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GLOBAL SOLUTIONS AND EXTERIOR DIRICHLET PROBLEM FOR
MONGE-AMP ERE EQUATION IN R?

JIGUANG BAO, HAIGANG LI, AND LEI ZHANG

AsstrACT. Monge-Ampeére equation d&fu) = f in two dimensional spaces is
different in nature from their counterparts in higher dimersgi@paces. In this
article we employ new ideas to establish two main resulttfi®Monge-Ampere
equation defined either globally &7 or outside a convex set. First we prove the
existence of a global solution that satisfies a prescribgohpiotic behavior at
infinity, if f is asymptotically close to a positive constant. Then weestihe
exterior Dirichlet problem if data are given on the boundafra convex set and
at infinity.

1. INTRODUCTION

The aim of this article is to study convex, viscousity saus of
(1.1) detD?u) = f

either globally defined iiR? or defined outside a convex set.

The research of global solutions dates back to 1950s. Aicisssult of
Jorgens (fom = 2 [20]), Calabi 6 < 5 [5]), and Pogorelovr( > 2, [24]) states
that any classical convex solution of

detD?u) =1, inR"

is a quadratic polynomial. Another proof in the line dfime geometry was given
by Cheng-Yaul[11]. Ciarelli [6] gave a proof for viscosity solutions.

If (L.1) is defined outside a strictly convex, bounded subs&" and f = 1,
Caftarelli-Li [8] proved that the solutiom is asymptotically close to a quadratic
polynomial at infinity forn > 3. Similarly forn = 2 andf = 1, using complex
analysis Ferrer-Martinez-Milan [114, [15] and Delanog][froved thau is asymp-
totically close to a quadratic polynomial plus a logarithrigérm.

These asymptotics results were extended by the authorq iorf4f being a
perturbation of 1 at infinity. Namely, for > 3 andf being an optimal perturbation
of 1, uis asymptotically close to a quadratic polynomial at infinfeorn = 2 and
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f being the optimal perturbation of W,is close to a quadratic polynomial plus a
logarithmic term at infinity.

Two natural questions are related to the asymptotic behafia at infinity.
First, given a prescribed asymptotic behavior at infinigi) one find a global so-
lution u that satisfies the asymptotic behavior? The second queistiobet D
be an open, bounded, strictly convex subseRdivith smooth boundary. Given
¢ € C2(9D) and a prescribed asymptotic behaviouatt infinity, can one findi of
(1.1) defined irR" \ D that satisfies the boundary datad& and infinity?

These questions for > 3 are solved in[8] forf = 1 and [4] for f being a per-
turbation of 1. However fon = 2, all the approaches used for higher dimensional
cases failed. The purpose of this article is to employ a nethaogethat solves the
existence of global solution fof {1.1) i®? and a corresponding exterior Dirichlet

problem.
First we consider convex viscosity solutions of
(1.2) detD?u) = f, in R?

where we assumeé to satisfy

1 < f(X)<co, VxeR?
(1.3) Co

IDI(f(x) - 1)| < j=0,1,.,k YxeRZ

_ %
(L+ [X)e+i°
for somecy > 0,8 > 2 andk > 3.

Remark 1.1. The assumptio > 2 in (1.3) is sharp, as the readers may see
counter examples in the authors’ previous wifgtk

Let M?*2 be the set of the real valuedx22 matrices and
A= {AeM>?: Ais symmetric, positive definite and d&)(= 1}.

Our first main theorem is on the existence of global solutigth wrescribed as-
ymptotic behavior at infinity:

Theorem 1.1. Supposel{1]3) holds for f. GivenA#A, b € R? and ce R, there
existseg(A, Cp) > 0 such that if

D™ ( f(VATly) - Jgs(o,lyl)

then there exists a unique solution ufto (1.2) satisfying

(1.4) <&, YYeR? m=0,1,

f( \/K—lx)ds)

(1.5) lim supix*”

|X|— o0
for j=0,1,..k+ 1,0 € (0.mini3-22}) andd= 5 [,(f - 1).
Remark 1.2. It is easy to observe thdi (1.4) follows from {1.3)yifis large. On

the other hand 1(x) := f(\/ﬂ‘lx) could be very dferent from1 when|x] is not
large, even though it is very close to a radial function.

