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1. Introduction and main results

For 1 � k � n, let

σk(λ) =
∑

1�i1<···<ik�n

λi1 · · ·λik

denote the k-th elementary symmetric function of n variations, λ1, . . . , λn , and let Γk denote the
connected component of {λ ∈R

n | σk(λ) > 0} containing the positive cone
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Γn = {
λ ∈ R

n
∣∣ λi > 0, i = 1, . . . ,n

}
.

It is well known (see, e.g. [6]) that Γk is a convex cone in R
n with its vertex at the origin, and

Γn ⊆ · · · ⊆ Γ2 ⊆ Γ1 = {
λ ∈ R

n
∣∣ λ1 + · · · + λn > 0

}
. (1)

Let λ(D2u) denote the eigenvalues λ1, . . . , λn of the Hessian matrix of u. Fully nonlinear elliptic
equations involving σk(λ(D2u)), as well as for more general f instead of σk , have been investigated
in the classical and pioneering paper of Caffarelli, Nirenberg and Spruck [6]. For extensive studies
and outstanding results on such equations, see, for example, Guan and Spruck [11], Trudinger [28],
Trudinger and Wang [29], and the references therein.

Let (M, g) be an n-dimensional, smooth Riemannian manifold without boundary. For n � 3, the
well-known Yamabe conjecture states that there exist metrics which are pointwise conformal to g and
have constant scalar curvature. The Yamabe conjecture is proved through the work of Yamabe [32],
Trudinger [27], Aubin [1] and Schoen [25]. The Yamabe and related problems have attracted much
attention in the last 40 years or so, see, e.g., [26,2] and the references therein. The Schouten tensor of
g is defined as

Ag = 1

n − 2

(
Ricg − R g

2(n − 1)
g

)
,

where Ricg and R g denote, respectively, the Ricci tensor and the scalar curvature associated with g .
We use λ(Ag) = (λ1(Ag), . . . , λn(Ag)) to denote the eigenvalues of Ag . Clearly,

σ1
(
λ(Ag)

) = 1

2(n − 1)
R g .

Let

V 1 =
{

λ ∈ R
n

∣∣∣ n∑
i=1

λi > 1

}
,

and let

Γ (V 1) = {sλ | s > 0, λ ∈ V 1}
be the cone with vertex at the origin generated by V 1, i.e. Γ (V 1) = Γ1. Then the Yamabe problem in
the positive case can be formulated as follows: Assuming λ(A g) ∈ Γ (V 1), then there exists a Rieman-
nian metric ĝ which is pointwise conformal to g and satisfies λ(A ĝ) ∈ ∂V 1 on M , i.e. σ1(λ(Aĝ)) = 1
on M . A fully nonlinear version of the Yamabe problem on locally conformally flat manifolds was
studied in [19,20] and the references therein.

Viaclovsky [30,31] introduced and systematically studied equations

σ
1
k

k

(
λ(Ag)

) = ψ(x, u). (2)

On 4-dimensional general Riemannian manifolds, remarkable results on (2) for k = 2 were obtained by
Chang, Gursky, and Yang in [7,8], which include Liouville-type theorems, existence and compactness
of solutions, as well as applications to topology.

Let g1 = u4/(n−2) g0 be a conformal change of metrics; then (see, e.g. [30])

Ag1 = − 2
u−1∇2

g0
u + 2n

2
u−2∇g0 u ⊗ ∇g0 u − 2

2
u−2|∇g0 u|2g0

g0 + Ag0 .
n − 2 (n − 2) (n − 2)
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Let g = u4/(n−2) gflat, where gflat denotes the Euclidean metric on R
n . Then by the above transforma-

tion formula,

Ag = u
4

n−2 Au
ij dxi dx j,

where Au is given by

Au = − 2

n − 2
u− n+2

n−2 ∇2u + 2n

(n − 2)2
u− 2n

n−2 ∇u ⊗ ∇u − 2

(n − 2)2
u− 2n

n−2 |∇u|2 I, (3)

and I is the n × n identity matrix. In this case,

λ(Ag) = λ
(

Au)
,

where λ(Au) denotes the eigenvalues of the symmetric n × n matrix Au .
For n � 3, consider equations

σ
1
k

k

(
λ
(

Au)) = up− n+2
n−2 , λ

(
Au) ∈ Γk, in R

n. (4)

For the case p = n+2
n−2 , Li and Li [20] extended the celebrated Liouville-type theorem of Caffarelli,

Gidas and Spruck [5] to all σk , 1 � k � n. They also showed that for −∞ < p < n+2
n−2 problem (4) has

no positive solution u ∈ C2(Rn). For k = 1 and p = n+2
n−2 , Eq. (4) takes the form

− 2

n − 2
u− n+2

n−2 �u =
n∑

i=1

Au
ii = trace

(
Au) = 1, in R

n. (5)

That is,

−�u = 1

2
(n − 2)u

n+2
n−2 , in R

n.

A related result of Gidas and Spruck in [10] states that there is no positive solution to the equation
−�u = up in R

n when 1 � p < n+2
n−2 .

There have been also many works on the nonlinear partial differential equation

�u = up, p > 0, in R
n. (6)

It is well known that Eq. (6) has no positive solution if p > 1, see, for example Keller [16], Osser-
man [23], Loewner and Nirenberg [17] and Brezis [4]. It is worthwhile to point out that Osserman
[23] considered the necessary and sufficient condition under which the following equation

�u = f (u), in R
n (7)

has a subsolution, where f is a positive, continuous, monotone non-decreasing function defined on R.
The following growth condition on f at infinity,

∞∫ ( t∫
f (s)ds

)− 1
2

dt = ∞ (8)
0
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is well known as Keller–Osserman condition, where and later we omit the lower limit of integral
to admit an arbitrary positive number. This condition and its generalized forms are crucial in the
investigation of existence of blow-up solutions. See [18,22,33,34,21] and the references therein.

