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than two as the distance between the surfaces of discontinuity of the coefficients of the
system tends to zero. This work is stimulated by the study of Babuska, Andersson, Smith
and Levin in [10] concerning initiation and growth of damage in composite materials. The
Lamé system is assumed and they computationally analyzed the damage and fracture in
composite materials. They observed numerically that the size of the strain tensor remains
bounded when the distance €, between two inclusions, tends to zero. This was proved by
Li and Nirenberg in [31]. Indeed such e-independent gradient estimates were established
there for solutions of divergence form second order elliptic systems, including linear
systems of elasticity, with piecewise Holder continuous coefficients in all dimensions.
See Bonnetier and Vogelius [16] and Li and Vogelius [32] for corresponding results on
divergence form elliptic equations.

The estimates in [31] and [32] depend on the ellipticity of the coefficients. If ellipticity
constants are allowed to deteriorate, the situation is very different. Consider the scalar
equation

V. (ak(z)Vuk> =0 1in ),

(1.1)
Uy = @ on 02,

where Q is a bounded open set of R%, d > 2, containing two e-apart convex inclusions
Dy and Ds, p € C%(09) is given, and

( ) ke (0,00) in D1 UDQ,
ap(x) = _
1 iHQ\DluDQ.

When k& = oo, the L®-norm of |Vue| for the solutions u, of (1.1) generally becomes
unbounded as € tends to 0. The blow up rate of |Vue| is respectively e~ 1/2 in dimen-

sion d = 2, (¢e|/In¢])~! in dimension d = 3, and ¢! in dimension d > 4. See Bao, Li
and Yin [11], as well as Budiansky and Carrier [18], Markenscoff [36], Ammari, Kang
and Lim [2], Ammari, Kang, Lee, Lee and Lim [4] and Yun [41,42]. Further, more de-
tailed, characterizations of the singular behavior of Vus, have been obtained by Ammari,
Ciraolo, Kang, Lee and Yun [7], Ammari, Kang, Lee, Lim and Zribi [6], Bonnetier and
Triki [14,15], Gorb and Novikov [24] and Kang, Lim and Yun [26,27]. For related works,
see [3,5,8,9,12,15,17,19-22,25,28-30,33-35,37,39,40] and the references therein.

In this paper, we mainly investigate the gradient estimates for the Lamé system with
partially infinite coefficients in dimension d = 3, a physically relevant dimension. This
paper is a continuation of [13], where the estimate for dimension d = 2, another physically
relevant dimension, is established. We prove that (e|Ine|)~! is an upper bound of the
blow up rate of the strain tensor in dimension three, the same as the scalar equation
case mentioned above. New difficulties need to be overcome, and a number of refined
estimates, via appropriate iterations, are used in our proof. We also prove that ¢! is
an upper bound of the blow up rate of the strain tensor in dimension d > 4, which is
also the same as the scalar equation case. Note that it has been proved in [11] that these
upper bounds in dimension d > 3 are optimal in the scalar equation case.
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We consider the Lamé system in linear elasticity with piecewise constant coefficients,
which is stimulated by the study of composite media with closely spaced interfacial
boundaries. Let Q C R? be a bounded open set with C? boundary, and D; and D are
two disjoint convex open sets in ) with C?7 boundaries, 0 < « < 1, which are € apart
and far away from OS2, that is,

D,,D, C Q, the principle curvatures of Dy, 0Dy > kg > 0,

1.2
¢ :=dist(D1, D3) > 0, dist(Dy U D3,99) > ky > 0, (1.2)

where kg, k1 are constants independent of e. We also assume that the C?” norms of 9D;
are bounded by some constant independent of €. This implies that each D; contains a
ball of radius r for some constant 7 > 0 independent of €. Denote

(~2::Q\D1UD2.

Assume that Q and Dy U Dy are occupied, respectively, by two different isotropic and
homogeneous materials with different Lamé constants (A, 1) and (Aq, pt1). Then the elas-
ticity tensors for the inclusions and the background can be written, respectively, as C!
and C°, with

Cilj ol = M0ij0kt + 11 (8ikdji + 0udjin),
and
C it = AijOrt + p(0idji + 6iubjn), (1.3)
where 4, j,k,1 = 1,2,3 and d;; is the Kronecker symbol: §;; = 0 for i # j, d;; = 1 for

1 =j. Let u = (u1,us, U3)T : © — R3 denote the displacement field. For a given vector
valued function ¢, we consider the following Dirichlet problem for the Lamé system

V- ( (XQ(CO + XDluDz(Cl) e(u)) =0, in €,

U=, on 0F),

(1.4)

where yp is the characteristic function of D C R3,
1 T
e(u) = 3 (Vu+ (Vu)')

is the strain tensor.
Assume that the standard ellipticity condition holds for (1.4), that is,

>0, 3X+2u>0; p1 >0, 3\ +2u > 0. (1.5)
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For ¢ € HY(Q;R3), it is well known that there exists a unique solution u € H!({;R3)
of the Dirichlet problem (1.4), which is also the minimizer of the energy functional

1

Ji[u] = 5/ ((XQ(CO + xp,up,C') e(u),e(u))dx
Q

on
H;(Q;Rg) ={ue H' (%GR | u—pe Hj(QR?) }.

More details can be found in the Appendix in [13].
Introduce the linear space of rigid displacement in R3,

v {ve @i | Vot (v —o )

equivalently,

1 0 0

0 0 1

X9 I3 0
¢4(—$1>,¢5<0>7¢6<$3>}-

0 —T1 —X9

If ¢ € HY(D;R3), e(§) =0 in D, and D C R3 is a connected open set, then £ is a linear
combination of {1} in D. If an element & in ¥ vanishes at three non-collinear points,
then £ =0, see Lemma 6.1.

For fixed A and p satisfying ¢ > 0 and 3A + 2p > 0, denoting uy, ,, the solution
of (1.4). Then, as proved in the Appendix in [13],

Ury,p, — U 0 HI(Q§R3) as min{p,3 1 +2u1} — o0,

where u is a H'(Q;R?) solution of

Lou:=V - (Cc(u)) =0, inQ,
uly, =ul_, on Dy U Dy,
e(u) = O7 in D1 U D27 (16)
8Di§_ljt)|+-wa:0, i:172, 04:1’27...767
U=, on 897
where
Ju

|l = (Co%(w)) 7t = A(V-u) i+ p (Vu+ (Vu)') @
140 +



302 J. Bao et al. / Advances in Mathematics 305 (2017) 298-338

and 7 is the unit outer normal of D;, i = 1,2. Here and throughout this paper the
subscript & indicates the limit from outside and inside the domain, respectively. In this
paper we study solutions of (1.6), a Lamé system with infinite coefficients in D7 U Ds.
The existence, uniqueness and regularity of weak solutions of (1.6), as well as a vari-
ational formulation, can be found in the Appendix in [13]. In particular, the H! weak

solution is in C'(Q; R3)NCY (Dy U Dy; R?). The solution is also the unique function which
has the least energy in appropriate functional spaces, characterized by

Iolu] = miﬂ T[],

IS

where

and
A:={ue H;(Q;R3) | e(u) =0 in D;UD,}.