< 00

D! (u(x) - (%x’Ax+ b-x+dlog VX Ax+ c))
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Throughout the article we shall ug{xp, r) to denote the disk centered &t
with radiusr. If Xg is the origin we may usg;.

If the dimension is higher than 2, the analogue of Thedrendtarilbe proved
using a standard upper-lower solutions method: In ordemtbdi global solution
of det@?u) = f for f close to 1 at infinity, one can solve for dofur) = f
and detD?UR) = f in Bg, wheref and f are radial functions greater th&nand

smaller thanf respectively. Bothf andf are close to 1 at infinity and theftkrence
betweerug andUg is only O(1) if they take the same value @Bg. Thus it is easy
to obtain a global solution of déd?u) = f in R" by a sequence of local solutions.
However forn = 2, such a process is completely destroyed by a logarithrmc. te
In order for a limiting process to work, it is crucial to obta point-wise, uniform
estimate for the Hessian matrix of a sequence of approxigablutions. Because
of the logarithmic term, the shapes of certain level setmobhe determined and
almost all estimates that work so well for higher dimensi@tmations fail.

The proof of Theorerh 111 is as follows. First we look for a eddiolution of
det@?u) = fy(r), wherefy(r) := £, f1(x)dS, and take this solution as the first
term in our approximation. As we look for more terms down thad we treat
the additional terms as solutions to the linearized eqoaifche Monge-Ampeére
equation expanded at the radial solution. In order to mdkbealadditional terms
proportionally smaller, we need to use the structure of MeAgpere equation
and a sharp estimate of the Green’s function corresponditigetlinearized equa-
tion. Standard estimates for Green’s functions are not gimdar our purpose
because the iteration process requires a very sharp format Wvakes it worse is
the ellipticity of the linearized equation could be very bashr the origin, since
f, could be very dterent from 1 near the origin. The proof in Lemmal2.2, which
relies heavily on results of Kenig-Ni and Cordes-Nirenblengn = 2, overcomes
this difficulty by estimating the Green’s function over “good regidirst and then
use the maximum principle to control the “bad region”.

The second main theorem is on the exterior Dirichlet probpeaposed in the
previous work of the authorsl[4]. We look to solve the follagiexterior Dirichlet
problem: LetD be a bounded, strictly convex set with smooth boundar4n
Supposep € C?(9D) andu is a solution of

detD2u) = f(x), in R2\D,
(1.6) ue CO(R?\ D) is a locally convex viscosity solution

u = ¢(x), on dD.

In [4] we conjectured that for any € C2(dD), as long as

1 1
d> > fRz\D(f -1)- > areaD),
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there is always a locally convex solution to

det@?u) = f(x), in R?\D,

u= ¢(X), on aD,
lim sup|x|j+‘f‘Dj (u(x) - (%X’AX+ b- x+ dlog VX Ax+ cd))‘ <o
|X|— o0

for j =0,1,...,k(k > 3),0 € (O,min{B — 2,2}), cg € R is uniquely determined,
wherey is a given smooth function oD, A € A, b € R?.

Because of the additional assumptibn{1.4) we are not algeotee this conjec-
ture for arbitrary convex domaib. However since we are using a new approach
we can weaken the assumptiongoto being Holder continuous:

Theorem 1.2. Letry > O, ¢ € C*(9By,) for somea € (0,1) and f satisfy[(L13).
Then for any o> £ fRZ\B (f — 1) - &r2, there existso(ro, d, @) > 0 such that if
o

(@.4) holds for f and

o -0 _

xyedBy, [X—yl®

a unique u to[(1J6) exists ( for B By,) and satisfies
(1.7) lim suplx|1+*

[X|— 00

< o0

Di(u(x) - (%|X|2 +dlog|x + Cd))

forj =0,..,k+1ando € (0,min{B — 2,2}), ¢g € R is uniquely determined by
¢,d, f and rp.