Consider the following fully nonlinear partial differential equations

σ
1
k

k

(
λ
(

D2u
)) = f (u), 1 � k � n, in R

n, (9)

where f is a positive, monotone non-decreasing, continuous function on R. A function u ∈ C2(Rn) is
said to be a subsolution of (9), if λ(D2u) ∈ Γk and

σ
1
k

k

(
λ
(

D2u
))

� f (u), in R
n.

We remark that for Eq. (9) with k = n and f (u) ≡ 1 some Bernstein-type theorems have been estab-
lished. The well-known theorem of Jörgens [15], Calabi [9] and Pogorelov [24] says that any convex
solution of det(D2u) = 1 in R

n must be a quadratic polynomial. For 1 � k � n, Bao, Chen, Guan and
Ji [3] showed that any convex solution of σk(λ(D2u)) = 1 in R

n satisfying a quadratic growth con-

dition is a quadratic polynomial. In [14], Jin, Li and Xu proved that σ
1
k

k (λ(D2u)) = up in R
n has no

positive subsolution for any p > 1. Combining these facts it seems interesting to study the existence

of positive subsolution of σ
1
k

k (λ(D2u)) = up in R
n for 0 < p � 1.

Ji and Bao [13] extended the Keller–Osserman condition (8) to the fully nonlinear partial differ-
ential equation (9) and established a necessary and sufficient condition for the solvability of Hessian
equations (9).

Theorem 1. (See [13, Theorem 1.1].) If f (·) is a continuous function defined on R and satisfies{
f (t) > 0, and is monotonically non-decreasing in (0,+∞),

f (t) = 0 on (−∞,0], (10)

then Eq. (9) has a positive subsolution u ∈ C2(Rn) if and only if

∞∫ ( t∫
0

f k(s)ds

)− 1
k+1

dt = ∞. (11)

Remark 1. Especially, it is easily to see that when k = 1, (11) is exactly (8).

Remark 2. For the case f (u) = up , Theorem 1 shows that (9) has a positive subsolution if and only if
0 < p � 1.

In this paper, we consider the following fully nonlinear elliptic equations

σ
1
k

k

(
λ
(−Au)) = u− n+2

n−2 f (u), λ
(−Au) ∈ Γk, in R

n, (12)

where n � 3, f (·) is a continuous function in R. For the case f (u) = up , Jin, Li and Xu [14] proved
that

Theorem 2. (See [14, Theorem 1].) Let n � 3, f (u) = up. Then the problem (12) has no positive continuous
viscosity subsolution, if

p > 1 + max

{
0,

2(2k − n)

(n − 2)k

}
.
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The definition of viscosity subsolutions can be referred to [14]. In this paper, we restrict us to clas-
sical subsolution. A function u ∈ C2(Rn) is said to be a (classical) subsolution of (12), if λ(−Au) ∈ Γk
and

σ
1
k

k

(
λ
(−Au))

� u− n+2
n−2 f (u), in R

n.

Remark 3. By the definitions of viscosity subsolutions in [14], it is straightforward to show that if
u ∈ C2(Rn) is a positive function satisfying λ(−Au) ∈ Γk in R

n , then u is a viscosity subsolution of
(12) if and only if u is a classical subsolution of (12).

For the general case that f (·) is a continuous function in R, we establish the existence and nonex-
istence for positive subsolutions of (12) in R

n . Our main theorem is:

Theorem 3. For n � 3, suppose that f (·) is a continuous function in R. Then

(a) for k > n
2 , if f satisfies (10) and

f (t)

t
is strictly increasing in (0,∞), (13)

then (12) has no positive entire subsolution u ∈ C2(Rn);
(b) for k � n

2 , if f satisfies (10) and

∞∫
t

n(1−k)
(n−2)k

( t∫
s

(n+2)(1−k)
n−2 f k(s)ds

)− 1
2k

dt = ∞, (14)

then (12) has a positive entire subsolution u ∈ C2(Rn).

By the main theorem, we can easily get the corollary below, which extends Theorem 2, one result
of Jin, Li and Xu in [14].

Corollary 4. Let f (u) = up, p > 0. Then

(a) for k > n
2 , (12) has no radial positive entire solution u ∈ C2(Rn). In particular, (12) has no positive entire

subsolution if p > 1;
(b) for k � n

2 , (12) has a positive subsolution u ∈ C2(Rn) if and only if p � 1.

Remark 4. Although we cannot obtain a necessary and sufficient condition similar as (11) under which
Eq. (12) has a positive subsolution, for the case f (u) = up we essentially improve the range of p such
that the problem (12) has a positive solution for k > n

2 . Namely, Corollary 4 shows that for k > n
2 ,

(12) has no positive entire solution u ∈ C2(Rn) if p > 1, while the result in [14] is p > 1 + 2(2k−n)
(n−2)k .

Remark 5. Corollary 4 also shows that for k � n
2 , (12) has a positive subsolution u ∈ C2(Rn) if p � 1.

It is still open for us whether (12) has a positive subsolution u ∈ C2(Rn) for k > n
2 and p � 1. To solve

this question, it needs new methods involved.

If n is even, and k = n
2 , then we further have
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Corollary 5. For n � 3, suppose that n is even, k = n
2 , and f (·) is a continuous function in R. Then

(a) if f satisfies (10), (13) and

∞∫
t−1

( t∫
s− n+2

2 f
n
2 (s)ds

)− 1
n

dt < ∞, (15)

then (12) has no positive entire subsolution u ∈ C2(Rn);
(b) if f satisfies (10), and

∞∫
t−1

( t∫
a

s− n+2
2 f

n
2 (s)ds

)− 1
n

dt = ∞, (16)

then (12) has a positive entire subsolution u ∈ C2(Rn).

In Section 2 we will introduce some results on radial solutions as preliminaries. The proof of the
main theorems will be given in Section 3.

2. Preliminary results on radial solutions

In this section, we study some properties of radial solutions.

