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Abstract
By making use of the approximation method, we obtain the existence and regularity of the
viscosity solutions for the generalized mean curvature flow. The asymptotic behavior of the
flow is also considered. In particular, theDirichlet problem of the degenerate elliptic equation

−|∇v|
(
div

( ∇v

|∇v|
)

+ ν

)
= 0

is solvable in viscosity sense, which is the main new ingredient of this paper.
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Introduction

In this paper,wewill study the global properties of solutions of the generalizedmean curvature
flow equations

ut − |∇u|
(
div

( ∇u

|∇u|
)

+ ν

)
= 0, (x, t) ∈ D × (0,+∞), (1.1)

where ν is a constant. The Eq. (1.1) has a geometric significance because γ -level surface�(t)
of u moves by its mean curvature and an external force field provided ∇u does not vanish
on �(t) (cf. [1,2]). When ν = 0 such a motion of surfaces has been presented by many
authors under various conditions (cf. [3–7]). However, the uniformly gradient estimates for
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solutions of (1.1) are little known and crucial for studying the global properties of viscosity
solutions. Our motivation for studying Eq. (1.1) comes from providing a parabolic approach
to prescribe the boundary value problems for some degenerate elliptic equation.

Firstly we introduce some relevant works according to the above equation. Let n < 6, and
D ⊂ R

n+1 a bounded domain with a C2 boundary of mean curvature H ≥ 0 with respect to
its outer unit normal. For � = R

n+1 \ D and a nonnegative function f ∈ C0,1(�), Bernhard
Hein considered the viscosity solutions of the inverse mean curvature flow (cf. [8])⎧⎪⎪⎨

⎪⎪⎩
ut − div

(
∇u
|∇u|

)
+ |∇u| = 0, (x, t) ∈ � × (0,+∞),

u = 0, (x, t) ∈ ∂D × (0,+∞),

u = f (x), (x, t) ∈ � × {0}.
(1.2)

Here ut = ∂u
∂t ,∇u = grad u, div is the divergence operator in R

n+1. He proved that there
exists an unique nonnegative weak solution which satisfies (1.2). And there is a positive
constant C = C(n, D, f ) such that for x ∈ � and all t > 0,

|∇u| ≤ C, −
√

(n + 1)C√
t

− 2C ≤ ∂u

∂t
≤

√
(n + 1)C√

t
+ C .

Y.Giga, M.Ohuma and M.Sato studied the following Neumann problem (cf. [9])
⎧⎪⎪⎨
⎪⎪⎩
ut − |∇u|div

(
∇u
|∇u|

)
= 0, (x, t) ∈ D × (0,+∞),

∂u
∂γ

= 0, (x, t) ∈ ∂D × (0,+∞),

u = f (x), x ∈ D × {0},
(1.3)

where γ is the outer unit normal of ∂D and f (x) ∈ C2(D). They discovered some interesting
properties of the solution u(x, t) (see Theorem 1.1 in [9]) which satisfies (1.3) in viscosity
sense.

In the present paper we consider the initial and boundary value problem⎧⎪⎪⎨
⎪⎪⎩
ut − |∇u|

(
div

(
∇u
|∇u|

)
+ ν

)
= 0, (x, t) ∈ D × (0,+∞),

u = h(x), (x, t) ∈ ∂D × [0,+∞),

u = g(x), x ∈ D × {0}.
(1.4)

Here h(x) and g(x) are the given functions on D.
Our main purposes are to show the existence and regularity of the viscosity solutions for

(1.4), to study their asymptotic behavior, and to prove that u(x, t) converges to a solution of
the Dirichlet problem of degenerate elliptic equation⎧⎨

⎩
−|∇v|

(
div

(
∇v
|∇v|

)
+ ν

)
= 0, x ∈ D,

v = h(x), x ∈ ∂D,

(1.5)

as t → +∞. The solvability of (1.5) does not seem to be easily found in the literature as far
as we know.

