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1. Introduction and main results

In this paper, we establish upper bounds on the blow-up rate of the gradients of 
solutions of the Lamé system with partially infinite coefficients in dimensions greater 
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than two as the distance between the surfaces of discontinuity of the coefficients of the 
system tends to zero. This work is stimulated by the study of Babus̆ka, Andersson, Smith 
and Levin in [10] concerning initiation and growth of damage in composite materials. The 
Lamé system is assumed and they computationally analyzed the damage and fracture in 
composite materials. They observed numerically that the size of the strain tensor remains 
bounded when the distance ε, between two inclusions, tends to zero. This was proved by 
Li and Nirenberg in [31]. Indeed such ε-independent gradient estimates were established 
there for solutions of divergence form second order elliptic systems, including linear 
systems of elasticity, with piecewise Hölder continuous coefficients in all dimensions. 
See Bonnetier and Vogelius [16] and Li and Vogelius [32] for corresponding results on 
divergence form elliptic equations.

The estimates in [31] and [32] depend on the ellipticity of the coefficients. If ellipticity 
constants are allowed to deteriorate, the situation is very different. Consider the scalar 
equation ⎧⎨⎩∇ ·

(
ak(x)∇uk

)
= 0 in Ω,

uk = ϕ on ∂Ω,
(1.1)

where Ω is a bounded open set of Rd, d ≥ 2, containing two ε-apart convex inclusions 
D1 and D2, ϕ ∈ C2(∂Ω) is given, and

ak(x) =
{
k ∈ (0,∞) in D1 ∪D2,

1 in Ω \D1 ∪D2.

When k = ∞, the L∞-norm of |∇u∞| for the solutions u∞ of (1.1) generally becomes 
unbounded as ε tends to 0. The blow up rate of |∇u∞| is respectively ε−1/2 in dimen-
sion d = 2, (ε| ln ε|)−1 in dimension d = 3, and ε−1 in dimension d ≥ 4. See Bao, Li 
and Yin [11], as well as Budiansky and Carrier [18], Markenscoff [36], Ammari, Kang 
and Lim [2], Ammari, Kang, Lee, Lee and Lim [4] and Yun [41,42]. Further, more de-
tailed, characterizations of the singular behavior of ∇u∞ have been obtained by Ammari, 
Ciraolo, Kang, Lee and Yun [7], Ammari, Kang, Lee, Lim and Zribi [6], Bonnetier and 
Triki [14,15], Gorb and Novikov [24] and Kang, Lim and Yun [26,27]. For related works, 
see [3,5,8,9,12,15,17,19–22,25,28–30,33–35,37,39,40] and the references therein.

In this paper, we mainly investigate the gradient estimates for the Lamé system with 
partially infinite coefficients in dimension d = 3, a physically relevant dimension. This 
paper is a continuation of [13], where the estimate for dimension d = 2, another physically 
relevant dimension, is established. We prove that (ε| ln ε|)−1 is an upper bound of the 
blow up rate of the strain tensor in dimension three, the same as the scalar equation 
case mentioned above. New difficulties need to be overcome, and a number of refined 
estimates, via appropriate iterations, are used in our proof. We also prove that ε−1 is 
an upper bound of the blow up rate of the strain tensor in dimension d ≥ 4, which is 
also the same as the scalar equation case. Note that it has been proved in [11] that these 
upper bounds in dimension d ≥ 3 are optimal in the scalar equation case.
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We consider the Lamé system in linear elasticity with piecewise constant coefficients, 
which is stimulated by the study of composite media with closely spaced interfacial 
boundaries. Let Ω ⊂ R

3 be a bounded open set with C2 boundary, and D1 and D2 are 
two disjoint convex open sets in Ω with C2,γ boundaries, 0 < γ < 1, which are ε apart 
and far away from ∂Ω, that is,

D1, D2 ⊂ Ω, the principle curvatures of ∂D1, ∂D2 ≥ κ0 > 0,
ε := dist(D1, D2) > 0, dist(D1 ∪D2, ∂Ω) > κ1 > 0,

(1.2)

where κ0, κ1 are constants independent of ε. We also assume that the C2,γ norms of ∂Di

are bounded by some constant independent of ε. This implies that each Di contains a 
ball of radius r∗0 for some constant r∗0 > 0 independent of ε. Denote

Ω̃ := Ω \D1 ∪D2.

Assume that Ω̃ and D1 ∪ D2 are occupied, respectively, by two different isotropic and 
homogeneous materials with different Lamé constants (λ, μ) and (λ1, μ1). Then the elas-
ticity tensors for the inclusions and the background can be written, respectively, as C1

and C0, with

C1
ij kl = λ1δijδkl + μ1(δikδjl + δilδjk),

and

C0
ij kl = λδijδkl + μ(δikδjl + δilδjk), (1.3)

where i, j, k, l = 1, 2, 3 and δij is the Kronecker symbol: δij = 0 for i �= j, δij = 1 for 
i = j. Let u = (u1, u2, u3)T : Ω → R

3 denote the displacement field. For a given vector 
valued function ϕ, we consider the following Dirichlet problem for the Lamé system⎧⎪⎨⎪⎩∇ ·

((
χΩ̃C

0 + χD1∪D2C
1) e(u)

)
= 0, in Ω,

u = ϕ, on ∂Ω,

(1.4)

where χD is the characteristic function of D ⊂ R
3,

e(u) = 1
2
(
∇u + (∇u)T

)
is the strain tensor.

Assume that the standard ellipticity condition holds for (1.4), that is,

μ > 0, 3λ + 2μ > 0; μ1 > 0, 3λ1 + 2μ1 > 0. (1.5)
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For ϕ ∈ H1(Ω; R3), it is well known that there exists a unique solution u ∈ H1(Ω; R3)
of the Dirichlet problem (1.4), which is also the minimizer of the energy functional

J1[u] = 1
2

∫
Ω

((
χΩ̃C

0 + χD1∪D2C
1) e(u), e(u)

)
dx

on

H1
ϕ(Ω;R3) :=

{
u ∈ H1(Ω;R3)

∣∣ u− ϕ ∈ H1
0 (Ω;R3)

}
.

More details can be found in the Appendix in [13].
Introduce the linear space of rigid displacement in R3,

Ψ :=
{
ψ ∈ C1(R3;R3)

∣∣ ∇ψ + (∇ψ)T = 0
}
,

equivalently,

Ψ = span
{

ψ1 =
( 1

0
0

)
, ψ2 =

( 0
1
0

)
, ψ3 =

( 0
0
1

)
,

ψ4 =
(

x2
−x1
0

)
, ψ5 =

(
x3
0

−x1

)
, ψ6 =

( 0
x3
−x2

) }
.

If ξ ∈ H1(D; R3), e(ξ) = 0 in D, and D ⊂ R
3 is a connected open set, then ξ is a linear 

combination of {ψα} in D. If an element ξ in Ψ vanishes at three non-collinear points, 
then ξ ≡ 0, see Lemma 6.1.

For fixed λ and μ satisfying μ > 0 and 3λ + 2μ > 0, denoting uλ1,μ1 the solution 
of (1.4). Then, as proved in the Appendix in [13],

uλ1,μ1 → u in H1(Ω;R3) as min{μ1, 3λ1 + 2μ1} → ∞,

where u is a H1(Ω; R3) solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,μu := ∇ ·
(
C

0e(u)
)

= 0, in Ω̃,

u
∣∣
+ = u

∣∣
−, on ∂D1 ∪ ∂D2,

e(u) = 0, in D1 ∪D2,∫
∂Di

∂u
∂ν0

∣∣
+ · ψα = 0, i = 1, 2, α = 1, 2, · · · , 6,

u = ϕ, on ∂Ω,

(1.6)

where

∂u

∂ν

∣∣∣∣ :=
(
C

0e(u)
)
�n = λ (∇ · u)�n + μ

(
∇u + (∇u)T

)
�n
0 +
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and �n is the unit outer normal of Di, i = 1, 2. Here and throughout this paper the 
subscript ± indicates the limit from outside and inside the domain, respectively. In this 
paper we study solutions of (1.6), a Lamé system with infinite coefficients in D1 ∪D2.

The existence, uniqueness and regularity of weak solutions of (1.6), as well as a vari-
ational formulation, can be found in the Appendix in [13]. In particular, the H1 weak 

solution is in C1(Ω̃; R3) ∩C1(D1 ∪D2; R3). The solution is also the unique function which 
has the least energy in appropriate functional spaces, characterized by

I∞[u] = min
v∈A

I∞[v],

where

I∞[v] := 1
2

∫
Ω̃

(
C

(0)e(v), e(v)
)
dx,

and

A :=
{
u ∈ H1

ϕ(Ω;R3)
∣∣ e(u) = 0 in D1 ∪D2

}
.

It is well known, see [38], that for any open set O and u, v ∈ C2(O),∫
O

(
C

0e(u), e(v)
)
dx = −

∫
O

(Lλ,μu) · v +
∫
∂O

∂u

∂ν0

∣∣∣∣
+
· v. (1.7)

A calculation gives

(Lλ,μu)k = μΔuk + (λ + μ)∂xk
(∇ · u) , k = 1, 2, 3. (1.8)

We assume that for some δ0 > 0,

δ0 ≤ μ, 3λ + 2μ ≤ 1
δ0

. (1.9)

Since D1 and D2 are two strictly convex subdomains of Ω, there exist two points P1 ∈
∂D1 and P2 ∈ ∂D2 such that

dist(P1, P2) = dist(∂D1, ∂D2) = ε. (1.10)

Use P1P2 to denote the line segment connecting P1 and P2. Throughout the paper, 
unless otherwise stated, C denotes a constant, whose values may vary from line to line, 
depending only on d, κ0, κ1, γ, δ0, and an upper bound of the C2 norm of ∂Ω and the C2,γ

norms of ∂D1 and ∂D2, but not on ε. Also, we call a constant having such dependence 
a universal constant. The main result of this paper is for dimension three.
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Theorem 1.1. Assume that Ω, D1, D2, ε are defined in (1.2), λ and μ satisfy (1.9) for 
some δ0 > 0, and ϕ ∈ C2(∂Ω; R3). Let u ∈ H1(Ω; R3) ∩C1(Ω̃; R3) be the solution of (1.6). 
Then for 0 < ε < 1/2, we have

‖∇u‖L∞(Ω;R3) ≤
C

ε| ln ε| ‖ϕ‖C2(∂Ω;R3), (1.11)

where C is a universal constant.