It is well known, see [38], that for any open set O and u,v € C?(0),

/ (Co%(u),e(v)) de = — / (La,pu) v+ / u -V (1.7)
(91/0 +
o) o) a0
A calculation gives
(Lapu), = pAug, + (A + )0, (V-u), k=1,2,3. (1.8)
We assume that for some g > 0,
1
b0 < 3N+ 2 < . (1.9)
0

Since D7 and Dy are two strictly convex subdomains of €2, there exist two points P; €
0D, and P, € 9D such that

diSt(Pl, P2) = diSt(aDl, 8D2) = €. (1.10)

Use P; P, to denote the line segment connecting P; and P,. Throughout the paper,
unless otherwise stated, C' denotes a constant, whose values may vary from line to line,
depending only on d, kg, k1,7, 09, and an upper bound of the C? norm of 9Q and the C'>”
norms of dD; and 0Ds, but not on €. Also, we call a constant having such dependence
a universal constant. The main result of this paper is for dimension three.
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Theorem 1.1. Assume that 2, D1, Dy, € are defined in (1.2), A and p satisfy (1.9) for

some 8y > 0, and p € C2(OQ;R3). Let u € H*(Q;R3)NCL(Q; R3) be the solution of (1.6).
Then for 0 < € < 1/2, we have

C
\Y4 o (QR3) < —— R3), 1.11
[Vl Lo o;rs) < dne lelleza0:rs) (1.11)
where C is a universal constant.

Remark 1.1. The proof of Theorem 1.1 actually gives the following stronger estimates:

C CdiSt(iU,Plpg) ) ~
Vu(z)| < — — R3), T €,
Vu()] < (|lne(e+dist2(x7P1P2)) 6+dist2(x,P1P2) lellcz(onms)
(1.12)
and
[Vu(z)| < Cllellczaa:rs), x € Dy U Ds. (1.13)

Remark 1.2. The strict convexity assumption on dD; and 9Dy can be replaced by a
weaker relative strict convexity assumption, see (3.5) in Section 3.

Remark 1.3. Here ¢ € C?(9;R?) can be replaced by p € H'/?(99; R?). Indeed, the H!
norm of the solution w in §2 is bounded by a universal constant. Then standard elliptic
estimates give a universal bound of u in C? norm in {z € O | L < dist(x,00) < 5
We apply the theorem in Q' := {z € Q | dist(z,0Q) > 5} with ¢’ :=u|,,.

Remark 1.4. Since the blow up rate of |Vus| for solutions of the scalar equation (1.1)
when k = oo is known to reach the magnitude (e|Ine|)™! in dimension three, see [11],
estimate (1.11) is expected to be optimal.

Following arguments in the proof of Theorem 1.1, we establish the corresponding
estimates for higher dimensions d > 4. Let Q C R¢ d > 4 be a bounded open set
with C? boundary, and D; and Dj are two disjoint convex open sets in Q with C%7
boundaries, satisfying (1.2). Let C° be given by (1.3) with 7,5, k,1 =1,2,--- ,d, where A
and p satisfy

w>0, d\x+2u >0,

and

= {¢ e C'(REGRY) | Vo + (V)T =0 } (1.14)
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be the linear space of rigid displacement in R%. With eq,--- ,eq denoting the standard
basis of R¢,

{ei, xjek—xkej|1§i§ d, 1§j<k§d}

is a basis of U. Denote the basis of ¥ as {¢*}, a =1,2,---, @. Consider
Lyuu:=V-(Cl%(u)) =0, in Q,
u|+:u|_, on 0Dy UODs,
e(u) = 0, in D1 U DQ, (115)
aDiaa_;t)+'¢a:O7 i:1a27 a:1a2a"'ad(dT+l)7
U=, on 0f.

Then we have

Theorem 1.2. Assume as above, and ¢ € C?(O[RY), d > 4. Let u € HY(;RY) N
CL(;RY) be the solution of (1.15). Then for 0 < € < 1/2, we have

C
[Vl Lo (uray < :||50||C2(8Q;Rd)7 (1.16)
where C is a universal constant.

Remark 1.5. The proof of Theorem 1.2 actually gives the following stronger estimate in
dimension d > 4:

+ " P el zeq
AV —||©|| o2 R, 7
| u(x)| <€ diStQ(x, 1P2) C2(04RY)
CH(FHCZ(BQ;]R(!), " ) ..

We also have Remarks 1.2-1.4 accordingly.

The rest of this paper is organized as follows. In Section 2, we first introduce a setup
for the proof of Theorem 1.1. Then we state a proposition, Proposition 2.1, containing
key estimates, and deduce Theorem 1.1 from the proposition. In Sections 3 and 4, we
prove Proposition 2.1. The proof of Theorem 1.2 is given in Section 5. A linear algebra
lemma, Lemma 6.2, used in the proof of Theorem 1.1, is given in Section 6.

2. Outline of the Proof of Theorem 1.1

The proof of Theorem 1.1 makes use of the following decomposition. By the third line
of (1.6), u is a linear combination of {1)*} in D; and Dy, respectively. Since it is clear
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that £, =01in Q and & =0on o0 imply that & =0 in S~2, we decompose the solution
of (1.6), as in [13], as follows:

Me

Cl wa in El,

a=1

6 —

u={ > Cgye, in Dy, (2.1)

a=1

6

> CRof + Z Csvg +vg, in
a=1 a=1

where v € 01(6; R3),i=1,2,a=1,2,---,6,and vy € 01(6; R?) are respectively the
solution of

Ly, =0, inQ,

= )%, on OD;, (2.2)
vy =0, on 0D; U, j # 1,

and

Ly ,uv0=0, in,
vg = 0, on 0D U dDs, (23)
vy = @, on Of).

The constants C* := Cf(e), i = 1,2, « = 1,2,--- ,6, are uniquely determined by the
fourth line of (1.6), see (4.5) below.
By the decomposition (2.1), we write

3 2 6
Z —C$) Vo + Z CaV (v +vg) + Z Z CoVul + Vg, in Q, (2.4)
a=1 a=1 i=1 a=4
then
2 6
[Vu| < Z |CT = G| Vot | + Z |GV (o] +v3)] + Z Z IC2 Vo] + | Vool
a=1 i=1 a=4
in Q. (2.5)

The proof of Theorem 1.1 can be reduced to the following proposition. Without loss of
generality, we only need to prove Theorem 1.1 for ||¢[/c2(a0) = 1, and for the general
case by considering u/|[¢[|c2a0) if [¢llc2a0) > 0. If g@’ag =0, then u = 0.

Proposition 2.1. Under the hypotheses of Theorem 1.1, and the normalization ||¢||c2a0)
=1, let v and vg be the solution to (2.2) and (2.3), respectively. Then for 0 < e < 1/2,
we have
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Vool gy < ©5 (2.6)
|V + v3)||Lm(§) <C, a=1,23; (2.7)
Vs (z)] < ¢ i=1,2 a=123, z€Q; (2.8)

€+ diSt2(.T7P1P2)’
CdiSt(I,Plpg)

Vol (z)| < 2 40, i=1,2, a=4,56, z€ 2.9
[vor (@] € + dist?(z, P, Py) 29)
and
cH|l<C i=12 a=12--,6 (2.10)
C
Co -0yl < —— =1,2,3. 2.11
|cp — 9] < g =123 (2.11)

Proof of Theorem 1.1 by using Proposition 2.1. Clearly, we only need to prove the the-
orem under the normalization ||¢[[c2(a0) = 1.