Quite naturally, we always use the following notations

ϕi = ∂ϕ

∂xi
, ϕi j = ∂2ϕ

∂xi∂x j
.
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Throughout the paper the followingEinstein’s convention of summation over repeated indices
will be adopted. Firstly we introduce the definition of viscosity solutions from [2].

Definition 1.1 Suppose that u(x, t) is a function in C(D×[0,+∞)) and satisfies the initial
and boundary conditions of (1.4). If ϕ ∈ C∞(D × (0,+∞)), (x, t) ∈ � ⊂ D × (0,+∞)

and � is a bounded open set, satisfy

(u − ϕ)(x, t) = max
�

(u − ϕ),

and at (x, t) such that

ϕt ≤
(

δi j − ϕiϕ j

|∇ϕ|2
)

ϕi j + ν|∇ϕ|, |∇ϕ| 
= 0.

Or there exists η = (η1, η2, . . . , ηn+1) with |η| ≤ 1 at (x, t) such that

ϕt ≤ (δi j − ηiη j )ϕi j , |∇ϕ| = 0.

Then u(x, t) is viscosity sub-solution of (1.4).

Definition 1.2 Suppose that u(x, t) is a function in C(D×[0,+∞)) and satisfies the initial
and boundary conditions of (1.4). If ϕ ∈ C∞(D × (0,+∞)), (x, t) ∈ � ⊂ D × (0,+∞)

and � is a bounded open set, satisfy

(u − ϕ)(x, t) = min
�

(u − ϕ),

and at (x, t) such that

ϕt ≥
(

δi j − ϕiϕ j

|∇ϕ|2
)

ϕi j + ν|∇ϕ|, |∇ϕ| 
= 0.

Or there exists η = (η1, η2, . . . , ηn+1) with |η| ≤ 1 at (x, t) such that

ϕt ≥ (δi j − ηiη j )ϕi j , |∇ϕ| = 0.

Then u(x, t) is viscosity super-solution of (1.4).

Definition 1.3 If u(x, t) is a viscosity sub-solution and also is a viscosity super-solution of
(1.4), then u(x, t) is a viscosity solution of (1.4).

Let us fix h(x) = g(x) on ∂D, h(x) ∈ C2(∂D), g(x) ∈ C2(D). One of the main results
in this paper is the existence and regularity of viscosity solutions of (1.4).

Theorem 1.4 Suppose that D is a smooth strictly convex bounded domain in R
n+1, and

|ν| < nH0
n+1 , where H0 is the positive lower bound of the mean curvature of ∂D. Then there

exists an unique function u(x, t) which satisfies (1.4) in viscosity sense and

u ∈ C(D × [0,+∞)), ut ∈ L∞(D × [0,+∞)), ∇u ∈ L∞(D × [0,+∞)), (1.6)

‖u‖L∞(D×[0,+∞)) + ‖∇u‖L∞(D×[0,+∞)) + ‖ut‖L∞(D×[0,+∞)) ≤ C, (1.7)∫ +∞

0

∫
D

|ut |2dxdt ≤ C, (1.8)

where the constant C depends only on n, ν, D, ‖h‖C2(∂D) and ‖g‖C2(D).

As an application of Theorem 1.4, we have
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Corollary 1.5 Suppose that the domain D satisfies the conditions in the above theorem and
u(x, t) is the viscosity solution of (1.4). Then there exists a function v(x) which satisfies
v(x) ∈ C(D),∇v ∈ L∞(D), such that

lim
t→+∞ u(x, t) = v(x), in C(D), (1.9)

and v(x) satisfies (1.5) in viscosity sense.

Remark 1.6 By Corollary 1.5 the Dirichlet problem (1.5) is solvable. But we do not know
whether a viscosity solution of (1.5) is unique.

The second result of this paper is the Liouville-type property of the viscosity solutions.
Suppose that D′ is a smooth convex bounded domain in R

n , such that

(A) : D ∩ {(x ′, xn+1) ∈ R
n+1 | |xn+1| < m + 1} = D′ × (−m − 1,m + 1),

where x ′ = (x1, . . . , xn) and m is a positive constant.

