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1 Introduction

The parabolic Monge—Ampére equation
—ugdet D%u = f(x, t) (1.1)

is an important class of fully nonlinear parabolic equations. This type of parabolic differential operator was
first considered by Krylov [11] with other two parabolic versions of the elliptic Monge—Ampére operator. This
operator is relevant in the study of deformation of surfaces by Gauss—Kronecker curvature [13], and in a
maximum principle for parabolic equations [14]. There are many results for (1.1), see [7-9, 15, 16, 18, 19]
and the references therein. Especially, the interior Dirichlet problem

—ugdet D%u =f(x,t) inQ,
u=@x,t) onopQ,

was studied in [15, 16], where Q = Q x (0, T] is a cylinder in R™!, Q ¢ R" is a bounded and strictly convex
domain, T is a positive constant, and 0,Q = (0Q x (0, T)) U (Q x {0}) is the parabolic boundary of Q, see [12]
for a complete description of Q. The existence and uniqueness of viscosity solution of the interior Dirichlet
problem were obtained in [15, 16]. The first author [7] considered the exterior Dirichlet problem of (1.1).

In this paper, we will study the viscosity solution of the Cauchy problem

—usdet D%u = f(x, t), (x,t) € R"x (0, T], (1.2)
u=¢x), (xt)eR"x{t=0} (1.3)

where f and ¢ are continuous functions.

*Corresponding author: Jiguang Bao, School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics
and Complex Systems, Ministry of Education, Beijing 100875, P. R. China, e-mail: jgbao@bnu.edu.cn

Limei Dai, School of Mathematics and Information Science, Weifang University, Weifang, Shandong 261061, P. R. China,
e-mail: limeidai@126.com



770 =—— L.M. Daiand).G. Bao, Cauchy Problem for Parabolic Monge—Ampére Equations DE GRUYTER

For a domain D ¢ R™1, we say a function u ¢ C%*k(D) which means that u is 2k-th continuous differ-
entiable with spatial variables x € R" and k-th continuous differentiable with time variable ¢ for (x, t) € D.
Let USC(D) and LSC(D) denote respectively the set of upper and lower semicontinuous real-valued functions
on D. A function u € USC(D) (or LSC(D)) is called parabolically convex if u is convex in x and nonincreasing
in t. The following is the definition of viscosity solutions, see [16].

Definition 1.1. Let u € USC(R" x (0, T]) (or LSC(R" x (0, T])) be parabolically convex. Then the function u
is called a viscosity subsolution (or supersolution) of (1.2) if for any function h € C>(Q,(X, t)) (with some
Qb :={(x,0): Ix=X| <1, t-r2 <t<t} c R" x (0, T]), whenever

u(x, t) — h(x, t) <(or =) u(x,t) - h(x,t) forany (x,t) € Q/(x,t)

we must have
—hi(x, t)det D*h(x, t) >(or <) f(X, D).

For the supersolution, we also require that D2h(X, t) > 0 in the matrix sense.
A function u € CO(R" x (0, T]) is called a viscosity solution of (1.2) if it is both a viscosity subsolution
and supersolution of (1.2).

Definition 1.2. A function u € USC(R" x [0, T]) (or (LSC(R" x [0, T])) is called a viscosity subsolution (or
supersolution) of problem (1.2) and (1.3) if u is a viscosity subsolution (or supersolution) of (1.2), and
u <(or =) ¢(x) for (x,t) € R" x {t = 0}. Then u € C°(R" x [0, T]) is called a viscosity solution of (1.2) and
(1.3) if it is a viscosity solution of (1.2) and u = ¢(x) for (x, t) € R" x {t = 0}.

We obtain the existence of the Cauchy problem for parabolic Monge—Ampére equations.

