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Abstract

We establish upper bounds on the blow up rate of the gradients of solutions of
the Lamé system with partially infinite coefficients in dimension two as the distance
between the surfaces of discontinuity of the coefficients of the system tends to zero.

1. Introduction

We consider the Lamé system in linear elasticity. Let � ⊂ R
d , d � 2, be a

bounded open set with C2 boundary, and D1 and D2 be two disjoint strictly convex
open sets in � with C2,γ boundaries, 0 < γ < 1, which are ε-distance apart and
far away from ∂�. More precisely,

D1, D2 ⊂ �, the principle curvatures of ∂D1, ∂D2 � κ0 > 0,
ε := dist(D1, D2) > 0, dist(D1 ∪ D2, ∂�) > κ1 > 0,

(1.1)

where κ0, κ1 are constants independent of ε.
Denote

˜� := � \ D1 ∪ D2.

We assume that ˜� and D1 ∪ D2 are occupied by two different homogeneous and
isotropic materials with different Lamé constants (λ, μ) and (λ1, μ1). Then the
elasticity tensors for the inclusions and the background can be written, respectively,
as C

1 and C
0, with

C1
i j kl = λ1δi jδkl + μ1(δikδ jl + δilδ jk),

and

C0
i j kl = λδi jδkl + μ(δikδ jl + δilδ jk),
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308 JiGuang Bao, HaiGang Li & YanYan Li

where i, j, k, l = 1, 2, . . . , d and δi j is the Kronecker symbol: δi j = 0 for i �= j ,
δi j = 1 for i = j .

Let u = (

u1, u2, . . . , ud
)T : � → R

d denote the displacement field. For a
given vector-valued function ϕ, we consider the following Dirichlet problem

⎧

⎨

⎩

∇ ·
(

(

χ
˜�C

0 + χD1∪D2C
1
)

e(u)

)

= 0, in �,

u = ϕ, on ∂�,

(1.2)

where χD is the characteristic function of D, and

e(u) := 1

2

(

∇u + (∇u)T
)

is the strain tensor.
We assume that the standard ellipticity condition holds for (1.2), that is,

μ > 0, dλ+ 2μ > 0; μ1 > 0, dλ1 + 2μ1 > 0.

For ϕ ∈ H1(�; R
d), it is well known that there exists a unique solution

u ∈ H1(�; R
d) of the Dirichlet problem (1.2), which is also the minimizer of

the energy functional

J [u] = 1

2

∫

�

(

(

χ
˜�C

0 + χD1∪D2C
1
)

e(u), e(u)

)

dx

on

H1
ϕ (�; R

d) :=
{

u ∈ H1(�; R
d)
∣

∣ u − ϕ ∈ H1
0 (�; R

d)
}

.

Babuška et al. [10] computationally analyzed the damage and fracture in fiber
composite materials where the Lamé system is used. They observed numerically
that the size of the strain tensor e(u) remains bounded when the distance ε tends
to zero. Stimulated by this, there have been many works on the analogous question
for the scalar equation

{

∇ ·
(

ak(x)∇uk

)

= 0 in �,

uk = ϕ on ∂�,
(1.3)

where ϕ is given, and

ak(x) =
{

k ∈ (0,∞) in D1 ∪ D2,

1 in ˜�.

For touching disks D1 and D2 in dimension d = 2,Bonnetier and Vogelius
[15] proved that |∇uk | remains bounded. The bound depends on the value of k.
Li and Vogelius [28] extended the result to general divergence form second order
elliptic equations with piecewise smooth coefficients in all dimensions, and they
proved that |∇u| remains bounded as ε → 0. They also established stronger, ε-
independent, C1,α estimates for solutions in the closure of each of the regions D1,
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D2 and˜�. This extension covers domains D1 and D2 of arbitrary smooth shapes. Li
and Nirenberg extended in [27] the results in [28] to general divergence form second
order elliptic systems including systems of elasticity. This, in particular, answered
in the affirmative the question that is naturally led to by the above mentioned
numerical indication in [10] for the boundedness of the strain tensor as ε tends
to 0. For higher derivative estimates, we draw the attention of readers to the open
problem on page 894 of [27].

The estimates in [27] and [28] depend on the ellipticity of the coefficients. If
ellipticity constants are allowed to deteriorate, the situation is very different. It
was shown in various papers, see for example Budiansky and Carrier [17] and
Markenscoff [31], that when k = ∞ in (1.3) the L∞-norm of |∇u∞| generally
becomes unbounded as ε tends to 0. The rate at which the L∞-norm of the gradient
of a special solution blows up was shown in [17] to be ε−1/2 in dimension d = 2.
Ammari et al. [7,9] proved that when D1 and D2 are disks in R

2, and when k = ∞
in (1.3), the blow up rate of |∇u∞| is ε−1/2. This result was extended by Yun
[36,37] and Bao et al. [11] to strictly convex D1 and D2 in R

2. In dimension
d = 3 and d � 4, the blow up rate of |∇u∞| turns out to be (ε| ln ε|)−1 and
ε−1 respectively; see [11]. The results were extended to multi-inclusions in [12].
Further, more detailed characterizations of the singular behavior of ∇u∞ have
been obtained by Ammari et al. [3,8], Bonnetier and Triki [13,14], Kang et al.
[21,22]. For related works, see [4,5,14,16,18,19,23–26,29,30,32,34,35] and the
references therein.

In this paper we obtain gradient estimates for the Lamé system with infinity
coefficients in dimension d = 2. In a subsequent paper we treat higher dimensional
cases d � 3.

The linear space of rigid displacements in R
2 is

� :=
{

ψ ∈ C1(R2; R
2)
∣

∣ ∇ψ + ( ∇ψ)T = 0

}

,

or equivalently [33],

� = span

{

ψ1 =
(

1
0

)

, ψ2 =
(

0
1

)

, ψ3 =
(

x2
−x1

) }

.

If ξ ∈ H1(D; R
2), e(ξ) = 0 in D, and D ⊂ R

2 is a connected open set, then ξ
is a linear combination of {ψα} in D. If an element ξ in � vanishes at two distinct
points of R

2, then ξ ≡ 0.

For fixed λ and μ satisfying μ > 0 and λ+ μ > 0, denote uλ1,μ1 the solution
of (1.2). Then, as proved in the Appendix,

uλ1,μ1 → u in H1(�; R
2) as min{μ1, λ1 + μ1} → ∞, (1.4)
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310 JiGuang Bao, HaiGang Li & YanYan Li

where u is a H1(�; R
2) solution of

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Lλ,μu := ∇ · (C0e(u)
) = 0, in ˜�,

u
∣

∣+ = u
∣

∣−, on ∂D1 ∪ ∂D2,

e(u) = 0, in D1 ∪ D2,
∫

∂Di

∂u
∂ν0

∣

∣

∣

∣+
· ψα = 0, α = 1, 2, 3, i = 1, 2,

u = ϕ, on ∂�,

(1.5)

where
∂u

∂ν0

∣

∣

∣

∣+
:=
(

C
0e(u)

)


n = λ (∇ · u) 
n + μ
(

∇u + (∇u)T
)


n,

and 
n is the unit outer normal of Di , i = 1, 2.
Here and throughout this paper the subscript ± indicates the limit from outside

and inside the domain, respectively. The existence, uniqueness and regularity of
weak solutions to (1.5) are proved in the Appendix. In particular, the H1 weak

solution to (1.5) is in C1(˜�) ∩ C1(D1 ∪ D2).
The convergence (1.4) in the case μ1 → ∞ while λ1 remains bounded was

established in [6]. Our proof of (1.4) in the Appendix is different and is an extension
to systems of that in [11].

The solution of (1.5) is also the unique function which has the least energy in
appropriate functional spaces, characterized by

I∞[u] = min
v∈A

I∞[v],
where

I∞[v] := 1

2

∫

˜�

(

C
(0)e(v), e(v)

)

dx,

and

A :=
{

u ∈ H1
ϕ (�; R

2)
∣

∣ e(u) = 0 in D1 ∪ D2

}

.

A calculation gives
(Lλ,μu

)i = μ�ui + (λ+ μ)
[

∂xi x1 u1 + ∂xi x2 u2
]

, i = 1, 2. (1.6)

Since D1 and D2 are two strictly convex subdomains of �, there exist two
points P1 ∈ ∂D1 and P2 ∈ ∂D2 such that

dist(P1, P2) = dist(∂D1, ∂D2) = ε. (1.7)

We use P1 P2 to denote the line segment connecting P1 and P2. For the readers’
convenience, we first assume that ∂D1 near P1 and ∂D2 near P2 are quadratic. For
more general D1 and D2, we consider in Section 5.

Assume that for some δ0 > 0,

δ0 � μ, λ+ μ � 1

δ0
. (1.8)

The main result in this paper is as follows.
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Theorem 1.1. Assume that �, D1, D2, ε are defined in (1.1) with d = 2, λ and μ
satisfy (1.8), and ϕ ∈ C1,γ (∂�; R

2) for some 0 < γ < 1. Let u ∈ H1(�; R
2) ∩

C1(˜�; R
2) be a solution to (1.5). Then for 0 < ε < 1, we have

|∇u(x)| �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C√
ε + dist(x, P1 P2)

‖ϕ‖C1,γ (∂�;R2), x ∈ ˜�,

C‖ϕ‖C1,γ (∂�;R2), x ∈ D1 ∪ D2.

(1.9)

where C is a universal constant. In particular,

‖∇u‖L∞(�) � Cε−1/2‖ϕ‖C1,γ (∂�;R2). (1.10)

Note that throughout the paper, unless otherwise stated, C denotes some constant,
whose value may vary from line to line, depending only on κ0, κ1, γ , δ0, ‖∂D1‖C2,γ ,
‖∂D2‖C2,γ , ‖∂�‖C2 and the Lebesgue measure of �, and is in particular indepen-
dent of ε. Also, we call a constant having such dependence a universal constant.

Since the blow up rate of |∇u∞| for solutions of (1.3) when k = ∞ is known to
reach the magnitude ε−1/2, estimate (1.10) is expected to be optimal. This is also
supported by the numerical indication in [20].

The paper is organized as follows. In Section 2, we first introduce the setup of
the proof of Theorem 1.1. Then we state a proposition, Proposition 2.1, containing
key estimates, and deduce Theorem 1.1 from the proposition. In Sections 3 and
4, we prove Proposition 2.1. In Section 5, we prove Theorem 5.1 which extends
Theorem 1.1 in two aspects. One is that the strict convexity assumption on ∂D1
and ∂D2 can be replaced by a weaker relative strict convexity assumption. The
other is an upper bound of the gradient when the flatness order near the closest
points between ∂D1 and ∂D2 is m � 2 instead of m = 2 for the strictly convex
∂D1 and ∂D2. In the Appendix, we give a variational characterization of solutions
of the Lamé system with infinity coefficients and prove the previously mentioned
convergence result (1.4).

2. Outline of the Proof of Theorem 1.1 and Recall of Korn’s Inequalities

The proof of Theorem 1.1 makes use of the following decomposition. By the
third line of (1.5), u is a linear combination of {ψα} in D1 and D2, respectively.
Since Lλ,μξ = 0 in ˜� and ξ = 0 on ∂˜� imply that ξ = 0 in ˜�, we decompose the
solution of (1.5), in the spire of [11], as follows:

u =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3
∑

α=1
Cα

1ψ
α, in D1,

3
∑

α=1
Cα

2ψ
α, in D2,

3
∑

α=1
Cα

1 v
α
1 +

3
∑

α=1
Cα

2 v
α
2 + v3, in ˜�,

(2.1)
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where vαi ∈ C1(˜�; R
2) ∩ C2(˜�; R

2), α = 1, 2, 3, i = 1, 2, satisfy
⎧

⎪

⎨

⎪

⎩

Lλ,μvαi = 0, in ˜�,

vαi = ψα, on ∂Di ,

vαi = 0, on ∂D j ∪ ∂�, j �= i;
(2.2)

v3 ∈ C1(˜�; R
2) ∩ C2(˜�; R

2) satisfies
⎧

⎪

⎨

⎪

⎩

Lλ,μv3 = 0, in ˜�,

v3 = 0, on ∂D1 ∪ ∂D2,

v3 = ϕ, on ∂�;
(2.3)

and the constants {Cα
i } are uniquely determined by u.

