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In this paper, we use the Perron method to prove the existence of viscosity solutions to
a class of Monge–Ampère equations on exterior domains in Rn(n ≥ 2) with prescribed
asymptotic behavior at infinity. This problem comes from the study of Gauss curvature
flow and its generalization, the flow by powers of Gauss curvature.
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1. Introduction and main results

Let Mt , t ∈ [0, T ), be a family of hypersurfaces given by smooth immersions Xt = X(·, t) : M → Rn+1, where M is a
given n-dimensional manifold. The hypersurfacesMt are said to move by Kα-flow for some α > 0 if

∂X
∂t

(p, t) = −Kα(p, t)n⃗(p, t), ∀ (p, t) ∈ M × (0, T ), (1.1)

where K(·, t) is the Gauss curvature of Mt and n⃗(·, t) is the unit normal vector field of Mt . We use the conventions that for
a complete nonplanar convex hypersurface, n⃗ points out of the convex region defined by the hypersurface, and the second
fundamental form of such a hypersurface is nonnegative. The flow (1.1) was studied by Firey in [1] and Tso in [2] for α = 1,
Chow in [3] for α =

1
n , and Andrews in [4] for general α > 0.

Locally, the Kα-flow of hypersurfaces in Rn+1 can be described by the nonlinear parabolic equation,

∂V
∂t

=


1 + |DV |2


det(D2V )

(1 + |DV |2)
n+2
2

α

. (1.2)

A function v = v(y) is called a translating solution to the Kα-flow if the function V (y, t) = v(y) + λt solves (1.2), where
λ is a positive constant that represents the translating velocity. Equivalently, v(y) is an initial hypersurface satisfying

det(D2v) = λ
1
α (1 + |Dv|

2)
n+2− 1

α
2 . (1.3)
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In [5], Urbas proved that for any α ∈ (0, 1
2 ] there is a convex radially symmetric solution v ∈ C∞(Rn) to (1.3). See

Theorem 3 in [5]. To obtain this result, the author first used the Legendre transform and reduced Eq. (1.3) to the equation

det(D2u) = λ−β(1 + |x|2)−γ , x ∈ Rn, (1.4)

where β =
1
α
, γ =

n+2−β

2 and u = v∗ is the Legendre transform of v, i.e., for v : Ω → R (Ω ⊆ Rn), v∗
: Rn

→ R is defined
by

v∗(x) = sup
y∈Ω

(y · x − v(y)).

Then he found an entire convex radially symmetric solution to (1.4).
For the special case λ = 1, γ = 0 (which is equivalent to α =

1
n+2 ), (1.4) is reduced to the equation

det(D2u) = 1, x ∈ Rn, (1.5)
which is well understood. The results of Jörgens [6] for n = 2, Calabi [7] for n ≤ 5, Pogorelov [8] and Cheng and Yau [9] for
all dimensions respectively, assert that any convex solution of (1.5) must be a quadratic polynomial.

In [10], Caffarelli and Li investigated the asymptotic behavior of solutions to the equation

det(D2u) = g, (1.6)
where g ∈ C0(Rn) is bounded and supp(g−1) is bounded, and proved the existence of solutions to (1.5) in exterior domains
ofRn (n ≥ 3)with prescribed asymptotic behavior at infinity. In dimension two, similar Dirichlet problemof (1.5) on exterior
domainswas studied by Ferrer et al. in [11,12] using complex variablemethods. Recently,Wang and Bao [13] also considered
the exterior problem of (1.5) for n = 2, with an appropriate asymptotic behavior at infinity. They obtained the necessary
and sufficient conditions on existence and convexity of radial solutions.

Chou andWang [14] constructed infinitely many entire solutions to (1.6) under the assumption that g(x) is between two
positive constants, which does not hold for Eq. (1.4) since the right side hand of (1.4) with γ ≠ 0 does not have any positive
lower bound or positive upper bound. Recently, Jian and Wang [15] constructed infinitely many entire solutions to (1.6)
under the doubling condition:

E
g(x)dx ≤ b


E
2

g(x)dx

for any ellipsoid E centered at the origin and some b independent of E. By this result, they proved that for any α ∈ (0, 1
2 ),

there exist infinitely many smooth, nonrotationally symmetric solutions to (1.4).
In this paper, we re-find the radially symmetric solution to (1.4) by ODE method, obtain the asymptotic behavior of the

solutions and then prove the existence of viscosity solutions to (1.4) on the domain Rn
\ D with prescribed asymptotic

behavior at infinity for any smooth bounded strictly convex domain D.
For the reader’s convenience, we recall the definition of viscosity solutions to the equation

det(D2u) = g in Ω, (1.7)
see [16,17] and the references therein.

Definition 1.1. Let Ω be an open subset of Rn, g ∈ C0(Ω) a positive function, and u ∈ C0(Ω) a locally convex function.
(i) u is a viscosity subsolution of (1.7) if for every x̄ ∈ Ω and every function ϕ ∈ C2(Ω) satisfying

ϕ ≥ u on Ω and ϕ(x̄) = u(x̄),

we have

det(D2ϕ(x̄)) ≥ g(x̄).
(ii) u is called a viscosity supersolution of (1.7) if for every x̄ ∈ Ω and every convex function ϕ ∈ C2(Ω) satisfying

ϕ ≤ u on Ω and ϕ(x̄) = u(x̄),

we have

det(D2ϕ(x̄)) ≤ g(x̄).
(iii) u is called a viscosity solution of (1.7), if u is both a viscosity subsolution and a viscosity supersolution of (1.7).