Theorem 1.1. Assume that f and ¢ are continuous, f has positive upper bound and positive lower bound in
R" x [0, T], D?¢ is positive definite and det D?>¢ has positive upper bound and positive lower bound in the
viscosity sense in R". Then the Cauchy problem (1.2) and (1.3) has a viscosity solution u € C°(R" x [0, T]).

To obtain the uniqueness of solutions to (1.2) and (1.3), we suppose that f and ¢ satisfy the following
assumptions:

Assumption (F). The function f € C°(R" x [0, T]) is positive satisfying that for the constant § > 0,
fx, ) = fo(Ix]) + O(Ix|®)  uniformly for ¢, |x| — oo,

where fy € C°([0, +00)) is positive,
fo(n)=00"), r— +oo,
with constant a > - and
-n(min{B, n} - 2)

<a<oo. (1.4)
n-1

Assumption (®). Let ¢ € C°(R"). Suppose that there is a constant 7 > 0 such that in the viscosity sense
rdetD?¢ = f(x,0) and D?¢ >0, xeR", (1.5)
and for some b € R" and some constant c, ¢(x) satisfies

lim sup [x|™nB:m=2+a=5 16 (x) — (uo(Ix]) + b - x + ¢)| < 00, (1.6)

|X|—00

where
|

1

( j 2" o (2) dz)n ds 1.7)
0

C—x

uo(Ix|) = (;)

detDzuo

is the solution of

~ Jo(lx])
TooT

with uo(0) = 0, uy(0) = 0.
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We obtain the existence and uniqueness of the Cauchy problem for parabolic Monge—Ampére equations.

Theorem 1.2. Let n > 2. Assume that f satisfies (F) and ¢ satisfies (D). Then for the b € R" and the constant
c in (1.6), the Cauchy problem (1.2) and (1.3) has a unique viscosity solution u € C°(R" x [0, T]) with the
asymptotic behavior

lim sup (|x|™MEM =245 1y (x, ) — (=Tt + up(IX]) + b - x + ¢)|) < 00, t € [0, T]. (1.8)

|x|—00

Remark 1.1. In [10], a counterexample is given to show the necessity of (1.4) for the elliptic Monge—Ampére
equations. Then (1.4) is needed for (1.6) and so it is necessary for the parabolic Monge—Ampére equations.

Remark 1.2. If rdet D?¢ = f(x, t), (x, t) € R" x [0, T], then the unique solution of problem (1.2) and (1.3)
isu(x, t) = -1t + p(x).

If fo(lx]) = 1, x € R", then L
uo(|x]) = ——=|x/°.

24t
Corollary 1.1. Letn > 2, f = 1+ O(|x|#) with B > 2 and ¢ satisfy (1.5) and (1.6). Then for the b € R" and the
constant c in (1.6), the Cauchy problem (1.2) and (1.3) has a unique viscosity solution u € CO(R" x [0, T]) with
the asymptotic behavior

: 1
lim sup (|x|mm{ﬁ’"}‘2|u(x, t) - <—Tt +——x*+b-x+ c>|> <00, telo,T].
|x]—00 2%

Suppose that Q is a smooth, bounded and strictly convex open subset in R". Let X, diffeomorphic to an
(n - 1)-disc, be the intersection of Q and a hyperplane in R", and let T be the boundary of X. Caffarelli and
Li [1] introduced the domain I when they investigated the multi-valued solutions of elliptic Monge—-Ampére
equations det D?u = f(x) in (Q\T) x Z, where Q c Q and Q is bounded strictly convex. They obtained the
existence and uniqueness of multi-valued solutions with prescribed value on I'. For a detailed descrip-
tion, see [1]. Xiong and Bao [17] studied the isolated singularity of parabolic Monge—-Ampére equations
—updet D?u = 1in R™! \ Xo with R™! = R" x (-c0, 0) and X = (xo, to). For more results about the singular
solutions, we can refer to [2-4].
In this paper, we will also consider the Cauchy problem

