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Abstract
We prove the existence of entire solutions of the Monge–Ampère equations with prescribed
asymptotic behavior at infinity of the plane, whichwas left unsolved by Caffarelli–Li in 2003.
The special difficulty of the problem in dimension two is due to the global logarithmic term
in the asymptotic expansion of solutions at infinity. Furthermore, we give a PDE proof of the
characterization of the space of solutions of the Monge–Ampère equation det∇2u = 1 with
k ≥ 2 singular points, which was established by Gálvez–Martínez–Mira in 2005. We also
obtain the existence of solutions in higher dimensional cases with general right hand sides.

Mathematics Subject Classification 35J96 · 35B40

1 Introduction

In 1954, K. Jörgens [12] proved that, modulo the unimodular affine equivalence, 12 |x |2 is the
unique convex smooth solution of

det∇2u = 1 in R
2.

Jörgens’ theoremwas extended to smooth convex solutions in higher dimensions byCalabi [5]
for dimensions less than or equal to 5 and by Pogorelov [20] for all dimensions. Different
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proofs were given by Cheng–Yau [6], Caffarelli [2] and Jost–Xin [14]. In dimension two,
elementary and simpler proofs were found by Nitsche [19] and Jin–Xiong [15].

In [3], Caffarelli and Li established a quantitative version of the theorem of Jörgens–
Calabi–Pogorelov. They considered

det∇2u = f in R
n, (1)

where f ∈ C0(Rn) satisfies that

0 < inf
Rn

f ≤ sup
Rn

f < ∞ and supp( f − 1) is bounded. (2)

Denote

A := {A : A is a symmetric, positive definite n × n matrix and det A = 1}.
Theorem 1 (Caffarelli–Li [3]) Let u be a convex viscosity (Alexandrov) solution of (1) with
f satisfying (2). Then u ∈ C∞(Rn\supp( f − 1)), and we have the following:

– For n ≥ 3, there exist a linear function �(x) and A ∈ A such that

lim sup
x→∞

|x |n−2
∣
∣
∣
∣
u(x) −

(
1

2
xt Ax + �(x)

)∣
∣
∣
∣
< ∞. (3)

– For n = 2, there exist a linear function �(x) and A ∈ A such that

lim sup
x→∞

|x |
∣
∣
∣
∣
u(x) −

(
1

2
xt Ax + d ln

√
xt Ax + �(x)

)∣
∣
∣
∣
< ∞, (4)

where

d = 1

2π

∫

R2
( f − 1) dx . (5)

The asymptotic behavior in exterior domains of dimension two had been established by
Ferrer–Martínez–Milán [8].

In addition, Caffarelli–Li [3] proved that (1) with the condition (3) admits a unique vis-
cosity solution when n ≥ 3; see Theorem 1.7 of [3]. However, it was not known whether
(1) with the condition (4) has a unique solutions in the plane. The difficulty stems from the
global constant d in (4), which makes it hard to construct sub- and super- solutions with
quadratic growth. In this paper, we solve the problem positively.

In fact, we can relax the assumptions on f . Let ν be a locally finite Borel measure defined
in R

2 and dν = f dx in R
n\Ω , where Ω is a bounded open set and f ∈ C3(Rn\Ω) is a

positive function satisfying

lim sup
|x |→∞

|x |β+ j |∇ j ( f (x) − 1)| < ∞, j = 0, 1, 2, 3, (6)

for some β > 2. Extending [3], Bao–Li–Zhang [1] proved that for every Alexandrov solution
of

det∇2u = ν in R
n, (7)

there exist a linear function �(x) and A ∈ A such that
{

lim supx→∞ |x |min{β,n}−2+ j
∣
∣∇ j (u(x) − ( 1

2 x
t Ax + �(x))

)∣
∣ < ∞, if β 	= n,

lim supx→∞ |x |n−2+ j (ln |x |)−1
∣
∣∇ j (u(x) − ( 1

2 x
t Ax + �(x))

)∣
∣ < ∞, if β = n

(8)
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when n ≥ 3, and

lim sup
x→∞

|x |σ+ j
∣
∣
∣
∣
∇ j

(

u(x) −
(
1

2
xt Ax + d ln

√
xt Ax + �(x)

))∣
∣
∣
∣
< ∞ (9)

when n = 2, where j = 0, 1, 2, 3, 4, σ ∈ (0,min{β − 2, 2}), and the constant d will be

d = 1

2π
lim
R→∞

(∫

BR

dν − πR2
)

(10)

by following the proof of (1.9) in [3] (when n ≥ 3, the case “β = n” was missed in the
original paper [1]). See also recent paper Li–Lu [18] for related exterior problems.