Remark 1.1. In the definition of viscosity subsolution, ϕ is not required to be convex. But for the Monge–Ampère equation
(1.7), Urbas proved the definition in which ϕ is required to be convex is equivalent to the one in which ϕ is not required to
be convex, see the remarks (ii) in [18].

The main result of this paper is the following theorem.

Theorem 1.1. Let D be a smooth, bounded, strictly convex open subset of Rn (n ≥ 2), φ ∈ C2(∂D). Assume λ > 0 and
−∞ < γ < n(n−2)

2(n−1) . Then for any given b ∈ Rn, there exists some constant c∗, depending only on n, b, λ, γ ,D and φ, such
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that for every c > c∗ there exists a locally convex viscosity solution u ∈ C0(Rn
\ D) to the Dirichlet problem

det(D2u) = λ−β(1 + |x|2)−γ , in Rn
\ D̄,

u = φ, on ∂D.
(1.8)

Moreover, u satisfies

u(x) ≤ f0(|x|) + b · x + c in Rn
\ D (1.9)

and lim inf
|x|→∞

|x|n−2−2γ+
2γ
n [u(x) − f0(|x|) − b · x − c] exists and is finite, (1.10)

where f0(|x|) is the radially symmetric solution of (1.4) in Rn with f0(0) = f ′

0(0) = 0, given explicitly by (2.3).

Remark 1.2. We can obtain u ∈ C0(Rn
\ D) ∩ C∞(Rn

\ D̄) by the regularity theory of the Monge–Ampère equation, see
[17,19].

Remark 1.3. It is necessary that c has lower bound and γ < n(n−2)
2(n−1) by the counterexamples in the last section.

When γ = 0, λ = 1, the result is compatible with Theorem 1.5 in [10].
The paper is organized as follows. In Section 2, we re-find the radially symmetric solution to (1.4) by the ODE method,

and show the asymptotic behavior of the solution at infinity for α ∈ (0, 1
2 ). In Section 3, we prove Theorem 1.1 by the

Perron method. Finally, in Section 4, we use an example to compute c∗ explicitly and show that the large c is necessary in
Theorem 1.1. Then we show that it is necessary for γ having a upper bound by discussing radially symmetric solutions to
the exterior Dirichlet problem in R2 with n(n−2)

2(n−1) ≤ γ < n
2 , i.e., 0 ≤ γ < 1.

2. Radially symmetric solutions of (1.4)

Let u(x) = f (|x|), then

det(D2u(x)) =


f ′(r)
r

n−1

f ′′(r), r = |x|.

See (3.1) in [20]. We rewrite (1.4) as

(f ′(r))n−1f ′′(r) = λ−βrn−1(1 + r2)−γ . (2.1)

(2.1) is equivalent to

((f ′(r))n)′ = nλ−βrn−1(1 + r2)−γ .

Integrating the above equation on [0, r] for r > 0, we obtain

(f ′(r))n = nλ−β

 r

0
sn−1(1 + s2)−γ ds + (f ′(0))n.

Assume f ′(0) = 0, f ′(r) ≥ 0. Then

f ′(r) = (nλ−β)
1
n

 r

0
sn−1(1 + s2)−γ ds

 1
n

,

which, together with (2.1), implies

f ′′(r) = n
1−n
n λ−

β
n (1 + r2)−γ


rn r

0 sn−1(1 + s2)−γ ds

 n−1
n

, r > 0.

Since

lim
r→0

rn r
0 sn−1(1 + s2)−γ ds

= lim
r→0

nrn−1

rn−1(1 + r2)−γ
= n,

we have

lim
r→0

f ′′(r) = n
1−n
n λ−

β
n lim

r→0
(1 + r2)−γ

· lim
r→0


rn r

0 sn−1(1 + s2)−γ ds

 n−1
n

= λ−
β
n
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and

lim
r→0

f ′(r)
r

= lim
r→0

f ′′(r) = λ−
β
n (2.2)

by L’Hospital’s Rule.
If we define f ′′(0) = λ−

β
n , then f ∈ C2([0, +∞)) and f ′′(r) > 0 for r ∈ [0, ∞), which together with (2.2) and f ′(r)

r > 0
for r > 0, implies that u ∈ C2(Rn) is convex. By the regularity theory ofMonge–Ampère equations, see [19], and the standard
Schauder theory of linear elliptic equations, see [21], we have u ∈ C∞(Rn).