Remark 1.1. The proof of Theorem 1.1 actually gives the following stronger estimates:

|∇u(x)| ≤
(

C

| ln ε|
(
ε + dist2(x, P1P2)

) + Cdist(x, P1P2)
ε + dist2(x, P1P2)

)
‖ϕ‖C2(∂Ω;R3), x ∈ Ω̃,

(1.12)

and

|∇u(x)| ≤ C‖ϕ‖C2(∂Ω;R3), x ∈ D1 ∪D2. (1.13)

Remark 1.2. The strict convexity assumption on ∂D1 and ∂D2 can be replaced by a 
weaker relative strict convexity assumption, see (3.5) in Section 3.

Remark 1.3. Here ϕ ∈ C2(∂Ω; R3) can be replaced by ϕ ∈ H1/2(∂Ω; R3). Indeed, the H1

norm of the solution u in Ω is bounded by a universal constant. Then standard elliptic 
estimates give a universal bound of u in C2 norm in 

{
x ∈ Ω

∣∣ κ1
4 < dist(x, ∂Ω) < κ1

2
}
. 

We apply the theorem in Ω′ :=
{
x ∈ Ω

∣∣ dist(x, ∂Ω) > κ1
3
}

with ϕ′ := u
∣∣
∂Ω′ .

Remark 1.4. Since the blow up rate of |∇u∞| for solutions of the scalar equation (1.1)
when k = ∞ is known to reach the magnitude (ε| ln ε|)−1 in dimension three, see [11], 
estimate (1.11) is expected to be optimal.

Following arguments in the proof of Theorem 1.1, we establish the corresponding 
estimates for higher dimensions d ≥ 4. Let Ω ⊂ R

d, d ≥ 4 be a bounded open set 
with C2 boundary, and D1 and D2 are two disjoint convex open sets in Ω with C2,γ

boundaries, satisfying (1.2). Let C0 be given by (1.3) with i, j, k, l = 1, 2, · · · , d, where λ
and μ satisfy

μ > 0, dλ + 2μ > 0,

and

Ψ :=
{
ψ ∈ C1(Rd;Rd)

∣∣ ∇ψ + (∇ψ)T = 0
}

(1.14)
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be the linear space of rigid displacement in Rd. With e1, · · · , ed denoting the standard 
basis of Rd,

{
ei, xjek − xkej

∣∣ 1 ≤ i ≤ d, 1 ≤ j < k ≤ d
}

is a basis of Ψ. Denote the basis of Ψ as {ψα}, α = 1, 2, · · · , d(d+1)
2 . Consider

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,μu := ∇ ·
(
C

0e(u)
)

= 0, in Ω̃,

u
∣∣
+ = u

∣∣
−, on ∂D1 ∪ ∂D2,

e(u) = 0, in D1 ∪D2,∫
∂Di

∂u
∂ν0

∣∣
+ · ψα = 0, i = 1, 2, α = 1, 2, · · · , d(d+1)

2 ,

u = ϕ, on ∂Ω.

(1.15)

Then we have

Theorem 1.2. Assume as above, and ϕ ∈ C2(∂Ω; Rd), d ≥ 4. Let u ∈ H1(Ω; Rd) ∩
C1(Ω̃; Rd) be the solution of (1.15). Then for 0 < ε < 1/2, we have

‖∇u‖L∞(Ω;Rd) ≤
C

ε
‖ϕ‖C2(∂Ω;Rd), (1.16)

where C is a universal constant.

Remark 1.5. The proof of Theorem 1.2 actually gives the following stronger estimate in 
dimension d ≥ 4:

|∇u(x)| ≤

⎧⎪⎨⎪⎩
C

ε + dist2(x, P1P2)
‖ϕ‖C2(∂Ω;Rd), x ∈ Ω̃,

C‖ϕ‖C2(∂Ω;Rd), x ∈ D1 ∪D2.

We also have Remarks 1.2–1.4 accordingly.

The rest of this paper is organized as follows. In Section 2, we first introduce a setup 
for the proof of Theorem 1.1. Then we state a proposition, Proposition 2.1, containing 
key estimates, and deduce Theorem 1.1 from the proposition. In Sections 3 and 4, we 
prove Proposition 2.1. The proof of Theorem 1.2 is given in Section 5. A linear algebra 
lemma, Lemma 6.2, used in the proof of Theorem 1.1, is given in Section 6.

2. Outline of the Proof of Theorem 1.1

The proof of Theorem 1.1 makes use of the following decomposition. By the third line 
of (1.6), u is a linear combination of {ψα} in D1 and D2, respectively. Since it is clear 
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that Lλ,μξ = 0 in Ω̃ and ξ = 0 on ∂Ω̃ imply that ξ = 0 in Ω̃, we decompose the solution 
of (1.6), as in [13], as follows:

u =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6∑
α=1

Cα
1 ψ

α, in D1,

6∑
α=1

Cα
2 ψ

α, in D2,

6∑
α=1

Cα
1 v

α
1 +

6∑
α=1

Cα
2 v

α
2 + v0, in Ω̃,

(2.1)

where vαi ∈ C1(Ω̃; R3), i = 1, 2, α = 1, 2, · · · , 6, and v0 ∈ C1(Ω̃; R3) are respectively the 
solution of ⎧⎪⎪⎨⎪⎪⎩

Lλ,μv
α
i = 0, in Ω̃,

vαi = ψα, on ∂Di,

vαi = 0, on ∂Dj ∪ ∂Ω, j �= i,

(2.2)

and ⎧⎪⎪⎨⎪⎪⎩
Lλ,μv0 = 0, in Ω̃,

v0 = 0, on ∂D1 ∪ ∂D2,

v0 = ϕ, on ∂Ω.

(2.3)

The constants Cα
i := Cα

i (ε), i = 1, 2, α = 1, 2, · · · , 6, are uniquely determined by the 
fourth line of (1.6), see (4.5) below.

By the decomposition (2.1), we write

∇u =
3∑

α=1
(Cα

1 − Cα
2 )∇vα1 +

3∑
α=1

Cα
2 ∇(vα1 + vα2 ) +

2∑
i=1

6∑
α=4

Cα
i ∇vαi + ∇v0, in Ω̃, (2.4)

then

|∇u| ≤
3∑

α=1
|Cα

1 − Cα
2 | |∇vα1 | +

3∑
α=1

|Cα
2 | |∇(vα1 + vα2 )| +

2∑
i=1

6∑
α=4

|Cα
i | |∇vαi | +

∣∣∇v0
∣∣,

in Ω̃. (2.5)

The proof of Theorem 1.1 can be reduced to the following proposition. Without loss of 
generality, we only need to prove Theorem 1.1 for ‖ϕ‖C2(∂Ω) = 1, and for the general 
case by considering u/‖ϕ‖C2(∂Ω) if ‖ϕ‖C2(∂Ω) > 0. If ϕ

∣∣
∂Ω = 0, then u = 0.

Proposition 2.1. Under the hypotheses of Theorem 1.1, and the normalization ‖ϕ‖C2(∂Ω)
= 1, let vαi and v0 be the solution to (2.2) and (2.3), respectively. Then for 0 < ε < 1/2, 
we have
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∥∥∇v0
∥∥
L∞(Ω̃) ≤ C; (2.6)∥∥∇(vα1 + vα2 )

∥∥
L∞(Ω̃) ≤ C, α = 1, 2, 3; (2.7)∣∣∇vαi (x)

∣∣ ≤ C

ε + dist2(x, P1P2)
, i = 1, 2, α = 1, 2, 3, x ∈ Ω̃; (2.8)

∣∣∇vαi (x)
∣∣ ≤ Cdist(x, P1P2)

ε + dist2(x, P1P2)
+ C, i = 1, 2, α = 4, 5, 6, x ∈ Ω̃; (2.9)

and ∣∣Cα
i

∣∣ ≤ C, i = 1, 2, α = 1, 2, · · · , 6; (2.10)∣∣Cα
1 − Cα

2
∣∣ ≤ C

| ln ε| , α = 1, 2, 3. (2.11)

Proof of Theorem 1.1 by using Proposition 2.1. Clearly, we only need to prove the the-
orem under the normalization ‖ϕ‖C2(∂Ω) = 1.

Since

∇u =

⎛⎜⎜⎜⎝
0 C4

i C5
i

−C4
i 0 C6

i

−C5
i −C6

i 0

⎞⎟⎟⎟⎠ , in Di, i = 1, 2,

estimate (1.13) follows from (2.10).
By (2.5) and Proposition 2.1, we have

∣∣∇u(x)
∣∣ ≤ 3∑

α=1
|Cα

1 − Cα
2 | |∇vα1 (x)| +

2∑
i=1

6∑
α=4

|Cα
i | |∇vαi | + C

≤ C

| ln ε|
(
ε + dist2(x, P1P2)

) + Cdist(x, P1P2)
ε + dist2(x, P1P2)

. (2.12)

Theorem 1.1 follows immediately. �
To complete this section, we recall some properties of the tensor C. For the isotropic 

elastic material, let

C := (Cij kl) = (λδijδkl + μ (δikδjl + δilδjk)) , μ > 0, dλ + 2μ > 0. (2.13)

The components Cij kl satisfy the following symmetric condition:

Cij kl = Ckl ij = Cklj i, i, j, k, l = 1, 2, · · · , d. (2.14)

We will use the following notations:
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(CA)ij =
d∑

k,l=1

Cij klAkl, and (A,B) := A : B =
d∑

i,j=1
AijBij ,

for every pair of d ×d matrices A = (Aij), B = (Bij). By the symmetric condition (2.14), 
we have

(CA,B) = (A,CB). (2.15)

For an arbitrary d × d real symmetric matrix η = (ηij), we have

Cij kl ηklηij = λ ηiiηkk + 2μ ηkjηkj .

It follows from (2.13) that C satisfies the ellipticity condition

min
{

2μ, dλ + 2μ
}
|η|2 ≤ Cij kl ηklηij ≤ max

{
2μ, dλ + 2μ

}
|η|2, (2.16)

where |η|2 =
d∑

i,j=1
η2
ij . In particular,

min
{

2μ, dλ + 2μ
} ∣∣A + AT

∣∣2 ≤
(
C
(
A + AT

)
,
(
A + AT

))
. (2.17)

3. Estimates of |∇v0|, |∇vα
i |, and |∇(vα

1 + vα
2 )|

We first fix notations. Use (x1, x2, x3) to denote a point in R3 and x′ = (x1, x2). By a 
translation and rotation if necessary, we may assume without loss of generality that the 
points P1 and P2 in (1.10) satisfy

P1 =
(
0′, ε2

)
∈ ∂D1, and P2 =

(
0′,− ε

2

)
∈ ∂D2.