The main result of this paper is

Theorem 2 Let n = 2 and ν be as above. For any linear function � and A ∈ A, the Monge–
Ampère equation (7) has a unique Alexandrov solution satisfying (9) with d given by (10).

Theorem 2 confirms the Conjecture 1 of [1] particularly. Our proof is different from the
one in [3] for n ≥ 3. It contains three new ingredients: (i) constructing upper barrier functions
which, however, are not supper solutions; (ii) modifying approximation solutions; (iii) using
the upper barrier and asymptotics of [1,3] to conclude that the Hessian of the limiting solution
converges to the identity matrix at the infinity.

For n ≥ 3, the proof is more like the one in [3]. Together with some properties of
Alexandrov solutions, we have the following theorem.

Theorem 3 Let n ≥ 3 and ν be as above. For any linear function � and A ∈ A, the Monge–
Ampère equation (7) has a unique Alexandrov solution satisfying (8).

Remark 4 The condition β > 2 is necessary for the asymptotic behavior (8) and (9). Indeed,
let f be a radial, smooth, positive function satisfying f (r) ≡ 1 for r ∈ [0, 1] and f (r) =
1 + r−2 for r > 2. Then

u(x) =
∫ |x |

0

(∫ s

0
ntn−1 f (t) dt

) 1
n

ds

is a solution of (7) with dν = f dx in R
n . But, as |x | → ∞,

u(x) =
{

1
2 |x |2 + O((log |x |)2) for n = 2,
1
2 |x |2 + O(log |x |) for n ≥ 3.

In 1955, Jörgens [13] further proved that, modulo the unimodular affine equivalence, every
smooth locally convex solution of

det∇2u = 1 in R
2\{0}

has to be
∫ |x |

0
(c + t2)1/2 dt, c ≥ 0. (11)

In 2016, Jin–Xiong [16] extended Jörgens theorem to all dimensions, i.e,
∫ |x |

0
(c + tn)1/n dt, c ≥ 0
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is the unique solution of det∇2u = 1 in R
n\{0}, n ≥ 3, modulo the unimodular affine

equivalence. Furthermore, they identified the set of locally convex entire solutions with
k ≥ 1 singular points to an orbifold of dimension d(n, k), where

d(n, k) =
{

k − 1 + (k−1)k
2 , if k − 1 ≤ n,

k − 1 + n(n+1)
2 + (k − 1 − n)n, if k − 1 > n

when n ≥ 3. The later result in dimension two was obtained by Gálvez–Martínez–Mira [10],
using a complex analysis method. Jin-Xiong’s proof is based on the result which they proved:
If u is a locally convex solution of

det∇2u = 1 in R
n\{P1, . . . , Pk},

then u is convex in R
n and there exist nonnegative constants ci such that

det∇2u = 1 +
k

∑

i=1

ciδPi

in the Alexandrov sense, where Pi , i = 1, . . . , k, are distinct points, and δPi is the Dirac
measure centered at Pi . This result holds for all n ≥ 2. Together with the asymptotic behavior
at infinity, we have all the parameters to determinate the dimensions of the orbifolds. When
n ≥ 3, the existence of solutions to such equations was proved in [16]. Theorem 2 applies
here to obtain existence in dimension two.

Finally, we would like to mention a further extension of the theorem of Jörgens–Calabi–
Pogorelov. In another paper [4], Caffarelli–Li classified entire solutions of Monge–Ampère
equations with periodic functions on the right hand side. See also the recent work of Teixeira–
Zhang [21].

The paper is organized as follows. Theorem 2 is proved in the next section. Using the
arguments of [3,16], we give a Proof of Theorem 3 in Sect. 3.