Denote f0(r) is the solution of (2.1) with f0(0) = 0, f ′

0(0) = 0, then

f0(r) = (nλ−β)
1
n

 r

0

 τ

0
sn−1(1 + s2)−γ ds

 1
n

dτ . (2.3)

Next, we assume −∞ < γ < n
2 and study the asymptotic behavior of f0(r) at infinity. It follows from L’Hospital’s Rule

that

lim
τ→∞

 τ

0 sn−1(1 + s2)−γ ds
τ n−2γ

= lim
τ→∞

τ n−1(1 + τ 2)−γ

(n − 2γ )τ n−1−2γ

=
1

n − 2γ
lim

τ→∞

τ 2γ

(1 + τ 2)γ

=
1

n − 2γ
,

i.e.,  τ

0
sn−1(1 + s2)−γ ds =

1
n − 2γ

τ n−2γ
+ o(τ n−2γ ), as τ → ∞. (2.4)

This, together with (2.3) implies

f0(r) =


n

n − 2γ

 1
n n
2n − 2γ

λ−
β
n r2−

2γ
n + o


r2−

2γ
n


, as r → ∞. (2.5)

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. By subtracting a linear function from u, we need only to prove the theorem for
b = 0. The proofwill be completed by several lemmas. The following comparison principle is well known, see [5, Proposition
2.1].

Lemma 3.1 ([10]). Let Ω be a bounded open subset of Rn (n ≥ 2), and let g ∈ C0(Ω) be a positive function. Assume that
w ∈ C0(Ω̄) is a locally convex viscosity subsolution (supersolution) of

detD2w = g, in Ω,

and v ∈ C0(Ω̄) ∩ C2(Ω) is a locally convex supersolution (subsolution) of

detD2v = g, in Ω.

Assume also that

w ≤ v (w ≥ v) on ∂Ω.

Then

w ≤ v (w ≥ v) on Ω̄.

Next, we prove the existence of the Dirichlet problem on bounded convex domain, which is necessary to the proof of
Theorem 1.1. The method of proof follows from Lemma A.3 in [10].
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Lemma 3.2. Let Ω be a smooth, bounded, strictly convex subset of Rn(n ≥ 2). Assume that u ∈ C0(Ω̄) is a convex viscosity
subsolution to det(D2u) ≥ λ−β(1 + |x|2)−γ .

Then the Dirichlet problem
det(D2u) = λ−β(1 + |x|2)−γ , in Ω,
u = u, on ∂Ω

has a unique convex viscosity solution u ∈ C0(Ω̄) ∩ C∞(Ω).

Proof. Uniqueness follows from the comparison principle. Let ϕi ∈ C∞(∂Ω) satisfy

u < ϕi ≤ u +
1
i

on ∂Ω and ϕi → u in C0(Ω̄).

It follows from [22] that there exists a unique, strictly convex solution ui ∈ C∞(Ω̄) of
det(D2ui) = λ−β(1 + |x|2)−γ , in Ω,
u = ϕi, on ∂Ω.

By the comparison principle, we have

u ≤ ui ≤ hi on Ω̄,

where hi is the harmonic function on Ω with boundary value ϕi. We can see that {ui} are uniformly bounded. This, together
with the convexity of ui, implies that |∇ui| is bounded on compact subsets of Ω . So, after passing to a subsequence, ui
uniformly converges on compact subsets of Ω to some convex function u ∈ C0(Ω). Consequently, u is a viscosity solution
to det(D2u) = λ−β(1 + |x|2)−γ .

On the other hand, it is obvious that u ≤ u ≤ h, where h is the harmonic function on Ω with boundary value h = u. It
follows that u can be extended as a continuous function on Ω̄ with u = u on ∂Ω . By the regularity theory of Monge–Ampère
equations, see [19], and the standard Schauder theory of linear elliptic equations, see [21], we obtain u ∈ C∞(Ω). The lemma
is established. �

Lemma 3.3. Let Ω be a domain inRn and g ∈ C0(Rn) be a nonnegative function. Suppose that convex functions v ∈ C0(Ω̄), u ∈

C0(Rn) satisfy

detD2v ≥ g(x), x ∈ Ω,

detD2u ≥ g(x), x ∈ Rn

in the viscosity sense, respectively, and

u ≤ v, x ∈ Ω, (3.1)
u = v, x ∈ ∂Ω. (3.2)

Set

w(x) =


v(x), x ∈ Ω,
u(x), x ∈ Rn

\ Ω.

Then, w ∈ C0(Rn) is a convex function and satisfies

detD2w ≥ g(x), x ∈ Rn

in the viscosity sense.

Proof. Let x̄ ∈ Rn, ϕ ∈ C2(Rn) satisfy w(x̄) = ϕ(x̄),

w(x) ≤ ϕ(x), x ∈ Rn. (3.3)

If x̄ ∈ Ω , we have

v(x̄) = w(x̄) = ϕ(x̄), v(x) = w(x) ≤ ϕ(x), x ∈ Ω.

Therefore,

det(D2ϕ(x̄)) ≥ g(x̄).

If x̄ ∈ Rn
\ Ω , we have

u(x̄) = w(x̄) = ϕ(x̄), u(x) = w(x) ≤ ϕ(x), x ∈ Rn
\ Ω.
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By (3.1)–(3.3),

u(x) ≤ ϕ(x), x ∈ Rn.

Therefore,

det(D2ϕ(x̄)) ≥ g(x̄).

The lemma is completed. �

The following lemma can be found in [10].