Theorem 1.7 Let ν ≥ 0 and a domain D satisfying the condition (A). Suppose that
g(x ′, xn+1) is a non-decreasing function of xn+1 which satisfies

g(x ′, xn+1) = λ, (x ′, xn+1) ∈ D ∩ {x |xn+1 ≥ m}, (1.10)

where λ is a constant. Then the viscosity solution u(x, t) in C(D×[0,+∞)) of (1.4) satisfies

u(x ′, xn+1, t) = λ, (x ′, xn+1) ∈ D ∩ {x |xn+1 ≥ m}. (1.11)

In the next section we construct approximated problem for (1.4) and establish uniform
estimates for its classical solutions. In the last sectionwe present the proof of themain results.

Preliminary Estimates

Consider the approximated problem of (1.4) with ε ∈ (0, 1)⎧⎪⎪⎨
⎪⎪⎩
ut − √

ε2 + |∇u|2 ·
(
div

(
∇u√

ε2+|∇u|2

)
+ ν

)
= 0, (x, t) ∈ D × (0,+∞),

u = h(x), (x, t) ∈ ∂D × [0,+∞),

u = g(x), (x, t) ∈ D × {0}.
(2.1)

where D is a smooth strictly convex bounded domain inRn+1. We want to use the continuity
method to prove the solvability of (2.1) and then obtain the estimates similarly to (1.7) and
(1.8).

In order to solve (2.1) we use the following form of fixed point theorem (cf. [10]).

Lemma 2.1 (Leray–Schauder) Suppose that B is a Banach space, χ(b, σ ) is a map from
B × [0, 1] to B. If χ satisfies

(1) χ is continuous and compact.
(2) χ(b, 0) = 0, ∀b ∈ B.

(3) There exists constant C > 0 such that

‖b0‖B ≤ C, ∀b0 ∈ {b ∈ B|∃σ ∈ [0, 1], b = χ(b, σ )}.
Then there exists b0 ∈ B such that χ(b0, 1) = b0.
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For any T > 0, if we define

B = {u|u ∈ C(D × [0, T )), ∇u ∈ C(D × [0, T ))}, DT = D × [0, T ),

with the norm ‖u‖ = supD×[0,T ) |u|+supD×[0,T ) |∇u|, then it is easily to see thatBmust be
a Banach space. From the theory on linear parabolic equations (cf. [11]) and for any ũ ∈ B,

σ ∈ [0, 1], there exists an unique function u, where u ∈ B, u ∈ W 2,1
p (DT ) with any p > 0

such that u satisfies⎧⎪⎨
⎪⎩
ut −

(
δi j − σ 2 ũi ũ j

ε2+σ 2|∇ũ|2
)
ui j = σν

√
ε2 + σ 2|∇ũ|2, (x, t) ∈ D × (0, T ),

u = σh(x), (x, t) ∈ ∂D × [0, T ),

u = σ g(x), (x, t) ∈ D × {0}.
(2.2)

By (2.2) we can define a map fromB× [0, 1] toB and denote u = χ(ũ, σ ). The main step
in our argument is to validate the three conditions of Lemma 2.1 one by one.

It is obvious that χ(ũ, 0) = 0 for every ũ ∈ B by the uniqueness of the initial and
boundary value problem (2.2). We see that the map χ is compact by Schauder estimates and
Sobolev embedding theorem (cf. [11]). Consequently we claim that χ is continuous. Indeed,
this fact follows from the compactness of χ and the uniqueness of the mapping χ(ũ, σ ).

So it remains to verify the third condition for applying Lemma 2.1 to the problem (2.2).
Suppose χ(u, σ ) = u. It follows from (2.2) that u satisfies⎧⎪⎪⎨
⎪⎪⎩
ut − √

ε2 + σ 2|∇u|2 ·
(
div

(
∇u√

ε2+σ 2|∇u|2

)
+ σν

)
= 0, (x, t) ∈ D × (0, T ),

u = σh(x), (x, t) ∈ ∂D × [0, T ),

u = σ g(x), (x, t) ∈ D × {0}.
(2.3)

By using regularity theory, u ∈ C∞(DT ) ∩C2.1(DT ). Then the condition (3) in Lemma 2.1
is equivalent to the boundness of u and ∇u in the L∞ norm which is independence of σ if
u ∈ C∞(DT ) ∩ C2.1(DT ) and u satisfies (2.3).

