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Abstract

In this paper, we consider the fractional Hardy–Hénon equations with an isolated singularity. If the iso-
lated singularity is located at the origin, we give a classification of solutions to this equation. If the isolated 
singularity is located at infinity, in the case of exterior domains, we provide decay estimates of solutions 
and their gradients at infinity. Our results are an extension of the classical work by Caffarelli, Gidas et al.
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1. Introduction

The global behaviors of

−�u = |x|τ up in R
n\{0}, (1)
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with one singularity at the origin have aroused great attention, where � := ∑n
i=1

∂2

∂x2
i

denotes the 

Laplacian, τ > −2, p > 1 and n ≥ 3. Equation (1) is traditionally called the Hénon (resp., Hardy, 
or Lane–Emden) equation for τ > 0 (resp., τ < 0, τ = 0).

In the special case of τ = 0 and n
n−2 ≤ p ≤ n+2

n−2 , Caffarelli–Gidas–Spruck [7] proved that 
if the origin is a non-removable singularity, then a nonnegative C2 solution of (1) is radially 
symmetric about the origin. Notice that we say the origin 0 is a non-removable singularity of 
solution u if lim supx→0 u(x) = +∞. See Harrell and Simon [14] for −2 < τ < 2 and 1 <
p < n+τ

n−2 , Aviles [1,2] for −2 < τ < 2 and p = n+τ
n−2 , Gidas–Spruck [16] for −2 < τ < 2 and 

n+τ
n−2 < p < n+2

n−2 .
In the classical paper [16], Gidas–Spruck also studied the isolated singularity located at infin-

ity. They obtained that if u is a C2 positive solution of

−�u = |x|τ up in R
n\B1, (2)

with τ > −2, n ≥ 3, 1 < p < n+2
n−2 , and Rn\B1 := {x ∈R

n; |x| > 1}, then

u(x) ≤ C|x|− 2+τ
p−1 , |∇u(x)| ≤ C|x|− 1+τ+p

p−1 as x → +∞. (3)

Recently, for the estimate (3) of the problem (2), Phan–Souplet [28] present a simpler proof. 
Indeed, Gidas–Spruck [16] studied a more general case and (2) is a special case of it. In partic-
ular, for the case τ = 0, Serrin–Zou [30] extended the first estimate of (3) to degenerate elliptic 
equations

−	mu = up in R
n \ B1. (4)

Here 1 < m < n, m − 1 < p <
n(m−1)+m

n−m
, and

	mu := div(|∇u|m−2∇u)

is the well-known m-Laplace operator. Serrin–Zou [30] obtained that

u(x) ≤ C|x|− m
p+1−m , as x → +∞.

After that, Polácik–Quittner–Souplet [29] proved that

u(x) ≤ C|x|− m
p+1−m , |∇u(x)| ≤ C|x|− p+1

p+1−m as x → +∞.

Notice that for m = 2, 	mu stands for the classical Laplace operator. It is consistent with the 
estimate of (3) for (4). We may also see [21,20,26,27] for more details about the isolated singu-
larity.

The above results stimulate us to study the behaviors of solutions for the fractional Hardy–
Hénon equations with an isolated singularity. This paper is aiming at studying the global behav-
iors of positive solutions of

(−�)σ u = |x|τ up in R
n \ {0}, (5)
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where 0 < σ < 1, τ ∈R, p > 1, n ≥ 2, and (−�)σ is the fractional Laplacian taking the form

(−�)σ u(x) : = Cn,σ P.V.
∫
Rn

u(x) − u(y)

|x − y|n+2σ
dy

= Cn,σ lim
ε→0+

∫
Rn\Bε(x)

u(x) − u(y)

|x − y|n+2σ
dy,

(6)

here P.V. stands for the Cauchy principal value and

Cn,σ := 22σ σ�(n
2 + σ)

π
n
2 �(1 − σ)

with the gamma function �. In recent years, there has been a great deal of interest in using the 
fractional Laplacian (−�)σ to model diverse physical phenomena, such as anomalous diffusion 
and quasi-geostrophic flows, turbulence and water waves, molecular dynamics, and relativistic 
quantum mechanics of stars (see [4,10,13,34] and the references therein).

The operator (−�)σ is well defined in the Schwartz space of rapidly decaying C∞ functions 
in Rn. One can also define the fractional Laplacian acting on spaces of functions with weaker 
regularity. Lσ (Rn) is the space defined as

Lσ (Rn) :=
⎧⎨
⎩u ∈ L1

loc(R
n) :

∫
Rn

|u(x)|
1 + |x|n+2σ

dx < ∞
⎫⎬
⎭ ,

with the norm

‖u‖Lσ (Rn) :=
∫
Rn

|u(x)|
1 + |x|n+2σ

dx.

We can verify that if u ∈ C2(Rn\{0}) ∩ Lσ (Rn), the integral on the right hand side of (6) is well 
defined in Rn\{0}. Moreover, from [31, Proposition 2.4], it follows that

(−�)σ u ∈ C1,1−2σ (Rn\{0}), if 0 < σ < 1
2 ,

(−�)σ u ∈ C0,2−2σ (Rn\{0}), if 1
2 ≤ σ < 1.

