Research Article

Limei Dai and Jiguang Bao*

Entire Solutions of Cauchy Problem for Parabolic Monge–Ampère Equations

https://doi.org/10.1515/ans-2020-2102 Received July 16, 2019; revised July 11, 2020; accepted July 12, 2020

Abstract: In this paper, we study the Cauchy problem of the parabolic Monge-Ampère equation

$$-u_t \det D^2 u = f(x, t)$$

and obtain the existence and uniqueness of viscosity solutions with asymptotic behavior by using the Perron method.

Keywords: Parabolic Monge-Ampère Equations, Cauchy Problem, Asymptotic Behavior, Perron Method

MSC 2010: 35K96, 35D40

Communicated by: Luis Caffarelli

1 Introduction

The parabolic Monge-Ampère equation

$$-u_t \det D^2 u = f(x,t) \tag{1.1}$$

is an important class of fully nonlinear parabolic equations. This type of parabolic differential operator was first considered by Krylov [11] with other two parabolic versions of the elliptic Monge–Ampère operator. This operator is relevant in the study of deformation of surfaces by Gauss–Kronecker curvature [13], and in a maximum principle for parabolic equations [14]. There are many results for (1.1), see [7–9, 15, 16, 18, 19] and the references therein. Especially, the interior Dirichlet problem

$$-u_t \det D^2 u = f(x, t) \quad \text{in } Q,$$
$$u = \varphi(x, t) \quad \text{on } \partial_p Q,$$

was studied in [15, 16], where $Q = \Omega \times (0, T]$ is a cylinder in \mathbb{R}^{n+1} , $\Omega \subset \mathbb{R}^n$ is a bounded and strictly convex domain, *T* is a positive constant, and $\partial_p Q = (\partial \Omega \times (0, T)) \cup (\overline{\Omega} \times \{0\})$ is the parabolic boundary of *Q*, see [12] for a complete description of *Q*. The existence and uniqueness of viscosity solution of the interior Dirichlet problem were obtained in [15, 16]. The first author [7] considered the exterior Dirichlet problem of (1.1).

In this paper, we will study the viscosity solution of the Cauchy problem

$$-u_t \det D^2 u = f(x, t), \quad (x, t) \in \mathbb{R}^n \times (0, T],$$
(1.2)

$$u = \phi(x), \quad (x, t) \in \mathbb{R}^n \times \{t = 0\},$$
 (1.3)

where *f* and ϕ are continuous functions.

^{*}Corresponding author: Jiguang Bao, School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, P. R. China, e-mail: jgbao@bnu.edu.cn

Limei Dai, School of Mathematics and Information Science, Weifang University, Weifang, Shandong 261061, P. R. China, e-mail: limeidai@126.com

For a domain $D \in \mathbb{R}^{n+1}$, we say a function $u \in C^{2k,k}(D)$ which means that u is 2k-th continuous differentiable with spatial variables $x \in \mathbb{R}^n$ and k-th continuous differentiable with time variable t for $(x, t) \in D$. Let USC(D) and LSC(D) denote respectively the set of upper and lower semicontinuous real-valued functions on D. A function $u \in USC(D)$ (or LSC(D)) is called parabolically convex if u is convex in x and nonincreasing in t. The following is the definition of viscosity solutions, see [16].

Definition 1.1. Let $u \in \text{USC}(\mathbb{R}^n \times (0, T])$ (or $\text{LSC}(\mathbb{R}^n \times (0, T])$) be parabolically convex. Then the function u is called a viscosity subsolution (or supersolution) of (1.2) if for any function $h \in C^{2,1}(Q_r(\bar{x}, \bar{t}))$ (with some $Q_r(\bar{x}, \bar{t}) := \{(x, t) : |x - \bar{x}| < r, \bar{t} - r^2 < t \le \bar{t}\} \subset \mathbb{R}^n \times (0, T]$), whenever

$$u(x, t) - h(x, t) \leq (\text{or } \geq) u(\bar{x}, \bar{t}) - h(\bar{x}, \bar{t}) \text{ for any } (x, t) \in Q_r(\bar{x}, \bar{t})$$

we must have

$$-h_t(\overline{x}, \overline{t}) \det D^2 h(\overline{x}, \overline{t}) \ge (\text{or } \le) f(\overline{x}, \overline{t}).$$

For the supersolution, we also require that $D^2h(\overline{x}, \overline{t}) > 0$ in the matrix sense.

A function $u \in C^0(\mathbb{R}^n \times (0, T])$ is called a viscosity solution of (1.2) if it is both a viscosity subsolution and supersolution of (1.2).

Definition 1.2. A function $u \in USC(\mathbb{R}^n \times [0, T])$ (or $(LSC(\mathbb{R}^n \times [0, T]))$ is called a viscosity subsolution (or supersolution) of problem (1.2) and (1.3) if u is a viscosity subsolution (or supersolution) of (1.2), and $u \leq (\text{or } \geq) \phi(x)$ for $(x, t) \in \mathbb{R}^n \times \{t = 0\}$. Then $u \in C^0(\mathbb{R}^n \times [0, T])$ is called a viscosity solution of (1.2) and (1.3) if it is a viscosity solution of (1.2) and $u = \phi(x)$ for $(x, t) \in \mathbb{R}^n \times \{t = 0\}$.

We obtain the existence of the Cauchy problem for parabolic Monge-Ampère equations.

Theorem 1.1. Assume that f and ϕ are continuous, f has positive upper bound and positive lower bound in $\mathbb{R}^n \times [0, T]$, $D^2 \phi$ is positive definite and det $D^2 \phi$ has positive upper bound and positive lower bound in the viscosity sense in \mathbb{R}^n . Then the Cauchy problem (1.2) and (1.3) has a viscosity solution $u \in C^0(\mathbb{R}^n \times [0, T])$.