Lemma 3.4. Let D ⊂ Rn be a bounded strictly convex domain, ∂D ∈ C2, ϕ ∈ C2(∂D). Then there exists a constant C, depending
only on n, ϕ and D, such that, for every ξ ∈ ∂D, there exists x̄ξ ∈ Rn satisfying

|x̄ξ | ≤ C, wξ (ξ) = ϕ(ξ) and wξ < ϕ on ∂D \ {ξ},

where

wξ (x) := ϕ(ξ) +
1
2
|x − x̄ξ |

2
−

1
2
|ξ − x̄ξ |

2, x ∈ Rn.

Definition 3.5. The subfunction class Sc for some constant c is defined as follows: a function v is in Sc if and only if

(1) v ∈ C0(Rn
\ D) and v ≤ φ on ∂D;

(2) v is a locally convex viscosity subsolution of (1.4) in Rn
\ D̄;

(3) v(x) ≤ f0(|x|) + c, ∀ x ∈ Rn
\ D.

Lemma 3.6. There exists some constant c∗, depending only on n, γ , λ and D, such that, for any c > c∗, Sc ≠ ∅.

Proof. Fix R2 > R1 > 1 such that D ⊂⊂ BR1 and R2 > 3R1. Let

C = max
x∈BR2+1

λ−β(1 + |x|2)−γ > 0.

By Lemma 3.4, we know that

vξ (x) := C
1
n wξ (x) = C

1
n ϕ(ξ) +

1
2
C

1
n |x − x̄ξ |

2
−

1
2
C

1
n |ξ − x̄ξ |

2

satisfies the equation det(D2u) = C in Rn and

vξ (ξ) = φ(ξ), vξ < φ on ∂D \ {ξ},

where φ = C
1
n ϕ. In particular, vξ is a convex smooth subsolution of (1.4) on BR2+1. Hence,

V (x) := sup
ξ∈∂D

vξ (x), x ∈ BR2+1

is a convex viscosity subsolution of (1.4) in BR2+1 and satisfies

V (ξ) ≤ φ(ξ), ξ ∈ ∂D.

By the definition of V , for any ξ ∈ ∂D,

V (ξ) ≥ vξ (ξ) = φ(ξ).

Therefore,

V (ξ) = φ(ξ) on ∂D.

On the other hand, for a ≥ 0, define

wa(x) := inf
x∈BR1

V (x) +


|x|

2R1
[g(τ ) + a]

1
n dτ ,

where

g(τ ) = nλ−β

 τ

0
sn−1(1 + s2)−γ ds. (3.4)
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From Section 2 we can see that wa ∈ C0(Rn) is a convex viscosity solution of (1.4) in Rn. Obviously,

wa(x) ≤ V (x), |x| ≤ R1.

Since R2 > 3R1, we choose a1 > 0 large enough such that for a ≥ a1,

wa(x) ≥ inf
x∈BR1

V (x) +

 3R1

2R1
[g(τ ) + a]

1
n dτ ≥ 1 + V (x), |x| = R2. (3.5)

By the definition of wa,

wa(x) = f0(|x|) + inf
x∈BR1

V (x) +


|x|

2R1
[g(τ ) + a]

1
n dτ −


|x|

0
[g(τ )]

1
n dτ ,

= f0(|x|) + inf
x∈BR1

V (x) − f0(2R1) +


∞

2R1
(g(τ ))

1
n


1 +

a
g(τ )

 1
n

− 1


dτ

−


∞

|x|
(g(τ ))

1
n


1 +

a
g(τ )

 1
n

− 1


dτ . (3.6)

It follows from (2.4) and −∞ < γ < n(n−2)
2(n−1) that


∞

2R1
(g(τ ))

1
n


1 +

a
g(τ )

 1
n

− 1


dτ =


n

n − 2γ

 1−n
n

λ
β(n−1)

n
a
n


∞

2R1


τ 1−n+2γ−

2γ
n + o


τ 1−n+2γ−

2γ
n


dτ < +∞

and 
∞

|x|
(g(τ ))

1
n


1 +

a
g(τ )

 1
n

− 1


dτ =


n

n − 2γ

 1−n
n

λ
β(n−1)

n
a
n


∞

|x|
τ 1−n+2γ−

2γ
n + o


τ 1−n+2γ−

2γ
n


dτ

= −


n

n − 2γ

 1−n
n

λ
β(n−1)

n
a

2n − 2γ − n2 + 2nγ
|x|2−n+2γ−

2γ
n + o


|x|2−n+2γ−

2γ
n


,

as |x| → ∞.
Let

µ(a) := inf
x∈BR1

V (x) − f0(2R1) +


∞

2R1
(g(τ ))

1
n


1 +

a
g(τ )

 1
n

− 1


dτ .

It is clear that µ(a) is continuous, monotonic increasing for a, and µ(a) → ∞ as a → ∞. Also,

wa(x) ≤ f0(|x|) + µ(a), a ≥ a1, x ∈ Rn
\ D. (3.7)

Moreover,

wa(x) = f0(|x|) + µ(a) + O

|x|2−

2γ
n −n+2γ


, as |x| → ∞. (3.8)

We choose a2 > 0 large enough such that for a > a2,

V (x) ≤ f0(|x|) + µ(a), |x| ≤ R2. (3.9)

Set a∗
= max{a1, a2}, then for any a > a∗, (3.5), (3.7) and (3.9) hold.