Lemma 6. Suppose ϕ(r) ∈ C2[0, R) and ϕ′(0) = 0. If v(x) = ϕ(r), where r = |x| < R, then v(x) ∈ C2(B R(0)),
and

λ
(−Av) := λ̃(r) = (

λ̃1(r), λ̃2(r), . . . , λ̃n(r)
)
, (17)

where ⎧⎪⎪⎨
⎪⎪⎩

λ̃1(r) = 2

n − 2
ϕ− 2n

n−2 (r)λ1(r),

λ̃2(r) = · · · = λ̃n(r) = 2

n − 2
ϕ− 2n

n−2 (r)λ2(r),
(18)

and

λ1(r) :=
{

ϕ(r)ϕ′′(r) − n−1
n−2 (ϕ′(r))2, r > 0,

ϕ(0)ϕ′′(0), r = 0,

λ2(r) :=
{

ϕ(r)ϕ′(r)
r + 1

n−2 (ϕ′(r))2, r > 0,

ϕ(0)ϕ′′(0), r = 0.
(19)

So that

σk
(
λ
(−Av)) = ϕ− 2nk

n−2 (r)

C0

(
λ1(r)λ

k−1
2 (r) + n − k

k
λk

2(r)

)
, r ∈ [0, R), (20)

where C0 = (n−2
2 )k(Ck−1

n−1)
−1 , and Ck

n = n!
(n−k)!k! .
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Proof. In fact, for x 
= 0, 1 � i, j � n, we have

∂v

∂xi
(x) = ϕ′(r) xi

r
,

∂2 v

∂xi∂x j
(x) = ϕ′′(r)

xi x j

r2
− ϕ′(r)

xi x j

r3
+ ϕ′(r)

r
δi j.

By ϕ′(0) = 0, we have

lim
x→0

∂v

∂xi
(x) = lim

x→0

(
ϕ′(r) − ϕ′(0)

r − 0

)
xi = ϕ′′(0) · 0 = 0,

lim
x→0

∂2 v

∂xi∂x j
(x) = lim

x→0

((
ϕ′′(r) − ϕ′(r)

r

)
xix j

r2
+

(
ϕ′(r)

r

)
δi j

)
= lim

x→0

(
ϕ′(r)

r

)
δi j = ϕ′′(0)δi j.

Define

∂v

∂xi
(0) = 0 and

∂2 v

∂xi∂x j
(0) = ϕ′′(0)δi j.

Then v(x) ∈ C2(B R(0)). For convenience, throughout this paper, we denote ϕ′(r)
r |r=0 = ϕ′′(0). Then we

have

∇2 v(x) =
(

ϕ′′(r)
r2

− ϕ′(r)
r3

)
xT x + ϕ′(r)

r
I,

∇v ⊗ ∇v =
(

ϕ′(r)
r

)2

xT x, |∇v|2 = (
ϕ′(r)

)2
.

Substituting them to (3), we have

−Av = 2

n − 2
v− n+2

n−2 ∇2 v − 2n

(n − 2)2
v− 2n

n−2 ∇v ⊗ ∇v + 2

(n − 2)2
v− 2n

n−2 |∇v|2 I

= 2

n − 2
ϕ− n+2

n−2 (r)

[(
ϕ′′(r)

r2
− ϕ′(r)

r3

)
xT x +

(
ϕ′(r)

r

)
I

]

− 2n

(n − 2)2
ϕ− 2n

n−2 (r)

(
ϕ′(r)

r

)2

xT x + 2

(n − 2)2
ϕ− 2n

n−2 (r)
(
ϕ′(r)

)2
I

= 2

n − 2
ϕ− 2n

n−2 (r)

[(
ϕ(r)ϕ′′(r)

r2
− ϕ(r)ϕ′(r)

r3
− n

n − 2

(
ϕ′(r)

r

)2)
xT x

+
(

ϕ(r)ϕ′(r)
r

+ (ϕ′(r))2

n − 2

)
I

]
.

Denote ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = 2

n − 2
ϕ− 2n

n−2 (r)

[
ϕ(r)ϕ′′(r)

r2
− ϕ(r)ϕ′(r)

r3
− n

n − 2

(
ϕ′(r)

r

)2]
,

b = 2

n − 2
ϕ− 2n

n−2 (r)

[
ϕ(r)ϕ′(r)

r
+ 1

n − 2

(
ϕ′(r)

)2
]
.

(21)
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By linear algebra, we know that the eigenvalues of the symmetric matrix of the form axT x + bI are
(a|x|2 + b,b, . . . ,b). So we obtain the λ̃ defined by (18).

By definition of σk , we have

σk
(
λ
(−Av)) = Ck−1

n−1λ̃1(r)λ̃
k−1
2 (r) + Ck

n−1λ̃
k
2(r)

= Ck−1
n−1

(
2

n − 2

)k

ϕ− 2nk
n−2 (r)

(
λ1(r)λ

k−1
2 (r) + n − k

k
λk

2(r)

)
.

This is (20). �
By (20), we know that the radial solution ϕ(r) of (12) satisfies

λ1(r)λ
k−1
2 (r) + n − k

k
λk

2(r) = C0ϕ
k(r) f k(ϕ(r)

)
, r ∈ [0, R). (22)

Next, we will prove that there exists a local solution of the ordinary differential equation (22) in a
neighborhood of the origin, with initial conditions ϕ(0) > 0 and ϕ′(0) = 0. In order to show this, we
need the following lemmas.

Lemma 7. Let f (t) be a continuous function defined on R, and satisfy (10). For any positive constant a, there
exists a positive constant R such that the Cauchy problem

⎧⎪⎪⎨
⎪⎪⎩

ϕ′(r) = C

(
rαϕβ(r)

r∫
0

sα+k−1ϕ−β(s) f k(ϕ(s)
)

ds

)1/k

, r > 0,

ϕ(0) = a

has a solution in [0, R].

