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5 GLOBAL SOLUTIONS AND EXTERIOR DIRICHLET PROBLEM FOR

MONGE-AMP ÈRE EQUATION IN R
2

JIGUANG BAO, HAIGANG LI, AND LEI ZHANG

Abstract. Monge-Ampère equation det(D2u) = f in two dimensional spaces is
different in nature from their counterparts in higher dimensional spaces. In this
article we employ new ideas to establish two main results forthe Monge-Ampère
equation defined either globally inR2 or outside a convex set. First we prove the
existence of a global solution that satisfies a prescribed asymptotic behavior at
infinity, if f is asymptotically close to a positive constant. Then we solve the
exterior Dirichlet problem if data are given on the boundaryof a convex set and
at infinity.

1. Introduction

The aim of this article is to study convex, viscousity solutions of

(1.1) det(D2u) = f

either globally defined inR2 or defined outside a convex set.
The research of global solutions dates back to 1950s. A classical result of

Jörgens (forn = 2 [20]), Calabi (n ≤ 5 [5]), and Pogorelov (n ≥ 2, [24]) states
that any classical convex solution of

det(D2u) = 1, in Rn

is a quadratic polynomial. Another proof in the line of affine geometry was given
by Cheng-Yau [11]. Caffarelli [6] gave a proof for viscosity solutions.

If (1.1) is defined outside a strictly convex, bounded subsetin Rn and f ≡ 1,
Caffarelli-Li [8] proved that the solutionu is asymptotically close to a quadratic
polynomial at infinity forn ≥ 3. Similarly for n = 2 and f ≡ 1, using complex
analysis Ferrer-Martı̀nez-Milán [14, 15] and Delanoë [13] proved thatu is asymp-
totically close to a quadratic polynomial plus a logarithmic term.

These asymptotics results were extended by the authors in [4] for f being a
perturbation of 1 at infinity. Namely, forn ≥ 3 and f being an optimal perturbation
of 1, u is asymptotically close to a quadratic polynomial at infinity. Forn = 2 and
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f being the optimal perturbation of 1,u is close to a quadratic polynomial plus a
logarithmic term at infinity.

Two natural questions are related to the asymptotic behavior of u at infinity.
First, given a prescribed asymptotic behavior at infinity, can one find a global so-
lution u that satisfies the asymptotic behavior? The second questionis: Let D
be an open, bounded, strictly convex subset ofRn with smooth boundary. Given
φ ∈ C2(∂D) and a prescribed asymptotic behavior ofu at infinity, can one findu of
(1.1) defined inRn \ D that satisfies the boundary data at∂D and infinity?

These questions forn ≥ 3 are solved in [8] forf ≡ 1 and [4] for f being a per-
turbation of 1. However forn = 2, all the approaches used for higher dimensional
cases failed. The purpose of this article is to employ a new method that solves the
existence of global solution for (1.1) inR2 and a corresponding exterior Dirichlet
problem.

First we consider convex viscosity solutions of

(1.2) det(D2u) = f , in R2,

where we assumef to satisfy

(1.3)























1
c0
≤ f (x) ≤ c0, ∀x ∈ R2,

∣

∣

∣D j( f (x) − 1)
∣

∣

∣ ≤
c0

(1+ |x|)β+ j
, j = 0, 1, .., k, ∀x ∈ R2,

for somec0 > 0, β > 2 andk ≥ 3.

Remark 1.1. The assumptionβ > 2 in (1.3) is sharp, as the readers may see
counter examples in the authors’ previous work[4].

LetM2×2 be the set of the real valued, 2× 2 matrices and

A :=
{

A ∈ M2×2 : A is symmetric, positive definite and det(A) = 1
}

.

Our first main theorem is on the existence of global solution with prescribed as-
ymptotic behavior at infinity:

Theorem 1.1. Suppose (1.3) holds for f . Given A∈ A, b ∈ R2 and c∈ R, there
existsǫ0(A, c0) > 0 such that if

(1.4)

∣

∣

∣

∣

∣

∣

Dm
(

f
(√

A−1y
)

−
?
∂B(0,|y|)

f
(√

A−1x
)

dS

)
∣

∣

∣

∣

∣

∣

≤ ǫ0, ∀y ∈ R2, m= 0, 1,

then there exists a unique solution u to (1.2) satisfying

(1.5) lim sup
|x|→∞

|x| j+σ
∣

∣

∣

∣

∣

D j
(

u(x) −
(1
2

x′Ax+ b · x+ d log
√

x′Ax+ c
)

)
∣

∣

∣

∣

∣

< ∞

for j = 0, 1, .., k+ 1, σ ∈ (0,min{β − 2, 2}) and d= 1
2π

∫

R2( f − 1).