In this section we derive W 1,∞ estimates for the classical solutions of (2.3) in which the
bound is not only independent of σ , but also independent of ε and T .

Let

Lσ u = ut −
√

ε2 + σ 2|∇u|2 ·
(
div

( ∇u√
ε2 + σ 2|∇u|2

)
+ σν

)
, (2.4)

and

∂pDT = (∂D × [0, T )) ∪ (D × {t = 0}).
The estimates follow from the next three lemmas. The following comparison principle is by
Theorem 14.1 in [11].

Lemma 2.2 Suppose that u1, u2 ∈ C2,1(D × (0, T )) ∩ C(D × [0, T )). If

Lσ u1|DT ≥ Lσ u2|DT , u1|∂p DT ≥ u2|∂p DT ,

then

u1|DT ≥ u2|DT .

The estimate for the maximum norm for the solutions of (2.3) is the following:
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Lemma 2.3 If u ∈ C∞(D × (0, T )) ∩ C(D × [0, T )) is a solution of (2.3) with |ν| < nH0
n+1 .

Then

‖u‖L∞(D×[0,T )) ≤ C, (2.5)

where C is depending only on ‖h‖C(∂D), ‖g‖C(D), and D.

Proof Step 1. By |ν| < nH0
n+1 and Theorem 16.10 in [10], there exists α > 0, vε ∈ C2+α(D),

such that ⎧⎨
⎩

−√
ε2 + σ 2|∇vε |2 ·

(
div

(
∇vε√

ε2+σ 2|∇vε |2

)
+ σν

)
= 0, x ∈ D,

vε = 1, x ∈ ∂D.

Set w = σ

ε
vε . Then w is a classical solution of the following Dirichlet problem:

⎧⎨
⎩
div

(
∇w√

1+|∇w|2

)
+ σ 2ν = 0, x ∈ D,

w = σ
ε
, x ∈ ∂D.

It follows from Theorem 6.1 in [12] that there exists a constant C depending only on n and
diamD such that

max
D

|w| ≤ σ

ε
+ Cσ 2ν.

So

max
D

|vε | ≤ 1 + εσνC ≤ C . (2.6)

Step 2. Suppose that κ is a positive constantwhichwill be determined later. Let vε
1 = vε+κ

then vε
1 satisfies⎧⎨

⎩
−

√
ε2 + σ 2|∇vε

1 |2 ·
(
div

(
∇vε

1√
ε2+σ 2|∇vε

1 |2

)
+ σν

)
= 0, x ∈ D,

vε
1 = 1 + κ, x ∈ ∂D.

By (2.6) we can choose κ depending only on ‖h‖C(∂D), ‖g‖C(D), and D such that

vε
1(x) ≥ g(x), vε

1(x) ≥ h(x), x ∈ D.

By applying Lemma 2.2 we arrive at

u(x, t) ≤ vε
1(x) ≤ C + κ ≤ C, (x, t) ∈ D × [0, T ).

For the same reason we obtain

u(x, t) ≥ −C, (x, t) ∈ D × [0, T ).

This yields the desired results. ��
The following is the gradient estimate for a solutions of (2.3).

Lemma 2.4 If u ∈ C∞(D×(0, T ))∩C(D×[0, T )) and is a solution of (2.3)with |ν| < nH0
n+1 .

Then

‖∇u‖L∞(D×[0,T )) ≤ C . (2.7)

where C is depending only on ‖h‖C2(∂D), ‖g‖C1(D) and D.
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Proof Step 1. We derive the gradient estimates of u at the boundary using the methods from
[3]. Set w = u − h. Then by (2.3) w satisfies the following equations on D × (0, T ):

Lw � wt −
(

δi j − σ 2 (wi + hi )(w j + h j )

ε2 + σ 2|∇w + ∇h|2
)

(wi j + hi j ) − σν
√

ε2 + σ 2|∇w + ∇h|2 = 0.

