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Abstract: In this paper, we study the Cauchy problem of the parabolic Monge–Ampère equation

−ut detD2u = f(x, t)

and obtain the existence and uniqueness of viscosity solutions with asymptotic behavior by using the Perron
method.
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1 Introduction
The parabolic Monge–Ampère equation

− ut detD2u = f(x, t) (1.1)

is an important class of fully nonlinear parabolic equations. This type of parabolic differential operator was
first considered by Krylov [11] with other two parabolic versions of the elliptic Monge–Ampère operator. This
operator is relevant in the study of deformation of surfaces by Gauss–Kronecker curvature [13], and in a
maximum principle for parabolic equations [14]. There are many results for (1.1), see [7–9, 15, 16, 18, 19]
and the references therein. Especially, the interior Dirichlet problem

− ut detD2u = f(x, t) in Q,
u = φ(x, t) on ∂pQ,

was studied in [15, 16], where Q = Ω × (0, T] is a cylinder in ℝn+1, Ω ⊂ ℝn is a bounded and strictly convex
domain, T is a positive constant, and ∂pQ = (∂Ω × (0, T)) ∪ (Ω × {0}) is the parabolic boundary of Q, see [12]
for a complete description of Q. The existence and uniqueness of viscosity solution of the interior Dirichlet
problem were obtained in [15, 16]. The first author [7] considered the exterior Dirichlet problem of (1.1).

In this paper, we will study the viscosity solution of the Cauchy problem

−ut detD2u = f(x, t), (x, t) ∈ ℝn × (0, T], (1.2)
u = ϕ(x), (x, t) ∈ ℝn × {t = 0}, (1.3)

where f and ϕ are continuous functions.
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For a domain D ⊂ ℝn+1, we say a function u ∈ C2k,k(D) which means that u is 2k-th continuous differ-
entiable with spatial variables x ∈ ℝn and k-th continuous differentiable with time variable t for (x, t) ∈ D.
Let USC(D) and LSC(D) denote respectively the set of upper and lower semicontinuous real-valued functions
on D. A function u ∈ USC(D) (or LSC(D)) is called parabolically convex if u is convex in x and nonincreasing
in t. The following is the definition of viscosity solutions, see [16].

Definition 1.1. Let u ∈ USC(ℝn × (0, T]) (or LSC(ℝn × (0, T])) be parabolically convex. Then the function u
is called a viscosity subsolution (or supersolution) of (1.2) if for any function h ∈ C2,1(Qr(x̄, ̄t)) (with some
Qr(x̄, ̄t) := {(x, t) : |x − x̄| < r, ̄t − r2 < t ≤ ̄t} ⊂ ℝn × (0, T]), whenever

u(x, t) − h(x, t) ≤(or ≥) u(x̄, ̄t) − h(x̄, ̄t) for any (x, t) ∈ Qr(x̄, ̄t)

we must have
−ht(x, t)detD2h(x̄, ̄t) ≥(or ≤) f(x̄, ̄t).

For the supersolution, we also require that D2h(x, t) > 0 in the matrix sense.
A function u ∈ C0(ℝn × (0, T]) is called a viscosity solution of (1.2) if it is both a viscosity subsolution

and supersolution of (1.2).

Definition 1.2. A function u ∈ USC(ℝn × [0, T]) (or (LSC(ℝn × [0, T])) is called a viscosity subsolution (or
supersolution) of problem (1.2) and (1.3) if u is a viscosity subsolution (or supersolution) of (1.2), and
u ≤(or ≥) ϕ(x) for (x, t) ∈ ℝn × {t = 0}. Then u ∈ C0(ℝn × [0, T]) is called a viscosity solution of (1.2) and
(1.3) if it is a viscosity solution of (1.2) and u = ϕ(x) for (x, t) ∈ ℝn × {t = 0}.

We obtain the existence of the Cauchy problem for parabolic Monge–Ampère equations.

Theorem 1.1. Assume that f and ϕ are continuous, f has positive upper bound and positive lower bound in
ℝn × [0, T], D2ϕ is positive definite and detD2ϕ has positive upper bound and positive lower bound in the
viscosity sense inℝn. Then the Cauchy problem (1.2) and (1.3) has a viscosity solution u ∈ C0(ℝn × [0, T]).

