αη
− k

2Hk(a)

) 1
k

dη, (2.10)

where β1 ∈ R and s0, s > 0, α > C1.
It follows that

ωα(s) = β1 + s− s0 +
s∫

s0

((
η
− k

2Hk(a)

η∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αη
− k

2Hk(a)
) 1

k − 1
)
dη

= s + μ(α) −
∞∫ ((

η
− k

2Hk(a)

η∫
k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αη
− k

2Hk(a)
) 1

k − 1
)
dη,
s 2
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where

μ(α) = β1 − s0 +
∞∫

s0

((
η
− k

2Hk(a)

η∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αη
− k

2Hk(a)
) 1

k − 1
)
dη.

For k
Hk(a) �= β, we have

((
η
− k

2Hk(a)

η∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αη
− k

2Hk(a)
) 1

k − 1
)

∼ η
− min { k

2Hk(a) ,
β
2 } as η → ∞,

while for k
Hk(a) = β,

((
η
− k

2Hk(a)

η∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αη
− k

2Hk(a)
) 1

k − 1
)

∼ η
− k

2Hk(a) ln η as η → ∞.

Thus from (2.8) we have μ(α) < ∞ in both cases and

ωα(s) = s + μ(α) + O(s1−min { k
2Hk(a) ,

β
2 }) as s → ∞ (2.11)

holds for β �= k
Hk(a) ,

ωα(s) = s + μ(α) + O(s1− k
2Hk(a) ln s) as s → ∞ (2.12)

holds for β = k
Hk(a) .

At the end of this section, we show that ωα(s) as above is a subsolution of (2.4) with properties we 
needed.

Proposition 2.3. For n ≥ 3, 2 ≤ k ≤ n, and A ∈ Ak, let ωα(s) = ωα(1
2x

TAx) be given in (2.10). Then ωα

is a smooth k-convex subsolution of (2.4) in Rn \ {0} satisfying

ωα(s) = s + μ(α) + O(s1−min { k
2Hk(a) ,

β
2 }) as s → ∞, for β �= k

Hk(a)
, (2.13)

ωα(s) = s + μ(α) + O(s1− k
2Hk(a) ln s) as s → ∞, for β = k

Hk(a)
. (2.14)

Proof. Obviously (2.13) and (2.14) follow from (2.11) and (2.12). By discussion above, we have

ω′
α(s) =

(
s
− k

2Hk(a)

s∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αs
− k

2Hk(a)

) 1
k

> 0,

ω′′
α(s) =

(
ω′
α(s)

)1−k

2Hk(a)s

(
f(s) −

(
ω′
α(s)

)k) ≤ 0.

Then by Proposition 2.1 and above we have

σk(λ(D2ωα)) = σk(a)(ω′
α)k + ω′′

α(ω′
α)k−1

n∑
i=1

σk−1;i(a)(aixi)2

≥ σk(a)(ω′
α)k + ω′′

α(ω′
α)k−1 · 2Hk(a)s = f(s) ≥ f(x)
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and

σm(λ(D2ωα)) = σm(a)(ω′
α)m + ω′′

α(ω′
α)m−1

n∑
i=1

σm−1;i(a)(aixi)2

= σm(a)(ω′
α)m +

(
ω′
α(s)

)m−k

2Hk(a)s

(
f(s) −

(
ω′
α(s)

)k) n∑
i=1

σm−1;i(a)(aixi)2

= (ω′
α)m

(
σm(a) +

(
ω′
α(s)

)−k

2Hk(a)s

(
f(s) −

(
ω′
α(s)

)k) n∑
i=1

σm−1;i(a)(aixi)2
)

≥ (ω′
α)m

(
σm(a) +

(
ω′
α(s)

)−k

2s

(
f(s) −

(
ω′
α(s)

)k) n∑
i=1

σm−1;i(a)(aixi)2

σk−1;i(a)ai

)
.