2 Proof of Theorem 2

For convenience, we recall the definition of Alexandrov solutions, see e.g., Gutierrez [11]
and Figalli [9]. Let Ω be an open subset ofRn and u : Ω → R be a locally convex function.
The normal mapping of u, or subdifferential of u, at x0 ∈ Ω is the set-valued function
∂u : Ω → P(Rn) defined by

∂u(x0) = {p : u(x) ≥ u(x0) + p · (x − x0), forall x ∈ Ω},
where P(Rn) denotes the class of all subsets of R

n . Given E ⊂ Ω , define ∂u(E) =
∪x∈E∂u(x). One can show that the class

S = {E ⊂ Ω : ∂u(E) is Lebesgue measurable}
is a Borel σ -algebra. The set function Mu : S → R defined by

Mu(E) = |∂u(E)|
is called the Monge–Ampère measure associated with the function u, where | · | is the n-
dimensional Lebesguemeasure. For a Borel measure ν inΩ , we say a locally convex function
u is an Alexandrov solution of the Monge–Ampère equation

det∇2u = ν
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if Mu = ν.
Now we start to prove Theorem 2.

Proof of Theorem 2 We only need to prove the existence part as the uniqueness part follows
from the comparison principle. By the affine invariance, we can assume that A is the identity
matrix I and � = 0.

Take ρ > 0 such that Ω ⊂ Bρ . Let

f (r) =
{

0, r < ρ,

minx∈∂Br f (x), r ≥ ρ,

d = 1

2π

∫

R2
( f − 1) dx =

∫ ∞

0
r( f (r) − 1) dr ,

and

wc(r) =
∫ r

0

(∫ s

0
2t f (t) dt + 2c

)1/2

ds,

where c ≥ 0. It is easy to check that wc is a convex solution of

det∇2wc = |∂wc(0)|δ0 + f = 2πcδ0 + f in R
2. (12)

Using the condition (6) on f , by a direct calculation we have
(∫ s

0
2t f (t) dt + 2c

)1/2

=
(

s2 + 2c +
∫ ∞

0
2t( f (t) − 1) dt −

∫ ∞

s
2t( f (t) − 1) dt

)1/2

=
(

s2 + 2(c + d) + O(s2−β)
)1/2

= s
(

1 + 2(d + c)s−2 + O(s−β)
)1/2

= s
(

1 + (d + c)s−2 + O(s−min{β,4})
)

= s + (d + c)s−1 + O(s−min{β−1,3}) as s → ∞.

Thus,

h(s) :=
(∫ s

0
2t f (t) dt + 2c

)1/2

− s − (d + c)s−1 = O(s−min{β−1,3})

as s → ∞. It follows that

wc(r) =
∫ r

1

(∫ s

0
2t f (t) dt + 2c

)1/2

ds +
∫ 1

0

(∫ s

0
2t f (t) dt + 2c

)1/2

ds

=1

2
r2 + (d + c) ln r − 1

2
+

∫ ∞

1
h(s) ds −

∫ ∞

r
h(s) ds

+
∫ 1

0

(∫ s

0
2t f (t) dt + 2c

)1/2

ds

=1

2
r2 + (d + c) ln r + O(1) as r → ∞. (13)
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Let

c̄ = d − d.

By (12),

det∇2wc̄ = 2π c̄δ0 + f in R
2.

Since

d = 1

2π

(∫

Ω

dν −
∫

Ω

dx +
∫

R2\Ω
( f − 1) dx

)

and

d = 1

2π

(

−
∫

Ω

dx +
∫

R2\Ω
( f − 1) dx

)

,

we have

c̄ = 1

2π

(∫

Ω

dν +
∫

R2\Ω
( f − f ) dx

)

.

For any large R > ρ, choose λc̄(R) such that

wc̄(R) + λc̄(R) = R2

2
+ d ln R.

By (13), λc̄(R) is uniformly bounded in R > ρ.
Let uR ∈ C(B̄R) be the unique Alexandrov solution of

{

det∇2uR = ν in BR,

uR = R2

2 + d ln R on ∂BR; (14)

see Theorem 1.6.2 in [11].
We claim that uR(0) ≥ λc̄(R).
Indeed, for any large R and any c > c̄, let λc(R) ∈ R such that

wc(R) + λc(R) = R2

2
+ d ln R.