—usdet D?u = f(x, t), (x,t) € (R"\T)x (0, T], (1.9)
u=¢x), (xt)e(@®"\T)x{t=0} (1.10)
Assumption (®@’). Let ¢ satisfy (@) with b = 0 and there exists some constant y* such that for any y > y*,
¢=-y onT. (1.11)
Assumption (H). For some positive constant hy, h(t) € C'[0, T] satisfies h(0) = 0 and
h'(t) < -hy <O. (1.12)

Theorem 1.3. Let n > 2, (F), (®') and (H) hold. Then for the constant c in (1.6) and the constant y in (1.11),
there exists a unique viscosity solution u of (1.9) and (1.10) which satisfies (1.8) with b = 0 and

u=h(t)-y, ((xt)elx[0,T]. (1.13)

This paper is arranged as follows. In Section 2, we prove Theorem 1.1. In Section 3, we prove Theorem 1.2
and Corollary 1.1. Section 4 is devoted to providing the proof of Theorem 1.3. In Section 5, we give some
basic lemmas.

2 Proof of Theorem 1.1

Choose positive constants 71, T, such that 0 < 71 < 1 < 1, and

1o det D% > f(x, t), Ty det D*¢p < f(x, t), (x, t) € R" x (0, T].
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Let
Ax, t) = -1t + p(x), (x,t) e R"x [0, T],
B(x,t) = -T1t + p(x), (x,t) €e R" x [0, T].
Then
~Acdet D’A = 1o detD?*¢ = f(x, t), (x,t) € R" x (0, TJ,
—BidetD?’B =11 detD*¢ < f(x, ), (x,t) € R"x (0, TJ.
Clearly,
A(x, t) < B(x, t)
and

A(x,0) = B(x, 0) = ¢(x).

So A(x, t) and B(x, t) are respectively viscosity subsolution and supersolution of (1.2) and (1.3).
Let 8 denote the set of parabolically convex functions v which are viscosity subsolutions of (1.2) and (1.3)
satisfying
v(x, t) < B(x, t).

Then A € 8.So 8 # 0. Define
u(x, t) =sup{vix,t): ve8}, (x,t)eR"x][0,T.
Therefore
A(x, t) <u(x,t) <B(x,t), (x,t)eR"x][0,T].

As a result, u(x, 0) = ¢p(x), x e R™.
As in [5, Step 4 of the proof of Theorem 1.1], we can prove that u is a viscosity solution of (1.2).

3 Proof of Theorem 1.2

By an affine transformation in x-space and subtracting a linear function to u, we only need to prove the
case b = 0. We divide the proof into six steps.

Step 1: Construct a viscosity subsolution of (1.2)-(1.3). Letf(|x|), ]_f (Ix]) be two positive continuous functions
such that B
Tf(Ix]) = flx, t) > Tf (Ix]),
f(x)) = det D*¢ > f(Ix]),

with

Tf(x1) = fo(lx]) - c11xI P, x| - oo,

tf(1x1) = fo(xD) + c21xIF,  |x| - oo,
and ¢, ¢, being positive constants. For a > 0, define functions

Ix]

ui(x, t) = -1t + J ( nz" f(z)dz + a)n ds, (x,t) e R"x|[0,T],

[x] 1

u(x, t) = -1t + (
|

nz"'f(z) dz + a)n ds, (x,t) e R"x [0, TJ.

o — T —

Then u; and u, are parabolically convex, and

—(uq)¢detD?uy =1f > f, (x,t) e R"x (0, T, (3.1)
—(up)¢detD*u; = 1f < f, (x,t) e R" x (0, TJ, (3.2)
det(D%uy(x, b)) = f, (x,t) e R" x [0, T), (3.3)

det(D%uy(x, t)) = f, (x,t) €e R" x [0, T]. (3.4)
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Furthermore, we find that for (x, t) € R" x [0, T],

1

u(x, t) = -7t + uo(|x|) + u1(a) - J [( J nz"f(z) dz + a)n - ( j
MR 0

1

2" o (2) dz) " ] ds,

NS

where ug(|x]) is the same as (1.7), and

pi(a) = J [( J nz"'f(z)dz + a)'1 - ( J ;Z"_lfo(z) dz)
11 0

Then by the fact that f(z) = @ + 2278, fo(z) = 0(z%), we know that

BT

] ds —ug(1).