By the decomposition (2.1), we write

∇ u =
2
∑

α=1

(

Cα
1 − Cα

2

)∇vα1 +
2
∑

α=1

Cα
2 (∇vα1 + ∇vα2 )+

2
∑

i=1

C3
i ∇v3

i + ∇v3, in ˜�.

(2.4)
Theorem 1.1 can be deduced from the following proposition.

Proposition 2.1. Under the hypotheses of Theorem 1.1 and a normalization
‖ϕ‖C1,γ (∂�) = 1, we have, for 0 < ε < 1,

‖∇v3‖L∞(˜�) � C; (2.5)

‖∇vα1 + ∇vα2 ‖L∞(˜�) � C, α = 1, 2, 3; (2.6)

|∇vαi (x)| � C

ε + dist2(x, P1 P2)
, i, α = 1, 2, x ∈ ˜�; (2.7)

|∇v3
i (x)| � C

ε + dist(x, P1 P2)

ε + dist2(x, P1 P2)
, i = 1, 2, x ∈ ˜�; (2.8)

and

|Cα
i | � C, i = 1, 2, α = 1, 2, 3; (2.9)

|Cα
1 − Cα

2 | � C
√
ε, α = 1, 2. (2.10)

Proof of Theorem 1.1 by using Proposition 2.1. Clearly, we only need to prove
the theorem under the normalization ‖ϕ‖C1,γ (∂�) = 1.

Since

∇u = C3
i

(

0 1
−1 0

)

in Di , i = 1, 2,

the second estimate in (1.9) follows easily from (2.9).
By (2.4) and Proposition 2.1, we have, for x in ˜�,

|∇ u(x)|�
2
∑

α=1

∣

∣Cα
1 − Cα

2

∣

∣

∣

∣∇vα1 (x)
∣

∣+ C
2
∑

i=1

∣

∣

∣∇v3
i (x)

∣

∣

∣+C � C√
ε + dist(x, P1 P2)

.

Theorem 1.1 follows. ��
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To complete this section, we recall some properties of the tensor C. For the
isotropic elastic material, let

C := (Ci j kl) = (λδi jδkl + μ
(

δikδ jl + δilδ jk
))

, μ > 0, dλ+ 2μ > 0.

The components Ci j kl satisfy the following symmetric condition:

Ci j kl = Ckl i j = Ckl j i , i, j, k, l = 1, 2, . . . , d. (2.11)

We will use the following notations:

(CA)i j =
d
∑

k,l=1

Ci j kl Akl , and (A, B) ≡ A : B =
d
∑

i, j=1

Ai j Bi j ,

for every pair of d × d matrices A = (Ai j ), B = (Bi j ). Clearly

(CA, B) = (A,CB).

If A is symmetric, then, by the symmetry condition (2.11), we have that

(CA, A) = Ci j kl Akl Ai j = λ Aii Akk + 2μ Akj Ak j .

Thus C satisfies the following ellipticity condition: For every d ×d real symmetric
matrix A = (Ai j ),

min{2μ, dλ+ 2μ}|A|2 � (CA, A) � max{2μ, dλ+ 2μ}|A|2, (2.12)

where |A|2 =∑
i, j

A2
i j .

For readers’ convenience, we recall some inequalities of Korn’s type, see, for
example, theorem 2.1, theorem 2.5, theorem 2.10 and theorem 2.14 in [33].

Lemma A (First Korn inequality) Let� be a bounded open set of R
d , d � 2. Then

every u ∈ H1
0 (�,R

d) satisfies the inequality

‖∇u‖2
L2(�)

� 2‖e(u)‖2
L2(�)

.

Next, a few versions of the Second Korn inequality.

Lemma B Suppose that � is a bounded open set of R
d , d � 2, of diameter R,

and it is star-shaped with respect to the ball BR1 = {x : |x | < R1}. Then for any
u ∈ H1(�,Rd) we have the inequality

‖∇u‖2
L2(�)

� C1

(

R

R1

)d+1

‖e(u)‖2
L2(�)

+ C2

(

R

R1

)d

‖∇u‖2
L2(BR1 )

,

where C1,C2 are constants depending only on d.

We remark that the above inequality holds for a Lipschitz domain �, with C1 and
C2 depending on�, since such a domain is a union of a finite number of star-shaped
domains. The following lemma is an easy consequence of Lemma A and Lemma
B.
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Lemma C Suppose that� satisfies the condition of Lemma B and u ∈ H1(�,Rd).
Then

‖∇u‖2
L2(�)

� C1

(

R

R1

)d+1

‖e(u)‖2
L2(�)

+ C2

(

R

R1

)d

γ−2‖u‖2
L2(�)

,

where γ is the distance of BR1 from ∂�, and C1,C2 depend only on d.

In applications it is often important to have the following version of the Second
Korn inequality. We still use� to denote the linear space of rigid displacements in
R

d . Then

Lemma D Let � be a bounded Lipschitz open set of R
d , d � 2, and let V be a

closed subspace of H1(�,Rd), such that V ∩� = {0}. Then every v ∈ V satisfies

‖v‖H1(�) � C‖e(v)‖L2(�),

where C depends only on � and V .

3. Estimates of ∇vα1 , ∇vα2 and ∇v3

Before proceeding to prove Proposition 2.1, we first fix notations. By a trans-
lation and rotation of the coordinates if necessary, we may assume without loss of
generality that the points P1 and P2 in (1.7) satisfy

P1 =
(

0,
ε

2

)

∈ ∂D1, and P2 =
(

0,−ε
2

)

∈ ∂D2.

Fix a small universal constant R, such that the portions of ∂Di near Pi can be
represented respectively by

x2 = ε

2
+ h1(x1), and x2 = −ε

2
+ h2(x1), for |x1| < 2R.

Moreover, by the assumptions on ∂Di , hi satisfies
ε

2
+ h1(x1) > −ε

2
+ h2(x1), for |x1| < 2R,

h1(0) = h2(0) = h′
1(0) = h′

2(0) = 0, (3.1)

h
′′
1(0) � κ0 > 0, h

′′
2(0) � −κ0 < 0, (3.2)

and
‖h1‖C2,γ ([−2R,2R]) + ‖h2‖C2,γ ([−2R,2R]) � C. (3.3)

For 0 < r � 2R, denote

�r :=
{

x ∈ R
2
∣

∣ − ε

2
+ h2(x1) < x2 <

ε

2
+ h1(x1), |x1| < r

}

.

The top and bottom boundaries of �r are

�+
r =

{

x ∈ R
2
∣

∣ x2 = ε

2
+ h1(x1), |x1| < r

}

,

and

�−
r =

{

x ∈ R
2
∣

∣ x2 = −ε
2

+ h2(x1), |x1| < r
}

.

Here x = (x1, x2).
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3.1. Estimates of v3 and vα1 + vα2 , α = 1, 2, 3

Lemma 3.1.

‖v3‖L∞(˜�) + ‖∇v3‖L∞(˜�) � C.

‖vα1 + vα2 ‖L∞(˜�) + ‖∇vα1 + ∇vα2 ‖L∞(˜�) � C, α = 1, 2, 3.

Proof. As mentioned before, we may assume without loss of generality that
‖ϕ‖C1,γ (∂�) = 1. Extending ϕ to � ∈ C1,γ (�) satisfying �(x) = 0 for all
dist (x, ∂�) > κ1/2. In particular, � = 0 near D1 ∪ D2, and

∫

˜�

|∇�|2dx � C‖ϕ‖C1,γ (∂�) = C.

Then, in view of (2.3),

I∞[v3] := 1

2

∫

˜�

(

C
0e(v3), e(v3)

)

dx � I∞[�] � C.

By the First Korn inequality (Lemma A) and (2.12),

‖∇(v3 −�)‖2
L2(˜�)

� 2‖e(v3 −�)‖2
L2(˜�)

� C
(

‖e(v3)‖2
L2(˜�)

+ ‖e(�)‖2
L2(˜�)

)

� C (I∞[v3] + I∞[�])
� C.

It follows that

‖∇v3‖L2(˜�) � C.

Consequently,

‖v3‖L2(˜�) � C‖∇v3‖L2(˜�) � C.

Note that the constant C above is independent of ε. By the interior estimates and
the boundary estimates for elliptic systems (see Agmon et al. [1] and [2]), we have

‖∇v3‖L∞(˜�\�R/2)
� C.

We apply theorem 1.1 in [26] to v3 and obtain

‖∇v3‖L∞(�R/2) � C.

Since
⎧

⎪

⎨

⎪

⎩

Lλ,μ(vα1 + vα2 − ψα) = 0, in ˜�,

vα1 + vα2 − ψα = 0, on ∂D1 ∪ ∂D2,

vα1 + vα2 − ψα = −ψα, on ∂�,

the above arguments yield, with ϕ = −ψα ,
∥

∥∇vα1 + ∇vα2
∥

∥

L∞(˜�) � C, α = 1, 2, 3. (3.4)

Lemma 3.1 follows from the above. ��
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3.2. Estimates of vαi , i, α = 1, 2

To estimate vαi , i, α = 1, 2, we introduce a scalar function ū ∈ C2(R2), such
that ū = 1 on ∂D1, ū = 0 on ∂D2 ∪ ∂�,

ū(x) = x2 − h2(x1)+ ε
2

ε + h1(x1)− h2(x1)
, in �R, (3.5)

and
‖ū‖C2(R2\�R)

� C. (3.6)

A calculation gives

|∂x1 ū(x)| � C |x1|
ε + |x1|2 , |∂x2 ū(x)| � C

ε + |x1|2 , x ∈ �R, (3.7)

|∂x1x1 ū(x)|� C

ε + |x1|2 , |∂x1x2 ū(x)|� C |x1|
(ε + |x1|2)2 , ∂x2x2 ū(x)=0, x ∈ �R .

(3.8)

Define
ū1

1 = (ū, 0)T , ū2
1 = (0, ū)T , in ˜�, (3.9)

then vα1 = ūα1 on ∂˜�. Similarly, we can define

ū1
2 = (u, 0)T , ū2

2 = (0, u)T , in ˜�, (3.10)

where u is a scalar function in C2(R2) satisfying u = 1 on ∂D2, u = 0 on ∂D1∪∂�,

u(x) = −x2 + h1(x1)+ ε
2

ε + h1(x1)− h2(x1)
, x ∈ �R, (3.11)

and
‖u‖C2(R2\�R)

� C. (3.12)

By (1.6), (3.7) and (3.8),

∣

∣Lλ,μūαi (x)
∣

∣ � C

ε + |x1|2 + C |x1|
(ε + |x1|2)2 , i, α = 1, 2, x ∈ �R . (3.13)

For |z1| � R, we always use δ to denote

δ := δ(z1) = ε + h1(z1)− h2(z1)

2
. (3.14)

Clearly,
1

C
(ε + |z1|2) � δ(z1) � C(ε + |z1|2). (3.15)

For |z1| � R/2, s < R/2, let

̂�s(z1) :=
{

(x1, x2)
∣

∣ − ε

2
+ h2(x1) < x2 <

ε

2
+ h1(x1), |x1 − z1| < s

}

.

(3.16)
We denote

wαi := vαi − ūαi , i, α = 1, 2. (3.17)

In order to prove (2.7), it suffices to prove the following proposition.
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Proposition 3.2. Assume the above, let vαi ∈ C2(˜�; R
2)∩ C1(˜�; R

2) be the weak
solution of (2.2). Then, for i, α = 1, 2,

∫

˜�

∣

∣∇wαi
∣

∣

2 dx � C, (3.18)

∫

̂�δ(z1)

∣

∣∇wαi
∣

∣

2 dx �
{

C(ε2 + |z1|2), |z1| � √
ε,

C |z1|2, √
ε < |z1| � R,

(3.19)

and

|∇wαi (x)| �
{

C ε+|x1|
ε
, |x1| � √

ε,
C

|x1| ,
√
ε < |x1| � R.

(3.20)

Corollary 3.3. For i, α = 1, 2,

∣

∣∇vαi (x)
∣

∣ � C

ε + dist2(x, P1 P2)
, x ∈ ˜�. (3.21)

Proof of Corollary 3.3. A consequence of (3.18) is
∫

˜�\�R/2

∣

∣∇vαi
∣

∣

2 dx � 2
∫

˜�\�R/2

(

∣

∣∇ūαi
∣

∣

2 + ∣∣∇wαi
∣

∣

2
)

dx � C,

With this we can apply classical elliptic estimates to obtain
∥

∥∇vαi
∥

∥

L∞(˜�\�R)
� C, i, α = 1, 2. (3.22)

Under assumption (1.1),

1

C
(ε + |x1|2) � dist(x, P1 P2) � C(ε + |x1|2).