The organization of this article is as follows. The proof dfebreni 111, which
is by an iteration method, is arranged in section two. Thefob Theoreni IR in
section three is based on a Perron’s method. Thebrem 1.4 atagssential role
in the proof of Theorernh 112. Here we further remark that ireotd use Theorem
1.3 in the proof of Theorem 1.2, it is crucial to assume thas very close to its
spherical average rather than 1. Finally the proof of Thedfe2 also relies on
a result (Lemma_3l1) of the authors’ previous papér [4] t@eine the unique
constant in the expansion.

2. Proor ofF THEOREM[L.]]

Denote
~ 1
f(y) = F(VAY), and fi@y) = —— f f(x)dS.
27yl JaB(o,y)

We only need to determingy), which satisfies

detD?v(y)) = fi(y), yeR?
and

lim suply|"*”

Y| —o0

i 1
Di(v(y) - 5y - dloglyl — )| = 0
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forj=0,..,k+ 1ando € (0, min{B - 2, 2}), where

1 1
d= EfRz(fl—l)dx_ EfRz(f — 1)dx

Once suclvis found, we let
u(x) = v( VAX) +b- x.
Then we see thal (1.5) holds for

2.1. Radial solutions and some elementary estimatedBefore we set out to find
v, we first construct a radial solution of

(2.1) detp?U) = f;, in R2

Let r . )
U<r)=fo(fo 2fid) ds =iy,

then one can verify easily that
rfy(r)
~ 1
(J5 2sfi(9)ds)®

’

u’(r) = (for Ztﬂ(t)dt)i, u”(r) =

and consequently

%
detD?U) = 813Ud2U — 81,U% = U7 (1) — (r)

= fu(r), r>0.
Moreover
1
u(r) = §r2+dlogr +cg+U@0)+0(r™°), asr — oo,

wheres = min{8 — 2, 2}, using [1.B) and the definitions ¢f and f1,

U=
d=im =t = [ r(fun-1)dr= 5 [ (- 1ox
. r? r+ Vr2+d
cd:rllrp U(r)—E—dIog(r+\/r2+d)+dlogf

:fooo ((foszﬁl(t)dt)% s \/%

Note thatf; may not be close to 1 fdy| not large, but it is close td; wheneg in

@ .4) is small.

Next, we will give some estimates fdy and f,. We observe that in addition to
(L.4), f, also satisfies

and

)ds+d|ogz

1
o S i) <co. Wye R?,

Co(Co, A
IDi(fay) - 1)|_(1 T

(2.2)
j=01..k
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It is easy to check that in polar coordinates
C(co, A

1
(2.3) 0l + Z100fal < =5, T2 1
and
1 1 C(cg, A
(2.4) Ore T1] + F|ar9f1| + r_2|899f1| < (rﬁ+2 ), r>1
Now we claim that
_C(co, A)

(2.5) IDI(fy - f)()l < yeR% j=012

T @y

Obviously, we just need to verif{ (2.5) for= |y| > 1. Indeed, writingf; — f, as
(2.6) fa(y) - fa(r) =fa(re¥) - % f fi(re’)do  (y=re")
0
1 . .
=5 fo (fl(re"/’) - fl(re"’))de.
We first use the estimate @i f; in (2.3) to obtain

C(co, A)
fa(y) — fa(r)l < Q+rp

Then, forj = 1, we have

ID(f, - f)(y)| < C (|ar fil + = |69 m)

Finally, for j = 2, it is easy to see froriﬂZ.G) that

C(co, A
|arr(f1 - fl)| = (1 I‘)'8+2.