In the neighborhood � of ∂D × [0, T ) we will construct the functions ψ± which are inde-
pendent of t and satisfy

±Lψ± ≥ 0, (x, t) ∈ � ∩ (D × (0, T )), (2.8)

ψ± = w = 0, (x, t) ∈ � ∩ (∂D × [0, T )), (2.9)

ψ− ≤ w ≤ ψ+, (x, t) ∈ (∂� ∩ (D × [0, T ))) ∪ (� ∩ (D × {0})). (2.10)

Consequently by Lemma 2.2 we have

ψ− ≤ w ≤ ψ+, (x, t) ∈ �̄ ∩ (D × [0, T )). (2.11)

For (x, t) ∈ ∂D × [0, T ), if a is the normal vector of ∂D such that

x + sa ∈ �̄ ∩ (D × [0, T )), when 0 < s ≤ 1.

Then by (2.9) and (2.11) we obtain

ψ−(x + sa) − ψ−(x)

s
≤ w(x + sa, t) − w(x, t)

s
≤ ψ+(x + sa) − ψ+(x)

s
.

Letting s → 0, we have

∂ψ−

∂a
(x) ≤ ∂w

∂a
(x, t) ≤ ∂ψ+

∂a
(x).

A direct calculation yields on � ∩ (∂D × [0, T ))

|∇u| ≤ ‖∇w‖C(�∩(∂D×[0,T )) + ‖∇h‖C(�∩(∂D×[0,T )))

≤ ‖∇ψ+‖C(�∩(∂D×[0,T ))) + ‖∇ψ−‖C(�∩(∂D×[0,T ))) + ‖∇h‖C(�∩(∂D×[0,T ))) ≤ C .

(2.12)

In the following we define ψ+ and ψ− which satisfy (2.8)–(2.10) in detail. Firstly set

ψ+(x) = λd(x), x ∈ D, N = {x ∈ D|d(x) < ρ},
where d(x) is the distance from x to ∂D, ρ and λ are positive constants which will be
determined later. Selecting the positive constant ρ to be small enough such that d(x) satisfies

(a) d(x) ∈ C2(N ).
(b) In N , |∇d| = 1, and

n+1∑
i=1

didi j = 0, j = 1, 2, . . . , n + 1.

(c) If x ∈ N , then there exists x0 ∈ ∂D such that d(x) = |x − x0|. By Lemma 14.17 in [10]
we have the formula

− �d(x) =
n∑

i=1

ki
1 − ki d(x)

, (2.13)

where k1, k2, . . . , kn are the principle curvature of ∂D at x0.
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Because ∂D is strictly convex, the mean curvature of ∂D have a positive lower bound and
we denote it by H0. Choosing ρ < 1

H0
and by (2.13) we have

�d(x) ≤ −nH0, x ∈ N . (2.14)

Now we verifies ψ+ (2.8)–(2.10).

(1) By the definition of d(x), ψ+ satisfies (2.9).
(2) If x ∈ N , then we can choose x0 ∈ ∂D such that d(x) = |x − x0|. And by w(x0, 0) = 0

we obtain

w(x, 0) = g(x) − h(x) − [g(x0) − h(x0)] ≤ β|x − x0| = βd(x),

whereβ is depending only on ‖h‖C1(∂D) and ‖g‖C1(D).On the other hand, if x ∈ ∂N∩D,
then d(x) = ρ. So we can select a positive constant λ, such that ψ+ satisfies (2.10).

(3) ψ+ satisfies (2.8). In fact,

Lψ+ = −λ�d − �h + σ 2
(

λ2did j + λdi h j + λhid j + hi h j

ε2 + σ 2|λ∇d + ∇h|2
)

(λdi j + hi j )

−σν
√

ε2 + σ 2|∇h|2 + 2λσ 2∇d · ∇h + σ 2λ2.