Problems concerning the fractional Laplacian (−�)σ with an isolated singularity at the origin 
have attracted a lot of attention. In particular, Caffarelli–Jin–Sire–Xiong [8] studied the global 
behaviors of positive solutions of the fractional Yamabe equations

(−�)σ u = u
n+2σ
n−2σ in R

n \ {0} (7)

with an isolated singularity at the origin. By the method of moving spheres, they obtained that if 
the origin is a non-removable isolated singularity, then the solution u of (7) is radially symmetric 
with respect to the origin and monotonically decreasing radially. It is consistent with the result of 
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Caffarelli–Gidas–Spruck [7] work on Laplacian. Jin–de Queiroz–Sire–Xiong [18] further studied 
the equation (7) in Rn \Rk with condition that there exists x0 ∈ R

k such that lim supx→(x0,0) u =
+∞. And they obtained the solution u of (7) is radially symmetric with respect to the origin. 
Sun–Xiong [32] recently studied for higher order fractional case.

The first of our main results concerns the global behaviors of (5) with a singularity located at 
the origin.

Theorem 1.1. Let −2σ < τ ≤ 0, 1 < p ≤ n+2σ+2τ
n−2σ

. If u ∈ C2(Rn \ {0}) ∩ Lσ (Rn) is a positive 
solution of (5), and suppose that the origin 0 is a non-removable singularity, then u(x) is radially 
symmetric and monotonically decreasing radially.

Theorem 1.1 extends results from [7] and [8]. It is known that the fractional Laplacian oper-
ator is nonlocal. To overcome the problem, we will make use of the extension method which is 
introduced by Caffarelli–Silvestre [9]. After that, by the method of moving spheres, which has 
been widely used and has become a powerful and user-friendly tool in the study of nonlinear 
partial differential equations (see [11,22–24,35]), and Kelvin transformation, we can finish the 
proof of Theorem 1.1.

The second main result of the paper is to treat the isolated singularity located at infinity. We 
provide decay estimates and the gradient estimates at infinity.

Theorem 1.2. Let 1 < p < n+2σ
n−2σ

. Suppose that u ∈ C2(Rn\B1) ∩ Lσ (Rn) is a positive solution 
of

(−�)σ u = |x|τ up in R
n\B1, (8)

then there exists a positive constant C = C(n, σ, τ, p) such that

u(x) ≤ C|x|− 2σ+τ
p−1 , |∇u(x)| ≤ C|x|− 2σ+τ+p−1

p−1 near x → +∞. (9)

Theorem 1.2 extends results from [16] and [28]. It is also an extension of the result on the 
Laplacian to the fractional Laplacian. Our proof of Theorem 1.2 is based on the observation that 
estimates (9) for given p, τ can be reduced to the Liouville property for the same p but with τ
replaced by 0. It is based on the important fact ([19, Remark 1.9], [12, Theorem 4]) that the only 
nonnegative solution of

(−�)σ u = up in R
n,

with 1 < p < n+2σ
n−2σ

, is u = 0. With the help of the doubling property (see Section 3 below), we 
first obtain the uniform estimate with respect with the (Hölder bounded) coefficient c(x). Then 
by a change of variable, we can replace the coefficient |x|τ with a smooth function which is 
bounded and bounded away from 0 in a suitable domain. It follows that we finish the proof of 
this theorem.

The organization of this paper is as follows: In section 2, we first explain that in order to prove 
Theorem 1.1, it suffices to prove (10). For this purpose, we just need to obtain (17). After that, 
we will give a proof for Theorem 1.2 in Section 3. Besides, for readers’ convenience, we also 
prove and collect some basic propositions which will be used in our proof in Appendix.
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2. Global solutions with an isolated singularity

2.1. Proof of Theorem 1.1

Proof. In this section, we denote BR(x) as the ball in Rn with radius R and center x. To prove 
that u is radially and monotonically decreasing radially it suffices to show that u is symmetrical 
about any hyperplane passing through the origin and it is monotone decreasing along the nor-
mal direction. Without loss of generality, let us prove that u is symmetric about the hyperplane 
{y1 = 0} and it is monotone decreasing along the y1 axis.

For all x ∈R
n \ {0}, assume that for any λ ∈ (0, |x|),

ux,λ(y) ≤ u(y) in R
n\(Bλ(x) ∪ {0}), (10)

where

ux,λ(y) :=
(

λ

|y − x|
)n−2σ

u

(
x + λ2(y − x)

|y − x|2
)

.

Let t , s ∈ R satisfy t ≤ s, t + s > 0 and m > max{s, st
s+t

}, then 0 < (m − s)(m − t) < m2. With 
the help of (10), choosing y = te1, x = me1 and λ2 = (m − s)(m − t), we have

(√
(m − s)(m − t)

m − t

)n−2σ

u

[(
m + (m − s)(m − t)

t − m

)
e1

]
≤ u(te1),

where the unite vector e1 := (1, 0, · · · , 0) ∈ R
n. That is,

(
m − s

m − t

) n−2σ
2

u (se1) ≤ u(te1).

After sending m → ∞, it follows that

u(se1) ≤ u(te1). (11)

For s > 0, let t → −s, we obtain that

u(se1) ≤ u(−se1). (12)

By the same argument, choosing y = −te1, x = −me1 and λ2 = (m − s)(m − t), it follows that

u(−se1) ≤ u(−te1).

For s > 0, let t → −s, we have

u(−se1) ≤ u(se1). (13)

Combining (12) with (13), we deduce that u is symmetric about the hyperplane {y1 = 0}.
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On the other hand, for 0 < t < s, a consequence of (11) is that u is monotone decreasing along 
the axis of y1.

Therefore, to finish the proof of Theorem 1.1, we only need to get (10). �
2.2. Proof of the inequality (10)

It is known that the operator (−�)σ is nonlocal, the traditional methods on local differential 
operators, such as on Laplacian, may not work on this nonlocal operator. To circumvent this 
difficulty, Caffarelli and Silvestre [9] introduced the extension method that reduced this nonlocal 
problem into a local one in higher dimensions with the conormal derivative boundary condition. 
The method has been used in many literatures, see [19,33].