Fix a small universal constant R, such that the portion of ∂D1 and ∂D2 near P1 and P2, 
respectively, can be represented by

x3 = ε

2 + h1(x′), and x3 = − ε

2 + h2(x′), for |x′| < 2R. (3.1)

Then by the smoothness assumptions on ∂D1 and ∂D2, the functions h1(x′) and h2(x′)
are of class C2,γ(BR(0′)), satisfying

ε

2 + h1(x′) > − ε

2 + h2(x′), for |x′| < 2R,

h1(0′) = h2(0′) = 0, ∇h1(0′) = ∇h2(0′) = 0, (3.2)

∇2h1(0′) ≥ κ0I, ∇2h2(0′) ≤ −κ0I, (3.3)

and
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‖h1‖C2,γ(B′
2R) + ‖h2‖C2,γ(B′

2R) ≤ C. (3.4)

In particular, we only use a weaker relative strict convexity assumption of ∂D1 and ∂D2, 
that is

h1(x′) − h2(x′) ≥ κ0|x′|2, if |x′| < 2R. (3.5)

For 0 ≤ r ≤ 2R, denote

Ωr :=
{

(x′, x3) ∈ R
3 ∣∣ − ε

2 + h2(x′) < x3 <
ε

2 + h1(x′), |x′| < r
}
.

For 0 ≤ |z′| < R, let

Ω̂s(z′) :=
{

(x′, x3) ∈ R
3 ∣∣ − ε

2 + h2(x′) < x3 <
ε

2 + h1(x′), |x′ − z′| < s
}
. (3.6)

3.1. Estimates of |∇v0|, |∇vαi | for α = 1, 2, 3, and |∇(vα1 + vα2 )|

Lemma 3.1.

‖v0‖L∞(Ω̃) + ‖∇v0‖L∞(Ω̃) ≤ C. (3.7)

‖vα1 + vα2 ‖L∞(Ω̃) + ‖∇(vα1 + vα2 )‖L∞(Ω̃) ≤ C, α = 1, 2, · · · , 6. (3.8)

The proof of Lemma 3.1 is essentially the same as in [13] for dimension two. We omit 
it here. By Lemma 3.1, (2.6) and (2.7) is proved.

To estimate (2.8), we introduce a scalar function ū ∈ C2(R3), such that ū = 1 on 
∂D1, ū = 0 on ∂D2 ∪ ∂Ω,

ū(x) =
x3 − h2(x′) + ε

2
ε + h1(x′) − h2(x′) , in Ω2R, (3.9)

and

‖ū‖C2(R3\ΩR) ≤ C. (3.10)

Define

ūα
1 = ūψα, α = 1, 2, 3, in Ω̃, (3.11)

then ūα
1 = vα1 on ∂Ω̃.

Similarly, we define

ūα
2 = uψα, α = 1, 2, 3, in Ω̃, (3.12)
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such that ūα
2 = vα2 on ∂Ω̃, where u is a scalar function in C2(R3) satisfying u = 1 on 

∂D2, u = 0 on ∂D1 ∪ ∂Ω,

u(x) =
−x3 + h1(x′) + ε

2
ε + h1(x′) − h2(x′) , in Ω2R, (3.13)

and

‖u‖C2(R3\ΩR) ≤ C. (3.14)

In order to prove (2.8), it suffices to prove the following proposition.

Proposition 3.2. Assume the above, let vαi ∈ H1(Ω̃; R3) be the weak solution of (2.2) with 
α = 1, 2, 3. Then for i = 1, 2, α = 1, 2, 3,∫

Ω̃

|∇(vαi − ūα
i )|2 dx ≤ C; (3.15)

and

‖∇vαi ‖L∞(Ω̃\ΩR) ≤ C, (3.16)

|∇(vαi − ūα
i )(x)| ≤

⎧⎪⎪⎨⎪⎪⎩
C√
ε
, |x′| ≤ √

ε,

C

|x′| ,
√
ε < |x′| ≤ R,

∀ x ∈ ΩR. (3.17)

Consequently,

|∇vαi (x)| ≤ C

ε + |x′|2 , ∀ x ∈ ΩR, (3.18)

and

|∇x′vαi (x)| ≤

⎧⎪⎪⎨⎪⎪⎩
C√
ε
, |x′| ≤ √

ε,

C

|x′| ,
√
ε < |x′| ≤ R.

(3.19)

A direct calculation gives, in view of (3.2)–(3.5), that

|∂xk
ū(x)| ≤ C|xk|

ε + |x′|2 , k = 1, 2, |∂x3 ū(x)| ≤ C

ε + |x′|2 , x ∈ ΩR. (3.20)

Thus

|∇ūα
i (x)| ≤ C

′ 2 , i = 1, 2, α = 1, 2, 3, x ∈ ΩR. (3.21)

ε + |x |
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For k, l = 1, 2,

|∂xkxl
ū(x)| ≤ C

ε + |x′|2 , |∂xkx3 ū(x)| ≤ C|x′|
(ε + |x′|2)2 , ∂x3x3 ū(x) = 0, x ∈ ΩR.

(3.22)

For ūα
i , defined by (3.11) and (3.12), making use of (1.8) and (3.22), we have, for i =

1, 2, α = 1, 2, 3,

|Lλ,μū
α
i (x)| ≤ C

∑
k+l<6

|∂xkxl
ū(x)| ≤ C

ε + |x′|2 + C|x′|
(ε + |x′|2)2 , x ∈ ΩR. (3.23)

For |z′| ≤ 2R, we always use δ to denote

δ := δ(z′) = ε + h1(z′) − h2(z′)
2 . (3.24)

By (3.2)–(3.5),

1
C

(
ε + |z′|2

)
≤ δ(z′) ≤ C

(
ε + |z′|2

)
. (3.25)

Proof of Proposition 3.2. Let

wα
i := vαi − ūα

i , i = 1, 2, α = 1, 2, 3. (3.26)

For simplicity, denote

w := wα
i , and ũ = ūα

i , i = 1, 2, α = 1, 2, 3.

The proof is divided into four steps.
STEP 1. Proof of (3.15) and (3.16).

By (3.26) and (2.2), {
Lλ,μw = −Lλ,μũ, in Ω̃,

w = 0, on ∂Ω̃.
(3.27)

Multiplying the equation in (3.27) by w and integrating by parts, we have∫
Ω̃

(
C

0e(w), e(w)
)
dx =

∫
Ω̃

w (Lλ,μũ) dx. (3.28)

By the Poincaré inequality,

‖w‖ 2 ˜ ≤ C‖∇w‖ 2 ˜ . (3.29)
L (Ω\ΩR) L (Ω\ΩR)
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Note that the above constant C is independent of ε. By the Sobolev trace embedding 
theorem,

∫
|x′|=R,

−ε/2+h2(x′)<x3<ε/2+h1(x′)

|w| ≤ C

⎛⎜⎝ ∫
Ω̃\ΩR

|∇w|2 dx

⎞⎟⎠
1/2

. (3.30)

It follows from the first Korn’s inequality, (2.17), (3.28) and the definition of ũ that∫
Ω̃

|∇w|2 dx ≤ 2
∫
Ω̃

|e(w)|2dx

≤ C

∣∣∣∣ ∫
ΩR

w (Lλ,μũ) dx
∣∣∣∣+ C

∣∣∣∣ ∫
Ω̃\ΩR

w (Lλ,μũ) dx
∣∣∣∣

≤ C

∣∣∣∣ ∫
ΩR

w (Lλ,μũ) dx
∣∣∣∣+ C

∫
Ω̃\ΩR

|w|dx

≤ C

∣∣∣∣ ∫
ΩR

w (Lλ,μũ) dx
∣∣∣∣+ C

⎛⎜⎝ ∫
Ω̃\ΩR

|∇w|2dx

⎞⎟⎠
1/2

, (3.31)

while, using (1.8) and (3.30),∣∣∣∣∣∣
∫

ΩR

w (Lλ,μũ) dx

∣∣∣∣∣∣ ≤ C
∑

k+l<6

∣∣∣∣∣∣
∫

ΩR

w∂xkxl
ũ dx

∣∣∣∣∣∣
≤ C

∫
ΩR

|∇w|
∣∣∇x′ ũ

∣∣dx +
∫

|x′|=R,
−ε/2+h2(x′)<x3<ε/2+h1(x′)

C |w|

≤ C

⎛⎝ ∫
ΩR

|∇w|2dx

⎞⎠1/2⎛⎝ ∫
ΩR

∣∣∇x′ ũ
∣∣2dx

⎞⎠1/2

+ C

⎛⎜⎝ ∫
Ω̃\ΩR

|∇w|2 dx

⎞⎟⎠
1/2

. (3.32)

Using ∫ ∣∣∇x′ ũ
∣∣2dx ≤ C,
ΩR
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we have, from the above,

∫
Ω̃

|∇w|2 dx ≤ C

⎛⎜⎝∫
Ω̃

|∇w|2dx

⎞⎟⎠
1/2

.

This estimate yields (3.15).
A consequence of (3.15) and (3.10) is∫

Ω̃\ΩR/2

|∇vαi |2dx ≤ 2
∫

Ω̃\ΩR/2

(
|∇ūα

i |2 + |∇(vαi − ūα
i )|2

)
dx ≤ C.