C(co. A)
- (l )ﬁ+1

Sincef; is radial,
Oro(fr— f1) = Brofr,  Beo(fL— 1) = e .
Therefore, byl(Z}4),

ID2(f, - f1)(¥)] < C{|dn (f1 - )] +

|(9r9 fil  10ee fal C
T )S (1 +r)p+2’
Thus, [2.5) is established. Combmn@lA) dnd](2.5), waiab
¢ ,A, Co’ﬁ)
2.7 DM(f, - )| < A0
(2.7) |D™(f1 - f))| L+ )P

whereg;, = 4 + 1€ (2,6) ande; — 0 aseg — 0.
We further obtain, by simple computations, that

(28) 011U =F1+F» COS(@), 00U =F1-F> COS(@), 012U = F» S|n(29)
where

yeR? m=0,1,

=WV, Fai= 2070 - U0/,
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It follows from (2.2), [1.4) and(2]5) that there existgco, A) > 0 such that

J _ =+ 2
DI (922U - 1) (y)| < AV yeR2,
. c1 2
(2.9) |DJ((911U - 1)(y)| < sy y € R4,
J P 2
IDI(@12U)(y)| < Ty YeR

for j = 0,1,2. Itis easy to verify[{ZI9) foy large sincef; is close tof, and f; is

close to 1 wheiy] is large. Foty| not large [[2.D) certainly holds.

2.2. The first step of iteration. Suppose that the solutianof (L.2) is of the form
u=U +¢.

Clearly ¢ satisfies

(2.10)  0110020U + 9o2011U — 20120015U + detD?¢) = f1 — f1, in R2

Let
ajpi=0U, @&,:=011U, ap,:=-0d12U,

then by [2.9),
CIl| < (ai*j)2><2 <cl.
It is well known that the first part of(Z.10) can be written adiveergence form.

Lo := 0i(a;0j¢) = 022U011¢ + 011U 0220 — 2012U 0129, Vo € C?(R3),
because.é)iai*j =0for j = 1,2. Then[[2.ID) can be written as
(2.11) di(a;;0j¢) + det@?¢) = f; — f, InR%
Let G be the fundamental solution ef. onR?
=0y, (ai*j (V)dy,G(x.Y)) = dx, in R?,

wheredy is the Dirac mass at. According to the theory of Kenig-Ni[21] there
existscy(co, A) such that

colloglx-yl|, yeB(x3),
(2.12) IG(x, y)| <
Co([loglx - yi| +1) yeR?\ B(x, 3).

In the following, we will start our iteration process. We fiselve

(2.13) Lg® = f, — f, inR?

by letting

(2.14) 29 = f G(x y)(Fiy) - fL)dy.
RZ

The estimates of° are stated in the following. The proof will be given in
subsectiof 2]4.
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Proposition 2.1. There exists £> 0 only depending ongcA andg such thatg®
satisfies
C3€e1

Digd(x)| < —=—=—, V¥xeR? j=0,12
D0l g YXEE)

(2.15) {|D%¢%y) - D?%¢°(9)| < caelly - 2%, Vy,ze By,

Czel
|X|2+T+a’

[D?6°(y) - D?0°(2) < ly=2" Vy.ze By \ By, ¥ > 1,
wherer € (0,5 - 1), € (0, 1) depends ong A, .

Once we have the estimate fog from Propositioi 21, we let
0109 = [ 60xy) det@?°))el

theny! solves
(2.16) Lyt = —detD?¢°), inR2
Since
det@?¢°) = 01 (916°022¢°) — 92(012¢°01°),
we writey ! as

ACE fR (-0%.6(x )010°()9220°(y) + 0,,G(x. Y)916°()d120°(y) ) dy.