Remark 1.2. It is easy to observe that (1.4) follows from (1.3) if|y| is large. On
the other hand f1(x) := f

(√
A−1x

)

could be very different from1 when|x| is not
large, even though it is very close to a radial function.
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Throughout the article we shall useB(x0, r) to denote the disk centered atx0

with radiusr. If x0 is the origin we may useBr .
If the dimension is higher than 2, the analogue of Theorem 1.1can be proved

using a standard upper-lower solutions method: In order to find a global solution
of det(D2u) = f for f close to 1 at infinity, one can solve for det(D2uR) = f̄
and det(D2UR) = f in BR, where f̄ and f are radial functions greater thanf and

smaller thanf respectively. Bothf and f̄ are close to 1 at infinity and the difference
betweenuR andUR is onlyO(1) if they take the same value on∂BR. Thus it is easy
to obtain a global solution of det(D2u) = f in Rn by a sequence of local solutions.
However forn = 2, such a process is completely destroyed by a logarithmic term.
In order for a limiting process to work, it is crucial to obtain a point-wise, uniform
estimate for the Hessian matrix of a sequence of approximating solutions. Because
of the logarithmic term, the shapes of certain level sets cannot be determined and
almost all estimates that work so well for higher dimensional equations fail.

The proof of Theorem 1.1 is as follows. First we look for a radial solution of
det(D2u) = f̃1( r), where f̃1( r) :=

>
∂Br

f1(x)dS, and take this solution as the first
term in our approximation. As we look for more terms down the road we treat
the additional terms as solutions to the linearized equation of the Monge-Ampère
equation expanded at the radial solution. In order to make all the additional terms
proportionally smaller, we need to use the structure of Monge-Ampère equation
and a sharp estimate of the Green’s function corresponding to the linearized equa-
tion. Standard estimates for Green’s functions are not enough for our purpose
because the iteration process requires a very sharp form. What makes it worse is
the ellipticity of the linearized equation could be very badnear the origin, since
f1 could be very different from 1 near the origin. The proof in Lemma 2.2, which
relies heavily on results of Kenig-Ni and Cordes-Nirenbergfor n = 2, overcomes
this difficulty by estimating the Green’s function over “good regions” first and then
use the maximum principle to control the “bad region”.

The second main theorem is on the exterior Dirichlet problemproposed in the
previous work of the authors [4]. We look to solve the following exterior Dirichlet
problem: LetD be a bounded, strictly convex set with smooth boundary inR2.
Supposeϕ ∈ C2(∂D) andu is a solution of

(1.6)







































det(D2u) = f (x), in R2 \ D,

u ∈ C0(R2 \ D) is a locally convex viscosity solution,

u = ϕ(x), on ∂D.

In [4] we conjectured that for anyϕ ∈ C2(∂D), as long as

d >
1
2π

∫

R2\D
( f − 1)−

1
2π

area(D),



4 JIGUANG BAO, HAIGANG LI, AND LEI ZHANG

there is always a locally convex solution to


































det(D2u) = f (x), in R2 \ D,

u = ϕ(x), on ∂D,

lim sup
|x|→∞

|x| j+σ
∣

∣

∣

∣

∣

D j
(

u(x) −
(

1
2 x′Ax+ b · x+ d log

√
x′Ax+ cd

))

∣

∣

∣

∣

∣

< ∞

for j = 0, 1, ..., k (k ≥ 3), σ ∈ (0,min{β − 2, 2}), cd ∈ R is uniquely determined,
whereϕ is a given smooth function on∂D, A ∈ A, b ∈ R2.

Because of the additional assumption (1.4) we are not able toprove this conjec-
ture for arbitrary convex domainD. However since we are using a new approach
we can weaken the assumption ofφ to being Hölder continuous:

Theorem 1.2. Let r0 > 0, φ ∈ Cα(∂Br0) for someα ∈ (0, 1) and f satisfy (1.3).
Then for any d> 1

2π

∫

R2\Br0
( f − 1) − 1

2r2
0, there existsǫ0(r0, d, α) > 0 such that if

(1.4) holds for f and

sup
x,y∈∂Br0

|φ(x) − φ(y)|
|x− y|α

≤ ǫ0,

a unique u to (1.6) exists ( for D= Br0) and satisfies

(1.7) lim sup
|x|→∞

|x| j+σ
∣

∣

∣

∣

∣

D j
(

u(x) − (
1
2
|x|2 + d log |x| + cd)

)

∣

∣

∣

∣

∣

< ∞

for j = 0, .., k + 1 andσ ∈ (0,min{β − 2, 2}), cd ∈ R is uniquely determined by
φ, d, f and r0.

The organization of this article is as follows. The proof of Theorem 1.1, which
is by an iteration method, is arranged in section two. The proof of Theorem 1.2 in
section three is based on a Perron’s method. Theorem 1.1 plays an essential role
in the proof of Theorem 1.2. Here we further remark that in order to use Theorem
1.1 in the proof of Theorem 1.2, it is crucial to assume thatf1 is very close to its
spherical average rather than 1. Finally the proof of Theorem 1.2 also relies on
a result (Lemma 3.1) of the authors’ previous paper [4] to determine the unique
constant in the expansion.

2. Proof of Theorem 1.1

Denote

f1(y) := f (
√

A−1y), and f̃1(y) :=
1

2π|y|

∫

∂B(0,|y|)
f1(x)dS.