Applying classical elliptic estimates, we obtain (3.16).
STEP 2. Proof of ∫

Ω̂δ(z′)

|∇w|2 dx ≤
{
Cε2, 0 ≤ |z′| ≤ √

ε,

C|z′|4, √
ε < |z′| ≤ R,

(3.33)

where δ = δ(z′) is defined by (3.24).
For 0 < t < s < R, let η be a smooth function satisfying 0 ≤ η(x′) ≤ 1, η(x′) = 1 if 

|x′ − z′| < t, η(x′) = 0 if |x′ − z′| > s, and |∇η(x′)| ≤ 2
s−t . Multiplying the equation in 

(3.27) by wη2 and integrating by parts leads to∫
Ω̂s(z′)

(
C

0e(w), e(wη2)
)
dx =

∫
Ω̂s(z′)

(wη2)Lλ,μũ dx. (3.34)

For the left hand side of (3.34), using the first Korn’s inequality and some standard 
arguments, we have∫

Ω̂s(z′)

(
C

0e(w), e(wη2)
)
dx ≥ 1

C

∫
Ω̂s(z′)

|∇(wη)|2dx− C

∫
Ω̂s(z′)

|w|2|∇η|2dx,

and for the right hand side of (3.34),

∣∣∣∣ ∫
Ω̂s(z′)

(wη2)Lλ,μũ dx

∣∣∣∣ ≤
⎛⎜⎝ ∫

Ω̂s(z′)

|w|2dx

⎞⎟⎠
1/2⎛⎜⎝ ∫

Ω̂s(z′)

|Lλ,μũ|2 dx

⎞⎟⎠
1/2

≤ 1
(s− t)2

∫
Ω̂s(z′)

|w|2dx + (s− t)2
∫

Ω̂s(z′)

|Lλ,μũ|2 dx.
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It follows that∫
Ω̂t(z′)

|∇w|2dx ≤ C

(s− t)2

∫
Ω̂s(z′)

|w|2dx + C(s− t)2
∫

Ω̂s(z′)

|Lλ,μũ|2 dx. (3.35)

Case 1. Estimate (3.33) for 
√
ε ≤ |z′| ≤ R.

Note that for 
√
ε ≤ |z′| ≤ R, 0 < t < s < 2|z′|

3 , we have

∫
Ω̂s(z′)

|w|2dx =
∫

|x′−z′|≤ s

ε
2+h1(x′)∫

− ε
2+h2(x′)

|w(x′, x3)|2dx3dx
′

≤
∫

|x′−z′|≤ s

(ε + h1(x′) − h2(x′))2
ε
2+h1(x′)∫

− ε
2+h2(x′)

|∂x3w(x′, x3)|2dx3dx
′

≤ C|z′|4
∫

Ω̂s(z′)

|∇w|2dx. (3.36)

By (3.23), we have

∫
Ω̂s(z′)

|Lλ,μũ|2 dx ≤
∫

Ω̂s(z′)

(
C

ε + |x′|2 + C|x′|
(ε + |x′|2)2

)2

dx

≤ C

∫
|x′−z′|<s

(
1

ε + |x′|2 + |x′|2
(ε + |x′|2)3

)
dx′

≤ Cs2

|z′|4 , 0 < s <
2|z′|

3 . (3.37)

Denote

F̂ (t) :=
∫

Ω̂t(z′)

|∇w|2dx.

It follows from (3.35), (3.36) and (3.37) that

F̂ (t) ≤
(
C0|z′|2
s− t

)2

F̂ (s) + C(s− t)2 s2

|z′|4 , ∀ 0 < t < s <
2|z′|

3 . (3.38)

Set ti = δ + 2C0i |z′|2, i = 0, 1, 2, · · · . Then
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C0|z′|2
ti+1 − ti

= 1
2 .

Let k =
[

1
4C0|z′|

]
. Using (3.38) with s = ti+1 and t = ti, we have

F̂ (ti) ≤
1
4 F̂ (ti+1) +

C(ti+1 − ti)2t2i+1
|z′|4 ≤ 1

4 F̂ (ti+1) + C(i + 1)2|z′|4, i = 0, 1, 2, · · · , k.

After k iterations, using (3.15), we obtain

F̂ (t0) ≤
(1

4

)k
F̂ (tk) + C

k∑
l=1

(1
4

)l−1
l2|z′|4

≤
(1

4

)k
F̂ (2|z′|

3 ) + C|z′|4
k∑

l=1

(1
4

)l−1
l2 ≤ C|z′|4.

This implies that ∫
Ω̂δ(z′)

|∇w|2dx ≤ C|z′|4.

Case 2. Estimate (3.33) for 0 ≤ |z′| ≤ √
ε.

For 0 ≤ |z′| ≤ √
ε, 0 < t < s <

√
ε, estimate (3.36) becomes∫

Ω̂s(z′)

|w|2dx ≤ Cε2
∫

Ω̂s(z′)

|∇w|2dx, 0 < s <
√
ε, (3.39)

while estimate (3.37) becomes∫
Ω̂s(z′)

|Lλ,μũ|2 ≤
∫

|x′−z′|<s

(
C

ε + |x′|2 + C|x′|2
(ε + |x′|2)3

)
dx′ ≤ Cs2

ε2
. (3.40)

Estimate (3.38) becomes, in view of (3.35), (3.39) and (3.40),

F̂ (t) ≤
(

C0ε

s− t

)2

F̂ (s) + C(s− t)2 s
2

ε2
, ∀ 0 < t < s <

√
ε. (3.41)

For 0 ≤ |z′| ≤ √
ε, let ti = δ + 2C0iε, i = 0, 1, 2, · · · . Thus

C0ε

ti+1 − ti
= 1

2 .

Let k =
[

1√
]
. By (3.41) with s = ti+1 and t = ti, we have
4C0 ε
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F̂ (ti) ≤
1
4 F̂ (ti+1) +

Cε2t2i+1
ε2

≤ 1
4 F̂ (ti+1) + C(i + 1)2ε2, i = 0, 1, 2, · · · , k.

After k iterations, we obtain

F̂ (t0) ≤
(1

4

)k
F̂ (tk) + C

k∑
l=1

(1
4

)l−1
l2ε2

≤
(1

4

)k
F̂ (

√
ε) + Cε2 ≤ Cε2.

This implies ∫
Ω̂δ(z′)

|∇w|2dx ≤ Cε2.

STEP 3. Proof of (3.17).
Making a change of variables, for 0 ≤ |z′| ≤ R,{

x′ − z′ = δy′,

x3 = δy3,
(3.42)

the region Ω̂δ(z′), becomes Q1, where

Qr =
{
y ∈ R

3 ∣∣ − ε

2δ + 1
δ
h2(δy′ + z′) < y3 <

ε

2δ + 1
δ
h1(δy′ + z′), |y′| < r

}
,

for r ≤ 1,

and the top and bottom boundaries of Qr become

y3 = ĥ1(y′) =: 1
δ

( ε
2 + h1(δ y′ + z′)

)
, and

y3 = ĥ2(y′) := 1
δ

(
− ε

2 + h2(δ y′ + z′)
)
, |y′| < 1,

respectively. Thus

ĥ1(0′) − ĥ2(0′) = 1
δ

(ε + h1(z′) − h2(z′)) = 2,

and, by (3.2) and (3.3), for |y′| ≤ 1,∣∣∣∇ĥ1(y′)
∣∣∣+ ∣∣∣∇ĥ2(y′)

∣∣∣ ≤ C(δ + |z′|),
∣∣∣∇2ĥ1(y′)

∣∣∣+ ∣∣∣∇2ĥ2(y′)
∣∣∣ ≤ Cδ.

Since R is small, Q1 is essentially B1(0′) × (−1, 1) as far as applications of the Sobolev 
embedding theory and classical Lp estimates for elliptic systems are concerned. Let
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U(y′, y3) := ũ(x′, x3), W (y′, y3) := w(x′, x3), y ∈ Q1. (3.43)

By (3.27),

Lλ,μW = Lλ,μU, y ∈ Q1, (3.44)

where

Lλ,μU = δ2Lλ,μũ.

Since W = 0 on the top and bottom boundaries of Q1, we have, by the Poincaré inequal-
ity,

‖W‖H1(Q1) ≤ C ‖∇W‖L2(Q1) .

Using the interior and boundary W 2,p estimates (see [1], and Theorem 2.5 in [23]) and 
the Sobolev embedding theorem, we have, for some p > 3,

‖∇W‖L∞(Q1/2) ≤ C ‖W‖W 2,p(Q1/2) ≤ C
(
‖∇W‖L2(Q1) + ‖Lλ,μU‖L∞(Q1)

)
,

where C depends only on p and Q1, but not on ε. Thus

‖∇w‖L∞(Ω̂δ/2(z′)) ≤
C

δ

(
δ−

1
2 ‖∇w‖L2(Ω̂δ(z′)) + δ2 ‖Lλ,μũ‖L∞(Ω̂δ(z′))

)
. (3.45)

Case 1. (3.17) for 
√
ε ≤ |z′| ≤ R.

By (3.33),

‖∇w‖2
L2(Ω̂δ(z′)) =

∫
Ω̂δ(z′)

|∇w|2 dx ≤ C|z′|4.

By (3.23),

δ ‖Lλ,μũ‖L∞(Ω̂δ(z′)) ≤ δ

(
C

ε + |z′|2 + C|z′|
(ε + |z′|2)2

)
≤ C

|z′| .

It follows from (3.45) that

|∇w(z′, z3)| ≤
C|z′|2
δ3/2 + C

|z′| ≤
C

|z′| , ∀
√
ε ≤ |z′| ≤ R.

Case 2. (3.17) for 0 ≤ |z′| ≤ √
ε.
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Using (3.33), and (3.23), we have

‖∇w‖L2(Ω̂δ(z′)) ≤ Cε, δ ‖Lλ,μũ‖L∞(Ω̂δ(z′)) ≤
C|z′|
ε

+ C,

and, using (3.45),

|∇w(z′, z3)| ≤
Cε

δ3/2 + C|z′|
ε

+ C ≤ C√
ε
, ∀ 0 ≤ |z′| ≤

√
ε.

STEP 4. Proof of (3.18) and (3.19).
Estimate (3.18) and (3.19) in ΩR follows from (3.17) and (3.20).
Proposition 3.2 is established. �

3.2. Estimates of |∇vαi |, α = 4, 5, 6

Define

ūα
1 = ūψα, and ūα

2 = uψα, α = 4, 5, 6, in Ω̃. (3.46)

Clearly, vαi = ūα
i on ∂Ω̃, i = 1, 2, α = 4, 5, 6.