It is easy to use the decay rate@f¢° in (2.15) to obtain

(2.17) [0 ()] < Clco. A B)(Ce1)?, X € Bar,.
Then from [2.117) and elliptic estimate we have
(2.18) 00 e < Clo ADGE.

For|x > Ry, we decompos&? into E; U E,. For the integral orE; = B(O, m), we
use Propositioh 2]1 to get

fE (8, G(% Y)910°(1)226°(Y) — 3y, G (%, Y)D1¢°(y)d12¢°()) dy{

oglX _ C(co. Ap)(cser)?
X|2+2T - (l + |X|)T

<C(co. B A(Cser)? |I

Remark 2.1. Writing det(D?¢°) in the divergence form leads toffirentiation on

G and thus we avoid a logarithmic term from the integratiorerofg;. This is
exactly like the corresponding estimate #ff. Here we further remark that the
estimate fory! is exactly like that forg®, as the estimate of G is the same, the
Holder norm of the elliptic operator in the scaling partlstias the same bound.
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Using the rough estimate &, (Z.12), and estimates @f, we obtain easily

‘ fE (01.6(% V)310°1)9226°) - 3y, G(% V)I1°W)126°(¥)) dy{

C(co, A, B)(czer)? - C(co.5, A)(czer)?
B |xj4+20 T @+
Correspondingly elliptic estimates lead to estimates ghédr derivatives. There-

fore the following estimates have been obtainedyfér for x € R?, there exists
c4(co, B, A) > 0 such that

. C4CZE2 .
IDiyt(0)| < ﬁ VXeR2 j=0,1,2

(2.19) {|D%My) - DHL(D)| < caBelly - 2%, Yy, ze By,

C402€2
|D2"bl(y) - D2¢1(Z)| s |X|2+3;-+];y

wherea € (0,1) is defined as i (2.15).

ly—2% Yy, z€Bay \ By, X >1

Remark 2.2. The constant £in (Z.19) only depends om@, A and is obtained
from evaluating the Green’s representation formula andidtad elliptic estimates.
If the det(D?%¢°) is replaced by another function with fast decay at infinitye t
constant ¢ does not change.

2.3. Completion of the proof of Theorem[1.1 by iteration.

Proof of Theorer_I]1We will prove it by iteration. Let

¢t ="y,
then, it is clear from[{2.13) and (2.116) that
(2.20) Lot = L + Lyt = f, — f1 — det©?¢Y).

Rewrite it as
Lot + det@?¢Y) = f, — f1 + detD?¢?) — det(D?¢P).
Let y? solve
Ly? := detD?¢°) — det(D?¢Y).
In general, foll > 2, we define
¢ =gyl
and
Ly' := det(D?¢'~?) - detD?¢' ).
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We will prove the following estimates fa#, | > 0:

il 20361
IDig(y)| < A

2 -
PV yeR?s j=0,1,2

(2.21) ”‘plncz,w(sl) < 2c3ey,

ID?¢'(y) - D?¢'(2)| < 2k ly - 4% v, ze B(x, ), 14 > L.

by using the following estimates fgt, | > 0,
(2.22) |

; 2C4(C3€1) +2 .
Dy < =—==X—, V¥xeR2 j=0,1,2
D] < (1 + X))+ =

D2y *1(y) — D%y (9)| < 2ca(cser) *2ly - 2%, Vy,ze By,

2ca(cze1)'?
D24y - D2 ()| <« 2B Ty e vy ze Bag \ B, 140> 1.
X2+ > >

which can be proved by induction.