Letting C = (
k!(n−k)!
(n−1)! )1/k , α = n−k and β = 0, this is Lemma 2.3 in [13]. So the proof is very similar

as in [13] and we omit the proof here. The interested readers could refer to [13].

Lemma 8. (See [12, Theorem 1.2.3].) Let T > 0 be a constant. Suppose that f (t, x) : [0, T ] ×R→R is contin-
uous, and v0(t) and w0(t) are subsolution and supersolution of

u′ = f (t, u), u(0) = x0, (23)

respectively, and satisfy

v0(t) � w0(t), ∀t ∈ [0, T ].

Then (23) has at least one solution in D = {u ∈ C[0, T ]: v0 � u � w0}. Here, we call v(t) ∈ C1[0, T ] is a
subsolution (or supersolution) of (23), if

v ′(t) � (�) f
(
t, v(t)

)
, ∀t ∈ [0, T ]; and v(0) � (�) x0. (24)

Remark 6. Notice that this definition of subsolution (or supersolution) is different from that for partial
differential equations of second order. The proof could be found in [12].

By this definition of subsolution and supersolution of ODEs, we have
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Lemma 9. If f is a continuous function in R, and satisfies (10), then for any positive constant a, there exists a
positive constant R, such that the Cauchy problem

⎧⎪⎨
⎪⎩

λ1λ
k−1
2 + n − k

k
λk

2 = C0
(
ϕ(r)

)k
f k(ϕ(r)

)
, r ∈ (0, R),

ϕ′(0) = 0,

ϕ(0) = a

(25)

has a solution ϕ ∈ C2[0, R].

Proof. First, we claim that the Cauchy problem (25) has subsolution and supersolution near r = 0,
with the same initial values.

In fact, Eq. (22) could be written as

(
λ1(r) + n − k

k
λ2(r)

)
λk−1

2 (r) = C0ϕ
k(r) f k(ϕ(r)

)
. (26)

Under the initial value conditions

ϕ(0) = a > 0 and ϕ(0)′ = 0,

denoting

ϕ′′(0) := lim
r→0

ϕ′(r)
r

,

then

lim
r→0

[
λ1(r) + n − k

k
λ2(r)

]

= lim
r→0

[
ϕ(r)ϕ′′(r) − n − 1

n − 2

(
ϕ′(r)

)2 + n − k

k

(
ϕ(r)ϕ′(r)

r
+ 1

n − 2

(
ϕ′(r)

)2
)]

= n

k

(
aϕ′′(0)

)k
.

So sending r → 0 on both sides of (26), we have

n

k

(
aϕ′′(0)

)k = C0
(
af (a)

)k
.

By (10), we have

ϕ′′(0) =
(

k

n
C0

) 1
k

f (a) > 0

and

lim
r→0

λ2(r) = lim
r→0

(
ϕ(r)ϕ′(r)

r
+ 1

n − 2

(
ϕ′(r)

)2
)

= aϕ′′(0) > 0.
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Then there exists r > 0, such that

λ2(r) > 0, λ1(r) + n − k

k
λ2(r) > 0, on [0, r]. (27)

For 1 < k < n, we write it as a total differential form; we have

λ1(r) + n − k

k
λ2(r)

= ϕ(r)ϕ′′(r) − n − 1

n − 2

(
ϕ′(r)

)2 + n − k

k

(
ϕ(r)ϕ′(r)

r
+ 1

n − 2

(
ϕ′(r)

)2
)

= ϕ(r)ϕ′′(r) + n − k

k

ϕ(r)ϕ′(r)
r

+
(

n − k

k(n − 2)
− n − 1

n − 2

)(
ϕ′(r)

)2

= ϕ(r)ϕ′′(r) + lϕ(r)ϕ′(r)
r

+ m
(
ϕ′(r)

)2

= r−lϕ1−m(r)
(
rlϕm(r)ϕ′(r)

)′
, (28)

where

l = n − k

k
> 0, m = n(1 − k)

(n − 2)k
< 0, 1 < k < n. (29)

Since

λ2(r) = ϕ(r)ϕ′(r)
r

+ 1

n − 2

(
ϕ′(r)

)2 � ϕ(r)ϕ′(r)
r

, r ∈ [0, r],

it follows from (26) that for r ∈ [0, r],

r−lϕ1−m(r)
(
rlϕm(r)ϕ′(r)

)′
(

ϕ(r)ϕ′(r)
r

)k−1

� C0ϕ
k(r) f k(ϕ(r)

)
,

that is,

r−l−(k−1)(l+1)ϕ1−m+(k−1)(1−m)(r)
(
rlϕm(r)ϕ′(r)

)′(
rlϕm(r)ϕ′(r)

)k−1 � C0ϕ
k(r) f k(ϕ(r)

)
,(

rlϕm(r)ϕ′(r)
)′(

rlϕm(r)ϕ′(r)
)k−1 � C0rkl+k−1ϕkm(r) f k(ϕ(r)

)
.

Integrating on both sides, we have

(
rlϕm(r)ϕ′(r)

)k � kC0

r∫
0

skl+k−1ϕkm(s) f k(ϕ(s)
)

ds,

then

ϕ′(r) � (kC0)
1
k r−lϕ−m(r)

( r∫
skl+k−1ϕkm(s) f k(ϕ(s)

)
ds

) 1
k

.