Proposition 3.3. Assume the above, let vαi ∈ H1(Ω̃; R3) be the weak solution of (2.2) with 
α = 4, 5, 6. Then for i = 1, 2, α = 4, 5, 6,∫

Ω̃

|vαi |
2
dx +

∫
Ω̃

|∇vαi |
2
dx ≤ C, (3.47)

and

‖∇vαi ‖L∞(Ω̃\ΩR) ≤ C, (3.48)

|∇(vαi − ūα
i )(x′, x3)| ≤ C, x ∈ ΩR. (3.49)

Consequently,

|∇vαi (x′, x3)| ≤
C|x′|

ε + |x′|2 + C, x ∈ ΩR. (3.50)

Using (3.20) and (3.10), we have

|∇ūα
i (x)| ≤ C|x′|

′ 2 + C, x ∈ ΩR, (3.51)

ε + |x |
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and

|∇ūα
i (x)| ≤ C, x ∈ Ω̃ \ ΩR. (3.52)

It follows from (3.46), (1.8), (3.20) and (3.22) that, for i = 1, 2, α = 4, 5, 6,

|Lλ,μū
α
i | ≤ C

(
|∇ū| + (ε + |x′|)

∑
k+l<6

|∂xkxl
ū|
)

≤ C

ε + |x′|2 , x ∈ ΩR. (3.53)

Proof of Proposition 3.3. Denote

wα
i := vαi − ūα

i , i = 1, 2, α = 4, 5, 6. (3.54)

For simplicity, we also use the notation

w := wα
i , ũ := ūα

i , i = 1, 2, α = 4, 5, 6.

The proof is divided into three steps.
STEP 1. Proof of (3.47) and (3.48).

Similarly as Step 1 in the proof of Proposition 3.2, by (3.54) and (2.2) with α = 4, 5, 6. 
Using (3.46), and (1.8), (3.30) again, (3.32) is replaced by∫
ΩR

w (Lλ,μũ) dx ≤ C

∫
ΩR

|∇w||∇ũ|dx +
∫

|x′|=R,
−ε/2+h2(x′)<x3<ε/2+h1(x′)

C |w|

≤ C

⎛⎝ ∫
ΩR

|∇w|2dx

⎞⎠1/2⎛⎝ ∫
ΩR

|∇ũ|2dx

⎞⎠1/2

+ C

⎛⎜⎝ ∫
Ω̃\ΩR

|∇w|2 dx

⎞⎟⎠
1/2

.

(3.55)

Using (3.51), we have ∫
ΩR

|∇ũ|2dx ≤ C. (3.56)

It follows from (3.31) for this situation that

∫
Ω̃

|∇w|2 dx ≤ C

⎛⎜⎝∫
Ω̃

|∇w|2dx

⎞⎟⎠
1/2

.

This implies
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∫
Ω̃

|∇w|2 dx ≤ C.

By the Poincaré inequality, ∫
Ω̃

|w|2 dx +
∫
Ω̃

|∇w|2 dx ≤ C.

Combining with (3.56), we obtain (3.47).
Using (3.47) and recalling the definition of ũ, we apply the standard elliptic estimates 

(see [1]) to obtain (3.48).
STEP 2. Proof of

∫
Ω̂δ(z′)

|∇w|2dx ≤
{
C|z′|6, √

ε ≤ |z′| < R,

Cε3, 0 ≤ |z′| < √
ε,

(3.57)

with δ = δ(z′) defined in (3.24).
The proof is similar to that of (3.33). We still have (3.35).

Case 1. Estimate (3.57) for 
√
ε ≤ |z′| ≤ R.

For 0 < t < s < 2|z′|
3 , using (3.53), we have, instead of (3.37),∫

Ω̂s(z′)

|Lλ,μũ|2 dx ≤
∫

|x′−z′|<s

C

ε + |x′|2 dx′ ≤ Cs2

|z′|2 . (3.58)

Using (3.36), instead of (3.38), we have

F̂ (t) ≤
(
C0|z′|2
s− t

)2

F̂ (s) + C(s− t)2 s2

|z′|2 , ∀ 0 < t < s <
2|z′|

3 . (3.59)

We define {ti}, k and iterate as in the proof of (3.33), right below formula (3.38), to 
obtain

F̂ (t0) ≤
(1

4

)k
F̂ (3|z′|

2 ) + C|z′|6
k∑

l=1

(1
4

)l−1
l2 ≤ C|z′|6.

This implies that ∫
Ω̂δ(z′)

|∇w|2dx ≤ C|z′|6.
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Case 2. Estimate (3.57) for 0 ≤ |z′| ≤ √
ε.

For 0 < t < s <
√
ε, estimate (3.39) remains the same. Estimate (3.40) becomes∫

Ω̂s(z′)

|Lλ,μũ|2 dx ≤
∫

|x′−z′|<s

C

ε + |x′|2 dx′ ≤ Cs2

ε
, 0 < s <

√
ε. (3.60)

Estimate (3.41) becomes

F (t) ≤
(

C0ε

s− t

)2

F (s) + C(s− t)2s2

ε
, ∀ 0 < t < s <

√
ε. (3.61)

Define {ti}, k and iterate as in the proof of (3.33), right below formula (3.41), to obtain

F (t0) ≤
(1

4

)k
F̂ (

√
ε) + C

k∑
l=1

(1
4

)l−1
l2ε3 ≤ Cε3.

This implies as before that ∫
Ω̂s(z′)

|∇w|2dx ≤ Cε3.

(3.57) is proved.
STEP 3. Proof of (3.49) and (3.50).

The proof is similar to that of (3.17). In Case 1, for 
√
ε ≤ |z′| ≤ R, using estimates 

(3.57) and (3.53),∫
Ω̂δ(z′)

|∇w|2 dx ≤ C|z′|6, and δ ‖Lλ,μũ‖L∞(Ω̂δ(z′)) ≤ C,

we obtain, using (3.45),

|∇w(z′, z3)| ≤
C|z′|3
δ3/2 + C ≤ C, for

√
ε ≤ |z′| ≤ R.

In Case 2, for 0 ≤ |z′| ≤ √
ε, using estimates (3.57) and (3.53),∫

Ω̂δ(z′)

|∇w|2 dx ≤ Cε3, and δ ‖Lλ,μũ‖L∞(Ω̂δ(z′)) ≤ C,

we have, using again (3.45),
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|∇w(z′, z3)| ≤
Cε3/2

δ3/2 + C ≤ C, for 0 ≤ |z′| ≤
√
ε.

Estimate (3.49) is established.
Estimate (3.50) follows from (3.49) and (3.51). �

4. Estimates of |Ci| and |Cα
1 − Cα

2 |, α = 1, 2, 3

In this section, we first prove that Cα
1 and Cα

2 are uniformly bounded with respect 
to ε, and then estimate the difference Cα

1 − Cα
2 .

Proposition 4.1. Let Cα
i be defined in (2.1). Then

|Cα
i | ≤ C, ∀ i = 1, 2, α = 1, 2, · · · , 6; (4.1)

and

|Cα
1 − Cα

2 | ≤
C

| ln ε| , α = 1, 2, 3. (4.2)

4.1. Boundedness of |Ci|

Proof of (4.1). Let uε be the solution of (1.6). By theorem 4.6 in the appendix in [13], 
uε is the minimizer of

I∞[u] := 1
2

∫
Ω̃

(
Ce(u), e(u)

)

on A. It follows that

‖uε‖2
H1(Ω̃) ≤ C‖e(uε)‖2

L2(Ω̃) ≤ CI∞[uε] ≤ C.

By the Sobolev trace embedding theorem,

‖uε‖L2(∂D1\BR) ≤ C.

Recalling that

uε =
6∑

α=1
Cα

1 ψ
α, on ∂D1.

If C1 := (C1
1 , C

2
1 , · · · , C6

1 )T = 0, there is nothing to prove. Otherwise

C ≥ |C1|
∥∥∥∥∥

6∑
Ĉα

1 ψ
α

∥∥∥∥∥
2

, (4.3)

α=1 L (∂D1\BR)
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where Ĉα
1 = Cα

1
|C1| and |Ĉ1| = 1. It is easy to see that there exists a universal constant 

C > 0 such that ∥∥∥∥∥
6∑

α=1
Ĉα

1 ψ
α

∥∥∥∥∥
L2(∂D1\BR)

≥ 1
C
. (4.4)

Indeed, if not, along a subsequence ε → 0, Ĉα
1 → C

α

1 , and∥∥∥∥∥
6∑

α=1
C

α

1ψ
α

∥∥∥∥∥
L2(∂D∗

1\BR)

= 0,

where ∂D∗
1 is the limit of ∂D1 as ε → 0 and |C1| = 1. This implies 

∑6
α=1 C

α

1ψ
α = 0 on 

∂D∗
1 \BR. But 

{
ψα
∣∣
∂D∗

1\BR

}
is easily seen to be linear independent, using Lemma 6.1, 

we must have C1 = 0. This is a contradiction. (4.1) follows from (4.3) and (4.4). �
4.2. Estimates of |Cα

1 − Cα
2 |, α = 1, 2, 3

In the rest of this section, we prove (4.2). By the linearity of e(u),

e(u) =
6∑

α=1
Cα

1 e (vα1 ) +
6∑

α=1
Cα

2 e(vα2 ) + e(v0), in Ω̃.

It follows from the fourth line of (1.6) that

6∑
α=1

Cα
1

∫
∂Dj

∂vα1
∂ν0

∣∣∣∣
+
· ψβ +

6∑
α=1

Cα
2

∫
∂Dj

∂vα2
∂ν0

∣∣∣∣
+
· ψβ +

∫
∂Dj

∂v0

∂ν0

∣∣∣∣
+
· ψβ = 0,

j = 1, 2, β = 1, 2, · · · , 6. (4.5)

Denote

aαβij = −
∫

∂Dj

∂vαi
∂ν0

∣∣∣∣
+
· ψβ , bβj =

∫
∂Dj

∂v0

∂ν0

∣∣∣∣
+
· ψβ , i, j = 1, 2, α, β = 1, 2, · · · , 6.

Multiplying the first line of (2.2) and (2.3), respectively, by vβj , and integrating by parts 
over Ω̃ leads to, in view of (1.7), that

aαβij =
∫
Ω̃

(
C

0e(vαi ), e(vβj )
)
dx, bβj = −

∫
Ω̃

(
C

0e(v0), e(vβj )
)
dx.

Then (4.5) can be written as
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

6∑
α=1

Cα
1 a

αβ
11 +

6∑
α=1

Cα
2 a

αβ
21 − bβ1 = 0,

6∑
α=1

Cα
1 a

αβ
12 +

6∑
α=1

Cα
2 a

αβ
22 − bβ2 = 0,

β = 1, 2, · · · , 6. (4.6)

For simplicity, we use aij to denote the 6 × 6 matrix (aαβij ). To estimate |Cα
1 − Cα

2 |, 
α = 1, 2, 3, we only use the first six equations in (4.6):

a11C1 + a21C2 = b1, (4.7)

where

C1 =
(
C1

1 , C
2
1 , · · · , C6

1

)T
, C2 =

(
C1

2 , C
2
2 , · · · , C6

2

)T
, b1 =

(
b11, b

2
1, · · · , b61

)T
.