Estimate (3.21) in �R follows from (3.20) and the fact that

∣

∣∇ūαi (x)
∣

∣ � C

ε + |x1|2 , in �R .

��
Proof of Proposition 3.2. The iteration scheme we use in the proof is similar in
spirit to that used in [26]. We only prove it for i = α = 1, since the same proof
applies to the other cases. For simplicity, denote w := w1

1. We divide into three
steps.
Step 1. Proof of (3.18).

By (3.17),
{

Lλ,μw = −Lλ,μū1
1, in ˜�,

w = 0, on ∂˜�.
(3.23)

Multiplying the equation in (3.23) by w and integrating by parts, we have
∫

˜�

(

C
0e(w), e(w)

)

dx =
∫

˜�

w
(

Lλ,μū1
1

)

dx . (3.24)
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By the mean value theorem, there exists r0 ∈ (R/2, 2R/3) such that
∫

|x1|=r0,−ε/2+h2(x1)<x2<ε/2+h1(x1)

|w|dx2 = 6

R

∫

R/2<|x1|<2R/3,
−ε/2+h2(x1)<x2<ε/2+h1(x1)

|w|dx

� C
∫

�2R/3\�R/2

|∇w|dx

� C

(∫

˜�

|∇w|2 dx

)1/2

. (3.25)

It follows from (2.12), (3.24) and the First Korn inequality that
∫

˜�

|∇w|2 dx

� 2
∫

˜�

|e(w)|2dx

� C

∣

∣

∣

∣

∫

�r0

w
(

Lλ,μū1
1

)

dx

∣

∣

∣

∣

+ C

∣

∣

∣

∣

∫

˜�\�r0

w
(

Lλ,μū1
1

)

dx

∣

∣

∣

∣

� C

∣

∣

∣

∣

∫

�r0

w
(

Lλ,μū1
1

)

dx

∣

∣

∣

∣

+ C
∫

˜�\�r0

|w|dx

� C

(

∣

∣

∣

∣

∫

�r0

w(1)∂x1x1 ū dx

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

�r0

w(2)∂x1x2 ū dx

∣

∣

∣

∣

)

+ C

(

∫

˜�\�r0

|∇w|2dx

)1/2

.

(3.26)

First,
∫

�r0

w(1)∂x1x1 ū dx = −
∫

�r0

∂x1w
(1)∂x1 ū dx

+
∫

|x1|=r0,−ε/2+h2(x1)<x2<ε/2+h1(x1)

(

∂x1 ū
)

w(1) dx2 := I + I I.

Then, by (3.7),

|I| � C

(

∫

�r0

|∂x1 ū|2dx

)1/2 (∫

˜�

|∇w|2dx

)1/2

� C

(∫

˜�

|∇w|2dx

)1/2

.

By (3.25), we have

|II| � C
∫

|x1|=r0,−ε/2+h2(x1)<x2<ε/2+h1(x1)

|w| dx2 � C

(∫

˜�

|∇w|2dx

)1/2

.

Hence
∣

∣

∣

∣

∫

�r0

w(1)∂x1x1 ū dx

∣

∣

∣

∣

� C

(∫

˜�

|∇w|2dx

)1/2

. (3.27)
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Similarly, using w = 0 on ∂D1 ∪ ∂D2,
∣

∣

∣

∣

∫

�r0

w(2)∂x1x2 ū dx

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

�r0

∂x2w
(2)∂x1 ū dx

∣

∣

∣

∣

� C

(

∫

�r0

|∂x1 ū|2 dx

)1/2 (∫

˜�

|∇w|2 dx

)1/2

� C

(∫

˜�

|∇w|2 dx

)1/2

.

Therefore, combining this estimate with (3.27) and (3.26),
∫

˜�

|∇w|2 dx � C

(∫

˜�

|∇w|2 dx

)1/2

,

which implies (3.18).
Step 2. Proof of (3.19).

For 0 < t < s < R, let η be a smooth function satisfying η(x1) = 1 if
|x1 − z1| < t , η(x1) = 0 if |x1 − z1| > s, 0 � η(x1) � 1 if t � |x1 − z1| � s,
and |η′(x1)| � 2

s−t . Multiplying the equation in (3.23) by wη2 and integrating by
parts lead to

∫

̂�s (z1)

(C0e(w), e(wη2))dx = −
∫

̂�s (z1)

(wη2)Lλ,μū1
1 dx . (3.28)

Using the First Korn inequality and some standard arguments, we have
∫

̂�s (z1)

(C0e(w), e(wη2))dx � 1

C

∫

̂�s (z1)

|∇(wη)|2dx − C
∫

̂�s (z1)

|w|2|∇η|2dx,

(3.29)

and
∣

∣

∣

∣

∫

̂�s (z1)

(wη2)Lλ,μū1
1 dx

∣

∣

∣

∣

� C

(s − t)2

∫

̂�s (z1)

|w|2dx+(s−t)2
∫

̂�s (z1)

∣

∣

∣Lλ,μū1
1

∣

∣

∣

2
dx .

It follows that
∫

̂�t (z1)

|∇w|2dx � C

(s − t)2

∫

̂�s (z1)

|w|2dx + (s − t)2
∫

̂�s (z1)

∣

∣

∣Lλ,μū1
1

∣

∣

∣

2
dx .

(3.30)

Case 1. For
√
ε � |z1| � R.

Note that for 0 < s < 2|z1|
3 , we have

∫

̂�s (z1)

|w|2dx =
∫

|x1−z1|�s

∫ ε
2 +h1(x1)

− ε
2 +h2(x1)

|w(x1, x2)|2dx2dx1

�
∫

|x1−z1|�s
(ε + h1(x1)− h2(x1))

2
∫ ε

2 +h1(x1)

− ε
2 +h2(x1)

∣

∣∂x2w(x1, x2)
∣

∣

2 dx2dx1

� C |z1|4
∫

̂�s (z1)

|∇w|2dx, (3.31)
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By (3.13), we have
∫

̂�s (z1)

∣

∣

∣Lλ,μū1
1

∣

∣

∣

2
dx � Cs

|z1|4 , 0 < s <
2|z1|

3
. (3.32)

Denote

̂F(t) :=
∫

̂�t (z1)

|∇w|2dx .

It follows from the above that

̂F(t) �
(

C0|z1|2
s − t

)2

̂F(s)+ C(s − t)2
s

|z1|4 , ∀ 0 < t < s <
2|z1|

3
, (3.33)

where C0 is also a universal constant.
Let ti = 2C0i |z1|2, i = 1, 2, . . .. Then

C0|z1|2
ti+1 − ti

= 1

2
.

Let k =
[

1
4C0|z1|

]

. Then by (3.33) with s = ti+1 and t = ti , we have

̂F(ti ) � 1

4
̂F(ti+1)+ C(ti+1 − ti )2ti+1

|z1|4 � 1

4
̂F(ti+1)+ C(i + 1)|z1|2,

After k iterations, we have, using (3.18),

̂F(t1) �
(

1

4

)k
̂F(tk+1)+ C |z1|2

k
∑

l=1

(

1

4

)l−1

(l + 1) � C

(

1

4

)k

+C |z1|2
k
∑

l=1

(

1

4

)l−1

(l + 1)

� C |z1|2.
This implies that

∫

̂�δ(z1)

|∇w|2dx � C |z1|2.

Case 2. For |z1| � √
ε.

For 0 < t < s <
√
ε, we still have (3.30). Estimate (3.31) becomes

∫

̂�s (z1)

|w|2dx � Cε2
∫

̂�s (z1)

|∇w|2dx, 0 < s <
√
ε. (3.34)

Estimate (3.32) becomes
∫

̂�s (z1)

∣

∣

∣Lλ,μū1
1

∣

∣

∣

2
dx � Cs

ε
+ C |z1|2s

ε3 + Cs3

ε3 , 0 < s <
√
ε. (3.35)
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Estimate (3.33) becomes, in view of (3.30),

̂F(t) �
(

C0ε

s − t

)2
̂F(s)+ C(s − t)2s

(

1

ε
+ |z1|2

ε3 + s2

ε3

)

, ∀ 0 < t < s <
√
ε.

(3.36)
Let ti = 2C0iε, i = 1, 2, . . .. Then

C0ε

ti+1 − ti
= 1

2
.

Let k =
[

1
4C0

√
ε

]

. Then by (3.36) with s = ti+1 and t = ti , we have

̂F(ti ) � 1

4
̂F(ti+1)+ Ci3(ε2 + |z1|2).

After k iterations, we have, using (3.18),

̂F(t1) �
(

1

4

)k
̂F(tk+1)+ C

k
∑

l=1

(

1

4

)l−1

l3(ε2 + |z1|2)

� C

(

1

4

) 1
C

√
ε + C(ε2 + |z1|2) � C(ε2 + |z1|2).

This implies that
∫

̂�δ(z1)

|∇w|2dx � C(ε2 + |z1|2).

Step 3. Proof of (3.20).
Making a change of variables

{

x1 − z1 = δy1,

x2 = δy2,
(3.37)

then ̂�δ(z1) becomes Q′
1, where

Q′
r =

{

y ∈ R
2
∣

∣

∣

∣

− ε

2δ
+ 1

δ
h2(δy1 + z1) < y2 <

ε

2δ
+ 1

δ
h1(δy1 + z1), |y1| < r

}

,

for r � 1,

and the boundaries �±
1 become

y2 = ĥ1(y1) := 1

δ

(ε

2
+ h1(δ y1 + z1)

)

, |y1| < 1,

and

y2 = ĥ2(y1) := 1

δ

(

−ε
2

+ h2(δ y1 + z1)
)

, |y1| < 1.
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Then

ĥ1(0)− ĥ2(0) := 1

δ
(ε + h1(z1)− h2(z1)) = 2,

and by (3.1) and (3.2),

|ĥ′
1(0)| + |ĥ′

2(0)| � C |z1|, |ĥ′′
1(0)| + |ĥ′′

2(0)| � Cδ.

Since R is small, ‖ĥ1‖C1,1((−1,1)) and ‖ĥ2‖C1,1((−1,1)) are small and 1
2 Q′

1 is es-
sentially a unit square as far as applications of Sobolev embedding theorems and
classical L p estimates for elliptic systems are concerned. Let

U 1
1 (y1, y2) := ū1

1(x1, x2), W 1
1 (y1, y2) := w1

1(x1, x2), y ∈ Q′
1, (3.38)

then by (3.23),

Lλ,μW 1
1 = −Lλ,μU 1

1 , y ∈ Q′
1. (3.39)

where
∣

∣

∣Lλ,μU 1
1

∣

∣

∣ = δ2
∣

∣

∣Lλ,μū1
1

∣

∣

∣ .

Since W 1
1 = 0 on the top and bottom boundaries of Q′

1, we have, using Poincaré
inequality, that

∥

∥

∥W 1
1

∥

∥

∥

H1(Q′
1)

� C
∥

∥

∥∇W 1
1

∥

∥

∥

L2(Q′
1)
.

By W 2,p estimates for elliptic systems (see [2]) and Sobolev embedding theorems,
we have, with p = 3,

∥

∥

∥∇W 1
1

∥

∥

∥

L∞(Q′
1/2)

� C
∥

∥

∥W 1
1

∥

∥

∥

W 2,p(Q′
1/2)

� C

(

∥

∥

∥∇W 1
1

∥

∥

∥

L2(Q′
1)

+
∥

∥

∥Lλ,μU 1
1

∥

∥

∥

L∞(Q′
1)

)

.

It follows that
∥

∥

∥∇w1
1

∥

∥

∥

L∞(̂� δ
2
(z1))

� C

δ

(

∥

∥

∥∇w1
1

∥

∥

∥

L2(̂�δ(z1))
+ δ2

∥

∥

∥Lλ,μū1
1

∥

∥

∥

L∞(̂�δ(z1))

)

. (3.40)

Case 1. For
√
ε � |z1| � R.

By (3.19),
∫

̂�δ(z1)

∣

∣

∣∇w1
1

∣

∣

∣

2
dx � C |z1|2.