We only need to determinev(y), which satisfies

det(D2v(y)) = f1(y), y ∈ R2

and

lim sup
|y|→∞

|y| j+σ
∣

∣

∣

∣

∣

D j
(

v(y) −
1
2
|y|2 − d log |y| − c

)

∣

∣

∣

∣

∣

= 0
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for j = 0, ..., k+ 1 andσ ∈ (0,min{β − 2, 2}), where

d =
1
2π

∫

R2
( f1 − 1)dx=

1
2π

∫

R2
( f − 1)dx.

Once suchv is found, we let

u(x) = v
(√

Ax
)

+ b · x.

Then we see that (1.5) holds foru.

2.1. Radial solutions and some elementary estimates.Before we set out to find
v, we first construct a radial solution of

(2.1) det(D2U) = f̃1, in R
2.

Let

U( r) =
∫ r

0

(

∫ s

0
2t f̃1(t)dt

)
1
2
ds, r = |y|,

then one can verify easily that

U′( r) =

(∫ r

0
2t f̃1(t)dt

)
1
2

, U′′( r) =
r f̃1( r)

(∫ r

0 2sf̃1(s)ds
) 1

2

,

and consequently

det(D2U) = ∂11U∂22U − ∂12U
2 = U′′( r)

U′( r)
r
= f̃1( r), r > 0.

Moreover

U( r) =
1
2

r2 + d log r + cd + U(0)+O(r−δ), as r → ∞,

whereδ = min{β − 2, 2}, using (1.3) and the definitions of̃f1 and f1,

d = lim
r→+∞

U( r) − r2

2

log r
=

∫ ∞

0
r
(

f̃1( r) − 1
)

dr =
1
2π

∫

R2
( f1 − 1)dx,

and

cd = lim
r→+∞















U( r) − r2

2
− d log

(

r +
√

r2 + d
)

+ d log
r +
√

r2 + d
r















=

∫ ∞

0

(

(

∫ s

0
2t f1(t)dt

)
1
2 − s− d

√
s2 + d

)

ds+ d log 2.

Note that f1 may not be close to 1 for|y| not large, but it is close tõf1 whenǫ0 in
(1.4) is small.

Next, we will give some estimates forf1 and f̃1. We observe that in addition to
(1.4), f1 also satisfies

(2.2)



























1
c0
≤ f1(y) ≤ c0, ∀y ∈ R2,

∣

∣

∣D j( f1(y) − 1)
∣

∣

∣ ≤
C0(c0,A)

(1+ |y|)β+ j
, j = 0, 1..., k.
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It is easy to check that in polar coordinates

(2.3) |∂r f1| +
1
r
|∂θ f1| ≤

C(c0,A)

rβ+1
, r ≥ 1,

and

(2.4) |∂rr f1| +
1
r
|∂rθ f1| +

1

r2
|∂θθ f1| ≤

C(c0,A)

rβ+2
, r ≥ 1.

Now we claim that

(2.5) |D j( f1 − f̃1)(y)| ≤
C(c0,A)

(1+ |y|)β+ j
, y ∈ R2, j = 0, 1, 2.

Obviously, we just need to verify (2.5) forr = |y| ≥ 1. Indeed, writingf1− f̃1 as

f1(y) − f̃1( r) = f1(reiψ) − 1
2π

∫ 2π

0
f1(reiθ)dθ (y = reiψ)(2.6)

=
1
2π

∫ 2π

0

(

f1(reiψ) − f1(reiθ)
)

dθ.

We first use the estimate on∂θ f1 in (2.3) to obtain

| f1(y) − f̃1( r)| ≤ C(c0,A)
(1+ r)β

.

Then, for j = 1, we have
∣

∣

∣D( f1 − f̃1)(y)
∣

∣

∣ ≤ C

(

|∂r f1| +
1
r
|∂θ f1|

)

≤ C(c0,A)

(1+ r)β+1
.

Finally, for j = 2, it is easy to see from (2.6) that
∣

∣

∣∂rr ( f1 − f̃1)
∣

∣

∣ ≤ C(c0,A)
(1+ r)β+2

.

Since f̃1 is radial,

∂rθ( f1 − f̃1) = ∂rθ f1, ∂θθ( f1 − f̃1) = ∂θθ f1.

Therefore, by (2.4),
∣

∣

∣D2( f1 − f̃1)(x)
∣

∣

∣ ≤ C

(

∣

∣

∣∂rr ( f1 − f̃1)
∣

∣

∣ +
|∂rθ f1|

r
+
|∂θθ f1|

r2

)

≤ C

(1+ r)β+2
.