Set

p := b1 −
(
a11 + a21

)
C2,

(4.7) can be rewritten as

a11

(
C1 − C2

)
= p. (4.8)

In order to prove (4.2), we first estimate the right hand side of (4.8).

Lemma 4.2. ∣∣∣aαβ11 + aαβ21

∣∣∣ ≤ C, α, β = 1, 2, · · · , 6;∣∣∣bβ1 ∣∣∣ ≤ C, β = 1, 2, · · · , 6.

Consequently,

|p| ≤ C. (4.9)

Proof. For β = 1, 2, 3, using (3.16) and (3.18), we have∫
Ω̃

∣∣∣∇vβ1

∣∣∣ dx ≤
∫

ΩR

∣∣∣∇vβ1

∣∣∣ dx +
∫

Ω̃\ΩR

∣∣∣∇vβ1

∣∣∣ dx ≤
∫

ΩR

Cdx

ε + |x′|2 + C ≤ C. (4.10)

For β = 4, 5, 6, using (3.48) and (3.50), we have∫
Ω̃

∣∣∣∇vβ1

∣∣∣ dx ≤
∫

ΩR

C(ε + |x′|)dx
ε + |x′|2 + C ≤ C. (4.11)
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For α, β = 1, 2, · · · , 6, using (2.7), (4.10) and (4.11), we have

∣∣∣aαβ11 + aαβ21

∣∣∣ =
∣∣∣∣∣∣∣
∫
Ω̃

(
C

0e(vα1 + vα2 ), e(vβ1 )
)
dx

∣∣∣∣∣∣∣ ≤ C ‖∇(vα1 + vα2 )‖L∞(Ω̃)

∫
Ω̃

∣∣∣∇vβ1

∣∣∣ dx ≤ C.

Similarly, it follows from (2.6), (4.10) and (4.11) that

∣∣∣bβ1 ∣∣∣ =
∣∣∣∣∣∣∣
∫
Ω̃

(
C

0e(vβ1 ), e(v0)
)
dx

∣∣∣∣∣∣∣ ≤ C‖∇v0‖L∞(Ω̃)

∫
Ω̃

∣∣∣∇vβ1

∣∣∣ dx ≤ C, β = 1, 2, · · · , 6.

These estimates above, combining with (4.1), yield (4.9). �
It can be proved that a11 is positive definite and therefore, recalling (4.8),

C1 − C2 = (a11)−1p.

Given (4.9), estimate (4.2) would follow from the above if ‖(a11)−1‖ ≤ C
| ln ε| . However 

‖(a11)−1‖ ≥ 1
C > 0. We need to make more delicate estimate as below.

In view of the symmetry of aαβ11 , we write it as a block matrix

a11 =
(
A B
C D

)
,

where

A =

⎛⎜⎜⎜⎝
a11
11 a12

11 a13
11

a21
11 a22

11 a23
11

a31
11 a32

11 a33
11

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
a14
11 a15

11 a16
11

a24
11 a25

11 a26
11

a34
11 a35

11 a36
11

⎞⎟⎟⎟⎠ , and D =

⎛⎜⎜⎜⎝
a44
11 a45

11 a46
11

a54
11 a55

11 a56
11

a64
11 a65

11 a66
11

⎞⎟⎟⎟⎠ .

Lemma 4.3. a11 is positive definite, and

| ln ε|
C

≤ aαα11 ≤ C| ln ε|, α = 1, 2, 3; (4.12)

1
C

≤ aαα11 ≤ C, α = 4, 5, 6; (4.13)

and ∣∣∣aαβ11

∣∣∣ = ∣∣∣aβα11

∣∣∣ ≤ C, α, β = 1, 2, · · · , 6, α �= β. (4.14)

Moreover,
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1
C
I ≤ D ≤ CI, (4.15)

where I is the 3 × 3 identity matrix, and

|ln ε|3
C

≤ det a11 ≤ C | ln ε|3. (4.16)

Remark 4.1. Roughly speaking, the estimates of A and B in Lemma 4.3 is that, for some 
positive constants c1, c2, c3, independent of ε,

A ∼

⎛⎜⎝ c1|ln ε| O(1) O(1)
O(1) c2|ln ε| O(1)
O(1) O(1) c3|ln ε|

⎞⎟⎠ , and B =

⎛⎜⎝ O(1) O(1) O(1)
O(1) O(1) O(1)
O(1) O(1) O(1)

⎞⎟⎠ .

We postpone the proof of Lemma 4.3 and first make use of it to prove (4.2).

Proof of (4.2). For convenience, we introduce notations

X1 :=
(
C1

1 − C1
2 , C

2
1 − C2

2 , C
3
1 − C3

2

)T
, X2 :=

(
C4

1 − C4
2 , C

5
1 − C5

2 , C
6
1 − C6

2

)T
,

and

P1 := (p1, p2, p3)T , P2 := (p4, p5, p6)T .

Now (4.8) can be rewritten as(
A B
C D

)(
X1
X2

)
=
(

P1
P2

)
. (4.17)

By Lemma 4.2 and Lemma 4.3, matrices A, B, D satisfy the assumptions of Lemma 6.2
in Appendix with m = 3, γ = |ln ε| and θ = 1

C . Applying Lemma 6.2, we have

(
A B
C D

)−1

=
(
A−1 + O( 1

| ln ε|2 ) O( 1
| ln ε| )

∗ ∗

)
.

It follows from (4.17) that

|X1| =

√√√√ 3∑
α=1

|Cα
1 − Cα

2 | ≤
C

|ln ε| .

Thus, the proof of Proposition 4.1 is completed. �
We are now in position to complete the proof of Proposition 2.1.
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Proof of Proposition 2.1. Estimates (2.6)–(2.7) have been proved in Lemma 3.1. Under 
assumption (1.2),

1
C

(ε + |x′|2) ≤ ε + dist2(x, P1P2) ≤ C(ε + |x′|2), x ∈ ΩR.

Estimate (2.8) in ΩR follows from (3.17) and (3.21). Thus, using (3.16), (2.8) is proved. 
Combining (3.50) and (3.48) yields estimate (2.9). Estimate (2.10) and estimate (2.11)
has been proved in Proposition 4.1. The proof of Proposition 2.1 is finished. �
Proof of Lemma 4.3. STEP 1. Proof of (4.12) and (4.13).

For any ξ = (ξ1, ξ2, · · · , ξ6)T �= 0, by (2.17),

ξTa11ξ =
∫
Ω̃

(
C

0e (ξαvα1 ) , e
(
ξβv

β
1

))
dx ≥ 1

C

∫
Ω̃

|e (ξαvα1 )|2 dx > 0. (4.18)

In the last inequality we have used the fact that e (ξαvα1 ) is not identically zero in Ω̃. 
Indeed, if e (ξαvα1 ) = 0 in Ω̃, then 

∑6
α=1 ξαv

α
1 =

∑6
i=1 aiψ

i in Ω̃, for some constants ai, 
i = 1, 2, · · · , 6. On the other hand, 

∑6
i=1 ξαv

α
1 = 0 on ∂D2, so by Lemma 6.1, ai = 0, ∀ i. 

Thus on ∂D1, 
∑6

i=1 ξαv
α
1 =

∑6
i=1 ξαψ

α = 0, which implies, again using Lemma 6.1, that 
ξ = 0. A contradiction. (4.18) implies that a11 is positive definite.

By (2.16) and (2.8), we have

aαα11 =
∫
Ω̃

(
C

0e (vα1 ) , e (vα1 )
)
dx ≤ C

∫
Ω̃

|∇vα1 |
2
dx ≤ C| ln ε|, α = 1, 2, 3.

By (2.16) again, we have

aαα11 =
∫
Ω̃

(
C

0e (vα1 ) , e (vα1 )
)
dx ≥ 1

C

∫
Ω̃

|e (vα1 )|2 dx ≥ 1
C

∫
ΩR

|∂x3(vα1 )α|2 dx, α = 1, 2, 3.

Notice that (vα1 )α|∂D1 = ū|∂D1 = 1, (vα1 )α|∂D2 = ū|∂D2 = 0, and recalling the definition 
of ū, (3.9), ū(x′, x3) is linear in x3 for fixed x′, so ū(x′, ·) is harmonic, hence its energy 
is minimal, that is,

h1(x′)+ ε
2∫

h2(x′)− ε
2

|∂x3(vα1 )α|2 dx3 ≥
h1(x′)+ ε

2∫
h2(x′)− ε

2

|∂x3 ū|2dx3 = 1
ε + h1(x′) − h2(x′) .

Integrating on |x′| < R, we obtain

∫
Ω

|∂x3(vα1 )α|2 dx =
∫
′

h1(x′)+ ε
2∫

′ ε

|∂x3(vα1 )α|2 dx3dx2dx1
R |x |<R h2(x )− 2
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≥ 1
C

∫
|x′|<R

dx′

ε + |x′|2 ≥ | ln ε|
C

.

Thus,

aαα11 ≥ | ln ε|
C

, α = 1, 2, 3. (4.19)

Estimate (4.12) is proved.
By (3.47), we have

aαα11 =
∫
Ω̃

(
C

0e (vα1 ) , e (vα1 )
)
dx ≤ C, α = 4, 5, 6.

By the same argument, the claim (4.18) in [13] for higher dimensions still holds. Therefore

aαα11 ≥ 1
C

∫
ΩR\ΩR

|e (vα1 ) |2dx ≥ 1
C

∫
ΩR\ΩR

|∇vα1 |2dx ≥ 1
C
, α = 4, 5, 6.

Estimate (4.13) is proved.
STEP 2. We deal with the cases α �= β. Proof of (4.14).

By definition,

aαβ11 = aβα11 =
∫
Ω̃

(
C

0e (vα1 ) , e(vβ1 )
)
dx = −

∫
∂D1

∂vα1
∂ν0

∣∣∣∣
+
· ψβ dS.

First,

a12
11 = −

∫
∂D1

∂v1
1

∂ν0

∣∣∣∣
+
· ψ2 dS

= −
∫

∂D1

(
λ
(
∇ · v1

1

)
n2 + μ

((
∇v1

1 + (∇v1
1)T
)
�n

)
2

)
dS

= −
∫

∂D1

(
λ
( 3∑

k=1

∂xk
(v1

1)k
)
n2 + μ

3∑
l=1

(
∂x2(v1

1)l + ∂xl
(v1

1)2
)
nl

)
dS.