By (3.13),

δ2
∣

∣

∣Lλ,μū1
1

∣

∣

∣ � δ2
(

C

|z1|2 + C

|z1|3
)

� C |z1|, in ̂�δ(z1).

Author's personal copy



Gradient Estimates for Solutions of the Lamé System 323

We deduce from (3.40) that
∣

∣

∣∇w1
1(z1, x2)

∣

∣

∣ = C |z1|
δ

� C

|z1| , ∀ − ε

2
+ h2(z1) < x2 <

ε

2
+ h1(z1).

Case 2. For |z1| � √
ε.

By (3.19),
∫

̂�δ(z1)

∣

∣

∣∇w1
1

∣

∣

∣

2
dx � C(ε2 + |z1|2).

By (3.13),

δ2
∣

∣

∣Lλ,μū1
1

∣

∣

∣ � Cδ2
(

1

ε
+ ε + |z1|

ε2

)

� C(ε + |z1|), in ̂�δ(z1).

We deduce from (3.40) that
∣

∣

∣∇w1
1(z1, x2)

∣

∣

∣ = C

δ
(ε + |z1|) � C

ε + |z1|
ε

, ∀ − ε

2
+ h2(z1)

< x2 <
ε

2
+ h1(z1).

Proposition 3.2 is established. ��

3.3. Estimates of v3
i , i = 1, 2

Define
ū3

1 = (x2ū,−x1ū)T , and ū3
2 = (x2u,−x1u

)T (3.41)

then v3
i = ū3

i on ∂˜�, i = 1, 2. Using (3.7), (3.1) and (3.3), we obtain

∣

∣

∣∇ū3
i (x)

∣

∣

∣ �
C(ε + |x1|)
ε + |x1|2 , i = 1, 2, x ∈ �R, (3.42)

and
∣

∣

∣∇ū3
i (x)

∣

∣

∣ � C, i = 1, 2, x ∈ ˜� \�R . (3.43)

It follows from (3.41), (1.6), (3.7) and (3.8) that
∣

∣

∣Lλ,μū3
i

∣

∣

∣ �
C

ε + |x1|2 , i = 1, 2, x ∈ �R . (3.44)

We estimate the energy of v3
i , i = 1, 2.

Lemma 3.4.
∫

˜�

∣

∣

∣v
3
i

∣

∣

∣

2
dx +

∫

˜�

∣

∣

∣∇v3
i

∣

∣

∣

2
dx � C, i = 1, 2, (3.45)

and
∥

∥

∥∇v3
i

∥

∥

∥

L∞(˜�\�R)
� C, i = 1, 2. (3.46)
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Proof. By (3.42) and (3.43), we have

I∞[v3
i ] � I∞[ū3

i ] � C
∥

∥

∥∇ū3
i

∥

∥

∥

2

L2(˜�)
� C,

and, by (1.8) and (2.12) and the First Korn inequality,
∥

∥

∥∇v3
i

∥

∥

∥

L2(˜�)
�
∥

∥

∥∇(v3
i − ū3

i )

∥

∥

∥

L2(˜�)
+
∥

∥

∥∇ū3
i

∥

∥

∥

L2(˜�)
�

√
2
∥

∥

∥e(v3
i − ū3

i )

∥

∥

∥

L2(˜�)
+ C

� C
∥

∥

∥e(v3
i )

∥

∥

∥

L2(˜�)
+ C � C I∞[v3

i ] + C � C.

We know from the Poincaré inequality that
∫

˜�

∣

∣

∣v
3
i

∣

∣

∣

2
dx � C

∫

˜�

∣

∣

∣∇v3
i

∣

∣

∣

2
dx � C.

Note that the above constant C is independent of ε.
With (3.45), we can apply classical elliptic estimates, see [1] and [2], to obtain

(3.46). ��
Denote

w3
i := v3

i − ū3
i , i = 1, 2.

It is easy to see from (3.42), (3.43) and (3.45) that
∫

˜�

∣

∣

∣∇w3
i

∣

∣

∣

2
� C. (3.47)

Lemma 3.5. With δ = δ(z1) in (3.14), we have, for i = 1, 2,

∫

̂�δ(z1)

∣

∣

∣∇w3
i

∣

∣

∣

2
dx �

{

Cε2, |z1| < √
ε,

C |z1|4, √
ε � |z1| < R.

(3.48)

Proof. The proof is similar to that of (3.19). We will only prove it for i = 1, since
the proof for i = 2 is the same. For simplicity, denote w := w3

1, then
{

Lλ,μw = −Lλ,μū3
1, in ˜�,

w = 0, on ∂˜�.
(3.49)

As in the proof of (3.19), we have, instead of (3.30),
∫

̂�t (z1)

|∇w|2dx � C

(s − t)2

∫

̂�s (z1)

|w|2dx + (s − t)2
∫

̂�s (z1)

∣

∣

∣Lλ,μū3
1

∣

∣

∣

2
dx .

(3.50)

Case 1.
√
ε < |z1| < R.

We still have (3.31) for 0 < s < 2|z1|
3 . Instead of (3.32), we have, using (3.44),

∫

̂�s (z1)

∣

∣

∣Lλ,μū3
1

∣

∣

∣

2
dx � Cs

|z1|2 . (3.51)
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Instead of (3.33), we have

̂F(t) �
(

C0|z1|2
s − t

)2

̂F(s)+ C(s − t)2
s

|z1|2 , ∀ 0 < t < s <
2|z1|

3
. (3.52)

We define {ti }, k and iterate as in the proof of (3.19), right below formula (3.33),
to obtain, using (3.47),

̂F(t1) �
(

1

4

)k
̂F

(

2|z1|
3

)

+ C |z1|4
k
∑

l=1

(

1

4

)l

l � C |z1|4.

This implies that
∫

̂�δ(z1)

|∇w|2dx � C |z1|4.

Case 2. |z1| < √
ε.

Estimate (3.34) remains the same. Estimate (3.35) becomes
∫

̂�s (z1)

∣

∣

∣Lλ,μū3
1

∣

∣

∣

2
dx � Cs

ε
, 0 < s <

√
ε. (3.53)

Estimate (3.36) becomes

̂F(t) �
(

C0ε

s − t

)2
̂F(s)+ C(s − t)2s

ε
, ∀ 0 < t < s <

√
ε. (3.54)

Define {ti }, k and iterate as in the proof of (3.19), right below formula (3.36), to
obtain

̂F(t1) �
(

1

4

)k
̂F(tk+1)+ C

k
∑

l=1

(

1

4

)l−1

lε2 � Cε2.

This implies that
∫

̂�δ(z1)

|∇w|2dx � Cε2.

��
Lemma 3.6.

∥

∥

∥∇w3
i

∥

∥

∥

L∞(˜�)
� C, i = 1, 2. (3.55)

Consequently,

∣

∣

∣∇v3
i (x)

∣

∣

∣ �
C(ε + |x1|)
ε + |x1|2 , i = 1, 2, x ∈ �R . (3.56)
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Proof. The proof is the same as that of (3.20). In Case 1,
√
ε � |z1| � R, we use

estimates
∫

̂�δ(z1)

∣

∣

∣∇w3
1

∣

∣

∣

2
dx � C |z1|4,

and

δ2
∣

∣

∣Lλ,μū3
1

∣

∣

∣ � C |z1|2.

In Case 2, |z1| � √
ε. we use
∫

̂�δ(z1)

∣

∣

∣∇w3
1

∣

∣

∣

2
dx � Cε2,

and

δ2
∣

∣

∣Lλ,μū3
1

∣

∣

∣ � Cε.

��

4. Estimates of Cα
1 and Cα

2

In this section, we first prove that Cα
1 and Cα

2 are uniformly bounded with
respect to ε, and then estimate the difference Cα

1 − Cα
2 .

4.1. Boundedness of Cα
i , i = 1, 2, α = 1, 2, 3

Lemma 4.1. Let Cα
i be defined in (2.1). Then

|Cα
i | � C, i = 1, 2; α = 1, 2, 3.

Proof. We only need to prove it for i = 1, since the proof for i = 2 is the same.
Let uε be the solution of (1.5). By Theorem 6.5 and Theorem 6.6 in the Appendix,

I∞[uε] := 1

2

∫

˜�

(

C
(0)e(uε), e(uε)

)

� I∞[�] � C

where � is the one in the proof of Lemma 3.1.
It follows that

‖uε‖H1(˜�) � C‖e(uε)‖L2(˜�) � C I∞[uε] � C.

By the trace embedding theorem,

‖uε‖L2(∂D1\BR)
� C.

On ∂D1,

uε =
3
∑

α=1

Cα
1ψ

α.
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If C1 := (C1
1 ,C2

1 ,C3
1) = 0, there is nothing to prove. Otherwise

C � |C1|
∥

∥

∥

∥

∥

3
∑

α=1

̂Cα
1ψ

α

∥

∥

∥

∥

∥

L2(∂D1\BR)

, (4.1)

where ̂Cα
1 = Cα1|C1| and |̂C1| = 1. It is easy to see that

∥

∥

∥

∥

∥

3
∑

α=1

̂Cα
1ψ

α

∥

∥

∥

∥

∥

L2(∂D1\BR)

� 1

C
. (4.2)

Indeed, if not, along a subsequence ε → 0, ̂Cα
1 → C̄α

1 , and

∥

∥

∥

∥

∥

3
∑

α=1

C̄α
1ψ

α

∥

∥

∥

∥

∥

L2(∂D∗
1\BR)

= 0,

where ∂D∗
1 is the limit of ∂D1 as ε → 0 and |C̄1| = 1. This implies

∑3
α=1 C̄α

1ψ
α =

0 on ∂D∗
1 \ BR . But

{

ψα
∣

∣

∂D∗
1\BR

}

is easily seen to be linear independent, we must

have C̄1 = 0. This is a contradiction. Lemma 4.1 for i = 1 follows from (4.1) and
(4.2). ��

4.2. Estimates of |Cα
1 − Cα

2 |, α = 1, 2

In the rest of this section, we prove

Proposition 4.2. Let Cα
i be defined in (2.1). Then

|Cα
1 − Cα

2 | � C
√
ε, α = 1, 2.

By the fourth line of (1.5),

3
∑

α=1

Cα
1

∫

∂D j

∂vα1

∂ν0

∣

∣

∣

∣+
· ψβ +

3
∑

α=1

Cα
2

∫

∂D j

∂vα2

∂ν0

∣

∣

∣

∣+
· ψβ +

∫

∂D j

∂v3

∂ν0

∣

∣

∣

∣+
· ψβ = 0,

j = 1, 2; β = 1, 2, 3. (4.3)

Denote

aαβi j = −
∫

∂D j

∂vαi

∂ν0

∣

∣

∣

∣+
· ψβ, bβj =

∫

∂D j

∂v3

∂ν0

∣

∣

∣

∣+
· ψβ, i, j = 1, 2; α, β = 1, 2, 3.

Integrating by parts over ˜� and using (2.2), we have

aαβi j =
∫

˜�

(

C
0e(vαi ), e(vβj )

)

dx, bβj = −
∫

˜�

(

C
0e(v3), e(vβj )

)

dx .
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Then (4.3) can be written as
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

3
∑

α=1

Cα
1 aαβ11 +

3
∑

α=1

Cα
2 aαβ21 − bβ1 = 0,

3
∑

α=1

Cα
1 aαβ12 +

3
∑

α=1

Cα
2 aαβ22 − bβ2 = 0,

β = 1, 2, 3. (4.4)

For simplicity, we use ai j to denote the 3 × 3 matrix (aαβi j ). To estimate |Cα
1 − Cα

2 |,
α = 1, 2, we only need to use the first three equations in (4.4):

a11C1 + a21C2 = b1,

where

C1 = (C1
1 ,C2

1 ,C3
1)

T , C2 = (C1
2 ,C2

2 ,C3
2)

T , b1 = (b1
1, b2

1, b3
1)

T .