Thus, (2.5) is established. Combining (1.4) and (2.5), we obtain

(2.7)
∣

∣

∣Dm( f1 − f̃1)(y)
∣

∣

∣ ≤
ǫ1(ǫ0,A, c0, β)

(1+ |y|)β1
, y ∈ R2, m= 0, 1,

whereβ1 =
β

2 + 1 ∈ (2, β) andǫ1→ 0 asǫ0→ 0.
We further obtain, by simple computations, that

(2.8) ∂11U = F1 + F2 cos(2θ), ∂22U = F1 − F2 cos(2θ), ∂12U = F2 sin(2θ)

where

F1 :=
1
2

(U′′( r) + U′( r)/r), F2 :=
1
2

(U′′( r) − U′( r)/r).
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It follows from (2.2), (1.4) and (2.5) that there existsc1(c0,A) > 0 such that

(2.9)



































































∣

∣

∣D j (∂22U − 1) (y)
∣

∣

∣ ≤ c1

(1+ |y|)2+ j
, y ∈ R2,

∣

∣

∣D j(∂11U − 1)(y)
∣

∣

∣ ≤ c1

(1+ |y|)2+ j
, y ∈ R2,

∣

∣

∣D j(∂12U)(y)
∣

∣

∣ ≤ c1

(1+ |y|)2+ j
, y ∈ R2,

for j = 0, 1, 2. It is easy to verify (2.9) fory large sincef̃1 is close tof1 and f1 is
close to 1 when|y| is large. For|y| not large (2.9) certainly holds.

2.2. The first step of iteration. Suppose that the solutionu of (1.2) is of the form

u = U + φ.

Clearlyφ satisfies

(2.10) ∂11φ∂22U + ∂22φ∂11U − 2∂12φ∂12U + det(D2φ) = f1 − f̃1, in R2.

Let
a∗11 := ∂22U, a∗22 := ∂11U, a∗12 := −∂12U,

then by (2.9),
c−1

1 I ≤ (a∗i j )2×2 ≤ c1I .

It is well known that the first part of (2.10) can be written as adivergence form.

Lφ := ∂i(a
∗
i j∂ jφ) = ∂22U∂11φ + ∂11U∂22φ − 2∂12U∂12φ, ∀φ ∈ C2(R2),

because∂ia∗i j = 0 for j = 1, 2. Then (2.10) can be written as

(2.11) ∂i(a
∗
i j∂ jφ) + det(D2φ) = f1 − f̃1, in R2.

Let G be the fundamental solution of−L onR2

−∂yi (a
∗
i j (y)∂yj G(x, y)) = δx, in R2,

whereδx is the Dirac mass atx. According to the theory of Kenig-Ni [21] there
existsc2(c0,A) such that

(2.12) |G(x, y)| ≤























c2

∣

∣

∣ log |x− y|
∣

∣

∣, y ∈ B(x, 1
2),

c2

(∣

∣

∣ log |x− y|
∣

∣

∣ + 1
)

y ∈ R2 \ B(x, 1
2).

In the following, we will start our iteration process. We first solve

(2.13) Lφ0 = f1 − f̃1, in R2

by letting

(2.14) φ0(x) =
∫

R2
G(x, y)( f̃1(y) − f1(y))dy.

The estimates ofφ0 are stated in the following. The proof will be given in
subsection 2.4.
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Proposition 2.1. There exists c3 > 0 only depending on c0,A andβ such thatφ0

satisfies

(2.15)



























































∣

∣

∣D jφ0(x)
∣

∣

∣ ≤ c3ǫ1

(1+ |x|) j+τ
, ∀x ∈ R2, j = 0, 1, 2

∣

∣

∣D2φ0(y) − D2φ0(z)
∣

∣

∣ ≤ c3ǫ1|y− z|α, ∀ y, z ∈ B1,

∣

∣

∣D2φ0(y) − D2φ0(z)
∣

∣

∣ ≤
c3ǫ1

|x|2+τ+α
|y− z|α, ∀ y, z ∈ B3|x|

2
\ B |x|

2
, |x| > 1,

whereτ ∈
(

0, β2 − 1
)

,α ∈ (0, 1) depends on c0,A, β.

Once we have the estimate forφ0 from Proposition 2.1, we let

ψ1(x) =
∫

R2
G(x, y) det(D2φ0(y))dy,

thenψ1 solves

(2.16) Lψ1 = − det(D2φ0), in R2.

Since

det(D2φ0) = ∂1

(

∂1φ
0∂22φ

0
)

− ∂2

(

∂12φ
0∂1φ

0
)

,

we writeψ1 as

ψ1(x) =
∫

R2

(

−∂y1G(x, y)∂1φ
0(y)∂22φ

0(y) + ∂y2G(x, y)∂1φ
0(y)∂12φ

0(y)
)

dy.

It is easy to use the decay rate ofD2φ0 in (2.15) to obtain

(2.17)
∣

∣

∣ψ1(x)
∣

∣

∣ ≤ C(c0,A, β)(c3ǫ1)2, x ∈ B2R0.

Then from (2.17) and elliptic estimate we have

(2.18)
∥

∥

∥ψ1(x)
∥

∥

∥

C2,α(BR0) ≤ C(c0,A, β)c2
3ǫ

2
1.

For |x| > R0, we decomposeR2 into E1 ∪ E2. For the integral onE1 = B(0, |x|2 ), we
use Proposition 2.1 to get

∣

∣

∣

∣

∣

∣

∫

E1

(

∂y1G(x, y)∂1φ
0(y)∂22φ

0(y) − ∂y2G(x, y)∂1φ
0(y)∂12φ

0(y)
)

dy

∣

∣

∣

∣

∣

∣

≤C(c0, β,A)(c3ǫ1)2 log |x|
|x|2+2τ

≤ C(c0,A, β)(c3ǫ1)2

(1+ |x|)τ
.