~

S 1 S 1
( an"‘lf(z) dz + a) - ( J Ez”‘lfo(z) dz) = o(st-ara-minifnhy o, Lo,
1 0

So

1 0

[( J nz" f(z)dz + a) " ( I gz”’lfo(z) dz) ' ] ds = J’ O(st-a+i-minhinty gg
1 0

x| x|

= O(|x > minipor), (3.5)
where 2 — a + ¢ — min{f, n} < 0 by (1.4). In addition, u1(a) is strictly increasing in (0, +co0) and
aLHPooM(a) = +00.

So

|2—a+%—min{ﬁ,n})

up(x, t) = -1t + up(|x|) + p1(a) + O(|x as |x| — oo.

Similarly, we have that

1
n

Uz (x, t) = =7t + uo(|x]) + pa(a) - J ] &
x|

where

[( J nz"'f(z) dz + a)n - ( I gz"’lfo(z) dz)
1 0

uz(a) = j [( J nz""'f(z) dz + a)n - ( J gz"‘lfo(z) dz)n] ds — up(1).
1 1 0

Then p;,(a) is also strictly increasing in (0, +co) and
aLHPoo”Z(a) = +00.

So as |x| — oo, we also have

U (X, t) = —t + uo(|x]) + pa(@) + O(|x|?~a* n-min{Bony

For the sufficiently large constant c in (1.6), there exist a;(c) and a,(c) satisfying u;(ai(c)) = p2(az(c)) = c.
Therefore as |x| — 0o, 0 < t < T, we have

UL (x, t) = =7t + up(x]) + ¢ + O(|x|2 o+ a—min{f.nty (3.6)
and
Uz (X, ) = ~Tt + Uo(|x|) + ¢ + O(|x|?~0+ 7 ~minth.nly

Thus
lim (ui(x,t) —u>(x,t))=0, 0<t<T. 3.7)

|x|—00



774 =—— L. M. Daiand].G.Bao, Cauchy Problem for Parabolic Monge—Ampére Equations DE GRUYTER

In virtue of (3.3), (3.4), (3.7) and the comparison principle, we get that
ui(x,0) <ur(x,0), xeR" (3.8)
By (3.1), (3.2), (3.7), (3.8) and the comparison principle, we have
ui(x, t) <ux(x, t), (x,t)e R"x[0,T].
By (1.5), (1.6), (3.3), (3.6) and the comparison principle, we get
ui1(x,0) < p(x), xeR".

Step 2: Define the Perron solution of (1.2). Let 8 denote the set of parabolically convex functions v which
are viscosity subsolutions of (1.2) and (1.3) satisfying

v(x, t) < ux(x, t).
Then u; € 8.S0 8 # 0. Define
uc(x, t) =sup{vix, t) : ves8}, (x,t)eR"x[0,T].
Step 3: We prove that u. has the asymptotic behavior at infinity. Firstly, by the definition of u., we have
Uuc(x, t) <ux(x, t).

Then as |x| — oo,
Uc(x, t) + Tt — up(|x|) = ¢ < O(|x|2~ %+ n—min{f.n}y

On the other hand, since u; € 8, by (3.6), as x| — co, we have
uc(x, ) + Tt — ug(|x]) — ¢ > O(|x|*~**a—minif.nhy

Thus,
lim sup (|x|™PE+E=5-21y (x, £) — (Tt + uo(|x]) + C)]) < co.
x| >0
Step 4: We prove that u(x, 0) = ¢(x), x € R". Choose positive constants 71, 7, suchthat 0 < 7; < T < 1>
and
1,detD?¢ > f(x, t), T1idetD’¢ < f(x,t), (x,t) e R"x(0,T].