First, forl = 0, we have from[(2.15) and (Z2]19) that (2.21) and (R.22) holds
respectively. Then, by the definition of, ¢* = ¢° + ¥, using the estimate af°
andy?!, we immediately have
(Cser + C4C3€)

L+ 1y
forye R?andj = 0,1, 2. TheC® estimate for the second derivatives are similar. If
we choose; to satisfycsCzer < % andcze; < % then we obtain the estimafe (2121)

holds forg?.
Sincey? solve the linear equation, it has the expression

vry) : = fR ,CW. n)(det@%¢") - det@?¢°))dn

IDigt(y)l < ID!gP(y)l + IDIyt(y)l <

~ [, 0180.1) (-020%0220* + 10%020°)

+ 0y, G(Y. ) (~010°012¢° + 0100120 dly.
Itis easy to see
010" 9220" — 910°0200° = 010°0000™ + 019 0220° + D1y D220,
019" 9120" — 010°0120° = 019%0120" + 01y 0120° + D1yt D10y
Thusy? can be evaluated as

yAy) = ‘[R , (= 05, G(y. 1) (010%0200™" + 019 D200 + D19 D220

+ 9, Gy, ) (‘9191508121// L+ 01910120 + 01y 0120 l) )dn-
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Using [2.1%) and[{Z.19) we obtaii (2122) holds §gr. That is, [2.22) holds for
| =1.
Suppose thaf (2.21) and (2122) holdslfer k, then by

I=1
we have
m
[Digkriy)| < [DIgy)| + ) [DY/]
=1

_Gat ca(Czer)? + 2ca(Cze)® + - - - + 2Ca(Caer) ™t

B (L+ Iyl

C3€e1 (l + C4(C3€1) + 204(0361)2 + -0+ 204(0361)')
B (L+ )i+
<2cza(l+ )7, j=0,1,2 in R

Similarly, we have[(Z.21) holds fap**1. Continue this process, we can obtain

(2.21) and[(Z.22) holds for ariy> O.
Notice that for alll, the estimates o' satisfy the same bound as i (2.21),

because the estimates fdruse the same estimate #6randDG. The only difer-
ence is the right hand side: dBf') — det?¢'*1). Thus, fore; small the process
converges and' converges to a solution of

det@?v) = f.

The estimates on the asymptotic behaviou af infinity as well as their derivatives
can be determined by the main theorentin [4]. Thedrem 1.ltabkshed. O

2.4. Proof of Proposition[2.1. From [Z.9) we see that
(2.23) D@ - 6ip)(M < (L +y)>), =012 vyeRZ

Soa;*j is very close t@;; whenly| is large.

Before we present the proof of Propositlon]2.1 we list twdgsamweded for this
proof: Cordes-Nirenberg estimate and an estimate of therGrdunction ofL.
The Cordes-Nirenberg estimate is stated in the followimgnha (see e.gL[7]):

Lemma 2.1. (Cordes-Nirenberg) For any h satisfying
ajoijh=0, in By C R", n>2

there exists adp > 0 depending only on n such that|&j — 6j| < do for all
i, j = 1,...,n the following estimate holds:

IDhllcy2(,,,) < CN)IINlL=(B,)-
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The second tool is a gradient estimateGyl, y) for |[X| > 2Ry and|y| < |x|/2.
HereRy(cp, B) is a large number that satisfies the following requireméiat; any
R> Ry, let

. 1 .
i) =ajRY. s<h<2 ij=12
there holds
(2.24) lai(y) - gijl <o and la;(llc B,y < 4

wheredy is the absolute constant required in the Cordes-Nirenb&iimate. It is
easy to see thdi (2.24) holds from (2.23)Rgriarge that only depends ag, 8 and
A

Lemma 2.2. For |x| > 2Ry, there exists (B, ¢y, A) > 0 such that

log|X X
IDyG(x,Y)| < C(8, co, A)%”, vy € BO. %).

Here D, means the dierentiation with respect to the component y.
Proof. Let g(y) = G(xy) for |y| < 1—90|x| and we write the equation fag in
B(0, /X)) as

. _ 9
(2.25) a;0ijg=0, in B(O, E|x|).
we first estimatéDg| over B(0, %|x|) \ B(O, %|x|). For any fixedy in this region, let
R= s5/x and

ai(d :=aj(y+R). or@:=9gy+R2. 1Z<1

Clearly|gr(2)| < Clog|x| by the estimate of Kenig-Ni and

a3(2929:(2) = 0, in Bi.