Remark 2.1. Writing det(D2φ0) in the divergence form leads to differentiation on
G and thus we avoid a logarithmic term from the integration over E1. This is
exactly like the corresponding estimate forφ0. Here we further remark that the
estimate forψ1 is exactly like that forφ0, as the estimate of G is the same, the
Hölder norm of the elliptic operator in the scaling part still has the same bound.
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Using the rough estimate ofG, (2.12), and estimates ofφ0, we obtain easily
∣

∣

∣

∣

∣

∣

∫

E2

(

∂y1G(x, y)∂1φ
0(y)∂22φ

0(y) − ∂y2G(x, y)∂1φ
0(y)∂12φ

0(y)
)

dy

∣

∣

∣

∣

∣

∣

≤
C(c0,A, β)(c3ǫ1)2

|x|4+2τ
≤

C(c0, β,A)(c3ǫ1)2

(1+ |x|)τ
.

Correspondingly elliptic estimates lead to estimates on higher derivatives. There-
fore the following estimates have been obtained forψ1: for x ∈ R2, there exists
c4(c0, β,A) > 0 such that

(2.19)







































































∣

∣

∣D jψ1(x)
∣

∣

∣ ≤
c4c2

3ǫ
2
1

(1+ |x|) j+τ
, ∀x ∈ R2, j = 0, 1, 2

∣

∣

∣D2ψ1(y) − D2ψ1(z)
∣

∣

∣ ≤ c4c2
3ǫ

2
1 |y− z|α, ∀ y, z∈ B1,

∣

∣

∣D2ψ1(y) − D2ψ1(z)
∣

∣

∣ ≤
c4c2

3ǫ
2
1

|x|2+τ+α
|y− z|α, ∀ y, z ∈ B3|x|

2
\ B |x|

2
, |x| > 1,

whereα ∈ (0, 1) is defined as in (2.15).

Remark 2.2. The constant c4 in (2.19) only depends on c0, β,A and is obtained
from evaluating the Green’s representation formula and standard elliptic estimates.
If the det(D2φ0) is replaced by another function with fast decay at infinity, the
constant c4 does not change.

2.3. Completion of the proof of Theorem 1.1 by iteration.

Proof of Theorem 1.1.We will prove it by iteration. Let

φ1 := φ0 + ψ1,

then, it is clear from (2.13) and (2.16) that

(2.20) Lφ1 = Lφ0 + Lψ1 = f1 − f̃1 − det(D2φ0).

Rewrite it as

Lφ1 + det(D2φ1) = f1 − f̃1 + det(D2φ1) − det(D2φ0).

Let ψ2 solve

Lψ2 := det(D2φ0) − det(D2φ1).

In general, forl ≥ 2, we define

φl := φl−1 + ψl ,

and

Lψl := det(D2φl−2) − det(D2φl−1).
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We will prove the following estimates forφl , l ≥ 0:

(2.21)























































∣

∣

∣D jφl(y)
∣

∣

∣ ≤
2c3ǫ1

(1+ |y|)τ+ j
, y ∈ R2, j = 0, 1, 2

∥

∥

∥φl
∥

∥

∥

C2,α(B1) ≤ 2c3ǫ1,

|D2φl(y) − D2φl(z)| ≤ 2c3ǫ1
|x|τ+2+α |y− z|α, y, z ∈ B(x, |x|2 ), |x| > 1.

by using the following estimates forψl, l ≥ 0,
(2.22)



































































∣

∣

∣D jψl+1(x)
∣

∣

∣ ≤ 2c4(c3ǫ1)l+2

(1+ |x|) j+τ
, ∀x ∈ R2, j = 0, 1, 2

∣

∣

∣D2ψl+1(y) − D2ψl(z)
∣

∣

∣ ≤ 2c4(c3ǫ1)l+2|y− z|α, ∀ y, z ∈ B1,

∣

∣

∣D2ψl+1(y) − D2ψl(z)
∣

∣

∣ ≤
2c4(c3ǫ1)l+2

|x|2+τ+α
|y− z|α, ∀ y, z ∈ B3|x|

2
\ B |x|

2
, |x| > 1,

which can be proved by induction.
First, for l = 0, we have from (2.15) and (2.19) that (2.21) and (2.22) holds,

respectively. Then, by the definition ofφ1, φ1 = φ0 + ψ1, using the estimate ofφ0

andψ1, we immediately have

|D jφ1(y)| ≤ |D jφ0(y)| + |D jψ1(y)| ≤
(c3ǫ1 + c4c2

3ǫ
2
1)

(1+ |y|)τ+ j
,

for y ∈ R2 and j = 0, 1, 2. TheCα estimate for the second derivatives are similar. If
we chooseǫ1 to satisfyc4c3ǫ1 <

1
2 andc3ǫ1 <

1
2, then we obtain the estimate (2.21)

holds forφ1.
Sinceψ2 solve the linear equation, it has the expression

ψ2(y) : =
∫

R2
G(y, η)(det(D2φ1) − det(D2φ0))dη

=

∫

R2
∂η1G(y, η)

(

−∂1φ
1∂22φ

1 + ∂1φ
0∂22φ

0
)

+ ∂η2G(y, η)
(

−∂1φ
0∂12φ

0 + ∂1φ
1∂12φ

1
)

dη.