To obtain the uniqueness of solutions to (1.2) and (1.3), we suppose that f and ϕ satisfy the following assumptions:

Assumption (F). The function $f \in C^0(\mathbb{R}^n \times [0, T])$ is positive satisfying that for the constant $\beta > 0$,

 $f(x, t) = f_0(|x|) + O(|x|^{-\beta})$ uniformly for $t, |x| \to \infty$,

where $f_0 \in C^0([0, +\infty))$ is positive,

$$f_0(r) = O(r^{\alpha}), \quad r \to +\infty,$$

with constant $\alpha \ge -\beta$ and

$$\frac{-n(\min\{\beta,n\}-2)}{n-1} < \alpha < \infty.$$
(1.4)

Assumption (Φ). Let $\phi \in C^0(\mathbb{R}^n)$. Suppose that there is a constant $\tau > 0$ such that in the viscosity sense

$$\tau \det D^2 \phi = f(x, 0) \quad \text{and} \quad D^2 \phi > 0, \quad x \in \mathbb{R}^n, \tag{1.5}$$

and for some $b \in \mathbb{R}^n$ and some constant c, $\phi(x)$ satisfies

$$\limsup_{|x| \to \infty} |x|^{\min\{\beta, n\} - 2 + \alpha - \frac{\alpha}{n}} |\phi(x) - (u_0(|x|) + b \cdot x + c)| < \infty,$$
(1.6)

where

$$u_0(|x|) = \left(\frac{n}{\tau}\right)^{\frac{1}{n}} \int_0^{|x|} \left(\int_0^s z^{n-1} f_0(z) \, dz\right)^{\frac{1}{n}} ds \tag{1.7}$$

is the solution of

$$\det D^2 u_0 = \frac{f_0(|x|)}{\tau}$$

with $u_0(0) = 0$, $u'_0(0) = 0$.

We obtain the existence and uniqueness of the Cauchy problem for parabolic Monge-Ampère equations.

Theorem 1.2. Let $n \ge 2$. Assume that f satisfies (F) and ϕ satisfies (Φ). Then for the $b \in \mathbb{R}^n$ and the constant c in (1.6), the Cauchy problem (1.2) and (1.3) has a unique viscosity solution $u \in C^0(\mathbb{R}^n \times [0, T])$ with the asymptotic behavior

$$\limsup_{|x|\to\infty} \left(|x|^{\min\{\beta,n\}-2+\alpha-\frac{\alpha}{n}} |u(x,t) - (-\tau t + u_0(|x|) + b \cdot x + c)| \right) < \infty, \quad t \in [0,T].$$
(1.8)

Remark 1.1. In [10], a counterexample is given to show the necessity of (1.4) for the elliptic Monge–Ampère equations. Then (1.4) is needed for (1.6) and so it is necessary for the parabolic Monge–Ampère equations.

Remark 1.2. If $\tau \det D^2 \phi = f(x, t)$, $(x, t) \in \mathbb{R}^n \times [0, T]$, then the unique solution of problem (1.2) and (1.3) is $u(x, t) = -\tau t + \phi(x)$.

If $f_0(|x|) \equiv 1, x \in \mathbb{R}^n$, then

$$u_0(|x|) = \frac{1}{2\sqrt[n]{\tau}}|x|^2.$$

Corollary 1.1. Let $n \ge 2$, $f = 1 + O(|x|^{-\beta})$ with $\beta > 2$ and ϕ satisfy (1.5) and (1.6). Then for the $b \in \mathbb{R}^n$ and the constant c in (1.6), the Cauchy problem (1.2) and (1.3) has a unique viscosity solution $u \in C^0(\mathbb{R}^n \times [0, T])$ with the asymptotic behavior

$$\limsup_{|x|\to\infty} \left(|x|^{\min\{\beta,n\}-2} \left| u(x,t) - \left(-\tau t + \frac{1}{2\sqrt[n]{\tau}} |x|^2 + b \cdot x + c \right) \right| \right) < \infty, \quad t \in [0,T].$$

Suppose that Ω is a smooth, bounded and strictly convex open subset in \mathbb{R}^n . Let Σ , diffeomorphic to an (n-1)-disc, be the intersection of Ω and a hyperplane in \mathbb{R}^n , and let Γ be the boundary of Σ . Caffarelli and Li [1] introduced the domain Γ when they investigated the multi-valued solutions of elliptic Monge–Ampère equations det $D^2 u = f(x)$ in $(\tilde{\Omega} \setminus \Gamma) \times \mathbb{Z}$, where $\Omega \subset \tilde{\Omega}$ and $\tilde{\Omega}$ is bounded strictly convex. They obtained the existence and uniqueness of multi-valued solutions with prescribed value on Γ . For a detailed description, see [1]. Xiong and Bao [17] studied the isolated singularity of parabolic Monge–Ampère equations $-u_t \det D^2 u = 1$ in $\mathbb{R}^{n+1}_- \setminus X_0$ with $\mathbb{R}^{n+1}_- = \mathbb{R}^n \times (-\infty, 0)$ and $X_0 = (x_0, t_0)$. For more results about the singular solutions, we can refer to [2–4].

In this paper, we will also consider the Cauchy problem

$$-u_t \det D^2 u = f(x, t), \quad (x, t) \in (\mathbb{R}^n \setminus \Gamma) \times (0, T],$$
(1.9)

$$u = \phi(x), \quad (x, t) \in (\mathbb{R}^n \setminus \Gamma) \times \{t = 0\}.$$
(1.10)

Assumption (Φ'). Let ϕ satisfy (Φ) with b = 0 and there exists some constant y^* such that for any $y > y^*$,

$$\phi = -\gamma \quad \text{on } \Gamma. \tag{1.11}$$

Assumption (H). For some positive constant h_1 , $h(t) \in C^1[0, T]$ satisfies h(0) = 0 and

k

$$h'(t) \le -h_1 < 0. \tag{1.12}$$

Theorem 1.3. Let $n \ge 2$, (F), (Φ') and (H) hold. Then for the constant *c* in (1.6) and the constant γ in (1.11), there exists a unique viscosity solution *u* of (1.9) and (1.10) which satisfies (1.8) with b = 0 and

$$u = h(t) - \gamma, \quad (x, t) \in \Gamma \times [0, T].$$
 (1.13)

This paper is arranged as follows. In Section 2, we prove Theorem 1.1. In Section 3, we prove Theorem 1.2 and Corollary 1.1. Section 4 is devoted to providing the proof of Theorem 1.3. In Section 5, we give some basic lemmas.