0
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On the other hand,

lim
r→0

ϕ(r)ϕ′(r)
r

= aϕ′′(0) > 0 and
1

n − 2

(
ϕ′(0)

)2 = 0,

then, without loss of generality, we can assume that for the above r > 0,

ϕ(r)ϕ′(r)
r

>
1

n − 2

(
ϕ′(r)

)2
, on [0, r]. (30)

Then

λ2(r) = ϕ(r)ϕ′(r)
r

+ 1

n − 2

(
ϕ′(r)

)2 � 2ϕ(r)ϕ′(r)
r

,

by (28) and (26), we have

r−lϕ1−m(r)
(
rlϕm(r)ϕ′(r)

)′
(

2
ϕ(r)ϕ′(r)

r

)k−1

> C0ϕ
k(r) f k(ϕ(r)

)
. (31)

Similarly, we have

ϕ′(r) >
(
21−kkC0

) 1
k r−lϕ−m(r)

( r∫
0

skl+k−1ϕkm(s) f k(ϕ(s)
)

ds

) 1
k

. (32)

Letting α = kl, β = −km, by Lemma 7, we know that

ϕ′(r) = Cr−lϕ−m(r)

( r∫
0

skl+k−1ϕkm(s) f k(ϕ(s)
)

ds

) 1
k

(33)

has a local solution near r = 0 under the initial value condition ϕ(0) = a > 0. Let ϕ and ϕ(r) be
solutions of the Cauchy problems

⎧⎪⎪⎨
⎪⎪⎩

ϕ′(r) = (kC0)
1
k r−lϕ−m(r)

( r∫
0

skl+k−1ϕkm(s) f k(ϕ(s)
)

ds

) 1
k

, 0 < r < r,

ϕ(0) = a,

(34)

and

⎧⎪⎪⎨
⎪⎪⎩

ϕ′(r) = (
21−kkC0

) 1
k r−lϕ−m(r)

( r∫
0

skl+k−1ϕkm(s) f k(ϕ(s)
)

ds

) 1
k

, 0 < r < r,

ϕ(0) = a,

(35)

respectively. Denote their common interval as [0, R] ⊂ [0, r). Then at the origin, we have
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ϕ′′(0) =
(

k

n
C0

) 1
k

f (a) >

(
21−k k

n
C0

) 1
k

f (a) = ϕ′′(0),

ϕ′(0) = ϕ′(0) = 0,

ϕ(0) = ϕ(0) = a.

Without loss of generality, we assume that

ϕ > ϕ, in (0, R].

Next, we will prove the existence of local solution of the Cauchy problem (25). Let φ(r) = ϕ′(r),
then (25) is equivalent with the following Cauchy problem for systems of ordinary differential equa-
tions ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
φ(r)
ϕ(r)

)′
=

⎛
⎝ C0ϕ

k−1(r) f k(ϕ(r))

(
ϕ(r)φ(r)

r + 1
n−2φ2(r))k−1

− lr−1φ(r) − mϕ−1(r)φ2(r)

φ(r)

⎞
⎠

:= F
(
r,ϕ(r),φ(r)

)
, r > 0,(

φ(r)
ϕ(r)

)∣∣∣∣
r=0

=
(

0
a

)
.

(36)

Then there exist a supersolution and a subsolution on [0, R] of (36)

(
φ(r)
ϕ(r)

)
and

(
φ(r)
ϕ(r)

)
.

Defining

G
(
r,ϕ(r),φ(r)

) := max

{(
φ(r)
ϕ(r)

)
,min

{(
φ(r)
ϕ(r)

)
,

(
φ(r)
ϕ(r)

)}}
,

we construct a new system

⎧⎪⎪⎨
⎪⎪⎩

(
φ(r)
ϕ(r)

)′
= F

(
r, G

(
r,ϕ(r),φ(r)

))
, r > 0,(

φ(r)
ϕ(r)

)∣∣∣∣
r=0

=
(

0
a

)
.

(37)

Denote

D :=
{(

φ(r)
ϕ(r)

)
:

ϕ ∈ C1[0, R],
φ ∈ C1[0, R],

(
φ(r)
ϕ(r)

)
�

(
φ(r)
ϕ(r)

)
�

(
φ(r)
ϕ(r)

)}
.

It is clear that

F
(
r, G

(
r,ϕ(r),φ(r)

)) = F
(
r,ϕ(r),φ(r)

)
on [0, R] × D. (38)

By Lemma 8, the Cauchy problem (37) has a solution (φ̂(r), ϕ̂(r)), and (φ̂(r), ϕ̂(r)) ∈ D on [0, R]. Then
by (38), (φ̂(r), ϕ̂(r)) is exactly a local solution of the Cauchy problem (36) on [0, R]. By ϕ̂′ = φ̂ ∈
C1[0, R], we have ϕ̂ ∈ C2[0, R] is a local solution of the Cauchy problem (25). �
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Next, we also need the following fact.

Lemma 10. Let f (·) be a continuous function in R and satisfy (10). For any positive constant a, if ϕ ∈ C2[0, R)

is a solution of Cauchy problem (25), where [0, R) is the maximal existence interval, then for 0 � r < R, we
have

n − 2

2
ϕ

2n
n−2 (r)λ̃(r) =: λ(r) = (

λ1(r), λ2(r), . . . , λ2(r)
) ∈ Γk, (39)

where λ1(r) and λ2(r) are defined by (19). And if k > n
2 , then (25) has no positive entire subsolution.

Proof. It follows from (32) that

ϕ′(r) > 0, for 0 < r � r.

On the other hand, if there exists r̂ ∈ (r, R) satisfying ϕ′(r̂) < 0, then by the continuity of the deriva-

tive, there exists ˆ̂r ∈ (r, r̂) ⊂ [0, R), such that ϕ′(ˆ̂r) = 0, and

λ2(
ˆ̂r) = ϕ(ˆ̂r)ϕ′(ˆ̂r)

ˆ̂r
+ 1

n − 2

(
ϕ′(ˆ̂r))2 = 0,

σk
(
λ(ˆ̂r)) =

(
n − 1
k − 1

)
λ1(

ˆ̂r)λk−1
2 (ˆ̂r) +

(
n − 1

k

)
λk

2(
ˆ̂r) = 0,

which is contradiction with λ(ˆ̂r) ∈ Γk . So we have

ϕ′(r) > 0, r ∈ (0, R). (40)

Therefore, by (26), we have for r ∈ [0, R),

λ2(r) = ϕ(r)ϕ′(r)
r

+ 1

n − 2

(
ϕ′(r)

)2
> 0 and λ1(r) + n − k

k
λ2(r) > 0.