We write the equation as

a11(C1 − C2) = p := b1 − (a11 + a21)C2. (4.5)

Namely,

a11(C1 − C2) ≡

⎛

⎜

⎜

⎜

⎜

⎝

a11
11 a12

11 a13
11

a21
11 a22

11 a23
11

a31
11 a32

11 a33
11

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

C1
1 − C1

2

C2
1 − C2

2

C3
1 − C3

2

⎞

⎟

⎟

⎟

⎟

⎠

=
⎛

⎝

p1

p2

p3

⎞

⎠ . (4.6)

We will show that a11 is positive definite, which we assume for the time being.
By Cramer’s rule, we see from (4.6),

C1
1 − C1

2 = 1

det a11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p1 a12
11 a13

11

p2 a22
11 a23

11

p3 a32
11 a33

11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, C2
1 − C2

2 = 1

det a11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11
11 p1 a13

11

a21
11 p2 a23

11

a31
11 p3 a33

11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Therefore

C1
1 − C1

2 = 1

det a11

⎛

⎝p1

∣

∣

∣

∣

∣

∣

a22
11 a23

11

a32
11 a33

11

∣

∣

∣

∣

∣

∣

− p2

∣

∣

∣

∣

∣

∣

a12
11 a13

11

a32
11 a33

11

∣

∣

∣

∣

∣

∣

+ p3

∣

∣

∣

∣

∣

∣

a12
11 a13

11

a22
11 a23

11

∣

∣

∣

∣

∣

∣

⎞

⎠ , (4.7)

and

C2
1 − C2

2 = 1

det a11

⎛

⎝−p1

∣

∣

∣

∣

∣

∣

a21
11 a23

11

a31
11 a33

11

∣

∣

∣

∣

∣

∣

+ p2

∣

∣

∣

∣

∣

∣

a11
11 a13

11

a31
11 a33

11

∣

∣

∣

∣

∣

∣

− p3

∣

∣

∣

∣

∣

∣

a11
11 a13

11

a21
11 a23

11

∣

∣

∣

∣

∣

∣

⎞

⎠ .

(4.8)

In order to prove Proposition 4.2, we first study the right hand side of (4.6) and
have the following estimates.
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Lemma 4.3.
∣

∣

∣a
αβ
11 + aαβ21

∣

∣

∣ � C, α, β = 1, 2, 3;

∣

∣

∣b
β
1

∣

∣

∣ � C, β = 1, 2, 3.

Consequently,

|p| � C. (4.9)

Proof. For β = 1, 2, 3, using (3.21) and (3.45),

∫

˜�

∣

∣

∣∇vβ1
∣

∣

∣ dx �
∫

�R/2

∣

∣

∣∇vβ1
∣

∣

∣ dx +
∫

˜�\�R/2

∣

∣

∣∇vβ1
∣

∣

∣ dx � C. (4.10)

For α, β = 1, 2, 3, by Lemma 3.1 and (4.10), we have

∣

∣

∣a
αβ
11 + aαβ21

∣

∣

∣ =
∣

∣

∣

∣

∫

˜�

(

C
0e(vα1 + vα2 ), e(vβ1 )

)

dx

∣

∣

∣

∣

� C
∥

∥∇(vα1 + vα2 )
∥

∥

L∞(˜�)

∫

˜�

∣

∣

∣∇vβ1
∣

∣

∣ dx

� C.

Similarly, it follows from Lemma 3.1 and (4.10) that

∣

∣

∣b
β
1

∣

∣

∣ =
∣

∣

∣

∣

∫

˜�

(

C
0e(vβ1 ), e(v3)

)

dx

∣

∣

∣

∣

� C‖∇v3‖L∞(˜�)

∫

˜�

∣

∣

∣∇vβ1
∣

∣

∣ dx � C, β = 1, 2, 3.

Lemma 4.3 follows immediately, in view of Lemma 4.1. ��
Lemma 4.4. a11 is positive definite, and

1

C
√
ε

� aαα11 � C√
ε
, α = 1, 2, (4.11)

1

C
� a33

11 � C, α = 1, 2; (4.12)
∣

∣

∣a12
11

∣

∣

∣ =
∣

∣

∣a21
11

∣

∣

∣ �
C

ε1/4 , (4.13)

|aα3
11 | = |a3α

11 | � C, α = 1, 2; (4.14)

and
1

Cε
� det a11 � C

ε
. (4.15)
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Proof. Step 1. Proof of (4.11) and (4.12).
For any ξ = (ξ (1), ξ (2), ξ (3))T �= 0,

ξ T a11ξ =
∫

˜�

(

C
0e
(

ξ (α)vα1

)

, e
(

ξ (β)v
β
1

))

dx � 1

C

∫

˜�

∣

∣

∣e
(

ξ (α)vα1

)∣

∣

∣

2
dx > 0.

In the last inequality we have used the fact that e
(

ξ (α)vα1

)

is not identically zero.
Indeed if e

(

ξ (α)vα1

) = 0, then ξ (α)vα1 = aψ1 +bψ2 +cψ3 in˜� for some constants
a, b and c. On the other hand, ξ (α)vα1 = 0 on ∂D2, and ψ1

∣

∣

∂D2
, ψ2

∣

∣

∂D2
and

ψ3
∣

∣

∂D2
are clearly independent. This implies that a = b = c = 0. Thus on ∂D1,

ξ (α)vα1 = 0, violating the linear independence of ψ1
∣

∣

∂D1
, ψ2

∣

∣

∂D1
and ψ3

∣

∣

∂D1
. We

have proved that a11 is positive definite.
By (1.8), (2.12) and (2.7),

aαα11 =
∫

˜�

(

C
0e
(

vα1
)

, e
(

vα1
)

)

dx � C
∫

˜�

∣

∣∇vα1
∣

∣

2 dx � C√
ε
, α = 1, 2.

With (3.17), we have, by (3.18),

a11
11 =

∫

˜�

(

C
0e
(

v1
1

)

, e
(

v1
1

))

dx � 1

C

∫

˜�

∣

∣

∣e
(

v1
1

)∣

∣

∣

2
dx

� 1

2C

∫

˜�

∣

∣

∣e
(

ū1
1

)∣

∣

∣

2
dx − C

∫

˜�

∣

∣

∣e
(

w1
1

)∣

∣

∣

2
dx

� 1

2C

∫

˜�

∣

∣

∣e
(

ū1
1

)∣

∣

∣

2
dx − C.

Since
∣

∣

∣e
(

ū1
1

)∣

∣

∣

2
� 1

4
|∂x2 ū|2, (4.16)

we have
∫

˜�

∣

∣

∣e
(

ū1
1

)∣

∣

∣

2
dx � 1

4

∫

˜�

|∂x2 ū|2dx � 1

4

∫

�R

dx

(ε + h1(x1)− h2(x1))2

� 1

C

∫

�R

dx

(ε + |x1|2)2 � 1

C
√
ε
.

Thus

a11
11 � 1

C
√
ε
.

Similarly, we have

a22
11 � 1

C
√
ε
.

Estimate (4.11) is proved.
By Lemma 3.4,

a33
11 =

∫

˜�

(

C
0e
(

v3
1

)

, e
(

v3
1

))

dx � C. (4.17)
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Claim There exists C which is independent of ε such that for anyv ∈ H1(�R\�R/2)

satisfying v = 0 on �1
R \ �−

R/2, it holds

‖∇v‖L2(�R\�R/2) � C ‖e(v)‖L2(�R\�R/2) . (4.18)

Proof of the Claim Suppose the contrary, along a sequence of ε j → 0+, there exist
{v j }∞j=1 ⊂ H1

(

�R \�R/2
)

(we still omit the superscript ε j ) satisfying v j = 0 on

�−
R \ �−

R/2, and

∥

∥∇v j
∥

∥

L2(�R\�R/2)
� j

∥

∥e(v j )
∥

∥

L2(�R\�R/2)
. (4.19)

By Lemma C, we have

∥

∥∇v j
∥

∥

L2(�R\�R/2)
� C

(

∥

∥e(v j )
∥

∥

L2(�R\�R/2)
+ ∥∥v j

∥

∥

L2(�R\�R/2)

)

, (4.20)

where C is independent of j . Replacing v j by
v j

‖v j ‖L2(�R\�R/2)
, we may assume

without loss of generality that

‖v j‖L2(�R\�R/2) = 1. (4.21)

It follows from (4.19), (4.20) and (4.21) that

lim
j→∞ ‖e(v j )‖L2(�R\�R/2) = 0, (4.22)

‖v j‖H1(�R\�R/2) � C. (4.23)

Let

�∗
r :=

{

x ∈ R
2
∣

∣ h2(x1) < x2 < h1(x1), |x1| < r
}

and

(�∗)−r :=
{

x ∈ R
2
∣

∣ x2 = h2(x1), |x1| < r
}

denote the limits of �r and �−
r as ε → 0.

We can easily construct a C1 diffeomorphism φε : �R \ �R/2 → �∗
R \ �∗

R/2

satisfying φε(�
−
R \ �−

R/2) = (�∗)−R \ (�∗)−R/2 and

‖∇φε − I‖C0(�R\�R/2)
, ‖∇(φε)−1 − I‖C0(�∗

R\�∗
R/2)

→ 0, as ε → 0+, (4.24)

where I denotes the identity matrix. Let v̂ j := v j ◦(φε j )
−1. We deduce from (4.22)

and (4.23) that, along a subsequence, v̂ j ⇀ v∗ weakly in H1
(

�∗
R \�∗

R/2

)

, where

v∗ satisfies
e(v∗) = 0, in �∗

R \�∗
R/2, (4.25)

and
v∗ = 0, on (�∗)−R \ (�∗)−R/2. (4.26)
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By (4.25), v∗ ∈ � in �∗
R \ �∗

R/2. Thus, in view of (4.26), v∗ ≡ 0 in �∗
R \ �∗

R/2.

By the compact embedding theorem of H1(�∗
R \�∗

R/2) to L2(�∗
R \�∗

R/2),

‖̂v j‖L2
(

�∗
R\�∗

R/2

) → ‖v∗‖
L2
(

�∗
R\�∗

R/2

) = 0,

By (4.21) and (4.24),

‖̂v j‖L2
(

�∗
R\�∗

R/2

) → 1.

These lead to a contradiction. The claim has been proved.
With the claim (4.18), we obtain from (1.8) that

a33
11 =

∫

˜�

(

C
0e
(

v3
1

)

, e
(

v3
1

))

dx � 1

C

∫

�R\�R/2

|e
(

v3
1

)

|2dx

� 1

C

∫

�R\�R/2

|∇v3
1 |2dx � 1

C
.

Combining with (4.17), estimate (4.12) is proved.
Step 2. Proof of (4.13).

Notice that

a12
11 = a21

11 =
∫

˜�

(

C
0e
(

v1
1

)

, e(v2
1)
)

dx =
∫

˜�

(

C
0∇v1

1,∇v2
1

)

dx .

With (3.17), we have
∫

�R/2

(

C
0∇v1

1,∇v2
1

)

dx =
∫

�R/2

(

C
0∇
(

ū1
1 + w1

1

)

,∇
(

ū2
1 + w2

1

))

dx

=
∫

�R/2

(

C
0∇ū1

1,∇ū2
1

)

dx +
∫

�R/2

(

C
0∇ū1

1,∇w2
1

)

dx

+
∫

�R/2

(

C
0∇ū2

1,∇w1
1

)

dx +
∫

�R/2

(

C
0∇w1

1,∇w2
1

)

dx . (4.27)

By the definition ū1
1 = (ū, 0)T and ū2

1 = (0, ū)T , we have

∇ū1
1 =

(

∂x1 ū ∂x2 ū
0 0

)

, and ∇ū2
1 =

(

0 0
∂x1 ū ∂x2 ū

)

. (4.28)

By (3.18),
∣

∣

∣

∣

∣

∫

�R/2

(

C
0∇w1

1,∇w2
1

)

dx

∣

∣

∣

∣

∣

� C

(

∫

�R/2

∣

∣∇w1
1

∣

∣

2
dx

)1/2 (
∫

�R/2

∣

∣∇w2
1

∣

∣

2
dx

)1/2

� C,

and
∣

∣

∣

∣

∣

∫

�R/2

(

C
0∇ū1

1,∇w2
1

)

dx

∣

∣

∣

∣

∣

� C

(

∫

�R/2

∣

∣∇ū1
1

∣

∣

2
dx

)1/2 (
∫

�R/2

∣

∣∇w2
1

∣

∣

2
dx

)1/2

� C

ε1/4 .