Define

ua(x) =


max{V (x), wa(x)}, |x| ≤ R2,
wa(x), |x| ≥ R2.

(3.10)

Then

ua(x) = V (x) = φ(x), x ∈ ∂D. (3.11)

By Lemma 3.3, we know that ua is a convex viscosity subsolution of (1.4) in Rn. Since µ(a) is continuous and monotonic
increasing for a and µ(a) → ∞ as a → ∞, then for c > c∗

:= µ(a∗), there is a number a > a∗, such that c = µ(a).



3636 H. Ju et al. / Nonlinear Analysis 75 (2012) 3629–3640

By (3.7) and (3.9), we have, for c > c∗, a = µ−1(c),

ua(x) ≤ f0(|x|) + c, ∀ x ∈ Rn.

Moreover, by (3.8) we have

ua(x) = wa(x) = f0(|x|) + c + O

|x|2−

2γ
n −n+2γ


, as |x| → ∞. (3.12)

Therefore, for c > c∗, Sc ≠ ∅. �

Define

uc(x) = sup{v(x) : v ∈ Sc}, x ∈ Rn
\ D̄, c > c∗.

Lemma 3.7. We have
(i) uc(x) ≤ f0(|x|) + c, x ∈ Rn

\ D̄;
(ii) uc is a locally convex viscosity subsolution of (1.4) in Rn

\ D̄;
(iii) uc can be extended to a continuous function on Rn

\ D with uc = φ on ∂D;
(iv) uc is a viscosity solution of (1.4) in Rn

\ D̄.

Proof. (i) follows from the definition of uc , since v(x) ≤ f0(|x|) + c for all v ∈ Sc . (ii) holds since uc locally is the sup over a
family of convex viscosity subsolutions.

Next, we prove (iii). For ξ0 ∈ ∂D. By Lemma 3.6, we know that for c > c∗, ua ∈ Sc with a = µ−1(c). Therefore,

uc(x) ≥ ua(x) in Rn
\ D̄,

which, together with (3.11) and the continuity of ua in Rn, implies

lim inf
x→ξ0

uc(x) ≥ ua(ξ0) = φ(ξ0). (3.13)

On the other hand, we claim that lim supx→ξ0
uc(x) ≤ φ(ξ0). Indeed, for any v ∈ Sc, v is a viscosity subsolution of (1.4)

in Rn
\ D̄, i.e., for every x̄ ∈ Rn

\ D̄ and every function ϕ ∈ C2(Rn
\ D̄) satisfying

ϕ ≥ v on Rn
\ D̄, ϕ(x̄) = v(x̄),

we have det(D2ϕ(x̄)) ≥ λ−β(1 + |x̄|2)−γ . By Remark 1.3.2 in [17], we obtain D2ϕ(x̄) ≥ 0. Thus,

1ϕ(x̄) ≥ n[det(D2ϕ(x̄))]
1
n ≥ nλ−

β
n (1 + |x̄|2)−

γ
n .

Therefore, v is a viscosity subsolution of 1v = nλ−
β
n (1 + |x|2)−

γ
n in Rn

\ D̄ and v ≤ φ on ∂D, v ≤ uc in Rn
\ D̄.

Choose a ball BR(0), such that D ⊂⊂ BR(0). It is well known that the following Dirichlet problem1v+
= nλ−

β
n (1 + |x|2)−

γ
n , in BR(0) \ D̄,

v+
= φ, on ∂D,

v+
= uc, on ∂BR(0)

(3.14)

has a unique classical solution v+
∈ C2(BR(0) \ D̄) ∩ C0(BR(0) \ D), see [21]. By a comparison principle, we obtain, for any

v ∈ Sc ,

v ≤ v+ in BR(0) \ D.

Hence, uc ≤ v+ in BR(0) \ D̄ and

lim sup
x→ξ0

uc(x) ≤ v+(ξ0) = φ(ξ0).

This, together with (3.13), implies (iii).
Finally, we prove (iv). For x0 ∈ Rn

\ D̄, choose an ε > 0 such that Bε(x0) ⊂ Rn
\ D̄. By Lemma 3.2, there is a unique convex

viscosity solution ũ ∈ C0(Bε(x0)) ∩ C∞(Bε(x0)) to
det(D2ũ) = λ−β(1 + |x|2)−γ in Bε(x0),
ũ = uc on ∂Bε(x0).

We also know that f0(|x|) + c is a convex smooth solution to
det(D2(f0 + c)) = λ−β(1 + |x|2)−γ in Bε(x0),
f0 + c ≥ uc on ∂Bε(x0).

By the comparison principle, Lemma 3.1, ũ ≥ uc and ũ ≤ f0 + c on Bε(x0).
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Define

w̃(x) =


ũ(x), x ∈ Bε(x0),
uc(x), x ∈ Rn

\ (D ∪ Bε(x0)).