Then by (2.14) and �n+1
i=1 di j di = 0 we have

Lψ+ ≥ nλH0 − ‖h‖C2(D) + σ 2
(

λ2did j hi j + 2λhid j hi j + hi h j hi j + λdi j hi h j

ε2 + σ 2λ2 + 2σ 2λ∇d · ∇h + σ 2|∇h|2
)

−σν
√

ε2 + σ 2|∇h|2 + 2σ 2λ∇d · ∇h + σ 2λ2.

By Lemma 14.17 in [10], |di j | have an upper bound depending only on ∂D. Let the positive
constant λ to be large enough then we obtain

Lψ+ ≥ nλH0 − λσ 2|ν| − C ≥ nλH0 − λ|ν| − C, (2.15)

where C is depending only on ∂D, ‖h‖C2(∂D). From (2.15) and |ν| < nH0 let λ to be large
enough which is depending only on ∂D and ‖h‖C2(∂D) then we have

Lψ+ ≥ 0.

For the same reasonwe can constructψ− which satisfies (2.8)–(2.10). Sowe have obtained
the desired results of step 1 by (2.12).

Step 2. For i ∈ {1, 2, . . . , n + 1}, let � = ui . Differentiating (2.3) with respect to xi we
get

�t − akl�kl − bl�l = 0, (x, t) ∈ D × (0, T ),

where

akl = δkl − σ 2ukul
ε2 + σ 2|∇u|2 ,

bl = 2σ 4uε
ku

ε
mu

ε
kmul

(ε2 + σ 2|∇u|2)2 − 2σ 2ukukl
ε2 + σ 2|∇u|2 − νσ 3ul√

ε2 + σ 2|∇u|2 .

By the maximum principle for linear parabolic equation (cf. [11]) and (2.12) we obtain (2.7).
��

From Lemma 2.1–2.4 and the Schauder estimates we conclude that
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Theorem 2.5 For any ε > 0 and |ν| < nH0
n+1 , there exists u

ε which satisfies

uε ∈ C∞(D × (0,+∞)), uε ∈ C(D × [0,+∞)), ∇uε ∈ C(D × [0,+∞)),

and uε is a classical solution of (2.1). And there holds

‖uε‖L∞(D×[0,+∞)) ≤ C, ‖∇uε‖L∞(D×[0,+∞)) ≤ C,

where C depends only on ‖h‖C2(∂D), ‖g‖C1(D), H0 and D.

Corollary 2.6 Suppose that uε is a classical solution of (2.1) with |ν| < nH0
n+1 . Then there

holds ∫ +∞

0

∫
D

|uε
t |2dxdt ≤ C, (2.16)

where C depends only on ‖h‖C2(∂D), ‖g‖C1(D), H0 and D.

Proof Set

J (t) =
∫
D

√
|∇uε |2 + ε2dx .

Then

J ′(t) =
∫
D

∇uε · ∇uε
t√|∇uε |2 + ε2

dx = −
∫
D
div

∇uε√|∇uε |2 + ε2
uε
t dx . (2.17)

From (2.1) we see that

div
∇uε√|∇uε |2 + ε2

= uε
t√|∇uε |2 + ε2

− ν. (2.18)

Substituting (2.18) into (2.17) we obtain

J ′(t) +
∫
D

|uε
t |2√|∇uε |2 + ε2

dx = ν

∫
D
uε
t dx . (2.19)

For (2.19) integrating from 0 to T and using (2.5) we have∫ T

0

∫
D

|uε
t |2√|∇uε |2 + ε2

dxdt = J (0) − J (t) + ν

∫
D
uε |t=T dx − ν

∫
D
uε |t=0dx

≤ J (0) + C,

where C is a constant which is independent of ε. Letting T → +∞ we get∫ +∞

0

∫
D

|uε
t |2√|∇uε |2 + ε2

dxdt ≤ C . (2.20)