Since
0o Cct P
Vu=|-C} 0 CS |, inD;, i=1,2,
-C> -C% 0

estimate (1.13) follows from (2.10).
By (2.5) and Proposition 2.1, we have

3 2 6
[Vu(z)| <Y 1CF = G5 |Voi (@) + Y Y 1CR[[Vef| +C
a=1

i=1 a=4
< C CdiSt((E,Plpg)
~ |Ine| (e + dist*(z, P P%)) e+ dist*(z, P )

(2.12)

Theorem 1.1 follows immediately. O

To complete this section, we recall some properties of the tensor C. For the isotropic
elastic material, let

C:= (Cij kl) = (A(Sijékl +u (5ik6jl + 6iléjk)) , >0, dix+2u>0. (2.13)
The components Cj; i; satisfy the following symmetric condition:
Cijri = Criij = Criji, 14,7,k 1=1,2,--- ,d. (2.14)

We will use the following notations:
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d
= Z Cij klAkh and (A B =A:B= Z AZJB”,
k,l=1

4,j=1

for every pair of d x d matrices A = (A4;;), B = (B;;). By the symmetric condition (2.14),
we have

(CA,B) = (A4,CB). (2.15)
For an arbitrary d x d real symmetric matrix n = (1;;), we have
Cij bl MaMij = ANiiMkk + 20 i M -

It follows from (2.13) that C satisfies the ellipticity condition

min {20, d) + 20 bnl® < Cig oy < mas {2, d\+ 2l 2, (216)

where |n|? = Z n;;- In particular,
t,j=1

min {21, dA + 2} [A+ AT[* < (C (A + A7), (A4 AT)). (2.17)
3. Estimates of |Vvg|, |[Vv$|, and |V (v + vg)|

We first fix notations. Use (21, 22, x3) to denote a point in R? and 2’ = (x1,22). By a
translation and rotation if necessary, we may assume without loss of generality that the
points P; and P; in (1.10) satisfy

P = (0’, %) €Dy, and Py— (0’ 2) € ODs.

Fix a small universal constant R, such that the portion of 0D; and 0Ds near P; and Ps,
respectively, can be represented by

T3 = % +hi(2'), and z3= —% + ho(2"), for |2'| < 2R. (3.1)

Then by the smoothness assumptions on 9D; and dDs, the functions hq(z') and ha(z’)
are of class C*7(Bg(0)), satisfying

g + hy(z') > —% + ho(z'), for |2'| < 2R,
hi(0) = ho(0)) =0, Vhy(0') = Vhy(0') =0, (3.2)
V2hi(0) > koI, V?ho(0') < —kol, (3.3)

and
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h1llc2v By, + 1R2llc2 By, < C- (3.4)

In particular, we only use a weaker relative strict convexity assumption of 9D; and 0Ds,
that is

hi(z') — ha(z) > Kola'|?, if |2/| < 2R. (3.5)
For 0 < r < 2R, denote

Q, :Z{ (z',x3) eR® | — % +ha(z') < a3 < % @), o) <r }

For 0 < |7/| < R, let
Q,(2') = { (' 23) eR® | — % +ho(z') < w3 < g +hi(2'), |2' =2 <s } (3.6)
3.1. Estimates of |Vuo|, |Vu§| for o =1,2,3, and [V (v§ + v5)|
Lemma 3.1.
o0l + V20l ey < C (37)
05 + 05l gy + IVOE + 09 iy < O a=L2-.6.  (38)

The proof of Lemma 3.1 is essentially the same as in [13] for dimension two. We omit
it here. By Lemma 3.1, (2.6) and (2.7) is proved.
To estimate (2.8), we introduce a scalar function u € C?(R?), such that 4 = 1 on
8D1, % =0 on 8D2 U 89,
I3 — hg (.’El) + %

ﬁ(x) = e+ hl(x/) — hQ(x')’ in Q2R7 (39)

and
a2 msvan) < C. (3.10)
Define
W =uw)®, a=1,2,3 in Q, (3.11)

then 4§ = v on a9,

Similarly, we define

g =uw)®, a=1,2,3 in Q, (3.12)
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such that u§ = v§ on 89, where u is a scalar function in C? (R?) satisfying u = 1 on
0D5, uw =0 on 0D, U 01,

—x3+hi(2) + §

E(x) = e+ hl(ﬂv/) — hg(:c’)’

in QQR, (313)
and
l|lull o2 @s\oq) < C. (3.14)
In order to prove (2.8), it suffices to prove the following proposition.

Proposition 3.2. Assume the above, let vy € Hl((~2; R3) be the weak solution of (2.2) with
a=1,2,3. Then fori=1,2, a =1,2,3,

[ v —anpan < o (3.15)
Q
and
vaz'aHLoc(ﬁ\ng) < C, (3.16)
W Ve
V(o —uf)(@) < V5 V z€Qp. (3.17)
Edk Ve<l|z'| < R,
Consequently,
o C
Vi (z)| < FERTER V z € Qg, (3.18)
and
G W= Ve
Vouf(@) < ¢ 0 (3.19)
m, Ve < |z'| < R.

A direct calculation gives, in view of (3.2)—(3.5), that

_ Clxg| _ C
|8mku(a?)| < c+ |1;/|27 k= 1,2, |613U($)| < m, x € QR. (320)
Thus
o C .
[Vud(z)| < 1=1,2, a=1,2,3, x€Qpg. (3.21)

~ e+ |2|?
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For k, 1 =1,2,

C Ol2'|

|0z u(z)]| < IPE |Opas ()] < (o 2)2° Ozges(z) =0, 7€ Qp.
€+ |2'] (e 4 2'?)

(3.22)

For u$, defined by (3.11) and (3.12), making use of (1.8) and (3.22), we have, for i =
1,2, a=1,2,3,

’
|£)\7H1_L?(£E)| <C Z |00y t(2)| < C Clz'|

< — =, T €Qp.  (3.23)
2 TP T (et @)

For |2'| < 2R, we always use d to denote

e+ hi(2) — hg(z’)'

§:=0(7)= 5 (3.24)
By (3.2)—(3.5),
% (c+1717) <86(') < C (e +|]). (3.25)
Proof of Proposition 3.2. Let
wi == vy —auy, 1=1,2, «a=1,2,3. (3.26)
For simplicity, denote
w = wyf, and 4= ug, 1=1,2, aa=1,2,3.
The proof is divided into four steps.
STEP 1. Proof of (3.15) and (3.16).
By (3.26) and (2.2),
{wa = —Ly,@, in QL 327)
w =0, on 0f).
Multiplying the equation in (3.27) by w and integrating by parts, we have
/((Coe(w),e(w)) dox = /w (L) de. (3.28)

Q Q
By the Poincaré inequality,

HwHLQ(ﬁ\QR) < C”VWHLZ(Q\QR)- (3.29)
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Note that the above constant C' is independent of €. By the Sobolev trace embedding
theorem,

1/2

/ | < C /|Vw\2dx . (3.30)

|'|=R, Q\Qr
—e/2+ha(z’)<wz<e/2+hi(z))

It follows from the first Korn’s inequality, (2.17), (3.28) and the definition of @ that

/|Vw\2dx < 2/|e(w)\2da:
Q

Q
<C /w(ﬁx,uﬂ)dx —&—C‘ / w (Ly,,0) d
Qr N\Qr
<C /w([ﬂ)\,uﬁ)dﬂv +C / |w|dx
Qr N\Qr
1/2
<C /w(ﬁA,“ﬂ)dz +C / |Vw|?dx , (3.31)
Qr Q\QR
while, using (1.8) and (3.30),
/w(ﬁ)\yﬂﬁ)dm <C Z /wazkzlﬂdx
R k+1<6 | .
§C/|Vw||vz/ﬁ|dx+ C |
Qr |2’ |=R,
—e/2+ha(z')<wz<e/2+h1(z')
1/2 1/2
<C /|Vw|2dx /‘Vx/ﬂ *dx
Qr Qr
1/2
+C / \Vwl|? da . (3.32)
NOQr

Using

2d:c < C,

/|Vz,a

Qr
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we have, from the above,

1/2
/|Vw|2dx <C /|Vw|2dx
Q Q

This estimate yields (3.15).
A consequence of (3.15) and (3.10) is

/ |Vof|?de < 2 / (|va?|2 + V(e — ) )dm <C.
\Qg,2 Q\Qr)»

Applying classical elliptic estimates, we obtain (3.16).
STEP 2. Proof of

C 27 0< < )
/ Volde<{ 0 <Is ve (3.33)
A Ol)t, Ve<l|/| < R,

Qs(2")

where 6 = 6(2') is defined by (3.24).