In order to describe the method in a more precise way, let us give some notations. We use 
capital letters, such as X = (x, t) to denote points in Rn+1+ . We denote BR(X) as the ball in Rn+1

with radius R and center X, B+
R (X) as BR(X) ∩ R

n+1+ and BR(x) as the ball in Rn with radius 
R and center x. We also write BR(0), B+

R (0), BR(0) as BR , B+
R , BR for short respectively. For a 

domain D ⊂ R
n+1+ with boundary ∂D, we denote ∂ ′D := ∂D ∩ ∂Rn+1+ and ∂ ′′D := ∂D ∩R

n+1+ . 
In particular, ∂ ′B+

R (X) := ∂B+
R (X) ∩ ∂Rn+1+ and ∂ ′′B+

R (X) := ∂B+
R (X) ∩R

n+1+ .
More precisely, for u ∈ C2(Rn\{0}) ∩ Lσ (Rn), define

U(x, t) :=
∫
Rn

Pσ (x − y, t)u(y)dy, (14)

where

Pσ (x, t) := β(n,σ )t2σ

(|x|2 + t2)(n+2σ)/2

with a constant β(n, σ) such that 
∫
Rn Pσ (x, 1)dx = 1. Then

U ∈ C2(Rn+1+ ) ∩ C(Rn+1+ \{0}), t1−2σ ∂tU(x, t) ∈ C(Rn\{0}),
and

div(t1−2σ ∇U) = 0 in R
n+1+ ,

U = u on R
n\{0}. (15)

In order to study the behaviors of the solution u of (5), we just need to study the behaviors of 
U defined by (14). In addition, by works of Caffarelli and Silvestre [9], it is known that up to a 
constant,

∂U

∂νσ
= (−�)σ u on R

n\{0},

where the conormal derivative

∂U

σ
:= − lim+ t1−2σ ∂tU(x, t).
∂ν t→0
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From this and (5), we have

∂U

∂νσ
= |x|τ up on R

n\{0}. (16)

For all x ∈R
n\{0}, X = (x, 0) and λ > 0, define the Kelvin transformation of U as

UX,λ(ξ) :=
(

λ

|ξ − X|
)n−2σ

U

(
X + λ2(ξ − X)

|ξ − X|2
)

in R
n+1+ .

The aim is to show that for any λ ∈ (0, |x|),

UX,λ(ξ) ≤ U(ξ) in R
n+1+ \B+

λ (X). (17)

In particular, choose ξ = (y, 0), y ∈R
n \ {0}, then for any λ ∈ (0, |x|),

ux,λ(y) ≤ u(y) in R
n\(Bλ(x) ∪ {0}),

that is (10).

2.3. Proof of the inequality (17)

For all x ∈R
n \ {0}, define

λ̄(x) := sup
{
λ(x) ∈ (0, |x|) ∣∣ UX,λ(ξ) ≤ U(ξ) in R

n+1+ \B+
λ (X), ∀ 0 < λ < λ(x)

}
.

As the first step, we are going to make sure λ̄(x) is well defined, by proving

{
λ(x) ∈ (0, |x|) ∣∣ UX,λ(ξ) ≤ U(ξ) in R

n+1+ \B+
λ (X), ∀ 0 < λ < λ(x)

} �= ∅,

that is,
Claim 1: There exists λ0(x) ∈ (0, |x|) such that for any λ ∈ (0, λ0(x)),

UX,λ(ξ) ≤ U(ξ) in R
n+1+ \B+

λ (X). (18)

In the second step, we give that
Claim 2:

λ̄(x) = |x|. (19)

Once (19) was obtained, Theorem 1.1 follows.

Proof of Claim 1. First of all, we are going to show that there exist μ and λ0(x) satisfying 
0 < λ0(x) < μ < |x| such that for all λ ∈ (0, λ0(x)),

UX,λ(ξ) ≤ U(ξ) in B+
μ (X)\B+(X). (20)
λ
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Then we shall prove that for all λ ∈ (0, λ0(x)),

UX,λ(ξ) ≤ U(ξ) in B+
3/4\B+

μ (X). (21)

For every 0 < λ < μ < 1
2 |x|, ξ ∈ ∂ ′′B+

μ (X), we have X + λ2(ξ−X)

|ξ−X|2 ∈ B+
μ (X). Thus we can 

choose

λ0(x) = μ

⎛
⎜⎜⎝

inf
∂ ′′B+

μ (X)

U

sup
B+

μ (X)

U

⎞
⎟⎟⎠

1
n−2σ

,

such that for every 0 < λ < λ0(x) < μ,

UX,λ(ξ) =
(

λ

|ξ − X|
)n−2σ

U

(
X + λ2(ξ − X)

|ξ − X|2
)

≤
(

λ0

μ

)n−2σ

sup
B+

μ (X)

U

= inf
∂ ′′B+

μ (X)

U ≤ U(ξ).

The above inequality, together with

UX,λ(ξ) = U(ξ) on ∂ ′′B+
λ (X),

implies that for all λ ∈ (0, λ0(x)),

UX,λ(ξ) ≤ U(ξ) on ∂ ′′B+
μ (X) ∪ ∂ ′′B+

λ (X). (22)

We will make use of the “narrow domain technique” of Berestycki and Nirenberg from [3], 
and show that there exist some μ small enough such that for all λ ∈ (0, λ0(x)),

UX,λ(ξ) ≤ U(ξ) in B+
μ (X)\B+

λ (X).