2 Proof of Theorem 1.1

Choose positive constants τ_1 , τ_2 such that $0 < \tau_1 \le 1 \le \tau_2$ and

$$\tau_2 \det D^2 \phi \ge f(x, t), \ \tau_1 \det D^2 \phi \le f(x, t), \ (x, t) \in \mathbb{R}^n \times (0, T].$$

772 — L. M. Dai and J. G. Bao, Cauchy Problem for Parabolic Monge–Ampère Equations

_

DE GRUYTER

Let

$$A(x, t) = -\tau_2 t + \phi(x), \quad (x, t) \in \mathbb{R}^n \times [0, T],$$

$$B(x, t) = -\tau_1 t + \phi(x), \quad (x, t) \in \mathbb{R}^n \times [0, T].$$

Then

$$-A_t \det D^2 A = \tau_2 \det D^2 \phi \ge f(x, t), \quad (x, t) \in \mathbb{R}^n \times (0, T]$$
$$-B_t \det D^2 B = \tau_1 \det D^2 \phi \le f(x, t), \quad (x, t) \in \mathbb{R}^n \times (0, T]$$

Clearly,

 $A(x,t) \leq B(x,t)$

and

$$A(x, 0) = B(x, 0) = \phi(x).$$

So A(x, t) and B(x, t) are respectively viscosity subsolution and supersolution of (1.2) and (1.3).

Let S denote the set of parabolically convex functions v which are viscosity subsolutions of (1.2) and (1.3) satisfying

 $v(x,t) \leq B(x,t).$

Then $A \in S$. So $S \neq \emptyset$. Define

$$u(x, t) = \sup\{v(x, t) : v \in \mathbb{S}\}, \quad (x, t) \in \mathbb{R}^n \times [0, T].$$

Therefore

$$A(x, t) \le u(x, t) \le B(x, t), \quad (x, t) \in \mathbb{R}^n \times [0, T].$$

As a result, $u(x, 0) = \phi(x), x \in \mathbb{R}^n$.

As in [5, Step 4 of the proof of Theorem 1.1], we can prove that *u* is a viscosity solution of (1.2).

3 Proof of Theorem 1.2

By an affine transformation in *x*-space and subtracting a linear function to u, we only need to prove the case b = 0. We divide the proof into six steps.

Step 1: Construct a viscosity subsolution of (1.2)–(1.3). Let $\overline{f}(|x|)$, $\underline{f}(|x|)$ be two positive continuous functions such that

$$\tau f(|x|) \ge f(x, t) \ge \tau \underline{f}(|x|),$$

$$\overline{f}(|x|) \ge \det D^2 \phi \ge \underline{f}(|x|),$$

with

$$\begin{split} &\tau \underline{f}(|x|)=f_0(|x|)-c_1|x|^{-\beta}, \quad |x|\to\infty,\\ &\tau \overline{f}(|x|)=f_0(|x|)+c_2|x|^{-\beta}, \quad |x|\to\infty, \end{split}$$

and c_1 , c_2 being positive constants. For a > 0, define functions

$$u_{1}(x,t) = -\tau t + \int_{1}^{|x|} \left(\int_{1}^{s} nz^{n-1}\bar{f}(z) \, dz + a\right)^{\frac{1}{n}} ds, \quad (x,t) \in \mathbb{R}^{n} \times [0,T],$$
$$u_{2}(x,t) = -\tau t + \int_{1}^{|x|} \left(\int_{1}^{s} nz^{n-1}\underline{f}(z) \, dz + a\right)^{\frac{1}{n}} ds, \quad (x,t) \in \mathbb{R}^{n} \times [0,T].$$

Then u_1 and u_2 are parabolically convex, and

$$-(u_1)_t \det D^2 u_1 = \tau \bar{f} \ge f, \quad (x,t) \in \mathbb{R}^n \times (0,T],$$
(3.1)

$$-(u_2)_t \det D^2 u_2 = \tau f \le f, \quad (x, t) \in \mathbb{R}^n \times (0, T],$$
(3.2)

$$\det(D^2 u_1(x,t)) = \overline{f}, \qquad (x,t) \in \mathbb{R}^n \times [0,T], \qquad (3.3)$$

$$\det(D^2 u_2(x, t)) = f, \qquad (x, t) \in \mathbb{R}^n \times [0, T].$$
(3.4)

Furthermore, we find that for $(x, t) \in \mathbb{R}^n \times [0, T]$,

$$u_1(x,t) = -\tau t + u_0(|x|) + \mu_1(a) - \int_{|x|}^{\infty} \left[\left(\int_1^s nz^{n-1}\bar{f}(z) \, dz + a \right)^{\frac{1}{n}} - \left(\int_0^s \frac{n}{\tau} z^{n-1} f_0(z) \, dz \right)^{\frac{1}{n}} \right] ds,$$

where $u_0(|x|)$ is the same as (1.7), and

$$\mu_1(a) = \int_1^\infty \left[\left(\int_1^s nz^{n-1} \bar{f}(z) \, dz + a \right)^{\frac{1}{n}} - \left(\int_0^s \frac{n}{\tau} z^{n-1} f_0(z) \, dz \right)^{\frac{1}{n}} \right] ds - u_0(1).$$

Then by the fact that $\bar{f}(z) = \frac{f_0(z)}{\tau} + \frac{c_2}{\tau} z^{-\beta}$, $f_0(z) = O(z^{\alpha})$, we know that

$$\left(\int_{1}^{s} nz^{n-1}\bar{f}(z)\,dz+a\right)^{\frac{1}{n}}-\left(\int_{0}^{s} \frac{n}{\tau}z^{n-1}f_{0}(z)\,dz\right)^{\frac{1}{n}}=O(s^{1-\alpha+\frac{\alpha}{n}-\min\{\beta,n\}}),\quad s\to+\infty.$$

So

$$\int_{|x|}^{\infty} \left[\left(\int_{1}^{s} nz^{n-1}\bar{f}(z) \, dz + a \right)^{\frac{1}{n}} - \left(\int_{0}^{s} \frac{n}{\tau} z^{n-1} f_{0}(z) \, dz \right)^{\frac{1}{n}} \right] ds = \int_{|x|}^{\infty} O(s^{1-\alpha + \frac{\alpha}{n} - \min\{\beta, n\}}) \, ds$$
$$= O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta, n\}}), \tag{3.5}$$

where $2 - \alpha + \frac{\alpha}{n} - \min\{\beta, n\} < 0$ by (1.4). In addition, $\mu_1(a)$ is strictly increasing in $(0, +\infty)$ and

$$\lim_{a\to+\infty}\mu_1(a)=+\infty.$$

So

$$u_1(x, t) = -\tau t + u_0(|x|) + \mu_1(a) + O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta, n\}}) \quad \text{as } |x| \to \infty.$$