For 0 < t < s < R, let n be a smooth function satisfying 0 < n(z') < 1, n(z’) = 1 if
|2/ — 2| <t,n(z') =0if |2/ — 2| > 5, and |Vn(z’)| < -2;. Multiplying the equation in
(3.27) by wn? and integrating by parts leads to

/ (Coe(w),e(wn2))d:r: /(wnz)ﬁ,\yﬂﬁd:r. (3.34)

Q. (2") Q. (2")

For the left hand side of (3.34), using the first Korn’s inequality and some standard
arguments, we have

| (@ewcw)dsz g [ VwnPa-c [ uPvaP.
Q.(2") Q. (2") Q.(2")
and for the right hand side of (3.34),

1/2 1/2

‘/(an)EMﬂldx /|w|2dsc /|£,\7Mﬂ|2dx

Q.(2") Qs (2) Q. (2')

1
<o / lw[2da + (s — )2 / 1L il da

Q.(2) Q.(2")

IN
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It follows that

c
/|Vw|2da;gm / lw|?dx + C(s — t)? / 1L ) de.

Qi () Q. (2") Q. (2")
Case 1. Estimate (3.33) for /e < |2/| < R.

Note that for /e < |2/]| < R7O<t<s<%zl‘,wehave

S+hi(x
/ lw|*dx = / / w(x', x3)|?drsda’
ﬁs(z |/ —2"|< s —§+ha(x')

%—‘rhl (ZE/)

< [ erm@) @) [ 0w e Pdrd

|z’ —2z"|<s —5+ha(z’)

< ) / IV da.
Q.(2)

By (3.23), we have

) C Clz’|  \?
2 </
| e ws | \FwE T ereeE)

Q.(2") Q.(2")
Eds ]
<C d
<o | <e+|x'|2 e wpr)
|z’ —z"|<s

Cs? 2|2'|

—_— 0 —_
SR <5< 3

Denote

Ft) = / Vw|da.

Qe (2")

It follows from (3.35), (3.36) and (3.37) that

. C 12 2
F(t)_(so_zl) ()+O(s—t)|/|4, Vo<t<s< |§|.

Set t; = (5—|—200’L |Z’|2, 1= O, 1,2, -++. Then

313

(3.35)

(3.36)

(3.37)

(3.38)
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Col2'|? !
tip1—t; 2
Let k = [m} Using (3.38) with s = t;41 and t = ¢;, we have

~ 1~ Ctig1 — t;)%t2 1~
Ft:) < g Ftiv) + ( +1|z/|4) < SF() +CAH DS i=0,1,2,0 k.

After k iterations, using (3.15), we obtain

N

Fio = (3)'Feo -3 (5) e
=1
k

(7) FEED + Ry (5) <l

=1

IN

This implies that
/ \Vw|?*dx < O
Qs(2")
Case 2. Estimate (3.33) for 0 < |2/| < +/e.

For 0 < |2/| < Ve, 0 <t < s < /€, estimate (3.36) becomes

/ |w|*dz < Cé? / Vw|?dz, 0<s< /e (3.39)
Q.(2") Q.(2")
while estimate (3.37) becomes

i C Cla'|? Cs?
2< o 25
/ Ly il < / (€+|x,|2+(€+|x,|2)3 de' < —-. (3.40)

Q. (2") o/ —2"|<s

Estimate (3.38) becomes, in view of (3.35), (3.39) and (3.40),

F(t) < (SCOEt) Fs)+C(s —1)°%, YO<t<s<e (3.41)
— €

For 0 < |2/| < /e, let t; = 6 + 2Chie, i = 0,1,2,---. Thus

Co € 1

tiv1 —t; 2

Let k = [ﬁ} By (3.41) with s = t;11 and t = t;, we have
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242
Cets
e -

>~ =

After k iterations, we obtain

Flty) < (%)kﬁ(tk) e i (3)5‘11262

A

IN
/N
b

-
=
>

+

Q

ml\')

A

O

ml\')

This implies

/ |Vw|?dr < Ce.
Qs(2")

STEP 3. Proof of (3.17).
Making a change of variables, for 0 < |2/| < R,

the region ﬁg(z'), becomes @1, where

€

1
Qr:{y€R3| —i+—h2(5y’+z’)<y3<2§

26 90
for r <1,

and the top and bottom boundaries of ), become

A 1€
ys = hi(y') =: 5 (— +h1((5y’—|—z’)>, and

2
o 1 €
ys = ha(y') == 5 (—5 + hao(dy' + Z’)) <1,

respectively. Thus

h(0%) = ha(0) = 5 (e + ha(2) = ha(2')) = 2,
and, by (3.2) and (3.3), for |y/| <1,
Vin@)|+ [Vho)| < C@E+12D,  [V2ha@)| + |V2ha(y)

< —F(tis1) +Cli+1)%, i=0,1,2,-

< Co.

315

(3.42)

1
+ ghl(dy' +2N), Y] < 7‘} ,

Since R is small, @)y is essentially B1(0’) x (—1,1) as far as applications of the Sobolev

embedding theory and classical LP estimates for elliptic systems are concerned. Let
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U, ys) = a(a',z3), Wy ys) = w(a', z3), y € Q1. (3.43)
By (3.27),
LW = LxuU, y €@, (3.44)
where
LU = 8Ly .

Since W = 0 on the top and bottom boundaries of )1, we have, by the Poincaré inequal-
ity,

||W||H1(Q1) <C HVWHL?(Ql)'

Using the interior and boundary W?? estimates (see [1], and Theorem 2.5 in [23]) and
the Sobolev embedding theorem, we have, for some p > 3,

VWl ey < CIWlwaniym < € (INW ey + 183Ul g )

where C' depends only on p and @1, but not on €. Thus

C/._1 _
IVl @y < 5 (87 1900y + 8 Ionll o) - (3:49)
Case 1. (3.17) for /e <|2/'| < R.

By (3.33),

2 2
IVullfug, oy = [ Vulde < Ol

Qs(2")

By (3.23),

) c cl| c
Sessilm o <8 (5T + o o) < o7

It follows from (3.45) that

clZ? C ,
5372 +m§m, VVe<|d| <R

[V (', z)] <

Case 2. (3.17) for 0 < [2/] < /.
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Using (3.33), and (3.23), we have

i Cl|
IVella@,e < €6 Oloatlle@yeny = —— +6

and, using (3.45),

Ce O
|Vw(z’,z3)| S m + | |

C

C<—
+0 < e
STEP 4. Proof of (3.18) and (3.19).