(4.29)
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Similarly,
∣

∣

∣

∣

∣

∫

�R/2

(

C
0∇ū2

1,∇w1
1

)

dx

∣

∣

∣

∣

∣

� C

ε1/4 . (4.30)

On the other hand,

(

C
0∇ū1

1,∇ū2
1

)

=
(

(λ+ 2μ)∂x1 ū μ∂x2 ū
μ∂x2 ū λ∂x1 ū

)

:
(

0 0
∂x1 ū ∂x2 ū

)

= (λ+ μ)∂x1 ū∂x2 ū.

Thus,
∣

∣

∣

∣

∣

∫

�R/2

(

C
0∇ū1

1,∇ū2
1

)

dx

∣

∣

∣

∣

∣

� C
∫

�R/2

|∂x1 ū||∂x2 ū|dx

� C
∫

�R/2

|x1|dx

(ε + |x1|2)2 � C | ln ε|.

Substituting these estimates above into (4.27), and using (3.21), we have

∣

∣

∣a12
11

∣

∣

∣ =
∣

∣

∣a21
11

∣

∣

∣ =
∣

∣

∣

∣

∫

˜�

(

C
0∇v1

1,∇v2
1

)

dx

∣

∣

∣

∣

�
∣

∣

∣

∣

∣

∫

�R/2

(

C
0∇v1

1,∇v2
1

)

dx

∣

∣

∣

∣

∣

+ C � C

ε1/4 .

The proof of (4.13) is finished.
Step 3. Proof of (4.14).

aα3
11 = a3α

11 =
∫

˜�

(

C
0e
(

vα1
)

, e(v3
1)
)

dx =
∫

˜�

(

C
0∇vα1 ,∇v3

1

)

dx, α = 1, 2.

Similarly to the above, using (3.18) and (3.47), we have, for α = 1,

a13
11 =

∫

�R/2

(

C
0∇v1

1,∇v3
1

)

dx + O(1)

=
∫

�R/2

(

C
0∇ū1

1,∇ū3
1

)

dx +
∫

�R/2

(

C
0∇ū1

1,∇w3
1

)

dx

+
∫

�R/2

(

C
0∇ū3

1,∇w1
1

)

dx +
∫

�R/2

(

C
0∇w1

1,∇w3
1

)

dx + O(1)

=
∫

�R/2

(

C
0∇ū1

1,∇ū3
1

)

dx +
∫

�R/2

(

C
0∇ū3

1,∇w1
1

)

dx

+
∫

�R/2

(

C
0∇ū1

1,∇w3
1

)

dx + O(1)

= : I + II + III + O(1).

By the definition of ū3
1 = (x2ū,−x1ū)T , we have

∇ū3
1 =

(

x2∂x1 ū ū + x2∂x2 ū
−ū − x1∂x1 ū −x1∂x2 ū

)

.

Author's personal copy



334 JiGuang Bao, HaiGang Li & YanYan Li

Then
(

C
0∇ū1

1,∇ū3
1

)

=
(

(λ+ 2μ)∂x1 ū μ∂x2 ū
μ∂x2 ū λ∂x1 ū

)

:
(

x2∂x1 ū ū + x2∂x2 ū
−ū − x1∂x1 ū −x1∂x2 ū

)

= (λ+ 2μ)x2
(

∂x1 ū
)2 + μ x2

(

∂x2 ū
)2 − (λ+ μ)x1∂x1 ū∂x2 ū.

Hence, by (3.7),

|I| =
∣

∣

∣

∣

∣

∫

�R/2

(

C
0∇ū1

1,∇ū3
1

)

dx

∣

∣

∣

∣

∣

�C

(

∫

�R/2

|x2||x1|2
(ε + |x1|2)2 dx+

∫

�R/2

|x2|
(ε + |x1|2)2 dx+

∫

�R/2

|x1|2
(ε + |x1|2)2 dx

)

� C.

By (3.18) and (3.42),

|II| =
∣

∣

∣

∣

∣

∫

�R/2

(

C
0∇ū3

1,∇w1
1

)

dx

∣

∣

∣

∣

∣

� C

(

∫

�R/2

∣

∣

∣∇ū3
1

∣

∣

∣

2
dx

)1/2 (
∫

�R/2

∣

∣

∣∇w1
1

∣

∣

∣

2
dx

)1/2

� C.

While, by (3.55),

|III| =
∣

∣

∣

∣

∣

∫

�R/2

(

C
0∇ū1

1,∇w3
1

)

dx

∣

∣

∣

∣

∣

� C
∫

�R/2

∣

∣

∣∇ū1
1

∣

∣

∣ dx � C.

Therefore
∣

∣

∣a13
11

∣

∣

∣ � C.

Similarly, using (3.18) and (3.47),

a23
11 =

∫

�R/2

(

C
0∇v2

1,∇v3
1

)

dx + O(1)

=
∫

�R/2

(

C
0∇ū2

1,∇ū3
1

)

dx +
∫

�R/2

(

C
0∇ū2

1,∇w3
1

)

dx

+
∫

�R/2

(

C
0∇ū3

1,∇w2
1

)

dx +
∫

�R/2

(

C
0∇w2

1,∇w3
1

)

dx + O(1)

=
∫

�R/2

(

C
0∇ū2

1,∇ū3
1

)

dx +
∫

�R/2

(

C
0∇ū2

1,∇w3
1

)

dx + O(1).

By the definition ū2
1 and ū3

1, we have

(

C
0∇ū2

1,∇ū3
1

)

=
(

λ∂x2 ū μ∂x1 ū
μ∂x1 ū (λ+ 2μ)∂x2 ū

)

:
(

x2∂x1 ū ū + x2∂x2 ū
−ū − x1∂x1 ū −x1∂x2 ū

)

= (λ+ μ)x2∂x1 ū∂x2 ū − μ x1(∂x1 ū)2 − (λ+ 2μ)x1(∂x2 ū)2.
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Hence, using (3.7), we have

∫

�R/2

(

C
0∇ū2

1,∇ū3
1

)

dx

= −(λ+ 2μ)
∫

�R/2

x1(∂x2 ū)2dx + O(1)

= −(λ+ 2μ)
∫

|x1|<R/2
x1

(

1

ε + h1(x1)− h2(x1)
− 1

ε + 1
2 (h

′′
1(0)− h′′

2(0))x
2
1

)

× dx1 + O(1) = O(1).

Therefore

∣

∣

∣a23
11

∣

∣

∣ � C.

Lemma 4.4 is proved. ��

Proof of Proposition 4.2. By (4.7), Lemma 4.3 and Lemma 4.4,

C1
1 − C1

2 = 1

det a11

(

(

p1a22
11a33

11 − p3a22
11a13

11

)

+ O

(

1

ε1/4

))

.

Therefore

∣

∣

∣C1
1 − C1

2

∣

∣

∣ � C
√
ε.

Similarly, using (4.8),

C2
1 − C2

2 = 1

det a11

(

(

p2a11
11a33

11 − p3a11
11a23

11

)

+ O

(

1

ε1/4

))

.

Therefore

∣

∣

∣C2
1 − C2

2

∣

∣

∣ � C
√
ε.

The proof is completed. ��

Proof of Proposition 2.1. Estimates (2.5) and (2.6) have been proved in Lemma
3.1; estimate (2.7) has been proved in Corollary 3.3; estimate (2.8) has been proved
in Lemma 3.4 and Lemma 3.6; estimate (2.9) has been proved in Lemma 4.1; and
estimate (2.10) has been proved in Proposition 4.2. The proof of Proposition 2.1 is
completed. ��
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5. More General D1 and D2

As mentioned in the introduction, the strict convexity assumption on ∂D1 and
∂D2 can be weakened. In fact, our proof of Theorem 1.1 applies, with minor mod-
ification, to more general situations.

In R
2, under the same assumptions in the beginning of Sect. 3 except for

the strict convexity condition, ∂Di near Pi can be represented by the graphs of
x2 = ε

2 + h1(x1), and x2 = − ε
2 + h2(x1), for |x1| < 2R. We assume that

h1, h2 ∈ C2([−2R, 2R]) and (3.1) still holds. Instead of the convexity assumption,
we assume that

�0|x1|m � h1(x1)− h2(x1) � �1|x1|m, for |x1| < 2R, (5.1)

and

|h′
i (x1)| � C |x1|m−1, |h′′

i (x1)| � C |x1|m−2, i = 1, 2, for |x1| < 2R,
(5.2)

for some ε-independent constants 0 < �0 < �1, and m � 2. Define δ := δ(z1) as
(3.14). Clearly,

1

C
(ε + |z1|m) � δ(z1) � C(ε + |z1|m). (5.3)

Then:

Theorem 5.1. Under the above assumptions with m � 2, let u ∈ H1(�; R
2) ∩

C1(˜�; R
2) be a solution to (1.5). Then for 0 < ε < 1, we have

|∇u(x)| �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C
ε1− 1

m + dist(x, P1 P2)

ε + distm(x, P1 P2)
‖ϕ‖C1,γ (∂�;R2), x ∈ ˜�,

C‖ϕ‖C1,γ (∂�;R2), x ∈ D1 ∪ D2.

(5.4)

where C is a universal constant. In particular,

‖∇u‖L∞(�) � Cε
1
m −1‖ϕ‖C1,γ (∂�;R2). (5.5)

In the following, we only list the main differences. We define ū by (3.5) as
before. A calculation gives

|∂x1 ū(x)| � C |x1|m−1

ε + |x1|m , |∂x2 ū(x)| � C

ε + |x1|m , x ∈ �R, (5.6)

by (3.3), we have

|∂x1x1 ū(x)| � C |x1|m−2

ε + |x1|m , |∂x1x2 ū(x)| � C |x1|m−1

(ε + |x1|m)2 , ∂x2x2 ū(x) = 0, x ∈ �R .

(5.7)
Define ūαi , i, α = 1, 2 as in (3.9) and (3.10). By (1.6), (5.6) and (5.7), we have

|Lλ,μūαi (x)| � C |x1|m−2

ε + |x1|m + C |x1|m−1

(ε + |x1|m)2 , i, α = 1, 2, x ∈ �R . (5.8)

Instead of Proposition 2.1, we have
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Proposition 5.2. Under the hypotheses of Theorem 5.1 and a normalization
‖ϕ‖C1,γ (∂�) = 1, we have, for 0 < ε < 1,

‖∇v3‖L∞(˜�) � C; (5.9)

‖∇vα1 + ∇vα2 ‖L∞(˜�) � C, α = 1, 2, 3; (5.10)

|∇vαi (x)| � C

ε + distm(x, P1 P2)
, i, α = 1, 2, x ∈ ˜�; (5.11)

|∇v3
i (x)| � C

ε + dist(x, P1 P2)

ε + distm(x, P1 P2)
, i = 1, 2, x ∈ ˜�; (5.12)

and

|Cα
i | � C, i = 1, 2, α = 1, 2, 3; (5.13)

|Cα
1 − Cα

2 | � Cε1− 1
m , α = 1, 2. (5.14)

Denote

wαi := vαi − ūαi , i = 1, 2, α = 1, 2, 3.

Then, instead of Proposition 3.2, we have

Proposition 5.3. Assume the above, let vαi ∈ C2(˜�; R
2)∩ C1(˜�; R

2) be the weak
solution of (2.2). Then, for i, α = 1, 2,

∫

˜�

∣

∣∇wαi
∣

∣

2 dx � C, (5.15)

∫

̂�δ(z1)

∣

∣∇wαi
∣

∣

2 dx �
{

C
(

ε2m−2 + |z1|2m−2
)

, |z1| � m
√
ε,

C |z1|2m−2, m
√
ε < |z1| � R,

(5.16)

and
∣

∣∇wαi (x)
∣

∣ �
{

C εm−1+|x1|m−1

ε
, |x1| � m

√
ε,

C
|x1| ,

m
√
ε < |x1| � R.

(5.17)

Proof. The proof of (5.15) is the same as that of (3.18). We only list the main
differences from STEP 2 and STEP 3 in the proof of Proposition 3.2.
Step 2. Proof of (5.16).
Case 1. For m

√
ε � |z1| � R/2.