It is a straightforward computation to show that

⎧⎨
⎩

div(t1−2σ ∇UX,λ) = 0 in B+
μ (X)\B+

λ (X),

∂
∂νσ UX,λ =

(
λ

|y−x|
)p


|yλ|τ u
p
x,λ(y) on ∂ ′(B+

μ (X)\B+
λ (X)),

which yield
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⎧⎨
⎩

div(t1−2σ ∇(UX,λ − U)) = 0 in B+
μ (X)\B+

λ (X),

∂
∂νσ (UX,λ − U) =

(
λ

|y−x|
)p


|yλ|τ u
p
x,λ(y) − |y|τ up(y) on ∂ ′(B+

μ (X)\B+
λ (X)),

(23)

where yλ := x + λ2(y−x)

|y−x|2 , p
 := n + 2σ − p(n − 2σ).

Let (UX,λ −U)+ := max(0, UX,λ −U) which equals to 0 on ∂ ′′(B+
μ (X)\B+

λ (X)). Multiplying 

the equation in (23) by (UX,λ − U)+ and integrating by parts in B+
μ (X)\B+

λ (X), we have

∫
B+

μ (X)\B+
λ (X)

t1−2σ |∇(UX,λ − U)+|2

=
∫

Bμ(x)\Bλ(x)

[(
λ

|y − x|
)p
 ∣∣yλ

∣∣τ up
x,λ(y) − |y|τ up(y)

]
(ux,λ − u)+.

Combining Proposition 4.2 with λ2 = |x − yλ||x − y|, we have

(
λ

|x − y|
)2

≤ |yλ|
|y| ,

which implies that

(
λ

|x − y|
)p


≤
( |y|

|yλ|
)τ

,

due to −2τ ≤ p
 and λ
|x−y| ≤ 1. Therefore,

(
λ

|y − x|
)p
 ∣∣yλ

∣∣τ ≤ |y|τ , (24)

and ∫
B+

μ (X)\B+
λ (X)

t1−2σ |∇(UX,λ − U)+|2 ≤
∫

Bμ(x)\Bλ(x)

|y|τ (up
x,λ(y) − up(y))(ux,λ − u)+.

For any y ∈ Bμ(x)\Bλ(x),

ux,λ(y) =
(

λ

|y − x|
)n−2σ

u(yλ) ≤ u(yλ),

where yλ := x + λ2(y−x)

|y−x|2 . Combining yλ ∈ Bλ(x) ⊂ B |x|
2
(x) with u ∈ C2(B1 \ {0}), we deduce 

that there exists a positive constant C depending on x, such that for any y ∈ Bμ(x)\Bλ(x),

ux,λ(y) ≤ C(x). (25)
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With the help of mean value theorem, λ < 1
2 |x| and the Hölder inequality, we obtain that

∫
B+

μ (X)\B+
λ (X)

t1−2σ |∇(UX,λ − U)+|2

≤
∫

Bμ(x)\Bλ(x)

2−τ |x|τ pu
p−1
x,λ (y)[(ux,λ − u)+]2

≤2−τ |x|τ p
( ∫
Bμ(x)\Bλ(x)

(ux,λ)
n(p−1)

2σ

) 2σ
n

⎛
⎜⎝ ∫

Bμ(x)\Bλ(x)

[(ux,λ − u)+] 2n
n−2σ

⎞
⎟⎠

n−2σ
n

.

It follows from (25) and the trace inequality (Proposition 4.3) that

∫
B+

μ (X)\B+
λ (X)

t1−2σ |∇(UX,λ − U)+|2

≤2−τ |x|τ pC(C(x))
n(p−1)

2σ

( ∫
Bμ(x)

1
) 2σ

n

⎛
⎜⎜⎝

∫
B+

μ (X)\B+
λ (X)

t1−2σ |∇(UX,λ − U)+|2
⎞
⎟⎟⎠

=C|Bμ(x)| 2σ
n

⎛
⎜⎜⎝

∫
B+

μ (X)\B+
λ (X)

t1−2σ |∇(UX,λ − U)+|2
⎞
⎟⎟⎠ ,

where C is a positive constant depending only on n, p, σ , τ and x.
We can fix μ sufficiently small such that

C|Bμ(x)| 2σ
n ≤ 1

2
.

Then

∇(UX,λ(ξ) − U(ξ))+ = 0 in B+
μ (X)\B+

λ (X).

Since (22), we deduce that

(UX,λ(ξ) − U(ξ))+ = 0 in B+
μ (X)\B+

λ (X).

Therefore,

UX,λ(ξ) ≤ U(ξ) in B+
μ (X)\B+

λ (X).

Next, we are going to prove (21).
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By Proposition 4.1, we have

U(ξ) ≥
(

μ

|ξ − X|
)n−2σ

inf
∂ ′′B+

μ (X)

U in R
n+1+ \B+

μ (X). (26)

Then for all ξ ∈R
n+1+ \B+

μ (X) and λ ∈ (0, λ0) ⊂ (0, μ), it follows that

UX,λ(ξ) =
(

λ

|ξ − X|
)n−2σ

U(X + λ2(ξ − X)

|ξ − X|2 ) ≤
(

λ0

|ξ − X|
)n−2σ

sup
B+

μ (X)

U

=
(

μ

|ξ − X|
)n−2σ

inf
∂ ′′B+

μ (X)

U ≤ U(ξ),

where (26) is used in the last inequality. Then Claim 1 is proved. �
Proof of Claim 2. By Claim 1, λ̄(x) is well defined, and we also know that for x �= 0, λ̄(x) ≤ |x|. 
From the definition of λ̄(x), it is obvious to see that for 0 < λ ≤ λ̄(x), we have