Clearly, w̃ ∈ Sc . So, by the definition of uc, uc ≥ w̃ on Bε(x0). It follows that uc ≡ ũ on Bε(x0). In this way, we have proved
(iv). �

Proof of Theorem 1.1. It follows from Lemma 3.7 that for any c > c∗, there exists a viscosity solution uc ∈ C0(Rn \ D) to

det(D2uc) = λ−β(1 + |x|2)−γ , in Rn
\ D̄ (3.15)

with uc = φ on ∂D. We need only to prove (1.10). By the definition of uc and Lemma 3.7, we have

ua ≤ uc ≤ f0(|x|) + c, in Rn
\ D,

where a = µ−1(c). Then the asymptotic behavior (1.10) follows from (3.12). The theorem is completed. �

4. Examples

Fix a ball BR(0) ⊂ Rn(n ≥ 2) and a constant d. We consider the existence of the radially symmetric locally convex
solution of the exterior Dirichlet problem

det(D2u) = λ−β(1 + |x|2)−γ , in Rn
\ BR(0),

u = d, on ∂BR(0),
(4.1)

with some appropriate asymptotic behavior at infinity. We will discuss the problem in the following cases.

(i) n ≥ 2 and −∞ < γ < n(n−2)
2(n−1) ;

(ii) n = 2 and 2k−2
2k−1 < γ < 2k

2k+1 for some positive integer k;
(iii) n = 2 and γ =

2k−2
2k−1 for some positive integer k.

Theorem 4.1 will tell us that it is necessary for c∗ having lower bound in Theorem 1.1, and Theorems 4.2 and 4.3 will
show the necessity of γ < n(n−2)

2(n−1) in Theorem 1.1.

Theorem 4.1. Assume −∞ < γ < n(n−2)
2(n−1) . The exterior problem (4.1) has a radially symmetric locally convex solution

u(x) = f (|x|) ∈ C0(Rn
\ BR(0)) ∩ C2(Rn

\ BR(0)) satisfying

u(x) ≤ f0(|x|) + C in Rn
\ BR(0) (4.2)

and

lim inf
|x|→∞

|x|n−2−2γ+
2γ
n [u(x) − f0(|x|) − C] exists and is finite (4.3)

for some C if and only if C ∈ [C0, ∞), where f0(|x|) is the radially symmetric locally convex solution of (1.4) in Rn with
f0(0) = f ′

0(0) = 0 and C0 := d − f0(R).

Proof. If u(x) = f (|x|) and u ∈ C(Rn
\ BR(0)) ∩ C2(Rn

\ BR(0)) is a radially symmetric locally convex solution of (4.1), then
f ′′(r) > 0, f ′(r)

r > 0 for r > R, r = |x| and

(f ′(r))n−1f ′′(r) = λ−βrn−1(1 + r2)−γ ,

which is equivalent to

((f ′(r))n)′ = nλ−βrn−1(1 + r2)−γ .

Integrating the above equation on [R, r] for r > R, we obtain

f ′(r) =


nλ−β

 r

R
sn−1(1 + s2)−γ ds + b

 1
n

,

where b = (f ′(R))n ≥ 0. Then we have by recalling the definition of g and f0,
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f (|x|) =


|x|

R


nλ−β

 τ

R
sn−1(1 + s2)−γ ds + b

 1
n

dτ + f (R)

=


|x|

R
[g(τ ) − g(R) + b]

1
n dτ + d

=


|x|

R
[g(τ )]

1
n +


|x|

R


[g(τ ) − g(R) + b]

1
n − [g(τ )]

1
n


dτ + d

= f0(|x|) − f0(R) +


|x|

R
(g(τ ))

1
n


1 +

b − g(R)
g(τ )

 1
n

− 1


dτ + d

= f0(|x|) + C(b) −


∞

|x|
(g(τ ))

1
n


1 +

b − g(R)
g(τ )

 1
n

− 1


dτ

= f0(|x|) + C(b) + O

|x|2−n+2γ−

2γ
n


, as |x| → ∞, (4.4)

where

C(b) := d − f0(R) +


∞

R
(g(τ ))

1
n


1 +

b − g(R)
g(τ )

 1
n

− 1


dτ .

If u(x) = f (|x|) satisfies (4.2), (4.3) for a constant C , then C = C(b) for some b by (4.4). Hence, we have

f (|x|) ≤ f0(|x|) + C(b), ∀ |x| ≥ R

and

f (|x|) = f0(|x|) + C(b) + O

|x|2−n+2γ−

2γ
n


, as |x| → ∞.

Again by (4.4) we see that b ≥ g(R). It is obvious that C(t) is continuous, monotonic increasing for t , and C(t) → ∞ as
t → ∞. Thus, C = C(b) ∈ [C(g(R)), ∞) = [C0, ∞).

On the other hand, by the properties of C(b), for any C ∈ [C0, ∞), there exists a number b ∈ [g(R), ∞) such that
C = C(b). Then we consider the function

u(x) :=


|x|

R


nλ−β

 τ

R
sn−1(1 + s2)−γ ds + b

 1
n

dτ + d.