It is easy to see

∂1φ
1∂22φ

1 − ∂1φ
0∂22φ

0 = ∂1φ
0∂22ψ

1 + ∂1ψ
1∂22φ

0 + ∂1ψ
1∂22ψ

1,

∂1φ
1∂12φ

1 − ∂1φ
0∂12φ

0 = ∂1φ
0∂12ψ

1 + ∂1ψ
1∂12φ

0 + ∂1ψ
1∂12ψ

1.

Thusψ2 can be evaluated as

ψ2(y) =
∫

R2

(

− ∂η1G(y, η)
(

∂1φ
0∂22ψ

1 + ∂1ψ
1∂22φ

0 + ∂1ψ
1∂22ψ

1
)

+ ∂η2G(y, η)
(

∂1φ
0∂12ψ

1 + ∂1ψ
1∂12φ

0 + ∂1ψ
1∂12ψ

1
) )

dη.
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Using (2.15) and (2.19) we obtain (2.22) holds forψ2. That is, (2.22) holds for
l = 1.

Suppose that (2.21) and (2.22) holds forl = k, then by

φk+1 := φk + ψk+1 = φ0 +

k
∑

l=1

ψl ,

we have

∣

∣

∣D jφk+1(y)
∣

∣

∣ ≤
∣

∣

∣D jφ0(y)
∣

∣

∣ +

m
∑

l=1

∣

∣

∣D jψl
∣

∣

∣

≤
c3ǫ1 + c4(c3ǫ1)2 + 2c4(c3ǫ1)3 + · · · + 2c4(c3ǫ1)l+1

(1+ |y|) j+τ

≤
c3ǫ1

(

1+ c4(c3ǫ1) + 2c4(c3ǫ1)2 + · · · + 2c4(c3ǫ1)l
)

(1+ |y|) j+τ

≤ 2c3ǫ1(1+ |y|)− j−τ, j = 0, 1, 2, in R2.

Similarly, we have (2.21) holds forφk+1. Continue this process, we can obtain
(2.21) and (2.22) holds for anyl ≥ 0.

Notice that for alll, the estimates ofφl satisfy the same bound as in (2.21),
because the estimates forψl use the same estimate forG andDG. The only differ-
ence is the right hand side: det(D2φl) − det(D2φl+1). Thus, forǫ1 small the process
converges andφl converges to a solution of

det(D2v) = f .

The estimates on the asymptotic behavior ofu at infinity as well as their derivatives
can be determined by the main theorem in [4]. Theorem 1.1 is established. �

2.4. Proof of Proposition 2.1. From (2.9) we see that

(2.23) |D j(a∗i j − δi j )(y)| ≤ c2(1+ |y|)−2− j , j = 0, 1, 2, ∀y ∈ R2.

Soa∗i j is very close toδi j when|y| is large.
Before we present the proof of Proposition 2.1 we list two tools needed for this

proof: Cordes-Nirenberg estimate and an estimate of the Green’s function ofL.
The Cordes-Nirenberg estimate is stated in the following lemma (see e.g. [7]):

Lemma 2.1. (Cordes-Nirenberg) For any h satisfying

ai j∂i j h = 0, in B1 ⊂ Rn, n ≥ 2,

there exists anδ0 > 0 depending only on n such that if|ai j − δi j | ≤ δ0 for all
i, j = 1, ..., n the following estimate holds:

‖Dh‖C1/2(B1/2) ≤ C(n)‖h‖L∞(B1).
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The second tool is a gradient estimate ofG(x, y) for |x| > 2R0 and |y| ≤ |x|/2.
HereR0(c0, β) is a large number that satisfies the following requirement:For any
R> R0, let

aR
i j (y) := a∗i j (Ry),

1
2
< |y| < 2, i, j = 1, 2

there holds

(2.24) |aR
i j (y) − δi j | ≤ δ0 and ‖aR

i j (·)‖Cα(B2\B1/2) ≤ 4.

whereδ0 is the absolute constant required in the Cordes-Nirenberg estimate. It is
easy to see that (2.24) holds from (2.23) forR0 large that only depends onc0, β and
A.

Lemma 2.2. For |x| > 2R0, there exists C(β, c0,A) > 0 such that

|DyG(x, y)| ≤ C(β, c0,A)
log |x|
|x|

, ∀y ∈ B(0,
|x|
2

).

Here Dy means the differentiation with respect to the component y.

Proof. Let g(y) := G(x, y) for |y| < 9
10|x| and we write the equation forg in

B(0, 9
10|x|) as

(2.25) a∗i j∂i j g = 0, in B(0,
9
10
|x|).

we first estimate|Dg| overB(0, 3
4 |x|) \ B(0, 1

2 |x|). For any fixedy in this region, let
R= 1

10|x| and

āR
i j (z) := a∗i j (y+ Rz), gR(z) := g(y+ Rz), |z| ≤ 1.