Combining (2.7) with (2.20) we arrive at∫ +∞

0

∫
D

|uε
t |2dxdt =

∫ +∞

0

∫
D

|uε
t |2√|∇uε |2 + ε2

√
|∇uε |2 + ε2dxdt

≤ (‖∇uε‖L∞(D×[0,+∞)) + ε)

∫ +∞

0

∫
D

|uε
t |2√|∇uε |2 + ε2

dxdt

≤ C,

where C depends only on ‖h‖C2(∂D), ‖g‖C1(D), H0 and D. ��
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Corollary 2.7 Suppose uε is a classical solution of (2.1). Then there holds

‖uε
t ‖L∞(D×[0,+∞)) ≤ C . (2.21)

where C depends only on ‖g‖C2(D).

Proof Set ω = uε
t . Differentiating (2.1) with respect to t we get

ωt − aklωkl − blωl = 0, (x, t) ∈ D × (0,+∞),

where

akl = δkl − uε
ku

ε
l

ε2 + |∇uε |2 ,

bl = 2uε
ku

ε
mu

ε
kmu

ε
l

(ε2 + |∇uε |2)2 − 2uε
ku

ε
kl

ε2 + |∇uε |2 − νuε
l√

ε2 + |∇uε |2 .

From uε |∂D×[0,T ) = h(x), there holds

ω = 0, (x, t) ∈ ∂D × [0,+∞).

From (2.1) we see that

ω =
√

ε2 + |∇g|2 ·
(
div

(
∇g√

ε2 + |∇g|2
)

+ ν

)
, (x, t) ∈ D × {0}.

This yields (2.21) by using maximum principle . ��

The Proof of Main Results

In the third section, we give the proof of Theorem 1.4, Corollary 1.5 and Theorem 1.7.

Proof of Theorem 1.4 Consider the classical solution of the approximatedproblem (2.1). From
Theorem 2.5 and Corollary 2.7 we see that there exists {εi }|+∞

i=1 satisfying lim
i→+∞ εi = 0 such

that there holds

uεi → u, in C(D × [0,+∞)),

∇uεi ⇀∇u in L∞(D × [0,+∞)),

uεi
t ⇀ut in L∞(D × [0,+∞)).

Combining Corollary 2.6 with Fatou’s Lemma we verify that u satisfies (1.6)–(1.8). On the
other hand, by the stability theorem of viscosity solutions (cf. Theorem 2.4 in [2]) u is a
viscosity solution of (1.4). This completes the proof of Theorem 1.4. ��
Proof of Corollary 1.5 The main idea comes from Y.Giga, M.Ohnuma and M.Sato (cf. [9]).

Consider the viscosity solution u of (1.4). For (x, t) ∈ D1 � D × [0, 1], set
uk(x, t) = u(x, k + t), k = 1, 2, . . . .

From (1.7) and the Ascoli–Arzela’s Theorem, there exists a subsequence of {uk} (still denote
the subsequence by {uk}) and the function v(x, t), such that

lim
k→+∞ uk(x, t) = v(x, t), in C(D1). (3.1)
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By (1.8) we obtain

lim
k→+∞

∫ 1

0

∫
D

|ukt |2dxdt = lim
k→+∞

∫ k+1

k

∫
D

|ut |2dxdt = 0.

Letting k → +∞ we have

ukt⇀0, in L2(D1). (3.2)

It follows from (3.1) and (3.2) that for any φ ∈ C∞
0 (D) and χ ∈ C∞

0 (0, 1),
∫
D

∫ 1

0
vφχt dtdx = 0.