If uR(0) ≤ λc(R), then, considering that for any Borel set E ⊂ BR\{0},

|∂uR(E)| =
∫

E
dν ≥

∫

E
f dx = |∂(wc + λc(R))(E)|,

it follows from the comparison principle that uR(x) ≤ wc(|x |) + λc(R) for all x ∈ BR . By
Lemma 1.4.1 in [11], we have ∂(wc + λc(R))(BR) ⊂ ∂uR(BR). However, note that when
c > c̄,

|∂(wc + λc(R))(BR)| =
∫

BR

f dx + 2πc

>

∫

Ω

dν +
∫

BR\Ω
f dx +

∫

R2\BR

( f − f ) dx

≥
∫

BR

dν = |∂uR(BR)|.
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Hence, we have derived a contradiction. It follows that uR(0) > λc(R). For any fixed R,
since wc(R) is continuous with respect to c, λc(R) is continuous with respect to c. Sending
c → c̄, we have

uR(0) ≥ λc̄(R) (15)

for any large R.
Let vR(x) = wc̄(|x |) + uR(0). By (15), we have

vR ≥ wc̄(R) + λc̄(R) = uR on ∂BR,

and vR(0) = uR(0). By the comparison principle, we have

vR ≥ uR in BR . (16)

Since uR is a convex function, there exists a vector pR(0) such that

uR(x) ≥ pR(0)x + uR(0) for all x ∈ BR .

By (16), we have

pR(0)x ≤ wc̄(|x |) + uR(0) − uR(0) ≤ wc̄(|x |).
It follows that |pR(0)| ≤ C for some constant C independent of R.

Let ũ R(x) = uR(x) − (pR(0)x + uR(0)). Note that

0 ≤ ũ R(x) ≤ vR(x) − (pR(0)x + uR(0))

= wc̄(|x |) + uR(0) − pR(0)x − uR(0)

≤ wc̄(|x |) + C |x |
and

det∇2ũ R = ν in BR .

By the Lipschitz estimates for convex functions (see, e.g., Theorem 6.7 in [7]), for any
K ⊂⊂ BR/2,

||ũ R ||C0,1(K ) ≤ C(K ),

where C(K ) is a constant independent of R. Then after passing to a subsequence, denoted
by ũ Ri , we have

ũ Ri → u∞ in Cα
loc(R

2)

where α ∈ (0, 1) for some convex function u∞ satisfying

0 ≤ u∞(x) ≤ wc̄(|x |) + C |x | = 1

2
|x |2 + C |x | + d ln |x | + O(1) (17)

and

det∇2u∞ = ν in R
2

in the Alexandrov sense. It follows from Corollary 1.1 in [1] that there exist A ∈ A, D ∈ R

and a linear function �(x) such that

lim sup
|x |→∞

|x | j+σ

∣
∣
∣
∣
∇ j

(

u∞(x) −
(
1

2
x ′Ax + D ln

√
x ′Ax + �(x)

))∣
∣
∣
∣
< ∞, (18)

123
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for j = 0, 1, 2, 3, 4, and σ ∈ (0,min{β − 2, 2}). By (17), A can not have one eigenvalue
greater than 1. This forces that all the eigenvalues equal 1 and thus A = I .

To prove D = d , we use the argument of proving (1.9) in [3]. Let u = u∞ − �. We first
assume that u ∈ C3(R2) and write

E(x) = u(x) −
(
1

2
|x |2 + D ln |x |

)

,

and

det∇2u = ∂1(u1u22) − ∂2(u1u12).

By (18), as |x | → ∞,

|E(x)| = O(|x |−σ ), |DE(x)| = O(|x |−σ−1), |D2E(x)| = O(|x |−σ−2).