Note that for 0 < s < 2|z1|
3 , we have

∫

̂�s (z1)
|w|2dx �

∫

|x1−z1|�s
(ε + h1(x1)− h2(x1))

2
∫ ε

2 +h1(x1)

− ε
2 +h2(x1)

|∂x2w(x1, x2)|2dx2dx1

� C |z1|2m
∫

̂�s (z1)
|∇w|2dx, (5.18)
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By (5.8), we have

∫

̂�s (z1)

∣

∣

∣Lλ,μū1
1

∣

∣

∣

2
dx �

∫

̂�s (z1)

(

C |x1|m−2

ε + |x1|m + C |x1|m−1

(ε + |x1|m)2
)2

dx

� C |z1|ms

|z1|2(m+1)
� Cs

|z1|m+2 , 0 < s <
2|z1|

3
. (5.19)

As before, it follows from the above and (3.30) that

̂F(t) �
(

C0|z1|m
s − t

)2
̂F(s)+ C(s − t)2

s

|z1|m+2 , ∀ 0 < t < s <
2|z1|

3
, (5.20)

where C0 is also a universal constant.
Let ti = 2C0i |z1|m , i = 1, 2, . . .. Then

C0|z1|m
ti+1 − ti

= 1

2
.

Let k =
[

1
4C0|z1|m−1

]

. Then by (5.20) with s = ti+1 and t = ti , we have

̂F(ti ) � 1

4
̂F(ti+1)+ C(ti+1 − ti )2ti+1

|z1|m+2 � 1

4
̂F(ti+1)+ C(i + 1)|z1|2m−2.

After k iterations, we have, using (5.15),

̂F(t1) �
(

1

4

)k
̂F(tk+1)+ C |z1|2m−2

k
∑

l=1

(

1

4

)l−1

(l + 1)

� C |z1|2m−2.

This implies that
∫

̂�δ(z1)

|∇w|2dx � C |z1|2m−2.

Case 2. For |z1| � m
√
ε.

For 0 < t < s < m
√
ε, estimate (5.18) becomes

∫

̂�s (z1)

|w|2dx � Cε2
∫

̂�s (z1)

|∇w|2dx, 0 < s < m
√
ε. (5.21)

Estimate (5.19) becomes

∫

̂�s (z1)

|Lλ,μū1
1|2dx �

∫

̂�s (z1)

(

C |x1|m−2

ε + |x1|m + C |x1|m−1

(ε + |x1|m)2
)2

dx

� Cs

ε
+ C(|z1|2m−2 + s2m−2)s

ε3 , for 0 < s < m
√
ε.

(5.22)

Author's personal copy



Gradient Estimates for Solutions of the Lamé System 339

Estimate (5.20) becomes, in view of (3.30),

̂F(t) �
(

C0ε

s − t

)2
̂F(s)+C(s−t)2s(

1

ε
+|z1|2m−2

ε3 + s2m−2

ε3 ), ∀0 < t < s < m
√
ε.

(5.23)
Let ti = 2C0iε, i = 1, 2, . . .. Then

C0ε

ti+1 − ti
= 1

2
.

Let k =
[

1

4C0ε
1− 1

m

]

. Then by (3.36) with s = ti+1 and t = ti , we have

̂F(ti ) � 1

4
̂F(ti+1)+ Ci3

(

ε2m−2 + |z1|2m−2
)

.

After k iterations, we have, using (5.15),

̂F(t1) �
(

1

4

)k
̂F(tk+1)+ C

k
∑

l=1

(

1

4

)l−1

l3
(

ε2m−2 + |z1|2m−2
)

� C

(

1

4

) 1

Cε1− 1
m + C

(

ε2m−2 + |z1|2m−2
)

� C
(

ε2m−2 + |z1|2m−2
)

.

This implies that
∫

̂�δ(z1)

|∇w|2dx � C
(

ε2m−2 + |z1|2m−2
)

.

Step 3. Proof of (5.17).
Using a change of variables (3.37), define Q′

r , ĥ1, and ĥ2 as in the proof of
Proposition 3.2. Then by (5.2),

|ĥ′
1(0)| + |ĥ′

2(0)| � C |z1|m−1, |ĥ′′
1(0)| + |ĥ′′

2(0)| � Cδ|z1|m−2.

Since R is small, ‖ĥ1‖C1,1((−1,1)) and ‖ĥ2‖C1,1((−1,1)) are small and 1
2 Q′

1 is es-
sentially a unit square as far as applications of Sobolev embedding theorems and
classical L p estimates for elliptic systems are concerned. By the same argument
as in the proof of Proposition 3.2, (3.40) still holds. We divide into two cases to
proceed.

Case 1. For m
√
ε � |z1| � R/2.

By (5.16),
∫

̂�δ(z1)

∣

∣

∣∇w1
1

∣

∣

∣

2
dx � C |z1|2m−2.

By (5.8),

δ2
∣

∣

∣Lλ,μū1
1

∣

∣

∣ � δ2
(

C

|z1|2 + C

|z1|m+1

)

� C |z1|m−1, in ̂�δ(z1).
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We deduce from (3.40) that

∣

∣

∣∇w1
1(z1, x2)

∣

∣

∣ = C |z1|m−1

δ

� C

|z1| , ∀ − ε

2
+ h2(z1) < x2 <

ε

2
+ h1(z1).

Case 2. For |z1| � 2 m
√
ε.

By (5.16),

∫

̂�δ(z1)

∣

∣

∣∇w1
1

∣

∣

∣

2
dx � C(ε2m−2 + |z1|2m−2).

By (5.8),

δ2
∣

∣

∣Lλ,μū1
1

∣

∣

∣ � Cδ2

(

(ε + |z1|)m−2

ε
+ (ε + |z1|)m−1

ε2

)

� C (ε + |z1|)m−1 , in ̂�δ(z1).

(5.24)
We deduce from (3.40) that

∣

∣

∣∇w1
1(z1, x2)

∣

∣

∣ = C

δ

(

εm−1 + |z1|m−1
)

� C
εm−1 + |z1|m−1

ε
, ∀ − ε

2
+ h2(z1) < x2 <

ε

2
+ h1(z1).

Proposition 5.3 is established. ��
Define ū3

i , i = 1, 2 by (3.41). Using (5.1), (5.2) and (5.6), we have

∣

∣

∣∇ū3
i (x)

∣

∣

∣ �
C(ε + |x1|)
ε + |x1|m , i = 1, 2, x ∈ �R, (5.25)

and
∣

∣

∣∇ū3
i (x)

∣

∣

∣ � C, i = 1, 2, x ∈ ˜� \�R . (5.26)

It follows from (1.6), (5.6) and (5.7) that

∣

∣

∣Lλ,μū3
i

∣

∣

∣ �
C

ε + |x1|m , i = 1, 2, x ∈ �R . (5.27)

Then Lemma 3.4 still holds, while Lemma 3.5 and Lemma 3.6 become

Lemma 5.4. With δ = δ(z1) in (3.14), we have, for i = 1, 2,

∫

̂�δ(z1)

∣

∣

∣∇w3
i

∣

∣

∣

2
dx �

{

Cε2, |z1| < m
√
ε,

C |z1|2m, m
√
ε � |z1| < R/2.

(5.28)
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Proof. The proof is very similar to that of Lemma 3.5. By the same argument, we
still have that (3.50) holds.
Case 1. m

√
ε < |z1| < R/2.

We still have (5.18) for 0 < s < 2|z1|
3 . Instead of (5.19), we have, using (5.27),

∫

̂�s (z1)

∣

∣

∣Lλ,μū3
1

∣

∣

∣

2
dx � Cs

|z1|m . (5.29)

Instead of (5.20), we have

̂F(t) �
(

C0|z1|m
s − t

)2
̂F(s)+ C(s − t)2

s

|z1|m , ∀ 0 < t < s <
2|z1|

3
. (5.30)

We define {ti }, k and iterate as in the proof of (5.16), right below formula (5.20),
to obtain, using (3.47),

̂F(t1) �
(

1

4

)k
̂F

(

2|z1|
3

)

+ C |z1|2m
k
∑

l=1

(

1

4

)l

l � C |z1|2m .

This implies that
∫

̂�δ(z1)

|∇w|2dx � C |z1|2m .

Case 2. |z1| < m
√
ε.

Estimate (5.21) remains the same. Estimate (5.22) becomes
∫

̂�s (z1)

∣

∣

∣Lλ,μū3
1

∣

∣

∣

2
dx � Cs

ε
, 0 < s < m

√
ε. (5.31)

Estimate (5.23) becomes

̂F(t) �
(

C0ε

s − t

)2
̂F(s)+ C(s − t)2s

ε
, ∀ 0 < t < s < m

√
ε. (5.32)

Define {ti }, k and iterate as in the proof of (3.19), right below formula (3.36), to
obtain

̂F(t1) �
(

1

4

)k
̂F(tk+1)+ C

k
∑

l=1

(

1

4

)l−1

lε2 � Cε2.

This implies that
∫

̂�δ(z1)

|∇w|2dx � Cε2.

��
It is not difficult to obtain
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Lemma 5.5.
‖∇w3

i ‖L∞(˜�) � C, i = 1, 2. (5.33)

Consequently,

|∇v3
i (x)| � C(ε + |x1|)

ε + |x1|m , i = 1, 2, x ∈ �R . (5.34)

The last main difference is the computation of aαα11 , α = 1, 2. In fact, By (1.8),
(2.12), (2.7) and (5.15),

aαα11 =
∫

˜�

(

C
0e
(

vα1
)

, e
(

vα1
)

)

dx =
∫

˜�

(

C
0∇vα1 ,∇vα1

)

dx

� C
∫

˜�

∣

∣∇vα1
∣

∣

2 dx � C
∫

˜�

∣

∣∇ūα1
∣

∣

2 dx + C
∫

˜�

∣

∣∇wα1
∣

∣

2 dx

� C
∫ R

−R

1

ε + h1(x1)− h2(x1)
dx1 + C

� C
∫ R

0

1

ε + |x1|m dx1 + C

� Cε
1
m −1, α = 1, 2.

Using (5.15) again, we have

a11
11 =

∫

˜�

(

C
0e
(

v1
1

)

, e
(

v1
1

))

dx � 1

C

∫

˜�

∣

∣

∣e
(

v1
1

)∣

∣

∣

2
dx

� 1

2C

∫

˜�

∣

∣

∣e
(

ū1
1

)∣

∣

∣

2
dx − C

∫

˜�

∣

∣

∣e
(

w1
1

)∣

∣

∣

2
dx

� 1

2C

∫

˜�

∣

∣

∣e
(

ū1
1

)∣

∣

∣

2
dx − C.

In view of (4.16), we have
∫

˜�

∣

∣

∣e
(

ū1
1

)∣

∣

∣

2
dx � 1

4

∫

˜�

|∂x2 ū|2dx � 1

C

∫

�R

dx

(ε + h1(x1)− h2(x1))2

� 1

C

∫ R

0

1

ε + |x1|m dx1 + C

� ε
1
m −1

C
.

Thus

a11
11 � ε

1
m −1

C
.

Similarly, we have

a22
11 � ε

1
m −1

C
.
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By the argument as in the proof of Lemma 4.4, we have

ε
2
m −2

C
� det a11 � Cε

2
m −2.

Then, we have

|Cα
1 − Cα

2 | � Cε1− 1
m , α = 1, 2.

The proof of Theorem 5.1 is finished.

6. Appendix: Some Results on the Lamé System with Partially Infinite
Coefficients

Assume that in R
d , � and ω are bounded open sets with smooth boundaries

satisfying

ω = ∪m
s=1ωs ⊂ �,

where {ωs} are connected components of ω. Clearly, m < ∞ and ωs is open for all
1 � s � m. Given ϕ ∈ C1,γ (∂�; R

d), 0 < γ < 1, μ > 0, dλ+ 2μ > 0, and

μ(s)n → ∞, dλ(s)n + 2μ(s)n → ∞, as n → ∞.

We denote

C
(s)
n := λ(s)n δi jδkl + μ(s)n

(

δikδ jl + δilδ jk
)

, 1 � s � m,

C
(0) := λδi jδkl + μ

(

δikδ jl + δilδ jk
)

,

and

Cn(x) =
{

C
(s)
n , in ωs, 1 � s � m,

C
(0), in � \ ω.