Similarly, we have that

$$u_{2}(x,t) = -\tau t + u_{0}(|x|) + \mu_{2}(a) - \int_{|x|}^{\infty} \left[\left(\int_{1}^{s} nz^{n-1} \underline{f}(z) \, dz + a \right)^{\frac{1}{n}} - \left(\int_{0}^{s} \frac{n}{\tau} z^{n-1} f_{0}(z) \, dz \right)^{\frac{1}{n}} \right] ds$$

where

$$\mu_2(a) = \int_1^\infty \left[\left(\int_1^s nz^{n-1} \underline{f}(z) \, dz + a \right)^{\frac{1}{n}} - \left(\int_0^s \frac{n}{\tau} z^{n-1} f_0(z) \, dz \right)^{\frac{1}{n}} \right] ds - u_0(1).$$

Then $\mu_2(a)$ is also strictly increasing in $(0, +\infty)$ and

$$\lim_{a\to+\infty}\mu_2(a)=+\infty.$$

So as $|x| \to \infty$, we also have

$$u_2(x,t) = -\tau t + u_0(|x|) + \mu_2(a) + O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta, n\}}).$$

For the sufficiently large constant *c* in (1.6), there exist $a_1(c)$ and $a_2(c)$ satisfying $\mu_1(a_1(c)) = \mu_2(a_2(c)) = c$. Therefore as $|x| \to \infty$, $0 \le t \le T$, we have

$$u_1(x,t) = -\tau t + u_0(|x|) + c + O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta,n\}})$$
(3.6)

and

$$u_2(x, t) = -\tau t + u_0(|x|) + c + O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta, n\}}).$$

Thus

$$\lim_{|x| \to \infty} (u_1(x, t) - u_2(x, t)) = 0, \quad 0 \le t \le T.$$
(3.7)

In virtue of (3.3), (3.4), (3.7) and the comparison principle, we get that

$$u_1(x,0) \le u_2(x,0), \quad x \in \mathbb{R}^n.$$
 (3.8)

By (3.1), (3.2), (3.7), (3.8) and the comparison principle, we have

$$u_1(x, t) \le u_2(x, t), \quad (x, t) \in \mathbb{R}^n \times [0, T].$$

By (1.5), (1.6), (3.3), (3.6) and the comparison principle, we get

$$u_1(x,0) \leq \phi(x), \quad x \in \mathbb{R}^n.$$

Step 2: Define the Perron solution of (1.2). Let S denote the set of parabolically convex functions *v* which are viscosity subsolutions of (1.2) and (1.3) satisfying

 $v(x,t) \leq u_2(x,t).$

Then $u_1 \in S$. So $S \neq \emptyset$. Define

$$u_c(x, t) = \sup\{v(x, t) : v \in S\}, \quad (x, t) \in \mathbb{R}^n \times [0, T]$$

Step 3: We prove that *u*_c **has the asymptotic behavior at infinity.** Firstly, by the definition of *u*_c, we have

$$u_c(x,t) \leq u_2(x,t).$$

Then as $|x| \to \infty$,

$$u_c(x, t) + \tau t - u_0(|x|) - c \le O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta, n\}})$$

On the other hand, since $u_1 \in S$, by (3.6), as $|x| \to \infty$, we have

$$u_{c}(x,t) + \tau t - u_{0}(|x|) - c \ge O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta,n\}}).$$

Thus,

$$\limsup_{|x| \to \infty} (|x|^{\min\{\beta,n\} + \alpha - \frac{\alpha}{n} - 2} |u_c(x, t) - (-\tau t + u_0(|x|) + c)|) < \infty.$$

Step 4: We prove that $u_c(x, 0) = \phi(x), x \in \mathbb{R}^n$. Choose positive constants τ_1, τ_2 such that $0 < \tau_1 \le \tau \le \tau_2$ and

$$\tau_2 \det D^2 \phi \ge f(x, t), \quad \tau_1 \det D^2 \phi \le f(x, t), \quad (x, t) \in \mathbb{R}^n \times (0, T].$$

Let

$$\begin{aligned} A(x,t) &= -\tau_2 t + \phi(x), (x,t) \in \mathbb{R}^n \times [0,T], \\ B(x,t) &= -\tau_1 t + \phi(x), (x,t) \in \mathbb{R}^n \times [0,T]. \end{aligned}$$

Then

$$\begin{aligned} -A_t \det D^2 A &= \tau_2 \det D^2 \phi \ge f(x, t), \quad (x, t) \in \mathbb{R}^n \times (0, T], \\ -B_t \det D^2 B &= \tau_1 \det D^2 \phi \le f(x, t), \quad (x, t) \in \mathbb{R}^n \times (0, T]. \end{aligned}$$

As $|x| \to \infty$,

$$\lim_{|x|\to\infty} (A(x,t) - u_c(x,t)) \le 0,$$
$$\lim_{|x|\to\infty} (B(x,t) - u_c(x,t)) \ge 0.$$

Clearly, for $x \in \mathbb{R}^n$,

$$A(x, 0) = B(x, 0) = \phi(x)$$

So A(x, t) and B(x, t) are respectively viscosity subsolution and supersolution of (1.2)–(1.3). Then $A \in S$ and for any $v \in S$, we have $v(x, t) \leq B(x, t)$. Therefore

$$A(x, t) \le u_c(x, t) \le B(x, t), \quad (x, t) \in \mathbb{R}^n \times [0, T].$$

As a result, $u_c(x, 0) = \phi(x), x \in \mathbb{R}^n$.

Step 5: We prove that u_c **is a viscosity solution of (1.2).** As in [5, Step 4 of the proof of Theorem 1.1], we can prove that u_c is a viscosity solution of (1.2).

Step 6: We prove the uniqueness. Suppose that u and v all satisfy (1.2)–(1.3) and (1.6). Then

 $\lim_{x\to\infty}(u(x,t)-v(x,t))=0.$

By the comparison principle, $u \equiv v$, $(x, t) \in \mathbb{R}^n \times [0, T]$.

Theorem 1.2 is proved.