To obtain the uniqueness of solutions to (1.2) and (1.3), we suppose that f and ϕ satisfy the following
assumptions:

Assumption (F). The function f ∈ C0(ℝn × [0, T]) is positive satisfying that for the constant β > 0,

f(x, t) = f0(|x|) + O(|x|−β) uniformly for t, |x|→∞,

where f0 ∈ C0([0, +∞)) is positive,
f0(r) = O(rα), r → +∞,

with constant α ≥ −β and
−n(min{β, n} − 2)

n − 1 < α <∞. (1.4)

Assumption (Φ). Let ϕ ∈ C0(ℝn). Suppose that there is a constant τ > 0 such that in the viscosity sense

τ detD2ϕ = f(x, 0) and D2ϕ > 0, x ∈ ℝn , (1.5)

and for some b ∈ ℝn and some constant c, ϕ(x) satisfies

lim sup
|x|→∞
|x|min{β,n}−2+α− αn |ϕ(x) − (u0(|x|) + b ⋅ x + c)| <∞, (1.6)

where

u0(|x|) = (
n
τ )

1
n
|x|

∫
0

(
s

∫
0

zn−1f0(z) dz)
1
n

ds (1.7)

is the solution of
detD2u0 =

f0(|x|)
τ

with u0(0) = 0, u0(0) = 0.
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We obtain the existence and uniqueness of the Cauchy problem for parabolic Monge–Ampère equations.

Theorem 1.2. Let n ≥ 2. Assume that f satisfies (F) and ϕ satisfies (Φ). Then for the b ∈ ℝn and the constant
c in (1.6), the Cauchy problem (1.2) and (1.3) has a unique viscosity solution u ∈ C0(ℝn × [0, T]) with the
asymptotic behavior

lim sup
|x|→∞
(|x|min{β,n}−2+α− αn |u(x, t) − (−τt + u0(|x|) + b ⋅ x + c)|) <∞, t ∈ [0, T]. (1.8)

Remark 1.1. In [10], a counterexample is given to show the necessity of (1.4) for the elliptic Monge–Ampère
equations. Then (1.4) is needed for (1.6) and so it is necessary for the parabolic Monge–Ampère equations.

Remark 1.2. If τ detD2ϕ = f(x, t), (x, t) ∈ ℝn × [0, T], then the unique solution of problem (1.2) and (1.3)
is u(x, t) = −τt + ϕ(x).

If f0(|x|) ≡ 1, x ∈ ℝn , then
u0(|x|) =

1
2 n√τ
|x|2.

Corollary 1.1. Let n ≥ 2, f = 1 + O(|x|−β) with β > 2 and ϕ satisfy (1.5) and (1.6). Then for the b ∈ ℝn and the
constant c in (1.6), the Cauchy problem (1.2) and (1.3) has a unique viscosity solution u ∈ C0(ℝn × [0, T])with
the asymptotic behavior

lim sup
|x|→∞
(|x|min{β,n}−2

u(x, t) − (−τt + 1
2 n√τ
|x|2 + b ⋅ x + c)


) <∞, t ∈ [0, T].

Suppose that Ω is a smooth, bounded and strictly convex open subset in ℝn. Let Σ, diffeomorphic to an
(n − 1)-disc, be the intersection of Ω and a hyperplane in ℝn, and let Γ be the boundary of Σ. Caffarelli and
Li [1] introduced the domain Γ when they investigated the multi-valued solutions of elliptic Monge–Ampère
equations detD2u = f(x) in (Ω̃ \ Γ) ×ℤ, where Ω ⊂ Ω̃ and Ω̃ is bounded strictly convex. They obtained the
existence and uniqueness of multi-valued solutions with prescribed value on Γ. For a detailed descrip-
tion, see [1]. Xiong and Bao [17] studied the isolated singularity of parabolic Monge–Ampère equations
−ut detD2u = 1 inℝn+1− \ X0 withℝn+1− = ℝn × (−∞, 0) and X0 = (x0, t0). For more results about the singular
solutions, we can refer to [2–4].