It follows from (see [2])

σm(a)σk−1;i(a) ≥ σm−1;i(a), (2.15)

for each 1 ≤ i ≤ n, that

σm(a) +
(
ω′
α(s)

)−k

2s

(
f(s) −

(
ω′
α(s)

)k) n∑
i=1

σm−1;i(a)(aixi)2

σk−1;i(a)ai

≥ σm(a) +
(
ω′
α(s)

)−k

2s

(
f(s) −

(
ω′
α(s)

)k) n∑
i=1

σm(a)σk−1;i(a)(aixi)2

σk−1;i(a)ai

= σm(a) +
(
ω′
α(s)

)−k

2s

(
f(s) −

(
ω′
α(s)

)k)
σm(a)2s

= f(s)σm(a)
(
ω′
α(s)

)−k
> 0.

We then immediately have σm(λ(D2ωα)) > 0 holds for 1 ≤ m ≤ k − 1. Thus ωα is a k-convex subsolution 
of (2.4) in Rn \ {0}. �
3. Proof of Theorem 1.1

Denote Es = {x ∈ R
n|12xTAx < s}. Without loss of generality, we assume E2 ⊂ D ⊂ Es0 for s0 large 

enough. First we give out a lemma for n ≥ 3, 2 ≤ k ≤ n and A = diag(a1, · · · , an) ∈ Ak.

Lemma 3.1. Let ϕ ∈ C2(∂D). Then there exists some constant C, depending only on f , n, ||ϕ||C2(∂D),
the upper bound of A, the diameter and the convexity of D, and the C2 norm of ∂D, such that, for every 
ξ ∈ ∂D, there exists x(ξ) ∈ R

n satisfying |x(ξ)| ≤ C, and

ωξ < ϕ on ∂D \ {ξ}, ωξ(ξ) = ϕ(ξ),

where

ωξ(x) = ϕ(ξ) + F
1
k

2 [(x− x(ξ))TA(x− x(ξ)) − (ξ − x(ξ))TA(ξ − x(ξ))], x ∈ R
n, (3.1)

and F = sup
Rn f .
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Proof. Let ξ ∈ ∂D. We may assume without loss of generality that ξ = 0 and ∂D can be locally represented 
by the graph of

xn = ρ(x′) = O(|x′|2)

by a translation and a rotation, where x′ = (x1, · · · , xn−1). And ϕ has the local expansion

ϕ(x′, ρ(x′)) = ϕ(0) +
n∑

i=1
ϕxi

(0)xi + O(|x|2)

= ϕ(0) +
n−1∑
i=1

ϕxi
(0)xi + O(|x′|2),

since D is bounded.
By (3.1), we have

ω(x) = ϕ(0) + F
1
k

2 [(x− x)TA(x− x) − xTAx]

= ϕ(0) + F
1
k

2 xTAx− F
1
k xTAx.

Recalling that A ∈ Ak we know that A is invertible. Thus we can find x = x(t) ∈ R
n such that

Ax(t) = F− 1
k (−ϕx1(0), · · · ,−ϕxn−1(0), t)T ,

where t will be chosen to fit our need later. Then

ω(x) = ϕ(0) + F
1
k

2 xTAx +
n−1∑
i=1

ϕxi
(0)xi − txn.

It follows that

(ω − ϕ)(x′, ρ(x′)) = F
1
k

2 xTAx− tρ(x′) + O(|x′|2)

≤ C(|x′|2 + ρ(x′)2) − tρ(x′)

where C depends only on the upper bound of A, ||ϕ||C2(∂D) and the C2 norm of ∂D. By the strict convexity 
of ∂D, there exists some constant ε > 0 depending only on D such that

ρ(x′) ≥ ε|x′|2, for |x′| < ε. (3.2)

Clearly we can choose t large such that

(ω − ϕ)(x′, ρ(x′)) < 0, x ∈ ∂D ∩ {(x′, ρ(x′))| 0 < |x′| < ε}.