Proof of Corollary 1.1. In Step 1 of the proof of Theorem 1.2, we let $f_0(|x|) \equiv 1$, then

$$\int_{|x|}^{\infty} \left[\left(\int_{1}^{s} n z^{n-1} \bar{f}(z) \, dz + a \right)^{\frac{1}{n}} - \left(\int_{0}^{s} \frac{n}{\tau} z^{n-1} \right)^{\frac{1}{n}} \right] ds = O(|x|^{2-\min\{\beta,n\}}).$$

So

$$\begin{split} & u_1(x,t) = -\tau t + \frac{1}{2\sqrt[n]{\tau}}|x|^2 + c + O(|x|^{2-\min\{\beta,n\}}), \\ & u_2(x,t) = -\tau t + \frac{1}{2\sqrt[n]{\tau}}|x|^2 + c + O(|x|^{2-\min\{\beta,n\}}). \end{split}$$

The remainder of the proof is the same as Theorem 1.2.

4 Proof of Theorem 1.3

Let $B_2(0) \subset \Omega$ and $R_1 = \text{diam}(\Omega)$; then $\Omega \subset B_{R_1}(0)$. Choose $R_2 = 3R_1$.

,

To prove the theorem, let $\tilde{g} \in C^{\infty}(\overline{\Omega})$ satisfy

$$\det D^2 \tilde{g} = 1 \quad \text{in } \Omega,$$
$$\tilde{g} = 0 \quad \text{on } \partial \Omega.$$

Set $\Psi(x, t) = h(t) + \tilde{c}\tilde{g}(x) \in C^{2,1}(\overline{\Omega} \times [0, T])$. Then $\Psi|_{\partial\Omega} = h(t)$ and $\Psi_t(x, t)|_{\partial\Omega} = h'(t)$. By Lemma 5.4, for any $\xi \in \partial\Omega$,

$$w_{\xi}(x,t) = \Psi(\xi,t) + \frac{c_*}{2} [|x - \bar{x}(\xi,t)|^2 - |\xi - \bar{x}(\xi,t)|^2], \quad (x,t) \in \mathbb{R}^n \times [0,T],$$

satisfying

$$w_{\xi}(x, t) < \Psi(x, t) \quad \text{on } (\overline{\Omega} \setminus \{\xi\}) \times [0, T].$$

In virtue of Remark 5.1, we know that $(w_{\xi})_t = \Psi_t(\xi, t) = h'(t)$. Then, by (H), we can choose c_* and \tilde{c} large enough such that

$$\begin{aligned} -(w_{\xi})_t \det D^2 w_{\xi} &\geq f(x, t), & (x, t) \in B_{R_2}(0) \times (0, T], \\ \det D^2 w_{\xi}(x, 0) &\geq \det D^2 \phi(x), & x \in B_{R_2}(0), \\ -\Psi_t \det D^2 \Psi &\geq f(x, t), & (x, t) \in \Omega \times (0, T], \\ \det D^2 \Psi(x, 0) &\geq \det D^2 \phi(x), & x \in \Omega. \end{aligned}$$

Define

$$w(x,t) = \begin{cases} \Psi(x,t), & (x,t) \in \Omega \times [0,T], \\ \sup_{\xi \in \partial \Omega} w_{\xi}(x,t), & (x,t) \in (\mathbb{R}^n \setminus \Omega) \times [0,T]. \end{cases}$$

Then

$$w(x, t) = \Psi(x, t) = h(t), \quad (x, t) \in \Gamma \times [0, T],$$

and by Lemma 5.1 and Lemma 5.2,

$$-w_t \det D^2 w \ge f, \qquad (x, t) \in B_{R_2}(0) \times (0, T],$$

$$\det D^2 w(x, 0) \ge \det D^2 \phi(x), \qquad x \in B_{R_2}(0).$$

Similar to the proof of Theorem 1.2, we choose two functions $\overline{f}(|x|)$ and $\underline{f}(|x|)$. For a > 0, we construct two functions

$$\begin{aligned} v_1(x,t) &= -\tau t + \inf_{B_{R_1} \times [0,T]} w + \int_{2R_1}^{|x|} \left(\int_{1}^{s} n z^{n-1} \bar{f}(z) \, dz + a \right)^{\frac{1}{n}} ds, \quad (x,t) \in \mathbb{R}^n \times [0,T], \\ v_2(x,t) &= -\tau t + \sup_{B_{R_1} \times [0,T]} w + \int_{2}^{|x|} \left(\int_{1}^{s} n z^{n-1} \underline{f}(z) \, dz + a \right)^{\frac{1}{n}} ds, \quad (x,t) \in \mathbb{R}^n \times [0,T]. \end{aligned}$$

Then v_1 and v_2 are parabolically convex, and

$$\begin{split} -(v_1)_t \det D^2 v_1 &= \tau \overline{f} \geq f, \quad (x, t) \in \mathbb{R}^n \times (0, T], \\ -(v_2)_t \det D^2 v_2 &= \tau \underline{f} \leq f, \quad (x, t) \in \mathbb{R}^n \times (0, T], \\ \det(D^2 v_1(x, t)) &= \overline{f}, \qquad (x, t) \in \mathbb{R}^n \times [0, T], \\ \det(D^2 v_2(x, t)) &= f, \qquad (x, t) \in \mathbb{R}^n \times [0, T]. \end{split}$$

And

 $v_1(x, t) \le w(x, t)$ for $(x, t) \in \overline{B_{R_1}(0)} \times [0, T]$.

Choose $a_0 > 0$ such that for $a \ge a_0$,

$$v_1(x, t) \ge w(x, t) \quad \text{for } (x, t) \in \partial B_{R_2}(0) \times [0, T],$$

$$v_2(x, t) \ge w(x, t) \quad \text{for } (x, t) \in \partial B_{R_2}(0) \times [0, T],$$

$$v_2(x, t) \ge h(t) \quad \text{for } (x, t) \in \Gamma \times [0, T].$$

Furthermore, we find that for $(x, t) \in \mathbb{R}^n \times [0, T]$,

$$v_1(x,t) = -\tau t + u_0(|x|) + c + v_1(a) - \int_{|x|}^{\infty} \left[\left(\int_{1}^{s} nz^{n-1}\bar{f}(z) \, dz + a \right)^{\frac{1}{n}} - \left(\int_{0}^{s} \frac{n}{\tau} z^{n-1} f_0(z) \, dz \right)^{\frac{1}{n}} \right] ds,$$

where $u_0(|x|)$ is the same as (1.7), and

$$v_1(a) = \int_{2R_1}^{\infty} \left[\left(\int_1^s nz^{n-1}\bar{f}(z) \, dz + a \right)^{\frac{1}{n}} - \left(\int_0^s \frac{n}{\tau} z^{n-1} f_0(z) \, dz \right)^{\frac{1}{n}} \right] ds - u_0(2R_1) + \inf_{B_{R_1} \times [0,T]} w - c.$$

Then $v_1(a)$ is strictly increasing in $(0, +\infty)$ and

$$\lim_{a\to+\infty}\nu_1(a)=+\infty.$$

By (3.5),

$$v_1(x, t) = -\tau t + u_0(|x|) + c + v_1(a) + O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta, n\}})$$
 as $|x| \to \infty$.