UX,λ(ξ) ≤ U(ξ) in R
n+1+ \B+

λ (X). (27)

We prove Claim 2 by contradiction. That is, suppose λ̄(x) < |x| for some x �= 0. We want to 
show that there exists a positive constant ε ∈ (0, |x|−λ̄(x)

2 ) such that for any λ ∈ (λ̄(x), ̄λ(x) + ε),

UX,λ(ξ) ≤ U(ξ) in R
n+1+ \B+

λ (X), (28)

which contradicts with the definition of λ̄(x), then we obtain λ̄(x) = |x|.
W divide the region into two parts,

K1 =
{
ξ ∈ R

n+1+
∣∣ |ξ − X| ≥ λ̄(x) + δ2

}
,

K2 =
{
ξ ∈ R

n+1+
∣∣ λ ≤ |ξ − X| ≤ λ̄(x) + δ2

}
,

where δ2 will be fixed later. Then in order to obtain (28) it suffices to prove that it established on 
K1, K2.

By (27), we have

UX,λ̄(x)(ξ) ≤ U(ξ) in R
n+1+ \B+

λ̄(x)
(X).

On the other hand,

lim
ξ→0

UX,λ̄(ξ) = lim
ξ→0

(
λ̄

|ξ − X|
)n−2σ

U(X + λ̄2(ξ − X)

|ξ − X|2 )

=
(

λ̄
)n−2σ

U(X − λ̄2X

2 ) < ∞.

(29)
|X| |X|
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Hence, by (29) and the strong maximum principle, we conclude that

UX,λ̄(x)(ξ) < U(ξ) in R
n+1+ \B+

λ̄(x)
(X). (30)

By calculation, it follows that

⎧⎨
⎩

div(t1−2σ ∇(U − UX,λ̄)) = 0 in R
n+1+ \B+

λ̄(x)+δ2
(X),

∂
∂νσ (U − UX,λ̄) = |y|τ up(y) −

(
λ

|y−x|
)p
 ∣∣yλ

∣∣τ up
x,λ(y) on R

n\(Bλ̄(x)+δ2
(X) ∪ {0}).

(31)

Using Proposition 4.2 and by the same argument as (24) in Claim 1 for (31), we obtain that

{
div(t1−2σ ∇(U − UX,λ̄)) = 0 in R

n+1+ \B+
λ̄(x)+δ2

(X),

∂
∂νσ (U − UX,λ̄) ≥ 0 on R

n\(Bλ̄(x)+δ2
(X) ∪ {0}). (32)

With the help of Proposition 4.1, we have

(U − UX,λ̄)(ξ) ≥
(

λ̄(x) + δ2

|ξ − X|
)n−2σ

inf
∂ ′′B+

λ̄(x)+δ2
(X)

(U − UX,λ̄) in K1. (33)

From (30), it is easy to see that

inf
∂ ′′B+

λ̄(x)+δ2
(X)

(U − UX,λ̄(x)) > 0.

By the uniform continuity of U on compact sets, there exists a positive constant ε1(<
|x|−λ̄(x)

2 )

sufficient small such that for any λ ∈ (λ̄(x), ̄λ(x) + ε1),

|UX,λ̄(x)(ξ) − UX,λ(ξ)| ≤ 1

2

(
λ̄(x) + δ2

|ξ − X|
)n−2σ

inf
∂ ′′B+

λ̄(x)+δ2
(X)

(U − UX,λ̄(x)) in K1. (34)

Indeed, notice that ξλ̄(x) := X + λ̄2(x)(ξ−X)

|ξ−X|2 , ξλ := X + λ2(ξ−X)

|ξ−X|2 ∈ B+
|x|+λ̄(x)

(X) and

2
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|UX,λ̄(x)(ξ) − UX,λ(ξ)| =

∣∣∣∣
(

λ̄(x)

|ξ − X|
)n−2σ

U(ξλ̄(x)) −
(

λ

|ξ − X|
)n−2σ

U (ξλ)

∣∣∣∣
≤

(
λ̄(x)

|ξ − X|
)n−2σ ∣∣∣U(ξλ̄(x)) − U (ξλ)

∣∣∣ + |λ̄n−2σ (x) − λn−2σ |
|ξ − X|n−2σ

U (ξλ)

=
(

λ̄(x) + δ2

|ξ − X|
)n−2σ (

λ̄(x)

λ̄(x) + δ2

)n−2σ ∣∣∣U(ξλ̄(x)) − U (ξλ)

∣∣∣
+

(
λ̄(x) + δ2

|ξ − X|
)n−2σ |λ̄n−2σ (x) − λn−2σ |

(λ̄(x) + δ2)n−2σ
U (ξλ) .

From the fact that U is the uniform continuity on compact sets, we can choose ε1 sufficient small, 
such that for all λ ∈ (λ̄(x), ̄λ(x) + ε1),

(
λ̄(x)

λ̄(x) + δ2

)n−2σ ∣∣∣U(ξλ̄(x)) − U (ξλ)

∣∣∣ ≤ 1

4
inf

∂ ′′B+
λ̄(x)+δ2

(X)

(U − UX,λ̄(x)),

and

|λ̄n−2σ (x) − λn−2σ |
(λ̄(x) + δ2)n−2σ

U (ξλ) ≤ 1

4
inf

∂ ′′B+
λ̄(x)+δ2

(X)

(U − UX,λ̄(x)).