On the other hand, by the strict convexity of ∂D and (3.2) we have

xn ≥ ε3, for x ∈ ∂D \ {(x′, ρ(x′))| |x′| < ε}.

By the boundedness of D and the discussion above, we can choose t large again such that

ω(x) − ϕ(x) < 0, x ∈ ∂D \ {(x′, ρ(x′))| |x′| < ε}.

Now we get a ω as required. The proof has been completed. �
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Proof of Theorem 1.1. By an orthogonal transformation and by subtracting a linear function from u, we 
only need to prove Theorem 1.1 for the case that 2 ≤ k ≤ n − 1, A = diag(a1, · · · , an) ∈ Ak and b = 0.

For β1 ∈ R and α > C1, set

ωα(s) = β1 +
s∫

s0

(
η
− k

2Hk(a)

η∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αη
− k

2Hk(a)

) 1
k

dη

as in (2.10). By Proposition 2.3 we have ωα is a smooth k-convex subsolution of (2.4) in Rn \ {0} and 
satisfies

ωα(s) = s + μ(α) + O(s1−min { k
2Hk(a) ,

β
2 }) as s → ∞, for β �= k

Hk(a)
,

ωα(s) = s + μ(α) + O(s1− k
2Hk(a) ln s) as s → ∞, for β = k

Hk(a)
.

Here

μ(α) = β1 − s0 +
∞∫

s0

((
η
− k

2Hk(a)

η∫
2

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt + αη
− k

2Hk(a)
) 1

k − 1
)
dη.

Obviously we see that μ(α) is strictly increasing in α, and

lim
α→∞

μ(α) = ∞. (3.3)

We will fix the value of c∗ in the proof. First we require that c∗ > μ(C1). Thus, by (3.3), for every c > c∗
there exists a unique α(c) such that

μ(α(c)) = c. (3.4)

So ωα(c) satisfies

ωα(c)(s) = s + c + O(s1−min { k
2Hk(a) ,

β
2 }) as s → ∞, for β �= k

Hk(a)
,

ωα(c)(s) = s + c + O(s1− k
2Hk(a) ln s) as s → ∞, for β = k

Hk(a)
.

Set

ω(x) = max{ωξ(x)| ξ ∈ ∂D},

where ωξ is given in Lemma 3.1. It is easy to see that ω(x) is locally Lipschitz in Rn \D and that ω = ϕ

on ∂D. By simple computation, we have

σk(λ(D2ωξ)) = Fσk(a) = F > f,

where a = (a1, · · · , an). That is ωξ is a smooth k-convex subsolution of (2.4). Thus ω is a viscosity subsolution 
of (2.4) in Rn \D.

Next we fix a number α̂ > 0 such that



38 X. Cao, J. Bao / J. Math. Anal. Appl. 448 (2017) 22–43
min
∂Es0+1

ωα̂ > max
∂Es0+1

ω.

We require that c∗ also satisfies c∗ > μ(α̂). For c > c∗, we have α(c) = μ−1(c) > μ−1(c∗) > α̂ and

ωα(c) > ωα̂ > ω on ∂Es0+1. (3.5)

Let

β1 := min{ωξ(x)| ξ ∈ ∂D, x ∈ Es0 \D}.

It follows that

ωα ≤ β1, in Es0 \D, (3.6)

for α > C1. Combined with the definition of ω, we have

ωα(c) ≤ β1 ≤ ω in Es0 \D. (3.7)

Now we define for c > c∗,

u(x) =
{

max{ωα(c)(x), ω(x)}, x ∈ Es0+1 \D,

ωα(c)(x), x ∈ R
n \ Es0+1.

We know from (3.7) that u = ω in Es0 \D and in particular u = ω = ϕ on ∂D. We know from (3.5) that 
u = ωα(c) in a neighborhood of ∂Es0+1. Therefore u is a locally Lipschitz function in Rn \ D. Since both 
ωα(c) and ω are viscosity subsolutions of (2.4) in Rn \D, so is u.