Similarly, we have that

$$v_2(x,t) = -\tau t + u_0(|x|) + c + v_2(a) - \int_{|x|}^{\infty} \left[\left(\int_1^s nz^{n-1} \underline{f}(z) \, dz + a \right)^{\frac{1}{n}} - \left(\int_0^s \frac{n}{\tau} z^{n-1} f_0(z) \, dz \right)^{\frac{1}{n}} \right] ds,$$

where

$$v_{2}(a) = \int_{2}^{\infty} \left[\left(\int_{1}^{s} nz^{n-1} \underline{f}(z) \, dz + a \right)^{\frac{1}{n}} - \left(\int_{0}^{s} \frac{n}{\tau} z^{n-1} f_{0}(z) \, dz \right)^{\frac{1}{n}} \right] ds - u_{0}(2) + \sup_{B_{R_{1}} \times [0,T]} w - c.$$

Then $v_2(a)$ is also strictly increasing in $(0, +\infty)$ and

$$\lim_{a\to+\infty}\nu_2(a)=+\infty.$$

.

So as $|x| \to \infty$,

$$v_2(x,t) = -\tau t + u_0(|x|) + c + v_2(a) + O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta,n\}}).$$

For the *y* in (Φ'), there exist $a_1(y)$ and $a_2(y)$ such that

$$v_1(a_1(\gamma)) = v_2(a_2(\gamma)) = \gamma.$$

Then as $|x| \to \infty$,

$$\begin{split} &v_1(x,t)-\gamma=-\tau t+u_0(|x|)+c+O(|x|^{2-\alpha+\frac{\alpha}{n}-\min\{\beta,n\}}),\\ &v_2(x,t)-\gamma=-\tau t+u_0(|x|)+c+O(|x|^{2-\alpha+\frac{\alpha}{n}-\min\{\beta,n\}}). \end{split}$$

Define

$$\underline{u}_{a}(x,t) = \begin{cases} \max\{w(x,t), v_{1}(x,t)\} - \gamma, & (x,t) \in \overline{B_{R_{2}}(0)} \times [0,T], \\ v_{1}(x,t) - \gamma, & (x,t) \in (\mathbb{R}^{n} \setminus B_{R_{2}}(0)) \times [0,T] \end{cases}$$

Then $\underline{u}_a \in C^0(\mathbb{R}^n \times [0, T])$. By Lemma 5.2, \underline{u}_a satisfies in the viscosity sense

$$(\underline{u}_a)_t \det D^2 \underline{u}_a \ge f, \quad (x, t) \in \mathbb{R}^n \times (0, T],$$

and

$$\det D^2 \underline{u}_a(x,0) \ge \det D^2 \phi(x), \quad x \in \mathbb{R}^n.$$

As $|x| \to \infty$,

$$\underline{u}_{a}(x,t) = -\tau t + u_{0}(|x|) + c + O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta,n\}}).$$
(4.1)

So

$$\limsup_{|x|\to\infty}(\underline{u}_a(x,0)-\phi(x))=0.$$

Thus from the comparison principle, we know that

$$\underline{u}_a(x,0) \le \phi(x), \quad x \in \mathbb{R}^n.$$

In addition,

$$\underline{u}_{a}(x,t) = w(x,t) - \gamma = h(t) - \gamma, \quad (x,t) \in \Gamma \times [0,T].$$

$$(4.2)$$

Then

$$\underline{u}_a(x,0)=w(x,0)-\gamma=h(0)-\gamma=-\gamma=\phi(x),\quad x\in\Gamma.$$

By the comparison principle, we also have

$$\underline{u}_a(x,t) \le v_2(x,t) - \gamma, \quad (x,t) \in \mathbb{R}^n \times [0,T].$$

Step 2: Define the Perron solution of (1.9). Let S denote the set of locally parabolically convex functions *v* which are viscosity subsolutions of (1.9) satisfying

$$\begin{split} v(x,t) &\leq v_2(x,t) - \gamma, \quad (x,t) \in \mathbb{R}^n \times [0,T], \\ v(x,t) &= h(t) - \gamma, \qquad (x,t) \in \Gamma \times [0,T], \\ v(x,0) &\leq \phi(x), \qquad x \in \mathbb{R}^n \setminus \Gamma. \end{split}$$

Then $\underline{u}_q \in S$. So $S \neq \emptyset$. Define

$$u_c(x,t) = \sup\{v(x,t) : v \in \mathcal{S}\}, \quad (x,t) \in \mathbb{R}^n \times [0,T].$$

Step 3: We prove that u_c has the asymptotic behavior at infinity. Firstly, by the definition of u_c , we have

$$u_c(x, t) \leq v_2(x, t) - \gamma, \quad (x, t) \in \mathbb{R}^n \times [0, T].$$

Then as $|x| \to \infty$,

$$u_{c}(x,t) + \tau t - u_{0}(|x|) - c \leq O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta,n\}}).$$

On the other hand, since $\underline{u}_a \in S$, then by (4.1), as $|x| \to \infty$, we have

$$u_{c}(x,t) + \tau t - u_{0}(|x|) - c \ge O(|x|^{2-\alpha + \frac{\alpha}{n} - \min\{\beta,n\}}).$$

Thus,

$$\limsup_{|x|\to\infty} \left(|x|^{\min\{\beta,n\}+\alpha-\frac{\alpha}{n}-2}|u_c(x,t)-(-\tau t+u_0(|x|)+c)| \right) < \infty.$$