By the definition ofRy, we have}éﬁ —djj| < 6o Wheredg is small enough for Lemma
[2.1 to be applied. Usingr(2)| < Clog|x| and LemmaZ]1 we have

IDgr(2)| < Clog|x|, ze€ By,

which gives
Clog|x 9 4
. < — < < —|X|.
(2.26) IDgl < X 20|X| <y < 5IXI
Now let

||
HY) = 01901, y2). ¥ = (y.¥2) € B(O, ).
Differentiating[(2.25) with respect 1a:

. 1
(2.27) ai*jaij H + 81a’£181H + ZalaizazH + 81&32822F =0, in B(O, §|X|)
Using [2.25) again for the last term @f(2]127), we have
8330119 + 287,0120

(2.28) 8229 = -
)
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Combining [2.2IF) and (2.28) we have

01a; 2ak
i dijH + (3165{1 - ﬁan) H + (zala§2 - ?alagz) dH = 0
) ay

in B(O, %|x|). Clearly maximum principle holds fdad and it gives the desired bound

for H. The estimate o0f.g(y) for y € B(0,|x|/2) is similar. Lemma2]2 is estab-
lished. m|

Proof of Propositiod 2]1 The estimate o#° consists of two casesx € Bg, and
x € R?\ Bg,.
First for x € Bg,, itis easy to usd (2.12) and (2.7) in_(2.14) to obtain

16°(91 < e.C(co, 8. A),  for x| < Ro.

The estimates for higher derivatives ¢t in B, follow by standard elliptic esti-
mate. Thus[(2.15) is verified iBg,.

For the second casex € R? \ Br,, We integrate oveE; = B(0,|x//2) and
E, = R?\ E4, respectively. The integration ovEq can be written as

fE (G(xy) - G(x 0))(f1 - fl)dy{ < fE ID2G(%, )| - Iyl - | fo(y) — fu(lyD)| dy,

whereé is on the segmenty, because the integration &f — f, over E; is zero.
By LemmalZ.2 the integration ovef; is bounded byC(co, 3, A)er|x>#1 log|xl.
The integration oveE, can be estimated by the rough bound3gk, ») and f; -
f1. Then one sees easily that the bound for this pa@(i co, A)er|x> 71 log|x].
Consequently for alk € R?, we have

C(co, B: A)er

(2.29) [#°091 < Clco. A Beald™* log I < ===

for r € (0,2 - 1). (Z.I5) is established fgr= 0.
To prove [2.16) forj > 1 and|x| > Ry, we apply the following re-scaling argu-
ment: consider

R = ¢°(Ry),
Then direct computation gives
3 (a5 (RY;62) = R (f1(RY - fi(Ry), in B2\ Bya.

The C? norm of the right hand side ®(R?>#) and the coﬁicientsaj*j(Ry) is only

O(R2) different fromajj in C! norm as well. Moreover, by (Z299| < CetR™™
in B \ By4. Thus standard elliptic estimate gives

H¢%|‘CZ,J(B3/2\BI/2) <C(co, A,/B’)( BSUp |¢%| + ”Rz( fL - f)(R)

2\B1/a
C(co. A Ber
S
Propositior 211 follows from the estimate above. O

<M<2 R=[X>Ro

Bl

C(Bg/2\By/2) )
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Remark 2.3. The use off; is quite essential in the estimate over. Otherwise a
logarithmic term will occur.

3. Proor oF THEOREM[1.2

Recall that the assumption akis

1 1
d>—f (f —1)— =r2.
27T RZ\Bro 2 0

By choosingep suficiently small, depending orpy andd, we can extend to the
wholeR? such thatf satisfies[(TI13)[(1]4) and

d:%fRz(f—l).