Therefore, (34) holds.
Combining (33) with (34), we deduce that for any λ ∈ (λ̄(x), ̄λ(x) + ε1),

UX,λ(ξ) ≤ U(ξ) in K1. (35)

Now let us focus on the region K2. From (35), it follows that

UX,λ(ξ) ≤ U(ξ) on ∂ ′′K2.

Using the narrow domain technique as before (see the proof of (20) in Claim 1), we can choose 
δ2 small (notice that we can choose ε as small as we want less than ε1 such that for λ ∈ (λ̄(x),

λ̄(x) + ε), we have

UX,λ(ξ) ≤ U(ξ) in K2. (36)

Combining (35) with (36), we can see that the moving sphere procedure may continue beyond 
λ̄(x) where we reach a contradiction. �
3. Singularity and decay estimates

First, we recall the doubling property [29, Lemma 5.1] and denote BR(x) as the ball in Rn

with radius R and center x. For convenience, we write BR(0) as BR for short.
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Proposition 3.1. Suppose that ∅ �= D ⊂ � ⊂ R
n, � is closed and � = � \ D. Let M : D →

(0, ∞) be bounded on compact subset of D. If for a fixed positive constant k, there exists y ∈ D

satisfying

M(y)dist(y,�) > 2k,

then there exists x ∈ D such that

M(x) ≥ M(y), M(x)dist(x,�) > 2k,

and for all z ∈ D ∩ BkM−1(x)(x),

M(z) ≤ 2M(x).

The second one is called the interior Schauder estimates. See [19, Theorem 2.11] for the proof. 
Many regularity properties can be founded in Cabre–Sire [5], Cabre–Tan [6].

Proposition 3.2. Suppose that g ∈ Cγ (BR), γ > 0 and u is a nonnegative solution of

(−�)σ u = g(x) in BR.

If 2σ + γ ≤ 1, then u ∈ C0,2σ+γ (BR/2). Moreover,

‖u‖C0,2σ+γ (BR/2)
≤ C

(‖u‖L∞(B3R/4) + ‖g‖Cγ (B3R/4)

)
,

where C is a positive constant depending on n, σ , γ , R.
If 2σ + γ > 1, then u ∈ C1,2σ+γ−1(BR/2). Moreover,

‖u‖C1,2σ+γ−1(BR/2)
≤ C

(‖u‖L∞(B3R/4) + ‖g‖Cγ (B3R/4)

)
,

where C is a positive constant depending on n, σ , γ , R.

Next, in order to prove Theorem 1.2, we start with the following lemma.

3.1. Proof of the Lemma 3.3

Lemma 3.3. Let 1 < p < n+2σ
n−2σ

, 0 < α ≤ 1 and c(x) ∈ C2,α(B1) satisfy

‖c‖C2,α(B1)
≤ C1, c(x) ≥ C2 in B1 (37)

for some positive constants C1, C2. Suppose that u ∈ C2(B1) ∩Lσ (Rn) is a nonnegative solution 
of

(−	)σ u = c(x)up in B1, (38)
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then there exists a positive constant C depending only on n, σ , p, C1, C2 such that

|u(x)| p−1
2σ + |∇u(x)| p−1

p+2σ−1 ≤ C[dist(x, ∂B1)]−1 in B1.

Proof. Arguing by contradiction, for k = 1, 2, · · · , we assume that there exist nonnegative func-
tions uk satisfying (38) and points yk ∈ B1 such that

|uk(yk)| p−1
2σ + |∇uk(yk)|

p−1
p+2σ−1 > 2k[dist(yk, ∂B1)]−1. (39)

Define

Mk(x) := |uk(x)| p−1
2σ + |∇uk(x)| p−1

p+2σ−1 .

Via Proposition 3.1, for D = B1, � = ∂B1, there exist xk ∈ B1 such that

Mk(xk) ≥ Mk(yk), Mk(xk) > 2k[dist(xk, ∂B1)]−1 ≥ 2k, (40)

and for any z ∈ B1 and |z − xk| ≤ kM−1
k (xk),

Mk(z) ≤ 2Mk(xk). (41)

It follows from (40) that

λk := M−1
k (xk) → 0 as k → ∞, (42)

dist(xk, ∂B1) > 2kλk, for k = 1,2, · · · . (43)

Consider

wk(y) := λ
2σ

p−1
k uk(xk + λky) in Bk.

Together with (43), we obtain that for any y ∈ Bk ,

|xk + λky − xk| ≤ λk|y| ≤ λkk <
1

2
dist(xk, ∂B1),

that is,

xk + λky ∈ B 1
2 dist(xk,∂B1)

(xk) ⊂ B1.

Therefore, wk is well defined in Bk and

|wk(y)| p−1
2σ = λk|uk(xk + λky)| p−1

2σ ,

|∇wk(y)| p−1
2σ+p−1 = λk|∇uk(xk + λky)| p−1

2σ+p−1 .

From (41), we find that for all y ∈ Bk ,
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|uk(xk + λky)| p−1
2σ + |∇uk(xk + λky)| p−1

2σ+p−1 ≤ 2

(
|uk(xk)| p−1

2σ + |∇uk(xk)|
p−1

p+2σ−1

)
.