Let
A(x, t) = -Tot + p(x), (x, t) €e R" x [0, T,
B(x, t) = —T1t + p(x), (x, t) € R" x [0, T].
Then
~A;detD?A = T, det D?¢p > f(x, t), (x,t) € R" x (0, TI,
—B¢detD’B = 11 detD*¢ < f(x, t), (x,t) € R" x (0, TJ.
As |x| — oo,

| llim (A(x, t) —uc(x, t) <0,
X|—00

lim (B(x, t) — uc(x, t)) > 0.

|x|—00
Clearly, for x € R",
A(x,0) = B(x, 0) = ¢(x).

So A(x, t) and B(x, t) are respectively viscosity subsolution and supersolution of (1.2)-(1.3). Then A € 8 and
forany v € 8, we have v(x, t) < B(x, t). Therefore

Ax, t) <uc(x,t) <B(x,t), (x,t)eR"x][0,T].

As aresult, u.(x, 0) = p(x), x € R™.
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Step 5: We prove that u, is a viscosity solution of (1.2). Asin [5, Step 4 of the proof of Theorem 1.1], we can
prove that u. is a viscosity solution of (1.2).

Step 6: We prove the uniqueness. Suppose that u and v all satisfy (1.2)—(1.3) and (1.6). Then
lim (u(x, t) — v(x, t)) = O.
X—00

By the comparison principle, u = v, (x, t) € R" x [0, T].

Theorem 1.2 is proved.

Proof of Corollary 1.1. In Step 1 of the proof of Theorem 1.2, we let fo(|x|) = 1, then

[y S 1 S 1
J [( J nz2"f(z) dz + a) _ ( J gzn1> ] ds = O(|x|2-miniBnly,
x| 1 0
So .
uy(x, t) = Tt + ——|x|? + ¢ + O(|x|> " minhnt),
1(x, t) 2%/?' | (Ix] )
1 2 i
U (x, t) = —Tt + —— x| + ¢ + O(|x|> " ™inif.nty,
20x, 1) 2}Q/?I | (Ix] )
The remainder of the proof is the same as Theorem 1.2. O

4 Proof of Theorem 1.3

Let B»(0) cc Q and Ry = diam(Q); then Q cc Bg, (0). Choose R, = 3R;.
To prove the theorem, let g € C*(Q) satisfy

detD’g=1 inQ,

{ g=0 onoQ.

Set W(x, t) = h(t) + ¢&(x) € C>1(Q x [0, T]). Then ¥|sq = h(t) and W(x, t)|sq = h'(t). By Lemma 5.4, for any
&eoQ,
Wf(X) t) = \P({) t) + %HX - )_(({) t)|2 - |€ - )_((51 t)|2]’ (Xy t) € ]er X [0) T]’

satisfying
we(x, £) < P(x,t) on(Q\{&)x [0, T].

In virtue of Remark 5.1, we know that (w¢); = W¢(¢&, t) = h'(t). Then, by (H), we can choose c, and ¢ large
enough such that

—(wg)¢det D?we > f(x, t), (x, ) € Bg,(0) x (0, T1,
det D?we(x, 0) > det D*¢(x), x € Bg,(0),
~¥,detD*V¥ > f(x, t), (x,t) € Qx (0, T,
det D*¥(x, 0) > det D?¢p(x), x€Q.
Define

Y(x, t), (x,t) e Qx[0, T],

w(x,t) =
SUPgegq WeX, B),  (x, 8) € (R"\ Q) x [0, T].