Estimate (3.18) and (3.19) in Qg follows from (3.17) and (3.20).

Proposition 3.2 is established. O

3.2. Estimates of [Vv$|, o =4,5,6
Define
uf = uyY®, and u§ = up®, a=4,56, in Q.

Clearly, v® = @% on 9, i = 1,2, a = 4,5,6.

7

Vo< < Ve

317

(3.46)

Proposition 3.3. Assume the above, let v € Hl(ﬁ; R3) be the weak solution of (2.2) with

a=4,56. Then fori=1,2, a =4,5,6,

/|v?|2d:c+/|Vvia|2dx§ C,
Q

Q
and
HV’UZQHLOO(SN)\QR) < C,
V(v —uf) (2", z3)| < C, T € Qp.
Consequently,
[Vodt(x, z3)| < M+C reQ
% s L3]I = €+|$/|2 ; R
Using (3.20) and (3.10), we have
O /
IVai (z)| < 7l o seon

€+ |z')2 ’

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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and
Vad(z)| < C, z€Q\ Qg (3.52)

It follows from (3.46), (1.8), (3.20) and (3.22) that, for i = 1,2, a = 4,5, 6,

Lag?] < € (w Hetle) 3 |amlu|> <o reon  (353)

E+1<6 €+ ||

Proof of Proposition 3.3. Denote
w = v —uf, 1=1,2, a=4,5,6. (3.54)
For simplicity, we also use the notation

w = wf, u:=uy, i=1,2, a=4,5,6.
The proof is divided into three steps.
STEP 1. Proof of (3.47) and (3.48).

Similarly as Step 1 in the proof of Proposition 3.2, by (3.54) and (2.2) with a = 4,5, 6.
Using (3.46), and (1.8), (3.30) again, (3.32) is replaced by

/w (L) de < C/ |Vw||Valdz + / C |w|
Qr QR |z'|=R,
—€/2+ha(z')<z3<€/2+h1(z")
1/2 1/2 1/2
<c /|Vw|2dx /|Vﬂ|2dm e / Yl de
Qr Qr 0M\Qr
(3.55)

Using (3.51), we have

/|va|2dx < C. (3.56)

Qr

It follows from (3.31) for this situation that

1/2
/|Vw|2dx <C /|Vw|2dm
Q Q

This implies
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/\vw|2dx < C.

Q

By the Poincaré inequality,

/|w\2d:17+/|Vw|2dx <c
Q Q

Combining with (3.56), we obtain (3.47).

Using (3.47) and recalling the definition of @, we apply the standard elliptic estimates
(see [1]) to obtain (3.48).
STEP 2. Proof of

C / 67 < / < _R7
/ Vuwltds < { CF T Ves (3.57)
Cel,  0< ]2 < e,

Qs(2")

with § = 6(2’) defined in (3.24).
The proof is similar to that of (3.33). We still have (3.35).

Case 1. Estimate (3.57) for /e < |2/| < R.

For0<t<s< 2';‘, using (3.53), we have, instead of (3.37),
/ L i) do < / O < 8 (3.58)
o - e+ 22 T |2 ‘
Q. (2") o' —2"|<s
Using (3.36), instead of (3.38), we have

- Col2 I\ 4 , 8 2|7/|
Fi)< |—— | F Cls—t) —5, VO<t —_—. 3.59
0= (PER) P vct— g vo<i<s< (3.59)

We define {t;}, k and iterate as in the proof of (3.33), right below formula (3.38), to
obtain

Blty) < (l)kﬁ(3|z/|)+0|z'6§k:(l)l_lﬂ < Cl2[f
0= \4 2 £ \4 = '
This implies that

/ |Vw|*dz < C||°.

Qs(2")
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Case 2. Estimate (3.57) for 0 < |2/| < /e

For 0 < t < s < /€, estimate (3.39) remains the same. Estimate (3.40) becomes

2
/ |£>\,H11|2d56 < / B dr’ < CTS, 0<s< e (3.60)

€+ |2'|?
8. (=) /2t <s

Estimate (3.41) becomes

Coe \* C(s — 1)%s?
F(t) < (sfet) F(s)+(8f)s, VO<t<s<ie (3.61)
Define {t;}, k and iterate as in the proof of (3.33), right below formula (3.41), to obtain
F(ty) < (l)kﬁ(\f)JrCzk: (1)1_1l2 < e
o) = (3 € 2. \4 e < Ce’.

This implies as before that
/ |Vw|?dz < Ce.
Q.(2)

(3.57) is proved.
STEP 3. Proof of (3.49) and (3.50).

The proof is similar to that of (3.17). In Case 1, for \/e < |2/| < R, using estimates
(3.57) and (3.53),

2 -
/ ‘Vw| dx S C|Z’|6’ and (5 ||[.:)\7MUHLQQ(§6(Z/)) S C,
Qs(2")
we obtain, using (3.45),

"3
[Vw(Z', z3)| < % +C < C, for Ve<|Z|<R.

In Case 2, for 0 < |2/| < /€, using estimates (3.57) and (3.53),
2 3 ~
/ [Vw|”de < Ce’, and 5HE>\,NU||L<><>(§5(z/)) < C,
Qs(z")

we have, using again (3.45),
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\Y 4 06—3/2 ’
w(z', z3)] < 5372 +C < C, for 0< |2 < Ve

Estimate (3.49) is established.
Estimate (3.50) follows from (3.49) and (3.51). O

4. Estimates of |C;| and |Cy — C$'|, o =1,2,3

In this section, we first prove that C{* and C% are uniformly bounded with respect
to €, and then estimate the difference C¥ — C¥'.

Proposition 4.1. Let C¢ be defined in (2.1). Then
cel< 0, VYi=12 a=12- -6 (4.1)

and

C

|Ine|’

|co — ¢ < a=1,2,3. (4.2)

4.1. Boundedness of |C]

Proof of (4.1). Let u,. be the solution of (1.6). By theorem 4.6 in the appendix in [13],
U is the minimizer of

on A. It follows that

By the Sobolev trace embedding theorem,

IN
Q

luell Lz (oD, \ Br)

Recalling that
6
Ue = Z Coyp, on 0D;.
a=1

If Oy := (C},C2,--- ,CHT =0, there is nothing to prove. Otherwise

6
> Oy

a=1

L2(0D;1\ Br)
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where (/Z’\f‘ = % and |61| = 1. It is easy to see that there exists a universal constant
C > 0 such that

AV
S

(4.4)

6
> Cro®
a=1

L2(8D1\ Br)

Indeed, if not, along a subsequence ¢ — 0, 6’{‘ — U(f, and

== 0’
L?(0D7\BRr)

6
> Civt
a=1

where §D% is the limit of dD; as € — 0 and [C| = 1. This implies >.°_, €74 =0 on
dD% \ Br. But {1/)0‘|8D*\BR} is easily seen to be linear independent, using Lemma 6.1,
1

we must have C; = 0. This is a contradiction. (4.1) follows from (4.3) and (4.4). O
4.2. Estimates of |C¢ — C|, a« =1,2,3
In the rest of this section, we prove (4.2). By the linearity of e(u),
6 6
ch (v$) +ZC’2 (v9) + e(vo), in €.
a=1 a=1

It follows from the fourth line of (1.6) that

o 0 oy oL
o 0
ZCI / Yv1 w5+202/_2 w5+/_ ,(/}5:07
1/0 o1 81/0 + oD (91/0 n
i=12 pg=1,2,---,6. (4.5)

Denote

op _ [ O s e [ 9%
aij - 8u0 + ’ 7 81/0 n
oD oD

J J

L/)Ba ivj:1527 07521,2,"',6.