That is,

|wk(y)| p−1
2σ + |∇wk(y)| p−1

2σ+p−1 ≤ 2λkMk(xk) = 2. (44)

Moreover, wk satisfies

(−	)σ wk = ck(y)w
p
k in Bk, (45)

and

|wk(0)| p−1
2σ + |∇wk(0)| p−1

2σ+p−1 = 1,

where ck(y) := c(xk + λky).
By condition (37), we obtain that {ck} is uniformly bounded in Rn. For each R > 0, and for 

all y, z ∈ BR , we have

|Dβck(y) − Dβck(z)| ≤ C1λ
|β|
k |λk(y − z)|α ≤ C1|y − z|α, |β| = 0,1,2,

for k is large enough. Therefore, by Arzela–Ascoli’s Theorem, there exists a function c ∈
C2(Rn), after extracting a subsequence, ck → c in C2

loc(R
n). Moreover, by (42), we obtain

|ck(y) − ck(z)| → 0 as k → ∞. (46)

This implies that the function c actually is a constant C. By (37) again, ck ≥ C2 > 0, we conclude 
that C is a positive constant.

On the other hand, applying Proposition 3.2 a finite number of times to (44) and (45), there 
exists some positive γ ∈ (0, 1) such that for every R ∈ (1, k),

‖wk‖C2,γ (BR/2)
≤ C

(‖wk‖L∞(B3R/4) + ‖ckw
p
k ‖Cγ (B3R/4)

) ≤ C(R), (47)

where C(R) is a positive constant independent of k. Thus, after passing to a subsequence, we 
have, for some nonnegative function w ∈ C2

loc(R
n),

wk → w in C2
loc(R

n),

and

|w(0)| p−1
2σ + |∇w(0)| p−1

2σ+p−1 = 1.

Since p < n+2σ
n−2σ

, this contradicts the Liouville-type result ([19, Remark 1.9]) that

w = 0 in R
n. (48)

The proof of (48) will be provided in Appendix. Then we conclude the lemma. �
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3.2. Proof of Theorem 1.2

We now turn to prove Theorem 1.2.

Proof. For x0 ∈ R
n \B2, we denote R := 1

2 |x0|. Then for any y ∈ B1, we have |x0|
2 < |x0 +Ry| <

3|x0|
2 , and deduce that x0 + Ry ∈R

n \ B1. Define

w(y) := R
2σ+τ
p−1 u(x0 + Ry).

Therefore, we obtain that

(−�)σ w = c(y)wp in B1,

where c(y) := |y + x0
R

|τ . Notice that

1 < |y + x0

R
| < 3 in B1.

Moreover,

‖c‖C3(B1)
≤ C, c(y) ≥ 3−2σ in B1.

Applying Lemma 3.3, we obtain that

|w(0)| p−1
2σ + |∇w(0)| p−1

p+2σ−1 ≤ C.

That is,

(R
2σ+τ
p−1 u(x0))

p−1
2σ + (R

2σ+τ
p−1 +1|∇u(x0)|)

p−1
p+2σ−1 ≤ C.

Hence,

u(x0) ≤ CR
− 2σ+τ

p−1 ≤ C|x0|−
2σ+τ
p−1 ,

|∇u(x0)| ≤ CR
− 2σ+τ+p−1

p−1 ≤ C|x0|−
2σ+τ+p−1

p−1 .

Since x0 ∈R
n \ B2 is arbitrary, Theorem 1.2 is proved. �

4. Appendix

4.1. Proof of the (48)

Before that, we introduce the definition of Weight Sobolev Space and weak solutions. Let D
be an open set in Rn+1+ . Denote by L2(t1−2σ , D) the Banach space of all measurable functions 
U defined on D, for which
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‖U‖L2(t1−2σ ,D) :=
⎛
⎝∫

D

t1−2σ |U |2dX

⎞
⎠

1
2

< ∞,

and X := (x, t) ∈ R
n ×R+. We say that U ∈ W 1,2(t1−2σ , D) if U ∈ L2(t1−2σ , D), and its weak 

derivatives ∇U exist and belong to L2(t1−2σ , D). The norm of U in W 1,2(t1−2σ , D) is given by

‖U‖W 1,2(t1−2σ ,D) :=
⎛
⎝∫

D

t1−2σ |U |2dX +
∫
D

t1−2σ |∇U |2dX

⎞
⎠

1
2

.

See Fabes–Jerison–Kenig [15], Heinonen–Kilpeläinen–Martio [17] for more details about the 
Weight Sobolev Space.

Let ∂ ′D �= ∅, and a ∈ L∞(∂ ′D). For 1 < p ≤ n+2σ
n−2σ

, we say U ∈ W 1,2(t1−2σ , D) is a weak 
solution of

⎧⎨
⎩

div(t1−2σ ∇U) = 0 in D,

∂U

∂νσ
= aUp on ∂ ′D,

if for every nonnegative � ∈ C∞
c (D ∪ ∂ ′D),

∫
D

t1−2σ ∇U∇�dX =
∫

∂ ′D

aUp�dx.

Now, we shall prove (48). As before, define

Wk(x, t) :=
∫
Rn

Pσ (x − y, t)wk(y)dy.

Together with (45), we have

⎧⎨
⎩

div(t1−2σ ∇Wk) = 0 in R
n+1+ ,

∂Wk

∂νσ
= ck(y)w

p
k on ∂ ′B+

k .

Since Wk ∈ C2(Rn+1+ ) ∩ C(Rn+1+ ), it follows that Wk ∈ W 1,2(t1−2σ , B+
k ). Thus, by Proposi-

tion 4.5, there exist some ν ∈ (0, 1) such that for every R > 1

‖Wk‖W 1,2(t1−2σ ,B+
R ) + ‖Wk‖Cν(B+

R )
≤ C(R),

where C(R) is independent of k. Combining with (47), after passing to a subsequence, we have, 

for some nonnegative function W ∈ W
1,2

(t1−2σ , Rn+1+ ) ∩ Cν (Rn+1+ )
loc loc
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⎧⎪⎨
⎪⎩

Wk ⇀ W weakly in W
1,2
loc (t1−2σ ,Rn+1+ ),

Wk → W in C
ν/2
loc (Rn+1+ ),

wk → w in C2
loc(R

n),

where w(y) = W(y, 0). Moreover, W satisfies

⎧⎨
⎩

div(t1−2σ ∇W) = 0 in R
n+1+ ,

∂W

∂νσ
= Cwp on ∂ ′

R
n+1+ .