Integrating the equation of u on BR and integrating by parts, we have, as R → ∞,
∫

BR

dν =
∫

BR

∂1(u1u22) − ∂2(u1u12) dx

=
∫

|x |=R

[

u1u22
x1
|x | − u1u12

x2
|x |

]

dx

=
∫

|x |=R

[(

x1 + Dx1
|x |2 + E1

) (

1 + D
|x |2 − 2x22

|x |4 + E22

)

x1
|x |

−
(

x1 + Dx1
|x |2 + E1

)(

−2D
x1x2
|x |4 + E12

)
x2
|x |

]

dx

=
∫

|x |=R

(

x1 + Dx1
|x |2

) (
x1
|x | + Dx1

|x |3
)

dx + O(R−σ )

=
∫

|x |=R

(

x21
|x | + 2Dx21

|x |3
)

dx + O(R−σ )

= πR2 + 2πD + O(R−σ ),

where Ei = ∂i E and Ei j = ∂2i j E for i, j = 1, 2. Sending R to infinity, we have D = d .

For u ∈ C(R2), by (18) we know that u is of C4 near ∂BR for large R. Let uε ∈ C∞(R2)

be a family of convex functions such that uε → u in C0
loc(R

2), and uε → u in C4 near
∂BR as ε → 0. Let η be a continuous cutoff function satisfying η = 1 in BR , and η = 0 in
R
2\BR+1. By Lemma 1.2.3 in [11],

lim
ε→0

∫

R2
η det∇2uε dx =

∫

R2
η dν.

Note that

lim
ε→0

∫

BR+1\BR

η det∇2uε dx =
∫

BR+1\BR

η dν.

Subtracting the two equalities above, we have

lim
ε→0

∫

BR

det∇2uε dx =
∫

BR

dν.
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As shown above,
∫

BR

det∇2uε dx =
∫

|x |=R

[

uε1uε22
x1
|x | − uε1uε12

x2
|x |

]

dx .

Sending ε → 0, we have
∫

BR

dν =
∫

|x |=R

[

u1u22
x1
|x | − u1u12

x2
|x |

]

dx

= πR2 + 2πD + O(R−σ ).

Sending R to infinity, again we have D = d . Then u is the solution we want.
Therefore, Theorem 2 is proved. ��

3 Proof of Theorem 3

When f ≡ 1 outside Ω , Theorem 3 was proved by [16].
We only show the existence part as the uniqueness part follows from the comparison

principle. Due to the affine invariance, we assume that A = I , � = 0 and Ω ⊂ B 1
2
. We

assume ν = f dx in R
n and f ∈ C∞(Rn) is positive and satisfies (6). The bounds we

will obtain are independent of the smoothness and the lower bound of f in B1/2. By an
approximation argument, Theorem 3 will follow.

Next we are going to construct sub- and super- solutions by following the arguments
in [3,16].

Let η be a nonnegative smooth function supported in B 1
4
satisfying

∫

B1
η dx = 1, and v1

be the smooth solution of
{

det∇2v1 = f + aη in B1,

v1 = 0 on ∂B1,

where a > 0 will be chosen later. It follows from Alexandrov’s maximum principle (see,
e.g., Theorem 1.4.2 in [11]) that

v1 ≥ −c(n)|∂v1(B1)| 1n = −c(n)

(∫

B1
f (x) dx + a

) 1
n =: −c0 in B 1

2
,

where c(n) is a constant depending only on the dimension n.
Let r = |x | and define

f̄ (r) = max|x |=r
f (x), r ≥ 1

2
.

Let c1 = ∫ 1
1
2
(
∫ s
1 ntn−1 f̄ (t) dt)

1
n ds, K = c0

c1
,

v2(r) =
{

K
∫ r
1

(∫ s
1 ntn−1 f̄ (t) dt

) 1
n ds, r ≥ 1

2 ,

−c0, 0 ≤ r < 1
2 .

First of all, v1 ≥ v2 in B̄ 1
2
. Secondly, by choosing a large such that c0 ≥ c1, we have

det∇2v2 = Kn f̄ ≥ f = det∇2v1 in B1\B̄ 1
2
,

123
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and v1 = v2 = 0 on ∂B1. By the comparison principle, we have v1 ≥ v2 in B1\B̄ 1
2
. So

v1 ≥ v2 in B1.
Let

u(x) =
{

∫ r
1

(∫ s
1 ntn−1 f̄ (t) dt + K

) 1
n ds, r ≥ 1,

v1, 0 ≤ r < 1.