We only need to estimate the integral on the part ∂D1∩BR, because the rest is bounded. 
On boundary ∂D1 ∩BR, we have

�n = 1√
1 + |∇x′h1|2

(
− ∂x1h1,−∂x2h1, 1

)
.

Clearly, using (3.2)–(3.4),
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|n1| ≤ C|x′|, |n2| ≤ C|x′|, n3 = 1√
1 + |∇x′h1|2

.

Combining with the estimates (3.18), we have

∫
∂D1∩BR

∣∣∣ ( 3∑
k=1

∂xk
(v1

1)k
)
n2

∣∣∣ dS ≤
∫

∂D1∩BR

C|x′|
ε + |x′|2 dS ≤ C.

Using the definition of ū1
1, estimates (3.17), (3.18), (3.19), and

∣∣∣ ∫
∂D1∩BR

∂x3(v1
1)2n3 dS

∣∣∣ ≤ ∣∣∣ ∫
∂D1∩BR

∂x3(ū1
1)2n3 dS

∣∣∣+ ∣∣∣ ∫
∂D1∩BR

∂x3(w1
1)2n3 dS

∣∣∣ ≤ C,

we obtain

∫
∂D1∩BR

∣∣∣ 3∑
l=1

∂x2(v1
1)lnl +

3∑
l=1

∂xl
(v1

1)2nl

∣∣∣ dS ≤ C.

Therefore

∣∣a12
11
∣∣ = ∣∣a21

11
∣∣ ≤ C.

By the same way

a13
11 = −

∫
∂D1

(
λ
(
∇ · v1

1

)
n3 + μ

((
∇v1

1 + (∇v1
1)T
)
�n

)
3

)
dS

= −
∫

∂D1

(
λ
( 3∑

i=1
∂xk

(v1
1)k
)
n3 + μ

3∑
l=1

(
∂x3(v1

1)l + ∂xl
(v1

1)3
)
nl

)
dS.

For the terms ∂xk
(v1

1)l, k = 1, 2, l = 1, 2, 3, use the estimates (3.19), for k = l = 3, use 
the definition ū1

1 and the estimates (3.17) to obtain

∣∣∣ ∫
∂D1

∂x3(v1
1)3n3 dS

∣∣∣ = ∣∣∣ ∫
∂D1

∂x3(ū1
1)3n3 dS

∣∣∣+ ∣∣∣ ∫
∂D1

∂x3(w1
1)3n3 dS

∣∣∣ ≤ C.

Therefore

∣∣a13
11
∣∣ = ∣∣a31

11
∣∣ ≤ C.

By the definition and the same reason,
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a14
11 = −

∫
∂D1

(
λ
(
∇ · v1

1

)
�n + μ

(
∇v1

1 + (∇v1
1)T
)
�n
)
·
(

x2
−x1
0

)
dS

= −
∫

∂D1

(
λ
( 3∑

k=1

∂xk
(v1

1)k
)
n1 + μ

3∑
l=1

(
∂x1(v1

1)l + ∂xl
(v1

1)1
)
nl

)
x2 dS

+
∫

∂D1

(
λ
( 3∑

k=1

∂xk
(v1

1)k
)
n2 + μ

3∑
l=1

(
∂x2(v1

1)l + ∂xl
(v1

1)2
)
nl

)
x1 dS

is bounded. a15
11 = a51

11 and a16
11 = a61

11 are also bounded, essentially the same as above.

a23
11 = −

∫
∂D1

(
λ
(
∇ · v2

1

)
n3 + μ

((
∇v1

1 + (∇v2
1)T
)
�n

)
3

)
dS

= −
∫

∂D1

(
λ
( 3∑

k=1

∂xk
(v2

1)k
)
n3 + μ

3∑
l=1

(
∂x3(v2

1)l + ∂xl
(v2

1)3
)
nl

)
dS

is the same as a12
11. While a24

11 = a42
11 and a34

11 = a43
11 are the same as a14

11. a25
11 = a52

11 and 
a26
11 = a62

11, a35
11 = a53

11 and a36
11 = a63

11 are all the same.

a45
11 = −

∫
∂D1

(
λ
(
∇ · v4

1

)
�n + μ

(
∇v1

1 + (∇v1
1)T
)
�n
)
·
(

x3
0

−x1

)
dS

= −
∫

∂D1

(
λ
( 3∑

k=1

∂xk
(v4

1)k
)
n1 + μ

3∑
l=1

(
∂x1(v4

1)l + ∂xl
(v4

1)1
)
nl

)
x3 dS

+
∫

∂D1

(
λ
( 3∑

k=1

∂xk
(v4

1)k
)
n3 + μ

3∑
l=1

(
∂x2(v4

1)l + ∂xl
(v4

1)3
)
nl

)
x1 dS

is much better. a56
11 = a65

11 is the same as a45
11. Estimate (4.14) is proved.

STEP 3. We will show

D ≥ 1
C
I

for some constant C, independent of ε.
For ξ ∈ R

3, |ξ| = 1, using (1.9), we have

∑
α,β=4,5,6

aαβ11 ξαξβ =
∫
Ω̃

(
C

0e
( 6∑

α=4
ξαv

α
1

)
, e
( 6∑

β=4

ξβv
β
1

))
dx ≥ 1

C

∫
Ω̃

∣∣∣e( 6∑
α=4

ξαv
α
1

)∣∣∣2dx.
We claim that there exists a constant C > 0, independent of ε, such that
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∫
Ω̃

∣∣∣e( 6∑
α=4

ξαv
α
1

)∣∣∣2dx ≥ 1
C
, ∀ ξ ∈ R

3, |ξ| = 1. (4.20)

Indeed, if not, then there exists εi → 0+, |ξi| = 1, such that

∫
Ω̃εi

∣∣∣e( 6∑
α=4

ξiαv
α
1

)∣∣∣2dx → 0. (4.21)

Here and in the following proof we use the notations D∗
1 := (0, 0, − ε

2 ) + D1, D∗
2 :=

(0, 0, ε2 ) + D2, Ω̃∗ := Ω \ D∗
1 ∪D∗

2 , and Ω̃ε = Ω \ D1 ∪D2. The corresponding solution 
of (2.2) with α = 4, 5, 6 is denoted as vα1 (ε). Since vα1 (εi) = 0 on ∂D2, it follows from 
the second Korn’s inequality (see theorem 2.5 in [38]) that there exists a constant C, 
independent of ε, such that

‖vα1 (εi)‖H1(Ω̃εi
\Br̄) ≤ C,

where r̄ > 0 is fixed. Then there exists a subsequence, we still denote {vα1 (εi)}, such that

vα1 (εi) ⇀ v̄α1 , in H1(Ω̃εi \Br̄), as εi → 0.

By the assumption (4.21), there exists ξ̄ such that

ξi → ξ̄, as εi → 0, with |ξ̄| = 1,

and

∫
Ω̃∗

∣∣∣e( 6∑
α=4

ξ̄αv̄
α
1

)∣∣∣2 = 0.

This implies that

e
( 6∑

α=4
ξ̄αv̄

α
1

)
= 0, in Ω̃∗.

Hence, for some constants {bβ}, 
∑6

α=4 ξ̄αv̄
α
1 =

∑6
β=1 bβψ

β in Ω̃∗. Since 
∑6

β=1 bβψ
β = 0, 

on ∂D∗
2 , it follows from Lemma 6.1 that bβ = 0, ∀ β. Thus, 

∑6
α=4 ξ̄αv̄

α
1 = 0 in Ω̃∗. Re-

stricted on ∂D∗
1 , it says that 

∑6
α=4 ξ̄αψ

α = 0 on ∂D∗
1 . This yields, using again Lemma 6.1, 

ξ̄α = 0, α = 4, 5, 6, which contradicts with |ξ̄| = 1.
(4.16) is immediately proved by using (4.12) and (4.14). The proof of Lemma 4.3 is 

finished. �
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5. The proof of Theorem 1.2

Define vαi and v0 by (2.2) and (2.3). By a decomposition similar to (2.1),

∇u =
2∑

i=1

d(d+1)
2∑

α=1
Cα

i ∇vαi + ∇v0, in Ω̃. (5.1)

It follows that

|∇u| ≤
2∑

i=1

d(d+1)
2∑

α=1
|Cα

i | |∇vαi | +
∣∣∇v0

∣∣, in Ω̃. (5.2)

As in Section 3, we write x = (x′, xd), and let P1, P2, R be the same as in Section 3, 
and, instead of (3.1),

xd = ε

2 + h1(x′), and xd = − ε

2 + h2(x′), for |x′| < 2R.

Ω̂s(z′) and Ωs = Ωs(0′) are defined accordingly. ū, u and ūα
i are defined as in (3.9), 

(3.13), (3.11) and (3.12), with x3 replaced by xd, and α = 1, 2, · · · , d(d+1)
2 . We still have 

(3.10) and (3.14).

Proposition 5.1. Assume the above, let vαi ∈ H1(Ω̃; Rd) be the weak solution of (2.2) with 
α = 1, 2, · · · , d(d+1)

2 . Then for i = 1, 2, α = 1, 2, · · · , d(d+1)
2 ,

∫
Ω̃

|∇(vαi − ūα
i )|2 dx ≤ C; (5.3)

and

‖∇vαi ‖L∞(Ω̃\ΩR) ≤ C, (5.4)

|∇(vαi − ūα
i )(x)| ≤ C

ε + |x′|2 , ∀ x ∈ ΩR. (5.5)

Consequently,

|∇vαi (x)| ≤ C

ε + |x′|2 , ∀ x ∈ ΩR. (5.6)
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Proof. The proof is similar to that of Proposition 3.2, and we only point out the main 
difference. The proof of (5.3) and (5.4) are the same as that of (3.15) and (3.16). We 
prove (5.5).