Multiplying the first line of (2.2) and (2.3), respectively, by vf , and integrating by parts
over ) leads to, in view of (1.7), that

af‘jﬁ :/(Coe(vf‘),e(vf)) dz, bf = f/(((joe(vo),e(v?)) dz.
Q Q

Then (4.5) can be written as
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6

> Cra + § jca 57— b} =

a=1

] f=1,2,---,6. (4.6)
Zc;*a;*eran 55 — b5 =0,

For simplicity, we use a;; to denote the 6 x 6 matrix (afjﬂ ). To estimate |C¢ — CF|,

a =1,2,3, we only use the first six equations in (4.6):

a11Cy + a21C2 = by, (4.7)
where

oi=(0hct o) = (0h 3 ) b= (oot ng)
Set
pi=b — (011 + 021)02,

(4.7) can be rewritten as

ail (01 — Cg) =p. (4.8)

In order to prove (4.2), we first estimate the right hand side of (4.8).

Lemma 4.2.

Cl11+a <C OZ,,le,Q,"',G;
(b’f’gc, B=1,2,--- 6.
Consequently,

Ip| < C. (4.9)

Proof. For §=1,2,3, using (3.16) and (3.18), we have

d
/‘vuf’dmg/‘vuf’da:+ / ‘Vuf‘dwﬁ/—f|j|2+0§0. (4.10)
€

Q Qr O\Qr Qr

For 8 =4,5,6, using (3.48) and (3.50), we have

!

/‘vuﬂdm</w+c< C. (4.11)
€+ |o'|?

Q Qr
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For o, =1,2,--- ,6, using (2.7), (4.10) and (4.11), we have

a2 +agf| = /(Coe(yf‘+v§‘),e(vf)) dz| < C||V(v?+v§‘)||Lw(§)/’va’dxg C.

Q Q

Similarly, it follows from (2.6), (4.10) and (4.11) that

dr< C, B=1,2,--,6.

‘bf’ - /(coe(vf),e(uo)) dz| < C||Vv0||Lw(§)/’va

Q Q

These estimates above, combining with (4.1), yield (4.9). O
It can be proved that a;; is positive definite and therefore, recalling (4.8),

Cy —Cy = (an) " 'p.
Given (4.9), estimate (4.2) would follow from the above if ||(a;1) 7! < |1§6\' However

[(a11) 7| = & > 0. We need to make more delicate estimate as below.

In view of the symmetry of a‘f‘lﬂ , we write it as a block matrix

B (A B)
ayl = C D )
where
aji aif aif ajii ai} aif aif ai} aff
A=|afl ot ot |, B=|aft off off |, adD=|aff off af
aji aii aff afi aff aff afi aff aff

Lemma 4.3. aq1 is positive definite, and

\lgel < a% < Cllnel, a=123; (4.12)
% <af < C, a=4,56; (4.13)

and
af| =leff| < aB=12- 6 ar8 (4.14)

Moreover,
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1
61 <D< C(CI, (4.15)
where I is the 3 x 3 identity matriz, and

1 3
[ e <deta;; < Cllnef®. (4.16)

Remark 4.1. Roughly speaking, the estimates of A and B in Lemma 4.3 is that, for some
positive constants ¢y, ¢, c3, independent of e,

callnel O(1)  0O(1) O(1) 0O(1) O0(1)
A~ O() «cllnel O() |, and B=| O(1) O(1) 0Q1)
O(1) O(1) c3|lne] O(1) O(1) 0()

We postpone the proof of Lemma 4.3 and first make use of it to prove (4.2).

Proof of (4.2). For convenience, we introduce notations
D (G e e e e ve/) RN RSy (e Jye e B Ne Be/ )
and
Py:= (p1,p2,p3)",  P2:=(ps,p5,06)" -
Now (4.8) can be rewritten as
@ 5)(2)-()

By Lemma 4.2 and Lemma 4.3, matrices A, B, D satisfy the assumptions of Lemma 6.2
in Appendix with m =3, v = |ln¢| and 6 = % Applying Lemma 6.2, we have

(é g) 1_<A 1+c:<|w> 0<|:+6,))

It follows from (4.17) that

C
X, | = a «
‘ 1| Z|C C |— |1n€|

Thus, the proof of Proposition 4.1 is completed. O

We are now in position to complete the proof of Proposition 2.1.
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Proof of Proposition 2.1. Estimates (2.6)—(2.7) have been proved in Lemma 3.1. Under
assumption (1.2),

(e +12')?) < e + dist?(x, PLP,) < Cle+ [2'?), z € Qg.

Ql=

Estimate (2.8) in Qg follows from (3.17) and (3.21). Thus, using (3.16), (2.8) is proved.
Combining (3.50) and (3.48) yields estimate (2.9). Estimate (2.10) and estimate (2.11)
has been proved in Proposition 4.1. The proof of Proposition 2.1 is finished. 0O

Proof of Lemma 4.3. STEP 1. Proof of (4.12) and (4.13).
For any f = (517€2a o agﬁ)T 7é 07 by (217),

lané = / ((Coe (€avy) e <§gvf)) dx > %/|e (£av1‘)‘)|2dac > 0. (4.18)
Q Q

In the last inequality we have used the fact that e (£,v{) is not identically zero in Q.
Indeed, if e (£,0%) = 0 in ©, then 22:1 v = Z?Zl a;" in Q, for some constants a;,
i=1,2,---,6. On the other hand, 2?21 &qvf = 0 on 0Dy, so by Lemma 6.1, a; =0, V 1.
Thus on D1, Z?Zl Qv = Z?Zl &a™ = 0, which implies, again using Lemma 6.1, that
& =0. A contradiction. (4.18) implies that a;; is positive definite.

By (2.16) and (2.8), we have

a‘f{’:/((coe(v‘f),e(vf)) dzr < C/|Vvi‘|2dx§ Cllnel, a=1,23.
Q Q

By (2.16) again, we have

1 1
atf = [ (€eet)elof) doz & [le@Pdo= ¢ [lon0hal o, a=1.23
Q

Q Qr

Notice that (v{)alop, = tlop, =1, (v{)alop, = ulop, = 0, and recalling the definition
of @, (3.9), u(x’,x3) is linear in x3 for fixed 2/, so u(z’,-) is harmonic, hence its energy
is minimal, that is,

ha(2)+5 h(@)+5
1
ay |2 ik
|8x3(v1 )a| drs > / |8983u| drz = €+ hl(q;/) — hg(.’El) '
ha(a')— ha(@) =3

Integrating on |z'| < R, we obtain

hy(z')+
[1on0alPde= [ [ joreh)al? dradeada,
Qr

|z/|<R ha(z')—§

ol
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Thus,

a=1,2,3. (4.19)

Estimate (4.12) is proved.
By (3.47), we have

asty :/((CO (v ),e(vf‘))da:ﬁ C, a=4,506.