Then

vt = 0, (x, t) ∈ D1. (3.3)

By (1.4) uk satisfies the following equation in viscosity sense⎧⎨
⎩
ukt − |∇uk |

(
div

(
∇uk|∇uk |

)
+ ν

)
= 0, (x, t) ∈ D × (0, 1),

uk = h(x), (x, t) ∈ ∂D × [0, 1].
(3.4)

From (3.4) taking k → +∞ and using (1.7), (3.1), (3.3) and applying Theorem 2.4 in [2] we
deduce that v satisfies⎧⎨

⎩
−|∇v|

(
div

(
∇v
|∇v|

)
+ ν

)
= 0, x ∈ D,

v = h(x), x ∈ ∂D,

in viscosity sense. This completes the proof of Corollary 1.5. ��
Proof of Theorem 1.7 Firstly taking positive constant δ to be small enough we can construct
a pair of non-decreasing C2 functions g+(τ ) and g−(τ ) such that{

g−(xn+1) = g+(xn+1) = λ, xn+1 ≥ m + δ,

g−(xn+1) ≤ maxx ′∈D g(x ′, xn+1) ≤ g+(xn+1), xn+1 ≤ m + δ.
(3.5)

In fact, by the hypothesis of g we can choose g+(τ ) ≡ λ. Set

gε(τ ) =
{

λ, if τ ≥ m + δ,
λ
ε
(τ − m − δ + ε), if τ ≤ m + δ.

By smoothing the point (m + δ, λ) and letting ε = ε(δ) to be small enough we obtain g−(τ )

which satisfies (3.5).
Let

u+(x ′, xn+1, t) = g+(xn+1 + νt),

u−(x ′, xn+1, t) = g−(xn+1).

We claim that u+(x ′, xn+1, t) and u−(x ′, xn+1, t) are viscosity sub-solution and viscosity
super-solution of (1.4) respectively. Then using Theorem 1.7 in [13], i.e, the comparison
principle for the viscosity solution of (1.4) which is likely to Lemma 2.2, we get

u−(x ′, xn+1, t) ≤ u(x ′, xn+1, t) ≤ u+(x ′, xn+1, t), (x ′, xn+1, t) ∈ D × [0,+∞).

(3.6)
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In particular, if xn+1 ≥ m + δ for any δ > 0, then u+(x ′, xn+1, t) = u−(x ′, xn+1, t) ≡ λ by
making use of (3,5). Taking δ → 0 we obtain (1.11).

Now we prove that u+(x ′, xn+1, t) is viscosity super-solution of (1.4). In a similar way
we can prove that u−(x ′, xn+1, t) is a viscosity sub-solution of (1.4).

In fact, for any (x, t) ∈ D × [0,+∞), if ϕ ∈ C∞(D × [0,+∞)) and there exists a
neighborhood � of (x, t) in D × [0,+∞) such that

(u+ − ϕ)(x, t) = min
�

(u+ − ϕ).

Then at (x, t) we have

u+
t − ϕt ≤ 0, ∇u+ = ∇ϕ, D2u+ ≥ D2ϕ. (3.7)

If ∇ϕ = 0. Then by taking η = (η1, η2, . . . , ηn, ηn+1) = (0, 0, . . . , 0, 1) and using (3.7) we
obtain

(δi j − ηiη j )ϕi j ≤ (δi j − ηiη j )u
+
i j = (1 − ηn+1ηn+1)u

+
n+1,n+1 = 0. (3.8)

By (3.7) and (3.8) there holds

ϕt ≥ u+
t = ν(g+)′ = νϕn+1 = 0 ≥ (δi j − ηiη j )ϕi j .

On the other hand, if ∇ϕ 
= 0. Then by (3.7) we get

ϕi = u+
i = 0, u+

i i = 0, i = 1, 2, . . . , n, ϕn+1 = u+
n+1 
= 0. (3.9)

Combining (3.7) with (3.9), we obtain
(

δi j − ϕiϕi

|∇ϕ|2
)

ϕi j =
n∑

i=1

ϕi i ≤
n∑

i=1

u+
i i = 0, (3.10)

ϕt ≥ u+
t = νϕn+1. (3.11)

It follows from (3.10) and (3.11) that(
δi j − ϕiϕi

|∇ϕ|2
)

ϕi j + ν|∇ϕ| ≤ ϕt .

So we conclude that u+(x ′, xn+1, t) is viscosity super-solution of (1.4). This completes
the proof of Theorem 1.7. ��
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