Then

wix, t) =¥ (x, t) = h(t), (x,t)elx][0,T],
and by Lemma 5.1 and Lemma 5.2,
~wdet D*w > f, (x, t) € Bg,(0) x (0, T],
det D’w(x, 0) > det D?¢(x), x € Bg,(0).
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Similar to the proof of Theorem 1.2, we choose two functions f(|x|) and j:(lxl). For a > 0, we construct
two functions

|x| s 1

vi(x, t) = Tt + Rifuf) w+ J ( an"‘lf(z) dz + a)n ds, (x,t) e R"x[0,T],
2R, 1
|x| s %
vo(x,t) =-Tt+ sup w+ J ( J nz"f(z) dz + a) ds, (x,t)eR"x][0,T].
Bry [0, T] 5\ -

Then v; and v, are parabolically convex, and

—(v1)idetD?*vi =1f > f, (x,t) e R"x (0, T),
—(v)cdetD?vy = tf <f, (x,1) € R"x (0, TJ,
det(D?vy(x, t)) = f, (x,t) e R"x [0, T],
det(D?v,(x, t)) = f, (x,t) e R" x [0, T).

And
vilx, t) <w(x, t) for(x,t) € Bg,(0) x [0, T].

Choose ag > 0 such that for a > ag,
vix, t) > w(x, t) for(x,t) € 0Bg,(0)x [0, T],
va(x, t) > w(x, t) for (x,t) € 0Bg,(0) x [0, T],
Va(x, t) > h(t) for (x,t) e I' x [0, T].

Furthermore, we find that for (x, t) € R" x [0, T],

vi(x, t) = -1t + uo(|x|) + ¢ + vi(a) - j [( J nz"1f(z) dz + a)" B ( J gz"—lfo(z) dz)"] ds,
[x] 1

where ug(]x|) is the same as (1.7), and

vi(a) = J [(Inz“lf(z)dz+a>n —(ng”1f0(z)dz>n]ds—u0(2R1)+B ing w-c.
0

Ry %[0,
2R, -1

Then v1(a) is strictly increasing in (0, +co) and
lim vq(a) = +oco.
a—+oo

By (3.5),

|2—a+%—min{ﬁ,n})

vilx, t) = =1t + up(|x]) + c + vi(a) + O(|x as |x| — oo.

Similarly, we have that

Va(x, t) = =1t + up(|x|) + c + va(a) - J [( J nzn—li(z) dz + a)” - ( J gZ”_lfo(z) dz)n] i
! 0

Ix]

where

Bg, x[0,T]

va(a) = J [( J nz"‘lj_r(z) dz + a)n - < J gzn_lfo(z) dz)"] ds-up2)+ sup w-c.
2 PN 0

Then v, (a) is also strictly increasing in (0, +oco) and

lim v,(a) = +oco.
a—+oo
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So as x| — oo,
Va(x, t) = =1t + uo(|x|) + ¢ + va(a@) + O(|x |2+ n—min{f.n}y

For the y in (@), there exist a; (y) and a,(y) such that

vi(ay(y)) = va(az(y)) = y.

Then as |x| — oo, ‘
vi(x, t) — y = =Tt + uo(|x]) + ¢ + O(|x|>~ &+ n—minBondy
Va(x, t) — y = =Tt + uo(|x]) + ¢ + O(|x|>~ &+ n—minfindy

Define
maX{W(X’ t); Vl(Xy t)} =Y (X’ t) € BRz(O) X [0, T];

UCD =1y 00—y, (x, £) € (R"\ Bg,(0)) x [0, T.

Thenu, € C°(R" x [0, T]). By Lemma 5.2, u o satisfies in the viscosity sense

~(uy)edetD®u, > f,  (x,t) e R" x (0, T1,

and
det D%u,(x,0) > detD’$(x), x eR".
As |x| — oo,
u, (X, t) = =7t + up(x]) + ¢ + O(|x|?~a*n-min{f.nly, (4.1)
So

lim sup(u,(x, 0) - ¢(x)) = 0.

|x]—00

Thus from the comparison principle, we know that
u,(x,0) < p(x), xeR".