For 1 � l � k,

σl
(
λ(r)

) =
(

n − 1
l − 1

)
λ1(r)λ

l−1
2 (r) +

(
n − 1

l

)
λl

2(r)

=
(

n − 1
l − 1

)(
λ1(r) + n − l

l
λ2(r)

)
λl−1

2 (r)

�
(

n − 1
l − 1

)(
λ1(r) + n − k

k
λ2(r)

)
λl−1

2 (r)

> 0.

That is, for r ∈ [0, R),

λ(r) = (
λ1(r), λ2(r), . . . , λ2(r)

) ∈ Γk.

Letting ψ(r) := rlϕm(r)ϕ′(r), by (27) and (28), we have ψ ′(r) > 0 for r ∈ (0, R). Since

ψ(r) = r
n
k ϕm(r) · ϕ′(r) → 0, as r → 0,
r
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it follows that

ψ(r) > 0, r ∈ (0, R).

Fix r1 ∈ (0, R), and choose C1 = ψ(r1) > 0. By the monotonicity of ψ , we have

ϕm(r)ϕ′(r) > r−lC1, for r > r1.

Case 1. m = −1. We have n = 2k, l = 1, and

ϕ−1(r)ϕ′(r) > C1r−1,

lnϕ(r) > C1 ln r − C1 ln r1 + lnϕ(r1),

ϕ > C2rC1 . (41)

Case 2. m 
= −1. We have n 
= 2k, l 
= 1,

ϕm+1(r)

m + 1
>

C1

1 − l
r1−l +

(
ϕ(r1)

m+1

m + 1
− C1

1 − l
r1−l

1

)
. (42)

In fact, by (29)

m + 1 = n − nk

(n − 2)k
+ 1 = n − 2k

(n − 2)k

and

1 − l = 1 − n − k

k
= 2k − n

k

have different signs. If k < n
2 , then m + 1 > 0, 1 − l < 0, that is, m > −1 and l > 1. If k > n

2 , then
m + 1 < 0, 1 − l > 0. Letting r → +∞, (42) does not hold any longer. This is a contradiction. Therefore,
the maximal existence interval of the solution is finite, in another word, Cauchy problem (25) has no
entire solution. �

The following lemma and its proof could be found in [14].

Lemma 11. (See [14, Lemma 1].) Let Ω be a bounded open set in R
n, B(·,·,·) :Ω × R+ × R

n → R
n×n be a

map, h(x, t) be a positive function defined in Ω ×R+ , and let t �→ t−1h(x, t) be strictly increasing on (0,∞)

for each x ∈ Ω . Suppose that u ∈ C2(Ω) is a positive subsolution of

σ
1
k

k

(
λ
(

D2u + B(x, u, Du)
)) = h(x, u), λ

(
D2u + B(x, u, Du)

) ∈ Γk, ∀x ∈ Ω, (43)

and v ∈ C2(Ω) ∩ C(Ω) is a positive supersolution of (43) with λ(D2 v + t−1 B(x, tv, t D v)) ∈ Γk for each
t � 1. Suppose also that for each x ∈ Ω and ξ,p ∈R

n, the function

t �→ t−1〈B(x, t, tp)ξ, ξ
〉

(44)

is non-increasing on (0,∞). If u � v on ∂Ω , then u � v on Ω .
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Remark 7. For the convenience, we change f in original lemma to σ
1
k

k , and change the viscosity
subsolution to the classical subsolution.

By Lemma 11, we obtain the following comparison principle.

Lemma 12. Let f (t) be a monotonically non-decreasing function in R, and satisfy (10) and (13). Suppose that
ϕ(r) ∈ C2[0, R) satisfies (22) and (39) for r ∈ [0, R), and ϕ′(0) = 0, limr→R ϕ(r) = ∞. If u(x) ∈ C2(Rn) is a
positive subsolution of (12), then we have u(x) � ϕ(|x|) in B R .

Proof. Let

B(x, t,p) = t−1
(

− n

n − 2
p ⊗ p + 1

n − 2
|p|2 I

)
, h(x, t) = n − 2

2
f (t),

where x,p ∈R
n , t ∈ R. It is clear that

t−1〈B(x, t, tp)ξ, ξ
〉 = t−1

〈
t−1

(
− n

n − 2
(tp) ⊗ (tp) + 1

n − 2
|tp|2 I

)
ξ, ξ

〉

=
〈(

− n

n − 2
p ⊗ p + 1

n − 2
|p|2 I

)
ξ, ξ

〉

is non-increasing in (0,∞) with respect to t . By (13), we have

t−1h(x, t) = n − 2

2

(
f (t)

t

)

is strictly monotone in (0,∞). Then (12) could be written as

σ
1
k

k

(
λ
(

D2u + B(x, u, Du)
)) = h(x, u), λ

(
D2u + B(x, u, Du)

) ∈ Γk, x ∈ B R . (45)

Denote v(x) = ϕ(r), where r = |x|. By Lemma 6, we have v(x) satisfies (12) in B R . v(x) is naturally
a positive solution of (45) in B R , and

λ
(

D2 v + t−1 B(x, tv, t D v)
) = λ

(
D2 v + t−2 v−1

(
− n

n − 2
(t D v) ⊗ (t D v) + 1

n − 2
|t D v|2 I

))

= λ
(

D2 v + B(x, v, D v)
) ∈ Γk.

We notice that a positive subsolution of (12), u ∈ C2(Rn), is naturally a positive subsolution of (45)
in R

n . Since limx→∂ B R v(x) = ∞, it follows from Lemma 11 that u(x) � v(x) in B R . �
3. The proof of main results

Lemma 13. Let f (t) be a continuous function in R and satisfy (10) and (13). Then (12) has a positive entire
subsolution u ∈ C2(Rn) if and only if (22) has a positive solution ϕ(r) ∈ C2[0,∞) and satisfies the initial
value condition ϕ′(0) = 0.