For c > c∗, let f be a smooth function of s = 1
2x

TAx, where A = diag(a1, · · · , an) ∈ Ak, and denote that 
a = (a1, · · · , an), such that f ≤ f in Rn and satisfies (1.3) and (1.4). Without loss of generality, we can 

assume that f < 1 is a monotone increasing smooth function and f = 1 −C0s
− β

2 for s > s0, where C0, s0, β
are the same as in the definition of f .

Let

ω(s) = β2 +
s∫

2

(
η
− k

2Hk(a)

η∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k

dη.

By simple computation we have, for s > 0,

ω ′(s) =
(
s
− k

2Hk(a)

s∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k

> 0,

ω ′′(s) = 1
2Hk(a)

(
s
− k

2Hk(a)

s∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k−1

· s−
k

2Hk(a)−1
(
s

k
2Hk(a) f(s) −

s∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
)

= 1
2Hk(a)

(
s
− k

2Hk(a)

s∫
k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k−1
0
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· s−
k

2Hk(a)−1
(
s

k
2Hk(a) f(s) −

(
s

k
2Hk(a) f(s) −

s∫
0

t
k

2Hk(a) f ′(t)dt
))

= 1
2Hk(a)

(
s
− k

2Hk(a)

s∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k−1

s
− k

2Hk(a)−1
s∫

0

t
k

2Hk(a) f ′(t)dt ≥ 0,

and ω satisfies the ordinary differential equation

(ω′(s))k + 2sHk(a)ω′′(ω′)k−1 = f(s), s > 0.

Then we have

σk(λ(D2ω)) = σk(a)(ω ′)k + ω ′′(ω ′)k−1
n∑

i=1
σk−1;i(a)(aixi)2

≤ σk(a)(ω ′)k + ω ′′(ω ′)k−1 · 2Hk(a)s = f(s) ≤ f(x).

Since ai > 0, ω ′(s) > 0 and ω ′′(s) ≥ 0, it is obvious that

σj(λ(D2ω)) = σj(a)(ω ′)j + ω ′′(ω ′)j−1
n∑

i=1
σj−1;i(a)(aixi)2 ≥ 0, j = 1, · · · , k.

Thus ω is a smooth k-convex supersolution of σk(λ(D2u)) = f in Rn \ {0}.
We rewrite ω as the form

ω(s) = β2 + s− 2 +
s∫

2

((
η
− k

2Hk(a)

η∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k − 1
)
dη

= s +
(
β2 − 2 +

∞∫
2

((
η
− k

2Hk(a)

η∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k − 1
)
dη

)

−
∞∫
s

((
η
− k

2Hk(a)

η∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k − 1
)
dη.

For β �= k
Hk(a) , we have

((
η
− k

2Hk(a)

η∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k − 1
)

∼ η−
β
2 as η → ∞,

while for β = k
Hk(a) ,

((
η
− k

2Hk(a)

η∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k − 1
)

∼ η
− k

2Hk(a) ln η as η → ∞.

Therefore, we have for β �= k ,
Hk(a)
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−
∞∫
s

((
η
− k

2Hk(a)

η∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k − 1
)
dη = O(s1− β

2 ) as s → ∞,

and for β = k
Hk(a) ,

−
∞∫
s

((
η
− k

2Hk(a)

η∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k − 1
)
dη = O(s1− β

2 ln s) as s → ∞.

It follows from (2.8) and β > 2 that

∞∫
2

((
η
− k

2Hk(a)

η∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k − 1
)
dη < ∞.

Set

β2 = 2 −
∞∫
2

((
η
− k

2Hk(a)

η∫
0

k

2Hk(a)
t

k
2Hk(a)−1

f(t)dt
) 1

k − 1
)
dη + c,

then we have

ω(s) = s + c + O(s1− β
2 ) as s → ∞, for β �= k

Hk(a)
,

ω(s) = s + c + O(s1− β
2 ln s) as s → ∞, for β = k

Hk(a)
.