Step 4: We prove that $u_c(x, t) = h(t) - \gamma$, $(x, t) \in \Gamma \times [0, T]$, and $u_c(x, 0) = \phi(x), x \in \mathbb{R}^n \setminus \Gamma$. We first prove that $u_c(x, 0) = \phi(x), x \in \mathbb{R}^n \setminus \Gamma$. Since $h \in C^1[0, T]$, by (1.12) there exists some positive constant $h_2 \ge h_1$ such that $h'(t) \ge -h_2$. Choose positive constants τ_1, τ_2 such that $\tau_1 < 1 < \tau_2, \tau_1 h_1 \le \tau \le \tau_2 h_2$ and

$$\tau_2 h_2 \det D^2 \phi(x) \ge f(x, t), \quad \tau_1 h_1 \det D^2 \phi(x) \le f(x, t), \quad (x, t) \in \mathbb{R}^n \times (0, T].$$

Let

$$A(x, t) = -\tau_2 h_2 t + \phi(x), \quad (x, t) \in \mathbb{R}^n \times [0, T],$$

$$B(x, t) = -\tau_1 h_1 t + \phi(x), \quad (x, t) \in \mathbb{R}^n \times [0, T].$$

Then

$$\begin{aligned} -A_t \det D^2 A &= \tau_2 h_2 \det D^2 \phi \ge f(x, t), \quad (x, t) \in \mathbb{R}^n \times (0, T], \\ -B_t \det D^2 B &= \tau_1 h_1 \det D^2 \phi \le f(x, t), \quad (x, t) \in \mathbb{R}^n \times (0, T]. \end{aligned}$$

In addition, on $\Gamma \times [0, T]$,

$$A(x, t) = -\tau_2 h_2 t + \phi(x) \le -h_2 t + \phi(x) = -h_2 t - y \le h(t) - y,$$

$$B(x, t) = -\tau_1 h_1 t + \phi(x) \ge -h_1 t + \phi(x) = -h_1 t - y \ge h(t) - y.$$

As $|x| \to \infty$,

$$\lim_{|x|\to\infty}(A(x,t)-u_c(x,t))\leq 0$$

and

$$\lim_{|x|\to\infty}(B(x,t)-u_c(x,t))\geq 0.$$

Clearly, as $x \in \mathbb{R}^n \setminus \Gamma$,

$$A(x, 0) = B(x, 0) = \phi(x).$$

So A(x, t) and B(x, t) are respectively viscosity subsolution and viscosity supersolution of (1.9), (1.10) and (1.13). So, $A \in S$ and for any $v \in S$, we have $v(x, t) \le B(x, t)$. Therefore,

$$A(x, t) \le u_c \le B(x, t), \quad (x, t) \in \mathbb{R}^n \times [0, T].$$

As a result, $u_c(x, 0) = \phi(x), x \in \mathbb{R}^n \setminus \Gamma$.

Next we prove that $u_c(x, t) = h(t) - \gamma$, $(x, t) \in \Gamma \times [0, T]$. For any $\overline{\xi} \in \Gamma$, $0 \le \overline{\tau} \le T$, on one hand, since $\underline{u}_a \in S$, then by (4.2),

$$\liminf_{(x,t)\to (\bar{\xi},\bar{\tau})} u_c(x,t) \geq \lim_{(x,t)\to (\bar{\xi},\bar{\tau})} \underline{u}_a(x,t) = h(\bar{\xi}) - \gamma.$$

On the other hand, we have

$$\limsup_{(x,t)\to(\bar{\xi},\bar{\tau})}u_c(x,t)\leq h(\bar{\xi})-\gamma.$$

Indeed, choose $B_R = \{x : |x| \le R\}$ such that $\mathbb{R}^n \supset B_R \supset \Omega$. Let

$$Q_R^I = (B_R \setminus \Gamma) \times (0, T]$$

and

$$\partial_p Q_R^T = (\partial B_R \times [0, T]) \cup ((B_R \setminus \Gamma) \times \{t = 0\}).$$

For every $v \in S$, we have

$$\begin{cases} -\nu_t + \Delta \nu \ge 0, & (x, t) \in Q_R^T, \\ \nu \le h(t) - \gamma, & (x, t) \in \Gamma \times [0, T], \\ \nu \le B, & (x, t) \in \partial_p Q_R^T. \end{cases}$$

Let w^+ (see [12, Theorem 5.14]) satisfy

$$\begin{cases} -w_t^+ + \Delta w^+ = 0, & (x, t) \in Q_R^T, \\ w^+ = h(t) - \gamma, & (x, t) \in \Gamma \times [0, T], \\ w^+ = B, & (x, t) \in \partial_p Q_R^T. \end{cases}$$

By the comparison principle, $v \le w^+$, $(x, t) \in Q_R^T$. So $u_c \le w^+$, $(x, t) \in Q_R^T$ and

$$\limsup_{(x,t)\to(\bar{\xi},\bar{\tau})}u_c(x,t)\leq \lim_{(x,t)\to(\bar{\xi},\bar{\tau})}w^+(x,t)=h(\bar{\xi})-\gamma.$$

Step 5: We prove that u_c **is a viscosity solution of (1.9).** As in [5, Step 4 of the proof of Theorem 1.1], we can prove that u_c is a viscosity solution of (1.9).

Step 6: We prove the uniqueness. Suppose that u and v all satisfy (1.9), (1.10), (1.13) and (1.8). Then

$$\lim_{x\to\infty}(u(x,t)-v(x,t))=0.$$

By the comparison principle, $u \equiv v$, $(x, t) \in \mathbb{R}^n \times [0, T]$.

Theorem 1.3 is proved.

5 Appendix

In this section, we give some basic results.

Lemma 5.1 ([6]). Let S denote the nonempty set of viscosity subsolutions of

$$-v_t \det D^2 v = f \quad in \ Q = \Omega \times (0, T].$$
(5.1)

Set

$$w(x, t) = \sup\{v(x, t) | v \in \mathbb{S}\} \text{ for } (x, t) \in Q.$$

Then w is a viscosity subsolution of (5.1).