Clearly |gR(z)| ≤ C log |x| by the estimate of Kenig-Ni and

āR
i j (z)∂zizj gR(z) = 0, in B1.

By the definition ofR0, we have|āR
i j −δi j | ≤ δ0 whereδ0 is small enough for Lemma

2.1 to be applied. Using|gR(z)| ≤ C log |x| and Lemma 2.1 we have

|DgR(z)| ≤ C log |x|, z∈ B1/2,

which gives

(2.26) |Dg| ≤
C log |x|
|x|

,
9
20
|x| ≤ |y| ≤

4
5
|x|.

Now let

H(y) := ∂1g(y1, y2), y = (y1, y2) ∈ B(0,
|x|
2

).

Differentiating (2.25) with respect toy1:

(2.27) a∗i j∂i j H + ∂1a∗11∂1H + 2∂1a∗12∂2H + ∂1a
∗
22∂22F = 0, in B(0,

1
2
|x|).

Using (2.25) again for the last term of (2.27), we have

(2.28) ∂22g = −
a∗11∂11g+ 2a∗12∂12g

a∗22

.
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Combining (2.27) and (2.28) we have

a∗i j∂i j H +

(

∂1a∗11−
∂1a∗22

a∗22

a∗11

)

∂1H +

(

2∂1a∗12−
2a∗12

a∗22

∂1a∗22

)

∂2H = 0

in B(0, 1
2 |x|). Clearly maximum principle holds forH and it gives the desired bound

for H. The estimate of∂2g(y) for y ∈ B(0, |x|/2) is similar. Lemma 2.2 is estab-
lished. �

Proof of Proposition 2.1.The estimate ofφ0 consists of two cases:x ∈ BR0 and
x ∈ R2 \ BR0.

First for x ∈ BR0, it is easy to use (2.12) and (2.7) in (2.14) to obtain

|φ0(x)| ≤ ǫ1C(c0, β,A), for |x| < R0.

The estimates for higher derivatives ofφ0 in BR0 follow by standard elliptic esti-
mate. Thus (2.15) is verified inBR0.

For the second case:x ∈ R2 \ BR0, we integrate overE1 = B(0, |x|/2) and
E2 = R

2 \ E1, respectively. The integration overE1 can be written as
∣

∣

∣

∣

∣

∣

∫

E1

(G(x, y) −G(x, 0))( f̃1 − f1)dy

∣

∣

∣

∣

∣

∣

≤
∫

E1

|D2G(x, ξ)| · |y| ·
∣

∣

∣ f1(y) − f̃1(|y|)
∣

∣

∣ dy,

whereξ is on the segmentoy, because the integration off1 − f̃1 over E1 is zero.
By Lemma 2.2 the integration overE1 is bounded byC(c0, β,A)ǫ1|x|2−β1 log |x|.
The integration overE2 can be estimated by the rough bound ofG(x, η) and f1 −
f̃1. Then one sees easily that the bound for this part isC(β, c0,A)ǫ1|x|2−β1 log |x|.
Consequently for allx ∈ R2, we have

(2.29) |φ0(x)| ≤ C(c0,A, β)ǫ1|x|2−β1 log |x| ≤
C(c0, β,A)ǫ1

(1+ |x|)τ
,

for τ ∈ (0, β2 − 1). (2.15) is established forj = 0.
To prove (2.15) forj ≥ 1 and|x| > R0, we apply the following re-scaling argu-

ment: consider

φ0
R(y) := φ0(Ry),

1
4
≤ |y| ≤ 2, R= |x| > R0.

Then direct computation gives

∂i

(

a∗i j (Ry)∂ jφ
0
R(y)

)

= R2
(

f1(Ry) − f̃1(Ry)
)

, in B2 \ B1/4.

TheC1 norm of the right hand side isO(R2−β) and the coefficientsa∗i j (Ry) is only

O(R−2) different fromδi j in C1 norm as well. Moreover, by (2.29),
∣

∣

∣φ0
R

∣

∣

∣ ≤ Cǫ1R−τ

in B2 \ B1/4. Thus standard elliptic estimate gives
∥

∥

∥φ0
R

∥

∥

∥

C2,α(B3/2\B1/2) ≤C(c0,A, β)
(

sup
B2\B1/4

∣

∣

∣φ0
R

∣

∣

∣ +
∥

∥

∥R2( f1 − f̃1)(R·)
∥

∥

∥

Cα(B3/2\B1/2)

)

≤
C(c0,A, β)ǫ1

Rτ
.

Proposition 2.1 follows from the estimate above. �
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Remark 2.3. The use off̃1 is quite essential in the estimate over E1. Otherwise a
logarithmic term will occur.

3. Proof of Theorem 1.2

Recall that the assumption ond is

d >
1
2π

∫

R2\Br0

( f − 1)− 1
2

r2
0.

By choosingǫ0 sufficiently small, depending onr0 andd, we can extendf to the
wholeR2 such thatf satisfies (1.3), (1.4) and

d =
1
2π

∫

R2
( f − 1).