Set

b̂ := max{ωξ(x)| ξ ∈ ∂D, x ∈ Es0 \D}.

We further require that c∗ > b̂, and then fix the value of c∗. We know from f < 1 that β2 > c and

ω > β2 > c∗ > b̂ > β1 > ωα(c), on ∂D, (3.8)

and

lim
|x|→∞

(ω − ωα(c)) = 0.

Thus, in view of the comparison principle of (1.1), we have

ω ≥ ωα(c), in R
n \D. (3.9)

By (3.8) and (3.5), we have, for c > c∗,

ωξ ≤ ω, on ∂(Es0+1 \D), ξ ∈ ∂D. (3.10)

Again by the comparison principle for smooth k-convex solutions of (1.1), we have

ωξ ≤ ω, in Es0+1 \D, ξ ∈ ∂D. (3.11)
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Thus

ω ≤ ω, in Es0+1 \D, (3.12)

combined with (3.9), implies that

u ≤ ω, in R
n \D. (3.13)

For any c > c∗, let Sc denote the set of v ∈ USC(Rn \ D), which are viscosity subsolutions of (1.1) in 
R

n \D satisfying v = ϕ, on ∂D, and u ≤ v ≤ ω, in Rn \D. Obviously, Sc is not empty and u ∈ Sc. Let

u := sup{v(x) | v ∈ Sc}, x ∈ R
n \D.

By the above discussion about ω and the definition of u, for β �= k
Hk(a)

u(x) ≤ ω(s) = s + c + O(s1− β
2 ) as s → ∞,

and

u(x) ≥ ωα(c)(s) = s + c + O(s1−min { k
2Hk(a) ,

β
2 }) as s → ∞.

Then

u(x) = s + c + O(s1−min { k
2Hk(a) ,

β
2 }) as s → ∞.

For β = k
Hk(a) ,

u(x) ≤ ω(s) = s + c + O(s1− β
2 ln s) as s → ∞

and

u(x) ≥ ωα(c)(s) = s + c + O(s1− k
2Hk(a) ln s) as s → ∞.

Then

u(x) = s + c + O(s1− k
2Hk(a) ln s) as s → ∞.

This gives out the estimate (1.6) and (1.7).
Next, we prove that u satisfies the boundary condition. Since u = ω = ϕ on ∂D we have

lim inf
x→ξ

u(x) ≥ lim
x→ξ

u = ϕ(ξ), ξ ∈ ∂D.

Therefore we only need to prove

lim sup
x→ξ

u(x) ≤ ϕ(ξ), ξ ∈ ∂D.

Let ω+
c ∈ C2(Es0 \D) be defined by



42 X. Cao, J. Bao / J. Math. Anal. Appl. 448 (2017) 22–43
⎧⎪⎨
⎪⎩

Δω+
c = 0, in Es0 \D

ω+
c = ϕ, on ∂D

ω+
c = max∂Es0

ω, on ∂Es0 .

By Newtonian inequalities, it is easy to see that a viscosity subsolution v of (1.1) satisfies Δv ≥ 0 in the 
viscosity sense. Then for all v ∈ Sc, we have v ≤ ω+

c on ∂(Es0 \D). By comparison principle we get

v ≤ ω+
c , in Es0 \D.

By the arbitrariness of v we have

u ≤ ω+
c , in Es0 \D

and then

lim sup
x→ξ

u(x) ≤ lim
x→ξ

ω+
c (x) = ϕ(ξ), ξ ∈ ∂D.

Finally, we can prove by Perron’s method that u ∈ C0(Rn \ D) is a viscosity solution of (1.1), (1.2). 
Details can be found in [13] and the references therein. Theorem 1.1 is established. �
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