It is easy to see that u ∈ C0(Rn
\ BR(0)) ∩ C2(Rn

\ BR(0)) satisfies (4.1)–(4.3) for the constant C . �

Theorem 4.2. Assume n = 2, 2k−2
2k−1 < γ < 2k

2k+1 for some positive integer k, the exterior problem (4.1) has a radially symmetric
locally convex solution u(x) = f (|x|) ∈ C0(R2

\ BR(0)) ∩ C2(R2
\ BR(0)) satisfying

lim sup
|x|→∞

|x|−θk+1
u(x) − f0(|x|) − c1a|x|θ1 − c2a2|x|θ2 − · · · − ckak|x|θk − c0

 < ∞, (4.5)

if and only if a ≥ −g(R), where

cm =

1
2

 1
2 − 1


· · · · ·

 1
2 − m + 1


λ

−β

1
2 −m


m![(1 − γ )(1 − 2m) + 1](1 − γ )

1
2 −m

, θm = (1 − γ )(1 − 2m) + 1 ∈ ( 0, 1) (4.6)

for m = 1, 2, . . . , k, θk+1 = (γ − 1)(2k + 1) + 1 < 0, and c0 depends only on d, R, γ , λ and a.

Proof. As above, if u(x) = f (|x|) and u ∈ C0(R2
\ BR(0)) ∩ C2(R2

\ BR(0)) is a radially symmetric locally convex solution of
(4.1), then f ′′(r) > 0, f ′(r)

r > 0 for r > R, r = |x| and

(f ′(r))2 = 2λ−β

 r

R
s(1 + s2)−γ ds + b = g(r) − g(R) + b,
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where g(τ ) = 2λ−β
 τ

0 s(1 + s2)−γ ds, b = (f ′(R))2. Clearly, the exterior problem (4.1) has a locally convex solution
u ∈ C0(R2

\ BR(0)) ∩ C2(R2
\ BR(0)) if and only if b ≥ 0, i.e., a := b − g(R) ≥ −g(R). By recalling the definition of f0,

we have

f (|x|) =


|x|

R


g(τ ) + a

 1
2

dτ + f (R)

= f0(|x|) − f0(R) +


|x|

R
(g(τ ))

1
2


1 +

a
g(τ )

 1
2

− 1


dτ + d.

From Taylor’s expansion, we have

g(τ ) = 2λ−β

 τ

0
s(1 + s2)−γ ds =

λ−β

1 − γ


(1 + τ 2)1−γ

− 1



=
λ−β

1 − γ
τ 2−2γ

+ O(1), as τ → ∞. (4.7)

Let θm = (1 − γ )(1 − 2m) + 1 for m = 1, 2, . . . , k + 1. Notice that 2k−2
2k−1 < γ < 2k

2k+1 , then 0 < γ < 1, 0 < θm < 1 for
m = 1, 2, . . . , k and θk+1 < 0. By (4.7) and Taylor’s expansion, we obtain

|x|

R
(g(τ ))

1
2


1 +

a
g(τ )

 1
2

− 1


dτ = c1a|x|(1−γ )(1−2)+1

+ c2a2|x|(1−γ )(1−4)+1
+ · · ·

+ ckak|x|(1−γ )(1−2k)+1
+ ĉ0 + O(|x|(γ−1)(2k+1)+1)

= c1a|x|θ1 + c2a2|x|θ2 + · · · + ckak|x|θk + ĉ0 + O(|x|θk+1)

as |x| → ∞, where cm defined by (4.6) for m = 1, 2, . . . , k, ĉ0 depends only on R, γ , λ and a. Let c0 = ĉ0 − f0(R) + d, we
obtain (4.5).

On the other hand, if a ≥ −g(R), then we consider the function

u(x) :=


|x|

R


2λ−β

 τ

0
s(1 + s2)−γ ds + a

 1
2

dτ + d.

It is easy to see that u ∈ C0(R2
\ BR(0)) ∩ C2(R2

\ BR(0)) satisfies (4.1) and (4.5). The theorem is completed. �

Theorem 4.3. Assume n = 2, γ =
2k−2
2k−1 for some positive integer k, the exterior problem (4.1) has a radially symmetric locally

convex solution u(x) = f (|x|) ∈ C0(R2
\ BR(0)) ∩ C2(R2

\ BR(0)) satisfying

lim sup
|x|→∞

|x|−θk+1
u(x) − f0(|x|) − c1a|x|θ1 − · · · − ck−1ak−1

|x|θk−1 − c̃kak ln |x| − c̃0
 < ∞ (4.8)

if and only if a ≥ −g(R), where cm and θm defined by (4.6) for m = 1, 2, . . . , k − 1,

c̃k =

1
2

 1
2 − 1


· · · · ·

 1
2 − k + 1


λ

−β

1
2 −k


k!(1 − γ )

1
2 −k

, θk+1 = (γ − 1)(2k + 1) + 1 < 0,

and c̃0 depends only on d, R, γ , λ and a.
Proof. The proof is similar to the proof of Theorem 4.2. We need only to establish (4.8). As above, we have

f (|x|) = f0(|x|) − f0(R) +


|x|

R
(g(τ ))

1
2


1 +

a
g(τ )

 1
2

− 1


dτ + d.