Q

By the same argument, the claim (4.18) in [13] for higher dimensions still holds. Therefore

1 1 1
afy > ol / le (v$) [Pdx > ol / VoS |2dx > 25 a= 4,5,6.
Qr\OQr Qr\Qr

Estimate (4.13) is proved.
STEP 2. We deal with the cases a # /3. Proof of (4.14).
By definition,

[e] e} « ov§
allﬂ = afl = / ((Coe (vf) ,e(vf)) dr = / ay; P dS.
a 8Dy
First,
Ov}
i == [ G| vtas
oD,
- / (A(VW%)M+M<<Vv%+(Vv})T)ﬁ> ) ds
2
0D
3
/ < (Zazk 1)k >n2+ﬂz< s (U1)1 + O, (01)2 ) l) ds.
oD, k=1

We only need to estimate the integral on the part D1 N By, because the rest is bounded.
On boundary D1 N Br, we have

il = ;( 9y, hy, — Oy b, 1).

V14 |Vaerh]?

Clearly, using (3.2)—(3.4),
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1

V1IF|Vahi 2

[ni] < Cla|,  |ne| < Cla’|, n3=

Combining with the estimates (3.18), we have

[ [(Sonehimlass [ Lusco

3
8DiNBr k=1 8D1NBR

Using the definition of ui, estimates (3.17), (3.18), (3.19), and
| / Ory (]2 dS| < | / Or, (@})2n3 S| + | / Osy (wh)ans dS| < €,
O0D1NBR OD1NBR O0D1NBR
we obtain
3 3
/ ‘ Z@m(vi)ml + Z@xl (v1)am ’dS < C.
opinBr =1 1=1
Therefore
|a1i| = |aii] < C.
By the same way

ald = — / (A(V-ui)ng +u<(wi + (W})T)ﬁ>3> ds

0Dy

= (A(fjamkw})k)nswfj(axs(v})ﬁam,(vi)g)m) ds.
0D,

i=1 =1

For the terms 0, (v1);, k = 1,2,1 = 1,2,3, use the estimates (3.19), for k = | = 3, use
the definition %} and the estimates (3.17) to obtain

‘/awg(vi)gng,ds‘:‘ /awg(a{)3n3d5‘+] /am(wi)gngds e

8D1 8D1 aDl

Therefore
adf] = Jal] < C.

By the definition and the same reason,
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a11 =
8D

fin

)
S

+
1%}

)

1

_ 5 16 _
is bounded. al1 =aj; and a7; = aj]

() (et o)) -

3
<>\ Z Oy, (v
k=

1

( (ia

k=1

1

3

i) 35 (e 0

=1

3

Ji)nz + 1Y (9ea (o) + 0y (02 )

=1

X2
—x

0

) as

)!L‘st
)xldS
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are also bounded, essentially the same as above.

aii = —aD/ (A(v 03 g +u((wi + (W%)T)ﬁ>3> ds

1

-/

0D

is the same as alf

26 _ 62 35 _
aryy = aiy, a31 = a11

apy =— / </\(V vl)n+u(V1}1 (Vv%)T>ﬁ)~

9D,

- J

0Dy

9Dy

is much better. a3% =

< (i:amk 7)1 )77/34‘/123: (6953(11%)1 +Cr)ml(v%)3)nl> dSs
k=1 =1

and a3% = a3

O, (v

<A

<A(k_1azk (b)) + 0> (8, + 00, (1))

STEP 3. We will show

a$3 is the same as af

While aH =ai? and a3t = a
are all the same.

3

D)+ Y (00, (0 4+ 00 (01 )

nl> z1dS

. Estimate (4.14) is proved.

=1

3

=1

D>—=1

Ql=

for some constant C, independent of e.
For £ € R3, |¢| = 1, using (1.9), we have

«,B=4,5,6

Q

> aitats = / (COe(gsav?) (Zfﬁvl))

(

T3
0

—x

are the same as a

) as

s (Zm)

Q

25

11- 411 = a11

We claim that there exists a constant C' > 0, independent of €, such that

and

dx.
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VEERS, €] =1, (4.20)

57

Indeed, if not, then there exists ¢; — 0%, |¢!| = 1, such that
6 .
[ (X )
ﬁei a=4

Here and in the following proof we use the notations D} := (0,0, —%) + Dy, D3 :=
(0,0, 5) + Da, Q* := Q\ D;UD;, and Q. = Q\ D; U D,. The corresponding solution
of (2.2) with o = 4,5,6 is denoted as v{*(¢). Since v(e;) = 0 on 9D, it follows from
the second Korn’s inequality (see theorem 2.5 in [38]) that there exists a constant C,

2
dx — 0. (4.21)

independent of €, such that
05 (€l 10\ <
where 7 > 0 is fixed. Then there exists a subsequence, we still denote {v{(¢;)}, such that
v (e;) — 0%, in H'(Q, \ Br), as e — 0.
By the assumption (4.21), there exists & such that
€ ¢ ase — 0, with €] =1,
and

2
= 0.

Sl en)

Q*

This implies that

e(é@wf‘) =0, in Q.

Hence, for some constants {bg}, 2224 £ 00 = Zgzl bgp? in Q*. Since Zgzl bpP =0,
on 0D3, it follows from Lemma 6.1 that bg = 0, V 8. Thus, 2224 g’aag =0 in Q*. Re-
stricted on 0Dj, it says that Zi: 4 £4Y® = 0 on AD}. This yields, using again Lemma 6.1,
£, =0, « =4,5,6, which contradicts with |§_| =1.

(4.16) is immediately proved by using (4.12) and (4.14). The proof of Lemma 4.3 is
finished. O
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5. The proof of Theorem 1.2

Define v and vy by (2.2) and (2.3). By a decomposition similar to (2.1),

d(d

+

1)

2 2
=3 ) CoVue 4V, in Q. (5.1)
i=1 a=1
It follows that
9 d(d;—l
Vul <> N [C8][Ve| + Vo), in Q. (5.2)
=1 a=1

As in Section 3, we write x = (2, 24), and let Pj, P, R be the same as in Section 3,
and, instead of (3.1),

xd:§+h1(z/), and xd:f%+h2(x'), for |2'| < 2R.

( ") and Qg = Q4(0") are defined accordingly. 4, u and u¢ are defined as in (3.9),
(3.13), (3.11) and (3.12), with z3 replaced by =4, and « = 1,2, -+, @. We still have
(3.10) and (3.14).

Proposition 5.1. Assume the above, let v € Hl(ﬁ; R?) be the weak solution of (2.2) with
a=1,2,- 2D Then fori=1,2, a=1,2,. 4

/|V | dr < C; (5.3)
and
HVU?HLOC(Q\QR) < C, (5.4)
Ve i@ < o ¥ aeQ (55)
v —ud)(z)| < L T R
Consequently,
o C
Vo (z)| vV x € Qg. (5.6)
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Proof. The proof is similar to that of Proposition 3.2, and we only point out the main
difference. The proof of (5.3) and (5.4) are the same as that of (3.15) and (3.16). We
prove (5.5).