Consider for every n
{

∇ · (Cne(un)) = 0, in �,

u = ϕ, on ∂�.
(6.1)

Let � be the linear space of rigid displacements of R
d , that is the set of all

vector -valued functions η = (η1, . . . , ηd)T such that η = a + Ax , where a =
(a1, . . . , ad)

T is a vector with constant real components, A is a skew-symmetric
(d × d)-matrix with real constant elements. It is easy to see that� is a linear space
of dimension d(d + 1)/2. Denote

� = span

{

ψα | 1 � α � d(d + 1)

2

}

.
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Equation (6.1) can be rewritten in the following form to emphasize the trans-
mission condition on ∂ω:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∇ ·
(

C
(s)
n e(un)

)

= 0, in ωs, 1 � s � m,

∇ · (C(0)e(un)
) = 0, in � \ ω,

∂un

∂ν0

∣

∣

∣+ · ψα = ∂un

∂ν0

∣

∣

∣− · ψα, on ∂ωs, 1 � s � m; 1 � α � d(d+1)
2 ,

(6.2)

where

∂un

∂ν0

∣

∣

∣

∣+
:=
(

C
(0)e(u)

)


n = λ (∇ · un) 
n + μ
(

∇un + (∇un)
T
)


n, on ∂ωs,

∂un

∂ν0

∣

∣

∣

∣−
:=
(

C
(s)
n e(u)

)


n = λ(s)n (∇ · un) 
n + μ(s)n

(

∇un + (∇un)
T
)


n, on ∂ωs,

and the subscript ± indicates the limit from outside and inside ωs , respectively.

Theorem 6.1. If un ∈ H1(�; R
d) is a solution of Equation (6.1), then

un ∈ C1(� \ ω; R
d) ∩ C1(ω; R

d) and satisfies Equation (6.2).
If un ∈ C1(� \ ω; R

d) ∩ C1(ω; R
d) is a solution of Equation (6.2), then

un ∈ H1(�; R
d) and satisfies Equation (6.1).

Proof. The first part of the theorem follows from Proposition 1.4 of [27]. The proof
of the rest is standard. ��
Theorem 6.2. There exists at most one solution un ∈ H1(�; R

d) to Equation (6.1).

Proof. We only need to prove that if ϕ = 0 then a solution un of (6.1) is zero.
Indeed it follows from (6.1) that

∫

�

(Cne(un), e(ψ)) dx = 0, ∀ ψ ∈ C∞
c (�; R

d).

This implies by density of C∞
c (�; R

d) in H1
0 (�; R

d) that
∫

� (Cne(un), e(un)) dx =
0. By the property of Cn and the First Korn inequality, we have ∇un = 0, and there-
fore un = 0. ��

Define the functional

In[v] := 1

2

∫

�

(Cn(x)e(v), e(v)) dx, (6.3)

where v belongs to the set

H1
ϕ (�; R

d) :=
{

v ∈ H1(�; R
d)

∣

∣

∣

∣

v = ϕ, on ∂�

}

,

where ϕ ∈ C1,γ (∂�; R
d), 0 < γ < 1.
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Theorem 6.3. For every n, there exists a minimizer un ∈ H1
ϕ (�; R

d) satisfying

In[un] := min
v∈H1

ϕ (�;Rd )
In[v].

Moreover, un ∈ H1(�; R
d) is a solution of Equation (6.1).

The proof of Theorem 6.3 is standard. The existence of a minimizer un follows
from the lower semi-continuity property of the functional with respect to the weak
convergence in H1(�; R

d) and the First Korn inequality.
Comparing Equation (6.1), the Lamé system with infinity coefficients is

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∇ · (C(0)e(u)) = 0, in � \ ω,
u
∣

∣+ = u
∣

∣−, on ∂ω,

e(u) = 0, in ω,
∫

∂ωs

∂u

∂ν0

∣

∣

∣+ · ψα = 0, 1 � s � m; 1 � α � d(d+1)
2 ,

u = ϕ, on ∂�.

(6.4)

We have similar results:

Theorem 6.4. If u ∈ H1(�; R
d) satisfies (6.4) except for the fourth line, then

u ∈ C1(� \ ω; R
d) ∩ C1(ω; R

d).

Proof. By the third line of Equation (6.4), u is a linear combination of {ψα}, and
therefore u ∈ C∞(∂ω). Since ∇ · (C(0)e(u)) = 0 on � \ ω, the regularity of u in
� \ ω follows from [2]. ��
Theorem 6.5. There exists at most one solution u ∈ H1(�; R

d)∩C1(� \ ω; R
d)∩

C1(ω; R
d) of (6.4).

Proof. It is equivalent to showing that ifϕ = 0, Equation (6.4) only has the solution
u = 0. We know from the third and the second lines of Equation (6.4) that u|∂ωs

is a linear combination of {ψα}. Multiplying the first line of Equation (6.4) by u
and integrating by parts leads to, using a version of the Second Korn inequality
(Lemma D),

0 =
∫

�\ω

(

C
(0)e(u), e(u)

)

dx � 1

C

∫

�\ω
|e(u)|2dx � 1

C

∫

�\ω
|∇u|2dx .

It follows that u = 0. ��
The existence of a solution can be obtained by using the variational method.
Define the energy functional

I∞[v] := 1

2

∫

�\ω

(

C
(0)e(u), e(u)

)

dx, (6.5)

where v belongs to the set

A :=
{

u ∈ H1
ϕ (�; R

d)
∣

∣ e(u) = 0 in ω
}

.
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Theorem 6.6. There exists a minimizer u ∈ A satisfying

I∞[u] = min
v∈A

I∞[v].

Moreover, u ∈ H1(�; R
d)∩ C1(� \ ω; R

d)∩ C1(ω; R
d) is a solution of equation

(6.4).

Proof. By the lower semi-continuity of I∞ and the weakly closed property of A, it
is not difficult to see that a minimizer u ∈ A exists and satisfies ∇ · (C(0)e(u)) = 0
in � \ ω. The only thing needs to shown is the fourth line of (6.4), that is

∫

∂ωs

∂u

∂ν0

∣

∣

∣+ · ψα = 0, 1 � s � m.

Indeed, since u is a minimizer, for any 1 � s � m, 1 � α � d(d + 1)/2, and any
φ ∈ C∞

c (�; R
d) satisfying φ ≡ ψα on ωs and φ = 0 on ωt (t �= s), let

i(t) := I∞[u + tφ], t ∈ R,

we have

0 = i ′(0) := di

dt

∣

∣

t=0 =
∫

�\ω

(

C
(0)e(u), e(φ)

)

dx .

Therefore

0 = −
∫

�\ω
∇ ·
(

C
(0)e(u)

)

· φdx =
∫

�\ω

(

C
(0)e(u), e(φ)

)

dx +
∫

∂ωs

∂u

∂ν0

∣

∣+ · φ

=
∫

∂ωs

∂u

∂ν0

∣

∣+ · ψα.

��
Finally, we give the relationship between un and u.

Theorem 6.7. Let un and u in H1(�; R
d) be the solutions of Eqs. (6.2) and (6.4),

respectively. Then
un → u in H1(�; R

d), as n → ∞, (6.6)

and
lim

n→∞ In[un] = I∞[u], (6.7)

where In and I∞ are defined by (6.3) and (6.5).

Proof. Step 1. Prove that {un} weakly converges in H1(�; R
d) to a solution u of

(6.4).
Due to the uniqueness of the solution to (6.4), we only need to show that after

passing to a subsequence, {un} weakly converges in H1(�; R
d) to a solution u of

(6.4).
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Let η ∈ H1
ϕ (�; R

d) be fixed and satisfy η ≡ 0 on ω. Since un is the minimizer
of In in H1

ϕ (�; R
d), we have, for some constant C independent of n,

1

C
‖e(un)‖2

L2(�)
� In[un] � In[η] = 1

2

∫

�\ω

(

C
(0)e(η), e(η)

)

dx � C‖η‖2
H1(�)

.

Using the Second Korn inequality and the fact that un = ϕ on ∂�, we obtain

‖un‖H1(�) � C,

and therefore, along a subsequence,

un ⇀ u in H1
ϕ (�; R

d), as n → ∞.

Next we show that u is a solution of Equation (6.4). In fact, we only need to
prove the following three conditions:

∇ ·
(

C
(0)e(u)

)

= 0, in � \ ω, (6.8)

e(u) = 0, in ω, (6.9)
∫

∂ωs

∂u

∂ν0

∣

∣+ · ψα = 0, 1 � s � m, 1 � α � d(d + 1)/2. (6.10)

(i) Since un ∈ H1(�; R
d) is a solution of Equation (6.1) and un ⇀ u in

H1
ϕ (�; R

d), we have, for any φ ∈ C∞
c (� \ ω; R

d), that

0 =
∫

�\ω

(

C
(0)e(un), e(φ)

)

dx →
∫

�\ω

(

C
(0)e(u), e(φ)

)

dx .

Therefore
∫

�\ω

(

C
(0)e(u), e(φ)

)

dx = 0, ∀ φ ∈ C∞
c (� \ ω),

that is (6.8).
(ii) Let η ∈ H1

ϕ (�; R
d) be fixed and satisfy η ≡ 0 on ω, then since un is a

minimizer of In in H1
ϕ (�; R

d), we have

In[un] � In[η] � 1

2

∫

�\ω

(

C
(0)e(η), e(η)

)

dx � C.

On the other hand,

In[un] �
m
∑

s=1

min
{

2μ(s)n , dλ(s)n + 2μ(s)n

}

∫

ωs

|e(un)|2dx .

Since μ(s)n → ∞ and dλ(s)n + 2μ(s)n → ∞ as n → ∞, we have

‖e(un)‖L2(ω) → 0, as n → ∞.

Author's personal copy



348 JiGuang Bao, HaiGang Li & YanYan Li

By (1), un ⇀ u in H1(�; R
d). Therefore

‖e(u)‖L2(ω) = 0,

that is e(u) = 0 in ω, which is (6.9).
(iii) By (i) and (ii), u satisfies (6.8) and is a linear combination of {ψα} on each

∂ωs , and is equal to ϕ on ∂�. Thus u is smooth on ∂ω. By the elliptic regularity
theorems, u ∈ C1(� \ ω; R

d) ∩ C2(� \ ω; R
d). For each s = 1, 2, . . . ,m, 1 �

α � d(d + 1)/2, we construct a function ρ ∈ C2(� \ ω; R
d) such that ρ = ψα on

∂ωs , ρ = 0 on ∂ωt for t �= s, and ρ = 0 on ∂�. By Green’s identity, we have the
following:

0 = −
∫

�\ω
∇ ·
(

C
(0)e(un)

)

· ρdx

=
∫

�\ω

(

C
(0)e(un), e(ρ)

)

dx +
∫

∂ωs

∂un

∂ν0

∣

∣+ · ψα

=
∫

�\ω

(

C
(0)e(un), e(ρ)

)

dx +
∫

∂ωs

∂un

∂ν0

∣

∣− · ψα

=
∫

�\ω

(

C
(0)e(un), e(ρ)

)

dx .

Similarly,

0 = −
∫

�\ω
∇ ·
(

C
(0)e(u)

)

· ρdx =
∫

�\ω

(

C
(0)e(u), e(ρ)

)

dx +
∫

∂ωs

∂u

∂ν0

∣

∣+ · ψα.

Since un ⇀ u in H1(�), it follows that

0 =
∫

�\ω

(

C
(0)e(un), e(ρ)

)

dx →
∫

�\ω

(

C
(0)e(u), e(ρ)

)

dx .

Thus
∫

∂ωs

∂u

∂ν0

∣

∣+ · ψα = 0, 1 � s � m, 1 � α � d(d + 1)/2.

Step 1 is completed.
Step 2. Prove (6.6) and (6.7).
Since un is a minimizer of In and e(u) = 0 in ω, we have

In[un] � In[u] = I∞[u].

Thus

lim sup
n→∞

In[un] � I∞[u].
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On the other hand, since e(u) = 0 and un ⇀ u in H1(�; R
d),

I∞[u] = 1

2

∫

�\ω

(

C
(0)e(u), e(u)

)

dx

� lim inf
n→∞

1

2

∫

�\ω

(

C
(0)e(un), e(un)

)

dx

� lim inf
n→∞

1

2

∫

�\ω

(

C
(0)e(un), e(un)

)

dx

+ lim sup
n→∞

1

2

∑

s

∫

ωs

(

C
(s)
n e(un), e(un)

)

dx

� lim sup
n→∞

In[un].

With the help of the first Korn’s inequality, we easily deduce (6.7) and (6.6) from
the above. The proof of Theorem 6.7 is completed. ��
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