In this paper, we will also consider the Cauchy problem

−ut detD2u = f(x, t), (x, t) ∈ (ℝn \ Γ) × (0, T], (1.9)
u = ϕ(x), (x, t) ∈ (ℝn \ Γ) × {t = 0}. (1.10)

Assumption (Φ). Let ϕ satisfy (Φ) with b = 0 and there exists some constant γ∗ such that for any γ > γ∗,

ϕ = −γ on Γ. (1.11)

Assumption (H). For some positive constant h1, h(t) ∈ C1[0, T] satisfies h(0) = 0 and

h(t) ≤ −h1 < 0. (1.12)

Theorem 1.3. Let n ≥ 2, (F), (Φ) and (H) hold. Then for the constant c in (1.6) and the constant γ in (1.11),
there exists a unique viscosity solution u of (1.9) and (1.10) which satisfies (1.8) with b = 0 and

u = h(t) − γ, (x, t) ∈ Γ × [0, T]. (1.13)

This paper is arranged as follows. In Section 2, we prove Theorem 1.1. In Section 3, we prove Theorem 1.2
and Corollary 1.1. Section 4 is devoted to providing the proof of Theorem 1.3. In Section 5, we give some
basic lemmas.

2 Proof of Theorem 1.1
Choose positive constants τ1, τ2 such that 0 < τ1 ≤ 1 ≤ τ2 and

τ2 detD2ϕ ≥ f(x, t), τ1 detD2ϕ ≤ f(x, t), (x, t) ∈ ℝn × (0, T].
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Let
A(x, t) = −τ2t + ϕ(x), (x, t) ∈ ℝn × [0, T],
B(x, t) = −τ1t + ϕ(x), (x, t) ∈ ℝn × [0, T].

Then
−At detD2A = τ2 detD2ϕ ≥ f(x, t), (x, t) ∈ ℝn × (0, T],
−Bt detD2B = τ1 detD2ϕ ≤ f(x, t), (x, t) ∈ ℝn × (0, T].

Clearly,
A(x, t) ≤ B(x, t)

and
A(x, 0) = B(x, 0) = ϕ(x).

So A(x, t) and B(x, t) are respectively viscosity subsolution and supersolution of (1.2) and (1.3).
Let Sdenote the set of parabolically convex functions vwhich are viscosity subsolutions of (1.2) and (1.3)

satisfying
v(x, t) ≤ B(x, t).

Then A ∈ S. So S ̸= 0 . Define

u(x, t) = sup{v(x, t) : v ∈ S}, (x, t) ∈ ℝn × [0, T].

Therefore
A(x, t) ≤ u(x, t) ≤ B(x, t), (x, t) ∈ ℝn × [0, T].

As a result, u(x, 0) = ϕ(x), x ∈ ℝn.
As in [5, Step 4 of the proof of Theorem 1.1], we can prove that u is a viscosity solution of (1.2).

3 Proof of Theorem 1.2
By an affine transformation in x-space and subtracting a linear function to u, we only need to prove the
case b = 0.We divide the proof into six steps.

Step1: Construct a viscosity subsolution of (1.2)–(1.3). Let ̄f (|x|), f (|x|)be twopositive continuous functions
such that

τ ̄f (|x|) ≥ f(x, t) ≥ τf (|x|),
̄f (|x|) ≥ detD2ϕ ≥ f (|x|),

with
τf (|x|) = f0(|x|) − c1|x|−β , |x|→∞,

τf (|x|) = f0(|x|) + c2|x|−β , |x|→∞,
and c1, c2 being positive constants. For a > 0, define functions

u1(x, t) = −τt +
|x|

∫
1

(
s

∫
1

nzn−1 ̄f (z) dz + a)
1
n

ds, (x, t) ∈ ℝn × [0, T],

u2(x, t) = −τt +
|x|

∫
1

(
s

∫
1

nzn−1f (z) dz + a)
1
n

ds, (x, t) ∈ ℝn × [0, T].