Proof. Firstly, the sufficiency is obvious. If there exists such a solution ϕ of (22), then, letting v(x) =
ϕ(|x|), by Lemmas 6 and 10, v(x) is exactly a positive solution of (12) in R

n .
Next, we will prove the necessity. On the contrary, suppose that there is no such function ϕ(r)

in whole space, and suppose that (12) has a positive subsolution u. By Lemma 9, for any constant
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a > 0, Cauchy problem (25) has a positive solution ϕ(r) in some finite interval. Hence we assume
that [0, R) is the maximal interval in which the solution exists. Since for r > 0, ϕ′(r) > 0, it follows
that ϕ(r) → ∞ as r → R . Then by Lemma 10, we know that ϕ(|x|) satisfies (22) and (39) in B R .
Hence by Lemma 12, for any positive subsolution of (12), u(x), we have u(x) � ϕ(|x|) for each x ∈ B R .
Especially, we have u(0) � ϕ(0) = a. But, by the arbitrariness of a, if we take a = u(0)

2 , then we obtain
a contradiction, which means the necessary condition holds. �
Proof of Theorem 3. By Lemmas 9, 10 and 13, part (a) of Theorem 3 holds.

In the following, we assume that k � n
2 . For part (b), we need only to show that if f satisfies (10)

and (14), then (22) has a positive entire solution.
First, by (22) and (28), we have

C0ϕ
k(r) f k(ϕ(r)

) =
(

λ1(r) + n − k

k
λ2(r)

)
λk−1

2 (r)

= r−lϕ1−m(r)
(
rlϕm(r)ϕ′(r)

)′
(

ϕ(r)ϕ′(r)
r

+ 1

n − 2

(
ϕ′(r)

)2
)k−1

. (46)

On the other hand, we have

r−lϕ1−m(r)
(
rlϕm(r)ϕ′(r)

)′
(

1

n − 2

(
ϕ′(r)

)2
)k−1

< C0ϕ
k(r) f k(ϕ(r)

)
,

that is,

r−lϕ1−m(r)
(
rlϕm(r)ϕ′(r)

)′(
rlϕm(r)ϕ′(r)

)2k−1
< C

(
rlϕm(r)

)2k−1
ϕ′(r)ϕk(r) f k(ϕ(r)

)
.

Then

((
rlϕm(r)ϕ′(r)

)2k)′
< Cr2klϕ2km−1+k(r) f k(ϕ(r)

)
ϕ′(r). (47)

Integrating from 0 to r on both sides, we have

(
rlϕm(r)ϕ′(r)

)2k
< C

r∫
0

s2klϕ2km−1+k(s) f k(ϕ(s)
)
ϕ′(s)ds

< Cr2kl

ϕ(r)∫
a

t2km−1+k f k(t)dt.

Then

ϕm(r)
dϕ(r)

dr
< C

( ϕ(r)∫
a

t2km−1+k f k(t)dt

) 1
2k

, (48)

that is,

ϕm(r)

( ϕ(r)∫
t2km−1+k f k(t)dt

)− 1
2k

dϕ(r) < C dr. (49)
a
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Substituting m = n(1−k)
(n−2)k , we have

ϕ
n(1−k)
(n−2)k (r)

( ϕ(r)∫
a

t
(n+2)(1−k)

n−2 f k(t)dt

)− 1
2k

ϕ′(r)dr < C dr. (50)

By Lemma 9, (22) has an entire solution. If it was not an entire solution, then its existence interval
is finite, denoting as [0, R). Then by ϕ′ > 0, it is easy to know that ϕ blows up on the boundary, that
is,

ϕ(r) → ∞, as r → R.

Integrating from 0 to R on both sides of (50), we have

∞∫
a

ϕ
n(1−k)
(n−2)k

( ϕ(r)∫
a

t
(n+2)(1−k)

n−2 f k(t)dt

)− 1
2k

dϕ < C R < ∞. (51)

This is a contradiction. �
Proof of Corollary 4. Letting k � n

2 , f (t) = t p , p > 0, for t > 0, we have

t
n(1−k)
(n−2)k

( t∫
0

s
(n+2)(1−k)

n−2 +kp ds

)− 1
2k

= tm

( t∫
0

s2km−1+k+kp ds

)− 1
2k

= tm
(

2km + k + kp

t2km+k+kp

) 1
2k

= (2km + k + kp)
1

2k t− p+1
2 .

For 0 < p � 1, it satisfies (14). It follows from the proof of Theorem 3 that Corollary 4 holds. �
Especially, if n is even, and k = n

2 , we have

Lemma 14. Let k = n
2 , and let f be a continuous function in R. If f satisfies (10), (15), and

L := inf
t∈[1,∞)

f (t)

2t
> 0, (52)

then (22) has no positive entire solution ϕ ∈ C2[0,∞).

Proof. Suppose (22) has a positive entire solution ϕ ∈ C2[0,∞). Clearly, ϕ′ > 0.
First, we will show that ϕ(r) → ∞ as r → ∞. On the contrary, suppose that there exists a constant

M > 0, such that

ϕ(r) < M, on [0,∞).

By (48) and m = −1, l = 1, we have
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ϕ′(r) < Cϕ(r)

( ϕ(r)∫
a

s− n
2 −1 f

n
2 (s)ds

) 1
n

< C M

( M∫
a

s− n
2 −1 f

n
2 (s)ds

) 1
n

< Ca− 1
2 M f

1
2 (M)

:= M1 < ∞.