In addition,
u,(x, ) =w, t)-y=h(t)-y, (x,t)eIx][0,TI. (4.2)

Then
u,(x,0)=w(x,0)-y=h0)-y=-y=¢kx), xel.

By the comparison principle, we also have
u,(x, t) <va(x, t) -y, (x,t) e R"x[0, T.

Step 2: Define the Perron solution of (1.9). Let 8 denote the set of locally parabolically convex functions v
which are viscosity subsolutions of (1.9) satisfying

V(X’ t) SVZ(X’ t)_y, (X’ t) ean X [O’ T]’
v(x, t) = h(t) -y, (x,t) e I'x [0, T],
v(x, 0) < ¢(x), x e R"\T.

Thenu, € §.S08 # @ . Define
uc(x, t) = sup{v(x, t) : ves8}, (x,t)eR"x[0,T].
Step 3: We prove that u. has the asymptotic behavior at infinity. Firstly, by the definition of u., we have
ucx, t) <va(x, t) -y, (x,t) e R"x [0, T].

Then as |x| — oo,
Uc(x, t) + Tt — uo(|x|) — ¢ < O(|x|2**w—min{f.n}y



778 =—— L.M.Daiand]).G.Bao, Cauchy Problem for Parabolic Monge—Ampére Equations DE GRUYTER

On the other hand, since u, € 8, then by (4.1), as |x| — oo, we have
uc(x, ) + Tt = up(|x|) — ¢ > O(|x|*~ o a—minif.nhy

Thus,

lim sup (lemm{ﬁ’"““’%*zluc(x, t) — (-7t + uo(|x]) + ¢)]) < c0.
|x|—00

Step 4: We prove that u.(x,t) = h(t) -y, (x,t) € [ x [0, T], and u.(x,0) = ¢(x),x € R" \ I. We first prove
that uc(x, 0) = ¢(x), x € R" \ T. Since h € C1[0, T], by (1.12) there exists some positive constant h, > h; such
that h’(t) = —h,. Choose positive constants 71, 7, such that 71 < 1 < 75, T1h1 < T < T2 h; and

Tohy det D*(x) = f(x, t), T1hydetD?¢(x) < f(x,t), (x,t) € R" x (0, T].
Let
A(X’ t) = _TZth + d)(X), (Xa t) € ]Rn X [0, T]9
B(x, t) = -t hit + p(x), (x,t) € R" x [0, T].

Then
—A¢detD?*A = Tohy det D% ¢ = f(x, t), (x,t) € R"x (0, T],

—Bidet D’B = 11hy det D?¢ < f(x, 1), (x,t) € R* x (0, T].
In addition, on T x [0, T],

A(x, t) = —Tohyt + p(x) < —hat + P(x) = —hat —y < h(t) -y,

B(x,t) = —t1hit + p(x) = =hyt + p(x) = —h1t —y > h(t) - y.
As |x| — oo,

| llim (A, t) —uc(x, t)) <0

and
lim (B(x, t) — uc(x, t)) > 0.
[x]—00

Clearly, as x € R"\ T,

A(x,0) = B(x,0) = ¢p(x).
So A(x, t) and B(x, t) are respectively viscosity subsolution and viscosity supersolution of (1.9), (1.10) and
(1.13). So, A € 8 and for any v € 8, we have v(x, t) < B(x, t). Therefore,

A(x,t) <uc <B(x,t), (x,t)eR"x][0,T].

As aresult, uc(x,0) = p(x), x e R"\T.
Next we prove that uc(x, t) = h(t) -y, (x,t) € I' x [0, T]. For any £ € I,0 < T < T, on one hand, since
u, €8, then by (4.2),

liminf uc(x,6)> lim  u,(x,t) = h() -y.
(x,t)—=(&,7) (x,6)—(&,7)

On the other hand, we have

limsup uc(x, t) < h(&) -y.
(X,t)—>($,f)

Indeed, choose By = {x : |x| < R} such that R" >> Bg 5> Q. Let
Q= (Br\T) x (0, T
and
dpQh = (0B x [0, T]) U (Br \ I) x {t = O}).