In view of γ =
2k−2
2k−1 , i.e., (1 − γ )(1 − 2k) = −1, we can obtain by (4.7) and Taylor’s expansion,


|x|

R
(g(τ ))

1
2


1 +

a
g(τ )

 1
2

− 1


dτ = c1a|x|(1−γ )(1−2)+1

+ · · · + ck−1ak−1
|x|(1−γ )(3−2k)+1

+ c̃kak ln |x| + c̄0 + O(|x|(γ−1)(2k+1)+1)

= c1a|x|θ1 + · · · + ck−1ak−1
|x|θk−1 + c̃k ln |x| + c̄0 + O(|x|θk+1)
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as |x| → ∞, where cm and θm defined by (4.6) for m = 1, 2, . . . , k − 1, c̃k =
1
2 ( 1

2 −1)·····( 1
2 −k+1)λ−β( 12 −k)

k!(1−γ )
1
2 −k

, θk+1 =

(γ − 1)(2k + 1) + 1 and c̄0 depends only on R, γ , λ and a.
In view of γ =

2k−2
2k−1 , we have 0 < θm < 1 for m = 1, 2, . . . , k − 1, and θk+1 < 0. Thus, we obtain (4.8). Let

c̃0 = c̄0 − f0(R) + d, the theorem is established. �

Remark 4.1. For n = 2, γ = 0, Theorem 4.3 is compatible with Theorem 3 in [13].

Acknowledgments

The authors would like to thank the referee of this paper for very helpful comments and suggestions.
The first author was partially supported by China Postdoctoral Science Foundation (20110490311). The work of the

second author was partially supported by the Program for Changjiang Scholars and Innovative Research Teams at University
in China (IRT0908), NSFC (11071020), and Doctoral Program Foundation of Institution of Higher Education of China
(20100003110003). The third author was partially supported by NSFC (11131005) and Doctoral Program Foundation of
Institution of Higher Education of China (20110002110064).

References

[1] W.J. Firey, On the shapes of worn stones, Mathematika 21 (1974) 1–11.
[2] K.S. Chou, Kaiseng Tso, Deforming a hypersurface by its Gauss–Kronecker curvature, Comm. Pure Appl. Math. 38 (1985) 867–882.
[3] B. Chow, Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom. 23 (1985) 117–138.
[4] B. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999) 151–161.
[5] J. Urbas, Complete noncompact self-similar solutions of Gauss curvature flows I. Positive powers, Math. Ann. 311 (1998) 251–274.
[6] K. Jörgens, Über die Lösungen der differentialgleichung rt − s2 = 1, Math. Ann. 127 (1954) 130–134.
[7] E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958) 105–126.
[8] A.V. Pogorelov, On the improper affine hyperspheres, Geom. Dedicata 1 (1972) 33–46.
[9] S.Y. Cheng, S.T. Yau, Complete affine hypersurfaces, Part I. The completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986) 839–866.

[10] L. Caffarelli, Y.Y. Li, An extension to a theorem of Jörgens, Calabi and Pogorelov, Comm. Pure Appl. Math 56 (2003) 0549–0583.
[11] L. Ferrer, A. Martínez, F. Milán, An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres, Math. Z. 230

(3) (1999) 471–486.
[12] L. Ferrer, A. Martínez, F. Milán, The space of parabolic affine spheres with fixed compact boundary, Monatsh. Math. 130 (1) (2000) 19–27.
[13] C. Wang, J.G. Bao, Necessary and sufficient conditions on existence and convexity of solutions for dirichlet problems of Hessian equations on exterior

domains, Preprint.
[14] K.S. Chou, X.J. Wang, Entire solutions of the Monge–Ampère equation, Comm. Pure Appl. Math. 49 (1996) 529–539.
[15] H.Y. Jian, X.J. Wang, Entire solutions to Monge–Ampère equations and translating solutions to Gauss curvature flow, 2010, Preprint.
[16] L. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, in: American Mathematical Society Colloquium Publications, vol. 43, American Mathematical

Society, Providence, RI, 1995.
[17] C.E. Gutiérrez, TheMonge–Ampère equation, in: Progress in Nonlinear Differential Equations and their Applications, vol. 44, Birkhäuser, Boston, 2001.
[18] J. Urbas, On the existence of nonclassical solutions for two class of fully nonlinear elliptic equations, Indiana Univ. Math. J. 39 (1990) 355–382.
[19] L. Caffarelli, InteriorW 2,p estimates for solutions of the Monge–Ampère equation, Ann. of Math. (2) 131 (1) (1990) 135–150.
[20] B. Guan, H.Y. Jian, The Monge–Ampère equation with infinite boundary value, Pacific J. Math. 216 (2004) 77–94.
[21] D. Gilbarg, N. Trudinger, Second Order Elliptic Partial Differential Equations, second ed., Springer-Verlag, 1983.
[22] L. Caffarelli, L. Nirenberg, J. Spruck, The dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Ampère equation, Comm. Pure Appl.

Math. 37 (3) (1984) 369–402.


	Existence for translating solutions of Gauss curvature flow on  exterior domains
	Introduction and main results
	Radially symmetric solutions of (1.4)
	Proof of Theorem 1.1
	Examples
	Acknowledgments
	References