By Theoremi 11l we can find to satisfy
detD?U)=f, in R?
U(X) = 3Ix2 +dlog|x| + C+O(X™), x> 1
U is close to a radial function
By adding a constant t0 if necessary we can make
(3.1) g — Ullce(98,,) < €1(€0)-
wheree; > 0 depends ogy and tends to 0 ag — O.
Now we look for a functioru = U + h to satisfy
det@?u) = f, in R2\B,
u=ge, on 0B
u=3x?+dlog|x + O(1), x> 1.
Using the information ofJ we need to findh to satisfy
di(ajojh) + det@?n) =0, in R?\ By,
(3.2) h=¢-U, on By,
h=0(1), in |[x >ro.
wherea;; = Uy, apo = Ug1, @12 = —U1o. Just like in the proof of Theorem 1.1 we
have
ID™(ai;(X) - 6i))l <CIX>™, m=0,1,2
For the remaining part of the proof we shall use
L = di(aijdj) = aj(X)xx-
We first look fory that satisfies
Ll//O = 05 In Rz \ Broa
l//O =p- U5 on aBroa
Wol < e, IDlyol <Calx™®), j=123
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The functiog://o can be determined as follows: Lgt= x/|x|? for |X > ro and
Il < ro. Letgo(y) = wo(y/Iyi?). Direct computation yields

bii (¥)dyy o + k(Y)y o =0, in - Bur,

where
1 dyk VAN YkYi y YiYj
ba = — 22ai (L) 2 = (6 - 22 )ayi (=) (61 — 222),
4= i o (R gy, = O~ 22 ()00 - 2
and 261iY1 — 26Yi — 26 2y
y kiYl — 20k1Yi — 2Ykoil 1Yj
b(y) = aij(= Olj — —5)-
W) =2 NE ©i e

Because of the closeness betwagrandd;j one verifies easily that is uniformly
elliptic in By, and theC* norm of bothby andby in By, is finite.
By Schauder’s estimate

||‘;O||CZ-<Y(Bl/rO) < €1(Co, d, ro)en.
Thus by the definition ofig and standard elliptic estimate
ID™o(X)| < CerlX™>™ m=0,1,23 |X > ro.
Next we solve
{Lwl = —detD%0), in X >ro
Y1=0, on 0By, y1=0(1)at oo.
by the reflection method. Using the smallnesggfve have
IDMy1(X)| < ci(Cre))dIX> M = SEXT™, m=0,1,2,3, |X > ro.
Lethg = yo andhy = y1 + Y. Then it is easy to see thht satisfies
Lh; + de{D?hg) = 0, |X > ro.
Then we move on to define
{wz = det(D?ho) - det®@?ha), X > ro,
Y2=0, on 0By, y2=0(1)atinfinity.
Based on the estimates bpandh; we have
IDMo(X) < SEXZ™, m=0,1,23, [ > ro.
Leth, = hy + y». Then itis easy to verify that
Lhy + detD?hy) =0, |X > ro.
In general we determingy to satisfy

Ly = det@?h_p) — detD?hi1), X > ro,
Yk=0, on 0By, yx=0(1) ateo.

Foryy we have
DMy < I ™, m=0,1,23, |x > ro.

Eventually we leth = 37, v« and all the derivatives df are small and decay at
infinity, which meanas = U + his convex.
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The following lemma in[[4] proves that is uniquely determined by other pa-
rameters.

Lemma 3.1. Let u;, up be two locally convex smooth functionsh\ D where D
satisfies the same assumption as in Thedrein 1.2. Suppasel wp both satisfy

det@?u) = f in R2\ D,
u=¢, onabD
with f satisfying(1.3)and for the same constant d

(3.3) Ui (x) — %|x|2 —dlog|x = O(1), xeR?>\D, i=12
Then y = uy.

Since Lemm&_3]1 uniquely determines the constant in thensigua, Theorem
[L.2 is establisheda
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