Then choosing r1 > 0 in (41), for r > r1,

λ2(r) = ϕ(r)ϕ′(r)
r

+ 1

n − 2

(
ϕ′(r)

)2
<

MM1

r1
+ 1

n − 2
(M1)

2 := M2 < ∞. (53)

Substituting it to (46), we have

ψ ′(r) = (
rϕ−1(r)ϕ′(r)

)′
> C0rM−2M

1− n
2

2 ϕ(r1)
n
2 f

n
2
(
ϕ(r1)

) = Cr. (54)

Integrating on both sides, we have

rϕ−1(r)ϕ′(r) > Cr2,

i.e.

ϕ−1(r)ϕ′(r) > Cr.

Integrating again, we have

lnϕ(r) > Cr2 + C ′.

Clearly, this contradicts with the assumption that ϕ(r) is bounded on [0,∞). Therefore, there exists
r2 > r1, such that ϕ(r) > 1 for r > r2.

By (52), we have f (t) � 2Lt > Lt , for t > 1. Then

f
(
ϕ(r)

)
> Lϕ(r), for r > r2. (55)

Next, we will show that ψ(r) > 1, for r sufficiently large. On the contrary, suppose that there exists
r2 > 0 such that

ψ(r) � 1, r ∈ [r2,∞). (56)

By (46), we have

C0ϕ
n
2 (r) f

n
2
(
ϕ(r)

) = r−1ϕ2(r)
(
rϕ−1(r)ϕ′(r)

)′
(

ϕ(r)ϕ′(r)
r

+ 1

n − 2

(
ϕ′(r)

)2
) n

2 −1

= r−1ϕ2(r)ψ ′(r)
(

r−2ϕ2(r)ψ(r) + 1

n − 2
r−2ϕ2(r)ψ2(r)

) n
2 −1

= r1−nϕn(r)ψ ′(r)
(

ψ(r) + 1

n − 2
ψ2(r)

) n
2 −1

. (57)
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Combining with ψ(r) � 1, we have

ψ ′(r) � C0ϕ
n
2 (r) f

n
2 (ϕ(r))

(n−1
n−2 )

n
2 −1r1−nϕn(r)

= Crn−1 f
n
2 (ϕ(r))

ϕ
n
2 (r)

→ ∞, as r → ∞.

This contradicts with the assumption (56). Therefore, there exists r3 > r2, such that

ψ(r) > 1, for r > r3.

Then, by (57),

r1−nϕn(r)ψ ′(r)
(

n − 1

n − 2
ψ2(r)

) n
2 −1

> C0ϕ
n
2 (r) f

n
2
(
ϕ(r)

)
,

that is,

ψ ′(r)ψ2( n
2 −1)(r) > Crn−1ϕ− n

2 (r) f
n
2
(
ϕ(r)

)
> Crn−1. (58)

Integrating from r3 to r, we have

ψn−1(r) − ψn−1(r3) > C
(
rn − rn

3

)
.

Thus

rϕ−1(r)ϕ′(r) = ψ(r) > Cr
n

n−1 ,

that is,

ϕ−1(r)ϕ′(r) > Cr
1

n−1 . (59)

Multiplying ψ on both sides of the first line in (58),

ψ ′(r)ψn−1(r) > Crnϕ− n
2 −1(r) f

n
2
(
ϕ(r)

)
ϕ′(r),

and integrating from r3 to r, we have

ψn(r) − ψn(r3) > C

r∫
r3

snϕ− n
2 −1(s) f

n
2
(
ϕ(s)

)
ϕ′(s)ds. (60)

In the following we will show that

r∫
r3

snϕ− n
2 −1(s) f

n
2
(
ϕ(s)

)
ϕ′(s)ds >

(
r

2

)n
ϕ(r)∫

ϕ(r )

t− n
2 −1 f

n
2 (t)dt. (61)
3
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Denote

F (r) :=
r∫

r3

snϕ− n
2 −1(s) f

n
2
(
ϕ(s)

)
ϕ′(s)ds −

(
r

2

)n
ϕ(r)∫

ϕ(r3)

t− n
2 −1 f

n
2 (t)dt,

then F (r3) = 0. For r > r3, by (59), we have

F ′(r) =
(

rn −
(

r

2

)n)
ϕ− n

2 −1(r) f
n
2
(
ϕ(r)

)
ϕ′(r) − n

2

(
r

2

)n−1

r

ϕ(r)∫
ϕ(r3)

t− n
2 −1 f

n
2 (t)dt

> C

(
1 − 1

2n

)
rnϕ− n

2 (r) f
n
2
(
ϕ(r)

)
r

1
n−1 +

(
r

2

)n−1

r
(
ϕ− n

2 (r3) − ϕ− n
2 (r)

)
f

n
2
(
ϕ(r)

)

>

[
C

(
1 − 1

2n

)
r

1
n−1 − 1

2n−1

]
rnϕ− n

2 (r) f
n
2
(
ϕ(r)

)
.

Clearly, if r3 is sufficiently large, then F ′(r) > 0 for r ∈ (r3,∞). Therefore, (61) holds. Substituting it
to (60), we have

ψn(r) > Crn

ϕ(r)∫
ϕ(r3)

t− n
2 −1 f

n
2 (t)dt.

Extracting n times, and substituting ψ(r) = rϕ−1(r)ϕ′(r), we have

rϕ−1(r)ϕ′(r) > Cr

( ϕ(r)∫
ϕ(r3)

t− n
2 −1 f

n
2 (t)dt

) 1
n

.

That is,

ϕ−1(r)

( ϕ(r)∫
ϕ(r3)

t− n
2 −1 f

n
2 (t)dt

)− 1
n

dϕ(r) > C dr.

Integrating from r3 to ∞, we have

∞∫
ϕ(r3)

ϕ−1(r)

( ϕ(r)∫
ϕ(r3)

t− n
2 −1 f

n
2 (t)dt

)− 1
n

dϕ(r) > C

∞∫
r3

dr = ∞.

This contradicts with (15). �
Proof of Corollary 5. From Lemmas 13 and 14, part (a) of Corollary 5 holds. Let k = n

2 in (14), we
know part (b) holds from Theorem 3. �
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