For every v € 8, we have
-v¢+Av >0, (x,t) € QIE,
v<h(t)-y, (xt)elx][0,T],
V<B, (x,t) € 9,Q%.
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Let w* (see [12, Theorem 5.14]) satisfy

-wi +Aw" =0, (x,t) € Q}E,
wr=h(t)-y, (x,t)eTx][0,T],
wt =B, (x,t) € 9,Q%.

By the comparison principle, v < w*, (x, t) € Q_Ig. Souc <wh, (x,t) € Q_IE and

limsup uc(x,t) < lim  w'(x,t) = h(§) -y.
(x,0—-(E,1) (x,0—(4,7)

Step 5: We prove that u, is a viscosity solution of (1.9). Asin [5, Step 4 of the proof of Theorem 1.1], we can
prove that u. is a viscosity solution of (1.9).

Step 6: We prove the uniqueness. Suppose that u and v all satisfy (1.9), (1.10), (1.13) and (1.8). Then
lim (u(x, t) — v(x, t)) = 0.
X—00

By the comparison principle, u = v, (x, t) € R" x [0, T].

Theorem 1.3 is proved.

5 Appendix

In this section, we give some basic results.

Lemma 5.1 ([6]). Let S denote the nonempty set of viscosity subsolutions of
—videtD*v=Ff inQ=0Qx(0,T]. (5.1)

Set
w(x, t) = sup{v(x, t)lv e 8} for(x,t) € Q.
Then w is a viscosity subsolution of (5.1).

Similar to [7, Lemma 2.3], we have the following:

Lemma 5.2. Let Q c Q; be two bounded open strictly convex subsets with smooth boundaries in R" and
Q=Qx(0,T],U=Q x(0, T]. Suppose that v and u are parabolically convex and satisfy respectively
—vedetD*v>f inQ,
—ugdetD?>u>f inU.
Furthermore,
u<v inqQ,
u=v onoQx]|o,T].
Let

v(x, 1), (x,t)e€Qq,
w(x, t) =
u(x,t), (x,t)eU.
Then w is parabolically convex and satisfies, in the viscosity sense,
~widetD?’w>f onU.

In [15, 16], a comparison principlein V = U x (0, T] with U being a convex domain is proved, see [16, Propo-
sition 2.2] or [15, Proposition 2.1]. We find that if we adopt the definition of viscosity solution (Definition 1.2),
the comparison principle still holds for any bounded domain.
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Lemma 5.3 (Comparison Principle). Let Q be a bounded domaininR", let Q = Q x (0, T] and let thef, g € C(Q)
be positive functions. Suppose that u and v are locally parabolically convex viscosity solution of the equation

—usdetD?u =f(x,t) inQ

and the equation
—v;detD?*v =g(x,t) inQ,

respectively. If
fix,t)>gx,t) onQ.
Then
sup(u —v) < sup(u —v).
Q 9,Q
Lemma 5.4 ([7]). Let ¥(x, t) € C>1(Q x [0, T]). Then there exists some constant Co, depending only on n, ¥,
Q, T, such that, for any ¢ € 0Q, there exists x(¢, t) € R" satisfying

X, ) < Co

and
we(x, t) < P(x,t) on(Q\{&) x[0, T],

where c
Wf(X, t) = ‘{](59 t) + 7*“)( _)_((‘{, t)lz - |§_)_((€’ t)|2]9 (X’ t) € IRn X [O’ T]9

and c. is any bounded positive constant.

Remark 5.1. In [7], from the proof of Lemma 5.4, we can see that if Wy, ¢(x, t) = 0, x € 0Q, then we have
(we)e = Wi(&, 1), & € 0Q.
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