Then u ∈ C0(Rn) ∩ C∞(B1) ∩ C∞(Rn\B̄1), u is locally convex in R
n\B1,

det∇2u = f̄ in R
n\B1,

det∇2u ≥ f in B1.

Moreover, we have u ≥ v2 in B1, and u = v2 on ∂B1, then

lim
r→1− ∂r u ≤ lim

r→1− ∂rv2.

Since

lim
r→1− ∂rv2 = 0 < (K )

1
n = lim

r→1+ ∂r u,

we have
lim

r→1− ∂r u < lim
r→1+ ∂r u. (19)

It follows that u is convex in R
n . By a simple computation,

sup
Rn

∣
∣
∣u(x) − 1

2
|x |2

∣
∣
∣ ≤ C

for some C > 0 depending only on n,
∫

B1
f (x) dx and f̄ outside B1/2.

Define

f (r) = min|x |=r
f (x), r ≥ 1

2
,

and

ū(x) =
⎧

⎨

⎩

∫ |x |
1

(∫ s
1 ntn−1 f (t) ds

) 1
n
ds, |x | > 1,

0, |x | ≤ 1.

It follows that
lim

r→1− ∂r ū = lim
r→1+ ∂r ū = 0, (20)

and

sup
Rn

∣
∣
∣ū(x) − 1

2
|x |2

∣
∣
∣ < +∞.

By the above construction, we have

β+ := sup
Rn

( |x |2
2

− ū(x)

)

< +∞ and β− := inf
Rn

( |x |2
2

− u(x)

)

> −∞.

Moreover, β+ and β− depend only on n,
∫

B1
f (x) dx and f outside B1/2.
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For R > 1, let uR be the unique convex smooth solution of
{

det∇2uR = f in BR,

uR = R2

2 on ∂BR .

We claim that
u(x) + β− ≤ uR(x) ≤ ū(x) + β+, x ∈ BR . (21)

To establish the first inequality, let x be a maximum point of the function

h(x) := u(x) + β− − uR(x)

in B̄R . Since

det∇2u ≥ det∇2uR in BR\B̄1

and

det∇2u ≥ det∇2uR in B1,

we have, by the strong maximum principle, x ∈ ∂BR or x ∈ ∂B1. If x ∈ ∂BR , then by the
definition of β−,

h(x) ≤ u(x) + β− − uR(x) ≤ |x |2
2

− R2

2
= 0 in B̄R

and the inequality holds. If x ∈ ∂B1, then considering the smoothness of uR , it contradicts
to the condition (19). Hence, the first inequality of (21) holds. For the second inequality, let
x̄ be a minimum point of the function

h̄(x) := ū(x) + β+ − uR(x)

in BR . Similar to the above, x̄ ∈ ∂BR or x̄ ∈ ∂B1. If x̄ ∈ ∂BR , then by the definition of β+,

h̄(x) ≥ ū(x̄) + β+ − uR(x̄) ≥ |x̄ |2
2

− R2

2
= 0 in B̄R

and the inequality holds. If x̄ ∈ ∂B1, in view of (20) and the equation uR satisfies, this is
impossible. Therefore, the inequality (21) is proved.

By (21) and the Lipschitz estimate for convex functions (see Theorem 6.7 in [7]), we have,
along a subsequence Ri → ∞,

uRi → u∞ in Cα
loc(R

n),

where 0 < α < 1, u∞ satisfies det∇2u∞ = f in R
n in the Alexandrov sense and

u(x) + β− ≤ u∞(x) ≤ ū(x) + β+ in R
n,

which particularly implies that

sup
Rn

∣
∣
∣u∞(x) − 1

2
|x |2

∣
∣
∣ ≤ C (22)

for someC > 0 depending only on n,
∫

B1
f (x) dx and f outside B1/2. ByBao–Li–Zhang [1],

there exist A ∈ A and a linear function �(x) such that (8) holds for j = 0, 1, 2, 3, 4.
Considering (22), we have A = I and � = c̃ for some constant c̃. Then

u = u∞ − c̃

is the solution we want.
Therefore, we complete the proof of Theorem 3.
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