By Theorem 1.1 we can findU to satisfy


























det(D2U) = f , in R
2,

U(x) = 1
2 |x|

2 + d log |x| +C +O(|x|−σ), |x| > 1

U is close to a radial function.

By adding a constant toU if necessary we can make

(3.1) ‖φ − U‖Cα(∂Br0) ≤ ǫ1(ǫ0).

whereǫ1 > 0 depends onǫ0 and tends to 0 asǫ0→ 0.
Now we look for a functionu = U + h to satisfy



























det(D2u) = f , in R
2 \ Br0,

u = ϕ, on ∂Br0

u = 1
2 |x|

2 + d log |x| +O(1), |x| > 1.

Using the information ofU we need to findh to satisfy

(3.2)



























∂i(ai j∂ jh) + det(D2h) = 0, in R
2 \ Br0,

h = ϕ − U, on ∂Br0,

h = O(1), in |x| > r0.

wherea11 = U22, a22 = U11, a12 = −U12. Just like in the proof of Theorem 1.1 we
have

|Dm(ai j (x) − δi j )| ≤ C|x|−2−m, m= 0, 1, 2.

For the remaining part of the proof we shall use

L = ∂i(ai j∂ j) = ai j (x)∂xi xj .

We first look forψ0 that satisfies


























Lψ0 = 0, in R
2 \ Br0,

ψ0 = ϕ − U, on ∂Br0,

|ψ0| ≤ ǫ1, |D jψ0| ≤ Cǫ1|x|−2− j , j = 1, 2, 3.
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The functionψ0 can be determined as follows: Lety = x/|x|2 for |x| > r0 and
|y| < r0. Let ψ̃0(y) = ψ0(y/|y|2). Direct computation yields

bkl(y)∂ykyl ψ̃0 + bk(y)∂ykψ̃0 = 0, in B1/r0

where

bkl =
1

|y|4
∂yk

∂xi
ai j (

y

|y|2
)
∂yl

∂x j
= (δki − 2

ykyi

|y|2
)ai j (

y

|y|2
)(δl j − 2

yly j

|y|2
),

and

bk(y) = ai j (
y

|y|2
)
2δkiyl − 2δklyi − 2ykδil

|y|2
(δl j −

2yly j

|y|2
).

Because of the closeness betweenai j andδi j one verifies easily thatbkl is uniformly
elliptic in B1/r0 and theCα norm of bothbkl andbk in B1/r0 is finite.

By Schauder’s estimate

‖ψ̃0‖C2,α(B1/r0) ≤ c1(c0, d, r0)ǫ1.

Thus by the definition of̃ψ0 and standard elliptic estimate

|Dmψ0(x)| ≤ Cǫ1|x|−2−m m= 0, 1, 2, 3 |x| > r0.

Next we solve














Lψ1 = − det(D2ψ0), in |x| > r0

ψ1 = 0, on ∂Br0, ψ1 = O(1) at ∞.
by the reflection method. Using the smallness ofψ0 we have

|Dmψ1(x)| ≤ c1(c1ǫ1)2|x|−2−m = c3
1ǫ

2
1 |x|
−2−m, m= 0, 1, 2, 3, |x| > r0.

Let h0 = ψ0 andh1 = ψ1 + ψ0. Then it is easy to see thath1 satisfies

Lh1 + det(D2h0) = 0, |x| > r0.

Then we move on to define














Lψ2 = det(D2h0) − det(D2h1), |x| > r0,

ψ2 = 0, on ∂Br0, ψ2 = O(1) at infinity.

Based on the estimates onh0 andh1 we have

|Dmψ2(x)| ≤ c5
1ǫ

3
1 |x|
−2−m, m= 0, 1, 2, 3, |x| > r0.

Let h2 = h1 + ψ2. Then it is easy to verify that

Lh2 + det(D2h1) = 0, |x| > r0.

In general we determineψk to satisfy
{

Lψk = det(D2hk−2) − det(D2hk−1), |x| > r0,

ψk = 0, on ∂Br0, ψk = O(1) at∞.
Forψk we have

|Dmψk(x)| ≤ c2k+1
1 ǫk

1|x|
−2−m, m= 0, 1, 2, 3, |x| > r0.

Eventually we leth =
∑∞

k=1ψk and all the derivatives ofh are small and decay at
infinity, which meansu = U + h is convex.
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The following lemma in [4] proves thatc is uniquely determined by other pa-
rameters.

Lemma 3.1. Let u1, u2 be two locally convex smooth functions onR2 \ D̄ where D
satisfies the same assumption as in Theorem 1.2. Suppose u1 and u2 both satisfy

{

det(D2u) = f in R2 \ D̄,
u = ϕ, on ∂D

with f satisfying(1.3)and for the same constant d

(3.3) ui(x) −
1
2
|x|2 − d log |x| = O(1), x ∈ R2 \ D̄, i = 1, 2.

Then u1 ≡ u2.

Since Lemma 3.1 uniquely determines the constant in the expansion, Theorem
1.2 is established.�
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