(49)

Since p < n+2σ
n−2σ

, by the Liouville-type result ([19, Remark 1.9]) that w = 0. Hence, we derive 
(48).

4.2. Some useful propositions

Then, we prove some propositions which plays a vital role in our proof.

Proposition 4.1. Let x ∈ R
n, μ > 0, x0 ∈R

n\Bμ(x) and X = (x, 0). Let U ∈ C2(Rn+1+ \B+
μ (X))

and C1 up to the boundary Rn\(Bμ(x) ∪ {x0}). Suppose that U is a nonnegative solution of

⎧⎨
⎩

div(t1−2σ ∇U) ≤ 0 in R
n+1+ \B+

μ (X),

∂U

∂νσ
≥ 0 on R

n\(Bμ(x) ∪ {x0}),

then

U(ξ) ≥
(

μ

|ξ − X|
)n−2σ

inf
∂ ′′B+

μ (X)

U in R
n+1+ \B+

μ (X).

Proof. For an arbitrary positive constant ε, define

Uε(ξ) := U(ξ) − φ(ξ) + ε|ξ − X0|2σ−n,

where

φ(ξ) :=
(

μ

|ξ − X|
)n−2σ

inf
∂ ′′B+

μ (X)

U.

By a direct calculation, we obtain that

⎧⎨
⎩

div(t1−2σ ∇Uε) ≤ 0 in R
n+1+ \B+

μ (X),

∂Uε

∂νσ
≥ 0 on R

n\(Bμ(x) ∪ {x0}).

It follows that
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Uε(ξ) = U(ξ) − inf
∂ ′′B+

μ (X)

U + ε|ξ − X0|2σ−n ≥ 0 on ∂ ′′B+
μ (X). (50)

lim inf
ξ→∞ Uε(ξ) = lim inf

ξ→∞ U(ξ) ≥ 0. (51)

On the other hand, there exists a positive constant C such that

lim inf
ξ→X0

(U − φ)(ξ) ≥ −
(

μ

|X0 − X|
)n−2σ

inf
∂ ′′B+

μ (X)

U ≥ −C,

where the nonnegative of U gives the first inequality. Since

lim
ξ→X0

ε|ξ − X0|2σ−n = +∞,

we deduce that there exists a positive constant δ such that

Uε(ξ) ≥ 0 in B+
δ (X0). (52)

Combining (50), (51), (52) and the standard maximum principle argument, we conclude that

Uε(ξ) ≥ 0 in R
n+1+ \(B+

μ (X) ∪B+
δ (X0)).

Using (52), we obtain that

Uε(ξ) ≥ 0 in R
n+1+ \B+

μ (X).

Sending ε → 0, we conclude that

U(ξ) − φ(ξ) ≥ 0 in R
n+1+ \B+

μ (X).

That is

U(ξ) ≥
(

μ

|ξ − X|
)n−2σ

inf
∂ ′′B+

μ (X)

U in R
n+1+ \B+

μ (X).

This finish the proof of this proposition. �
Proposition 4.2. [25, Corollary 1.4.] For x ∈R

n\{0}, 0 < λ < min{|x|, |y − x|}, we have

|x − yλ||y| ≤ |x − y||yλ|, (53)

where yλ = x + λ2(y−x)

|y−x|2 .

The following one is called the trace inequality.
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Proposition 4.3. [19, Proposition 2.1] If U ∈ C2
c (Rn+1+ ), then there exists a positive constant C

depending only on n and σ such that

(∫
Rn

|U(·,0)| 2n
n−2σ dx

) n−2σ
2n ≤ C

( ∫
R

n+1+

t1−2σ |∇U |2dxdt

) 1
2

(54)

We also recall the standard maximum principle.

Proposition 4.4. [19, Lemma 2.5] Suppose that U ∈ C2(D) ∩ C1(D) is a solution of

⎧⎨
⎩

div(t1−2σ ∇U) ≤ 0 in D,

∂U

∂νσ
≥ 0 on ∂ ′D,

where D ⊂R
n+1+ is an open domain. If U ≥ 0 on ∂ ′′D, then U ≥ 0 in D.

Last, we also introduce a result about the regularity.

Proposition 4.5. [19, Corollary 2.10] Suppose that a ∈ L∞(∂ ′B+
R ), U ∈ W 1,2(t1−2σ , B+

R ) is a 
nonnegative solution of

⎧⎨
⎩

div(t1−2σ ∇U) = 0 in B+
R ,

∂U

∂νσ
= a(x)Up on ∂ ′B+

R .

Then
(i) U ∈ L∞

loc(B
+
R ∪ ∂ ′B+

R ) and hence U(·, 0) ∈ L∞
loc(∂

′B+
R ).

(ii) There exist C > 0 and ν ∈ (0, 1) depending only on n, σ , p, R, ‖U(·, 0)‖L∞(∂ ′B+
3R/4)

and 

‖a‖L∞(∂ ′B+
3R/4)

such that U ∈ Cν(B+
R/2) and

‖U‖W 1,2(t1−2σ ,B+
R/2)

+ ‖U‖
Cν(B+

R/2)
≤ C.
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