Similar to [7, Lemma 2.3], we have the following:

Lemma 5.2. Let $\Omega \subset \Omega_1$ be two bounded open strictly convex subsets with smooth boundaries in \mathbb{R}^n and $Q = \Omega \times (0, T]$, $U = \Omega_1 \times (0, T]$. Suppose that *v* and *u* are parabolically convex and satisfy respectively

$$-v_t \det D^2 v \ge f \quad in \ Q,$$

$$-u_t \det D^2 u \ge f \quad in \ U.$$

Furthermore,

$$\begin{cases} u \leq v & \text{in } Q, \\ u = v & \text{on } \partial \Omega \times [0, T]. \end{cases}$$

Let

$$w(x, t) = \begin{cases} v(x, t), & (x, t) \in Q, \\ u(x, t), & (x, t) \in U. \end{cases}$$

Then w is parabolically convex and satisfies, in the viscosity sense,

$$-w_t \det D^2 w \ge f$$
 on U .

In [15, 16], a comparison principle in $V = U \times (0, T]$ with U being a convex domain is proved, see [16, Proposition 2.2] or [15, Proposition 2.1]. We find that if we adopt the definition of viscosity solution (Definition 1.2), the comparison principle still holds for any bounded domain.

Lemma 5.3 (Comparison Principle). Let Ω be a bounded domain in \mathbb{R}^n , let $Q = \Omega \times (0, T]$ and let the $f, g \in C(\overline{Q})$ be positive functions. Suppose that u and v are locally parabolically convex viscosity solution of the equation

$$-u_t \det D^2 u = f(x, t)$$
 in Q

and the equation

$$-v_t \det D^2 v = g(x, t) \quad in \ Q,$$

respectively. If

$$f(x, t) \ge g(x, t)$$
 on \overline{Q} .

Then

$$\sup_{Q}(u-v) \leq \sup_{\partial_{v}Q}(u-v).$$

Lemma 5.4 ([7]). Let $\Psi(x, t) \in C^{2,1}(\overline{\Omega} \times [0, T])$. Then there exists some constant C_0 , depending only on n, Ψ , Ω , T, such that, for any $\xi \in \partial\Omega$, there exists $\bar{x}(\xi, t) \in \mathbb{R}^n$ satisfying

$$|\bar{x}(\xi,t)| \leq C_0$$

and

$$w_{\xi}(x, t) < \Psi(x, t) \quad on (\overline{\Omega} \setminus {\xi}) \times [0, T],$$

where

$$w_{\xi}(x,t) = \Psi(\xi,t) + \frac{c_*}{2} \left[|x - \bar{x}(\xi,t)|^2 - |\xi - \bar{x}(\xi,t)|^2 \right], \quad (x,t) \in \mathbb{R}^n \times [0,T],$$

and c* is any bounded positive constant.

Remark 5.1. In [7], from the proof of Lemma 5.4, we can see that if $\Psi_{x_i,t}(x, t) = 0$, $x \in \partial \Omega$, then we have $(w_{\xi})_t = \Psi_t(\xi, t), \xi \in \partial \Omega$.

Acknowledgment: The authors are very grateful to the referee for the very valuable comments and suggestions.

Funding: Limei Dai acknowledges the support of Natural Science Foundation of Shandong Province No. ZR2018LA006. Jiguang Bao acknowledges the support of National Natural Science Foundation of China No. 11631002 and 11871102.

References

- [1] L. Caffarelli and Y. Li, Some multi-valued solutions to Monge–Ampère equations, *Comm. Anal. Geom.* **14** (2006), no. 3, 411–441.
- [2] L. Caffarelli, Y. Li and L. Nirenberg, Some remarks on singular solutions of nonlinear elliptic equations. I, J. Fixed Point Theory Appl. 5 (2009), no. 2, 353–395.
- [3] L. Caffarelli, Y. Li and L. Nirenberg, Some remarks on singular solutions of nonlinear elliptic equations. II. Symmetry and monotonicity via moving planes, in: *Advances in Geometric Analysis*, Adv. Lect. Math. (ALM) 21, International Press, Somerville (2012), 97–105.
- [4] L. Caffarelli, Y. Li and L. Nirenberg, Some remarks on singular solutions of nonlinear elliptic equations III: Viscosity solutions including parabolic operators, *Comm. Pure Appl. Math.* **66** (2013), no. 1, 109–143.
- [5] L. Dai, Exterior problems of parabolic Monge–Ampère equations for *n* = 2, *Comput. Math. Appl.* **67** (2014), no. 8, 1497–1506.
- [6] L. Dai, Multi-valued solutions to a class of parabolic Monge–Ampère equations, Commun. Pure Appl. Anal. 13 (2014), no. 3, 1061–1074.
- [7] L. M. Dai, Parabolic Monge–Ampère equations on exterior domains, Acta Math. Sinica (Chin. Ser.) 58 (2015), no. 3, 447–456.
- [8] C. E. Gutiérrez and Q. Huang, A generalization of a theorem by Calabi to the parabolic Monge–Ampère equation, *Indiana Univ. Math. J.* **47** (1998), no. 4, 1459–1480.
- C. E. Gutiérrez and Q. Huang, W^{2,p} estimates for the parabolic Monge–Ampère equation, Arch. Ration. Mech. Anal. 159 (2001), no. 2, 137–177.

- [10] H. Ju and J. Bao, On the exterior Dirichlet problem for Monge–Ampère equations, J. Math. Anal. Appl. 405 (2013), no. 2, 475–483.
- [11] N. V. Krylov, Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation (in Russian), *Sibirsk. Mat. Ž.* 17 (1976), no. 2, 290–303, 478.
- [12] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing, River Edge, 1996.
- [13] K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math. 38 (1985), no. 6, 867–882.
- [14] K. Tso, On an Aleksandrov–Bakel'man type maximum principle for second-order parabolic equations, *Comm. Partial Differential Equations* **10** (1985), no. 5, 543–553.
- [15] R. H. Wang and G. L. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial-boundary value problems to parabolic Monge–Ampère equation, *Northeast. Math. J.* **8** (1992), no. 4, 417–446.
- [16] R. H. Wang and G. L. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge–Ampère type equation, J. Partial Differential Equations 6 (1993), no. 3, 237–254.
- [17] J. Xiong and J. Bao, On Jörgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge–Ampère equations, J. Differential Equations **250** (2011), no. 1, 367–385.
- [18] W. Zhang and J. Bao, A Calabi theorem for solutions to the parabolic Monge–Ampère equation with periodic data, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 5, 1143–1173.
- [19] W. Zhang, J. Bao and B. Wang, An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation, Calc. Var. Partial Differential Equations 57 (2018), no. 3, Paper No. 90.