(i) For α = 1, 2, · · · , d, the same as (3.21),

|∇ūα
i (x)| ≤ C

ε + |x′|2 , x ∈ ΩR, (5.7)

and, instead of (3.23),

|Lλ,μū
α
i (x)| ≤ C

∑
k+l<2d

|∂xkxl
ū(x)| ≤ C

ε + |x′|2 + C|x′|
(ε + |x′|2)2 , x ∈ ΩR. (5.8)

Using (5.8), we have, instead of (3.37) and (3.38), for 
√
ε < |z′| < R, 0 < s < 2|z′|

3 ,∫
Ω̂s(z′)

|Lλ,μū
α
i |

2
dx ≤ C

∫
|x′−z′|<s

(
1

ε + |x′|2 + |x′|2
(ε + |x′|2)3

)
dx′ ≤ Csd−1

|z′|4 , (5.9)

and denoting F̂ (t) :=
∫
Ω̂t(z′) |∇(vαi − ūα

i )|2dx,

F̂ (t) ≤
(
C0|z′|2
s− t

)2

F̂ (s) + C(s− t)2 s
d−1

|z′|4 , ∀ 0 < t < s <
2|z′|

3 . (5.10)

Similar as Case 1 of Step 2 in the proof of Proposition 3.2, set ti = δ + 2C0i |z′|2, 
i = 0, 1, 2, · · · , and let k =

[
1

4C0|z′|

]
. Using (5.10) with s = ti+1 and t = ti, we have

F̂ (ti) ≤
1
4 F̂ (ti+1) +

C(ti+1 − ti)2td−1
i+1

|z′|4 ≤ 1
4 F̂ (ti+1) + C(i + 1)2|z′|2(d−1),

i = 1, 2, · · · , k.

After k iterations, we obtain∫
Ω̂δ(z′)

|∇(vαi − ūα
i )|2dx = F̂ (t0) ≤ C|z′|2(d−1), ∀

√
ε < |z′| < R.

Instead of (3.40) and (3.41), using (5.8), for 0 ≤ |z′| < √
ε, 0 < s <

√
ε,∫

Ω̂s(z′)

|Lλ,μũ|2 ≤
∫

|x′−z′|<s

(
C

ε + |x′|2 + C|x′|2
(ε + |x′|2)3

)
dx′ ≤ Csd−1

ε2
, (5.11)

and
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F̂ (t) ≤
(

C0ε

s− t

)2

F̂ (s) + C(s− t)2 s
d−1

ε2
, ∀ 0 < t < s <

√
ε. (5.12)

Let ti = δ + 2C0iε, i = 0, 1, 2, · · · and k =
[

1
4C0

√
ε

]
. By (5.12) with s = ti+1 and t = ti, 

we have

F̂ (ti) ≤
1
4 F̂ (ti+1) +

Cε2td−1
i+1

ε2
≤ 1

4 F̂ (ti+1) + C(i + 1)2εd−1, i = 1, 2, · · · , k.

After k iterations, we have∫
Ω̂δ(z′)

|∇(vαi − ūα
i )|2dx = F̂ (t0) ≤ Cεd−1, ∀ 0 ≤ |z′| <

√
ε.

Therefore, we have, instead of (3.33),

∫
Ω̂δ(z′)

|∇wα
i |

2
dx ≤

{
Cεd−1, 0 ≤ |z′| ≤ √

ε,

C|z′|2(d−1),
√
ε < |z′| ≤ R.

(5.13)

As in Step 3 of the proof of Proposition 3.2, we have, instead of (3.45),

‖∇(vαi − ūα
i )‖L∞(Ω̂δ/2(z′)) ≤

C

δ

(
δ1− d

2 ‖∇(vαi − ūα
i )‖L2(Ω̂δ(z′)) + δ2 ‖Lλ,μū

α
i ‖L∞(Ω̂δ(z′))

)
.

(5.14)

Using (5.13) and (5.8), we obtain

|∇(vαi − ūα
i )(x)| ≤

{
C√
ε
, |x′| ≤ √

ε,

C
|x′| ,

√
ε < |x′| ≤ R.

(5.15)

Consequently, (5.6) follows from (5.7) immediately.
(ii) For d ≤ α ≤ d(d+1)

2 , we have

|∇ūα
i (x)| ≤ C|x′|

ε + |x′|2 + C, x ∈ ΩR, (5.16)

and, instead of (3.53),

|Lλ,μū
α
i | ≤ C

(
|∇ū| + (ε + |x′|)

∑
k+l<2d

|∂xkxl
ū|
)

≤ C

ε + |x′|2 , x ∈ ΩR. (5.17)

Using (5.17), we obtain, for 
√
ε ≤ |z′| ≤ R, 0 < t < s < 2|z′| , instead of (3.58),
3
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∫
Ω̂s(z′)

|Lλ,μũ|2 dx ≤
∫

|x′−z′|<s

C

ε + |x′|2 dx′ ≤ Csd−1

|z′|2 . (5.18)

Thus, we have

F̂ (t) ≤
(
C0|z′|2
s− t

)2

F̂ (s) + C(s− t)2 s
d−1

|z′|2 , ∀ 0 < t < s <
2|z′|

3 . (5.19)

Taking the same iteration procedure as Case 1 of Step 2 in the proof of Proposition 3.2, 
set ti = δ + 2C0i |z′|2, i = 0, 1, 2, · · · , and let k =

[
1

4C0|z′|

]
. Using (5.19) with s = ti+1

and t = ti, we have

F̂ (ti) ≤
1
4 F̂ (ti+1) +

C(ti+1 − ti)2td−1
i+1

|z′|2 ≤ 1
4 F̂ (ti+1) + C(i + 1)2|z′|2d, i = 1, 2, · · · , k.

After k iterations, we obtain∫
Ω̂δ(z′)

|∇(vαi − ūα
i )|2dx = F̂ (t0) ≤ C|z′|2d, ∀

√
ε < |z′| < R.

For 0 ≤ |z′| ≤ √
ε, 0 < t < s <

√
ε, using (5.17), we have, instead of (3.60),∫

Ω̂s(z′)

|Lλ,μũ|2 dx ≤
∫

|x′−z′|<s

C

ε + |x′|2 dx′ ≤ Csd−1

ε
, 0 < s <

√
ε. (5.20)

Then similarly as before, we have

F̂ (t) ≤
(
C0|z′|2
s− t

)2

F̂ (s) + C(s− t)2 s
d−1

ε
, ∀ 0 < t < s <

2|z′|
3

and iteration formula

F̂ (ti) ≤
1
4 F̂ (ti+1) +

C(ti+1 − ti)2td−1
i+1

ε
≤ 1

4 F̂ (ti+1) + C(i + 1)2εd, i = 1, 2, · · · , k.

Thus, we obtain

∫
Ω̂δ(z′)

|∇wα
i |2dx ≤

{
C|z′|2d, √

ε ≤ |z′| < R,

Cεd, 0 ≤ |z′| < √
ε.

(5.21)

Therefore, as in the proof of Proposition 3.3, using (5.14), (5.21) and (5.8), we have, for 
i = 1, 2, d ≤ α ≤ d(d+1) ,
2
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|∇(vαi − ūα
i )(x′, xd)| ≤ C, x ∈ ΩR. (5.22)

Consequently, using (5.16),

|∇vαi (x′, xd)| ≤
C|x′|

ε + |x′|2 + C, x ∈ ΩR. (5.23)

The proof of Proposition 5.1 is completed. �
Proof of Theorem 1.2. By the same argument, using Lemma 6.1 for d ≥ 4, we still have 
(4.1) for dimensions d ≥ 4. Using Proposition 5.1, Theorem 1.2 follows. �
6. Appendix: lemmas on Ψ and matrices

We first give a lemma on the linear space of rigid displacement Ψ.

Lemma 6.1. Let ξ be an element of Ψ, defined by (1.14) with d ≥ 2. If ξ vanishes at 
d distinct points x̄1, ̄x2, · · · , ̄xd, which do not lie on a (d − 2)-dimensional plane, then 
ξ ≡ 0.

Proof. Since ξ ∈ Ψ, it follows that

ξ(x) = Ax + b,

for some b ∈ R
d and some d × d skew symmetric matrix A. Let

ȳi = x̄i − x̄d, 1 ≤ i ≤ d− 1.

By the assumption, ȳ1, · · · , ȳd−1 is linearly independent. It follows from ξ(x̄i) = 0 that

Aȳi = ξ(x̄i) − ξ(x̄d) = 0, 1 ≤ i ≤ d− 1.

Therefore Rank A ≤ 1. This, together with AT + A = 0, implies A = 0. Recalling that 
ξ(x̄1) = 0, we have b = 0. So ξ ≡ 0. �

Here we prove a linear algebraic lemma used in the proof of Proposition 4.1. We will 

use notation ‖B‖ =
(∑

i,j |Bij |2
)1/2

for a matrix B.

Lemma 6.2. For m ≥ 1, let A, D be m ×m invertible matrices and B and C be m ×m

matrices satisfying, for some 0 < θ < 1 and γ > 1,

‖A−1‖ ≤ 1
, ‖B‖ + ‖C‖ + ‖D−1‖ ≤ 1

. (6.1)

θγ θ
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Then there exists γ̄ = γ̄(m) > 1 and C(m) > 1, such that if γ ≥ γ̄(m)
θ4 ,

(
A B

C D

)
is invertible. Moreover,

(
E11 E12

ET
12 E22

)
:=
(
A B

C D

)−1

−
(
A−1 0
0 D−1

)

satisfies

‖E11‖ ≤ C(m)
θ5γ2 , ‖E12‖ ≤ C(m)

θ3γ
, and ‖E22‖ ≤ C(m)

θ5γ
.

Proof. Clearly (
I 0

−CA−1 I

)(
A B

C D

)
=
(
A B

0 D − CA−1B

)
,

where I is the m ×m identity matrix. Since

∥∥CA−1B
∥∥ ≤ C1(m)

θ3γ
,

for some constant C1(m) depending only on m, there exists some constant γ1(m), de-
pending only on m, such that for γ ≥ γ1(m)

θ4 , D − CA−1B is invertible and∥∥∥∥(D − CA−1B
)−1
∥∥∥∥ ≤ 2

θ
. (6.2)

Then(
A B

C D

)−1

=
(
A B

0 D − CA−1B

)−1(
I 0

−CA−1 I

)

=

⎛⎜⎝A−1 −A−1B
(
D − CA−1B

)−1

0
(
D − CA−1B

)−1

⎞⎟⎠( I 0
−CA−1 I

)

=

⎛⎜⎝A−1 + A−1B
(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

⎞⎟⎠ .

The estimates for |E11| and E12 follow from (6.1) and (6.2). For |E22|, we have
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‖E22‖ =
∥∥∥((I −D−1CA−1B)−1 − I

)
D−1

∥∥∥ ≤ C(m)
∥∥D−1CA−1B

∥∥∥∥D−1∥∥ ≤ C(m)
θ5γ

.

The proof is finished. �
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