(i) For « =1,2,--- ,d, the same as (3.21),

a C
|vu7, (1’)‘ < €+ |x,|27 T € QRa (57)
and, instead of (3.23),
C Clz'|
Lo il (@) < C Y |00 ti(x)] < S TRt e €t 69
k+i<2d

. i . . . 2|2’
Using (5.8), we have, instead of (3.37) and (3.38), for /e < |2/| < R, 0 < s < =2+,

~ 1 |x/|2 Csd_l
Ly i de < C doe’' < =2 5.9
/ | W] | dx < / (e—|— 2|2 + (e + |2/]?)3 T = |2/[4 (5.9)

Q. (2) |2 —2|<s
and denoting F(t fQ () |V (ve — uf)|?dx,

N Chl2' 2 d—1

F(t)§<50|_zt> F(s)+C(s — )T,|4, vo<t<s< 2l (5.10)

Similar as Case 1 of Step 2 in the proof of Proposition 3.2, set t; = § + 2Cyi |2|?,
1=0,1,2,---,and let k = [W] Using (5.10) with s = ¢;41 and t = ¢;, we have

. 1~ Cltiy —t)2t971 14
F(t;) < 7 F(tir1) : L < F (i) + G+ 2P
i=1,2,-- k.
After k iterations, we obtain
/ V(o — a9 2de = Fte) < CZ2@D, ¥ Ve< || <R,

Qs(2')
Instead of (3.40) and (3.41), using (5.8), for 0 < |2/] < /€, 0 < s < /e,

_ C Cla'|? Csi1
?< / ' < 11
/ |£>\7Mu| = €+ |x/|2 + (6+ |$/|2)3 da’ < 2 (5 )

Q. (2") o' —2'|<s

and
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~ Coe \? = ,sd1
F(t) < - F(s)4+C(s—1t) o VO<t<s<ie (5.12)
Let t; = 6 + 2Cpie, i = 0,1,2, - and k = [ﬁ] By (5.12) with s = ti4, and ¢ = t;,
we have
~ 1 cetdl 1.
F(t:) < JF(ti) + C ol < JEt) + 0+ 1% =12,k
€

After k iterations, we have

/ V(v — af)|2de = F(to) < Ce®™1, V0 <|2/| < Ve

?

Qs(2)

Therefore, we have, instead of (3.33),

Ced=t 0< || < Ve
a2 ’ = = )
/ [Vw§|” dx < {C’ 2(d-1) N< R (5.13)
L [P0, e< || < R,

s5(z

As in Step 3 of the proof of Proposition 3.2, we have, instead of (3.45),

«a —o ¢ -4 o —o —o
HV(’Ui — U, )HL"C(ﬁg/z(z/)) S g (51 2 ||V('Uz —u; )||L2(§5(z’)) -+ 62 ||‘C)\vltui ||Loo(§5(zl))) .
(5.14)
Using (5.13) and (5.8), we obtain
c ’
N7 x S €,
Ve - @) < TSV (5.15)
G VE<ll< R
Consequently, (5.6) follows from (5.7) immediately.
(ii) Ford < a < @, we have
— o Cl|

and, instead of (3.53),

o _ _ C
k+1<2d

Using (5.17), we obtain, for /e < [2/| < R, 0<t<s< %z/‘, instead of (3.58),



334 J. Bao et al. / Advances in Mathematics 305 (2017) 298-338

12 C Cs?1
/ | 0] do < / e da' < T (5.18)
Qs (2) |2/ —2'|<s
Thus, we have
~ CO| "2 gd—1 2|Z/|
F(t —t t . 1
()_(s_t F(s)+C(s )|z,|2, VO<t<s< 3 (5.19)

Taking the same iteration procedure as Case 1 of Step 2 in the proof of Proposition 3.2,
set t; = 0 +2C0i |2/)?, i =0,1,2,---, and let k = [ ] Using (5.19) with s = ;11
and t = t;, we have

_1
4CO|Z'|

C(tigr —t)2t97}

i) < 1 F(ti) + P il < F(Z+1)+C(z+1) P =12,k

|z
After k iterations, we obtain
/ V(v —a%)|?dx = ﬁ(to) < O, Ve<|{| <R
Qs(2")

For 0 < |2/| < /6, 0 <t < s < +/€, using (5.17), we have, instead of (3.60),

12 C Cgd-1
/ |£>\,uu| dr < / m dx’ < T, 0<s< \/E (520)
Q.(2) |z’ —2'|<s

Then similarly as before, we have

s—t

R /|2 d—1 /
F(t)§<c|z) F(s)+Cls—1)?"—,  Vo0<t<s< ';'

and iteration formula

~ 1~ COltiyr —t)2t4 14
F(t) ZF( z+1)+ ( +1— . ) i+1 < ZF(ti+1)+C<i+1)2fd, i=1,2,-- k.
Thus, we obtain
C /2d’ < / < R,
/ IVw? 2z < “Z' ves |/Z | (5.21)
~ Ce?, 0< 2| < Ve

Qs(z")

Therefore, as in the proof of Proposition 3.3, using (5.14), (5.21) and (5.8), we have, for
i=1,2, d<a< WD
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V(i —uf) (@', za)| < C, € Qr. (5.22)
Consequently, using (5.16),

Clz'|

!
Vo (2, zq)| < TP

+C,  z€Qp (5.23)

The proof of Proposition 5.1 is completed. O

Proof of Theorem 1.2. By the same argument, using Lemma 6.1 for d > 4, we still have
(4.1) for dimensions d > 4. Using Proposition 5.1, Theorem 1.2 follows. O

6. Appendix: lemmas on ¥ and matrices

We first give a lemma on the linear space of rigid displacement W.
Lemma 6.1. Let £ be an element of U, defined by (1.14) with d > 2. If £ vanishes at
d distinct points z',z%,--- 7%, which do not lie on a (d — 2)-dimensional plane, then
£E=0.
Proof. Since £ € VU, it follows that
&(z) = Ax + b,
for some b € R? and some d x d skew symmetric matrix A. Let
g=z-z¢ 1<i<d-1.

d=1 is linearly independent. It follows from &(z%) = 0 that

By the assumption, ', -+, ¥
Ay =¢(@) — @l =0, 1<i<d-1

Therefore Rank A < 1. This, together with AT + A = 0, implies A = 0. Recalling that
£@)=0,wehave b=0.S0£=0. O

Here we prove a linear algebraic lemma used in the proof of Proposition 4.1. We will

1/2
use notation ||B]| = <Z” \Bij|2) for a matrix B.

Lemma 6.2. For m > 1, let A, D be m x m invertible matrices and B and C be m X m
matrices satisfying, for some 0 < 6 <1 and v > 1,

_ 1 _
1A= < g IBlI+lCl+]D < (6.1)

| =
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Then there exists ¥ = y(m) > 1 and C(m) > 1, such that if v > ;75;4”) ,

A B
C D
is invertible. Moreover,

(Ell E12). (A B>1 A1 0
EL, Ey ) \C D 0 D!

satisfies

C(m C(m)
el <G

Bl < and || B <

63y’ - 05y

Proof. Clearly

I 0\ /A B\ (A B
<CA1 1)(0 D>_<O DCA1B>’

where [ is the m x m identity matrix. Since

-1 C1(m)
ears| < S,

for some constant C7(m) depending only on m, there exists some constant v1(m), de-
pending only on m, such that for v > %, D — CA~'B is invertible and

H(D—C’AIB)_lH < ; (6.2)

Then

()

A B -1 I 0
(0 DCAlB) (CAl 1>

-1
A7t —A7'B (D-CAT'B) ( I )
—CA7U T

0 (Df CA*lB)_l

A+ A (D- CA—lB>7ICA—1 —A'B (D- CA—lB)A

—(D—CA—lB>7ICA—1 (D—CA—lB)*1

The estimates for |E11| and Ejo follow from (6.1) and (6.2). For |Eas|, we have
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C(m)
05~ -

|| Eaz| = H ((1 _ DAyt - 1) D*1H < C(m)||[D7'CcAB||||ID7Y <
The proof is finished. O
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