Then u1 and u2 are parabolically convex, and

−(u1)t detD2u1 = τ ̄f ≥ f, (x, t) ∈ ℝn × (0, T], (3.1)
−(u2)t detD2u2 = τf ≤ f, (x, t) ∈ ℝn × (0, T], (3.2)

det(D2u1(x, t)) = f , (x, t) ∈ ℝn × [0, T], (3.3)
det(D2u2(x, t)) = f , (x, t) ∈ ℝn × [0, T]. (3.4)
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Furthermore, we find that for (x, t) ∈ ℝn × [0, T],

u1(x, t) = −τt + u0(|x|) + μ1(a) −
∞

∫
|x|

[(
s

∫
1

nzn−1 ̄f (z) dz + a)
1
n

− (
s

∫
0

n
τ
zn−1f0(z) dz)

1
n

] ds,

where u0(|x|) is the same as (1.7), and

μ1(a) =
∞

∫
1

[(
s

∫
1

nzn−1 ̄f (z) dz + a)
1
n

− (
s

∫
0

n
τ
zn−1f0(z) dz)

1
n

] ds − u0(1).

Then by the fact that ̄f (z) = f0(z)
τ +

c2
τ z
−β , f0(z) = O(zα), we know that

(
s

∫
1

nzn−1 ̄f (z) dz + a)
1
n

− (
s

∫
0

n
τ
zn−1f0(z) dz)

1
n

= O(s1−α+
α
n −min{β,n}), s → +∞.

So
∞

∫
|x|

[(
s

∫
1

nzn−1 ̄f (z) dz + a)
1
n

− (
s

∫
0

n
τ
zn−1f0(z) dz)

1
n

] ds =
∞

∫
|x|

O(s1−α+
α
n −min{β,n}) ds

= O(|x|2−α+
α
n −min{β,n}), (3.5)

where 2 − α + α
n −min{β, n} < 0 by (1.4). In addition, μ1(a) is strictly increasing in (0, +∞) and

lim
a→+∞

μ1(a) = +∞.

So
u1(x, t) = −τt + u0(|x|) + μ1(a) + O(|x|2−α+

α
n −min{β,n}) as |x|→∞.

Similarly, we have that

u2(x, t) = −τt + u0(|x|) + μ2(a) −
∞

∫
|x|

[(
s

∫
1

nzn−1f (z) dz + a)
1
n

− (
s

∫
0

n
τ
zn−1f0(z) dz)

1
n

] ds,

where

μ2(a) =
∞

∫
1

[(
s

∫
1

nzn−1f (z) dz + a)
1
n

− (
s

∫
0

n
τ
zn−1f0(z) dz)

1
n

] ds − u0(1).

Then μ2(a) is also strictly increasing in (0, +∞) and

lim
a→+∞

μ2(a) = +∞.

So as |x|→∞, we also have

u2(x, t) = −τt + u0(|x|) + μ2(a) + O(|x|2−α+
α
n −min{β,n}).

For the sufficiently large constant c in (1.6), there exist a1(c) and a2(c) satisfying μ1(a1(c)) = μ2(a2(c)) = c.
Therefore as |x|→∞, 0 ≤ t ≤ T, we have

u1(x, t) = −τt + u0(|x|) + c + O(|x|2−α+
α
n −min{β,n}) (3.6)

and
u2(x, t) = −τt + u0(|x|) + c + O(|x|2−α+

α
n −min{β,n}).

Thus
lim
|x|→∞
(u1(x, t) − u2(x, t)) = 0, 0 ≤ t ≤ T. (3.7)
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In virtue of (3.3), (3.4), (3.7) and the comparison principle, we get that

u1(x, 0) ≤ u2(x, 0), x ∈ ℝn . (3.8)

By (3.1), (3.2), (3.7), (3.8) and the comparison principle, we have

u1(x, t) ≤ u2(x, t), (x, t) ∈ ℝn × [0, T].

By (1.5), (1.6), (3.3), (3.6) and the comparison principle, we get

u1(x, 0) ≤ ϕ(x), x ∈ ℝn .

Step 2: Define the Perron solution of (1.2). Let S denote the set of parabolically convex functions v which
are viscosity subsolutions of (1.2) and (1.3) satisfying

v(x, t) ≤ u2(x, t).

Then u1 ∈ S. So S ̸= 0 . Define

uc(x, t) = sup{v(x, t) : v ∈ S}, (x, t) ∈ ℝn × [0, T].

Step 3: We prove that uc has the asymptotic behavior at infinity. Firstly, by the definition of uc, we have

uc(x, t) ≤ u2(x, t).

Then as |x|→∞,
uc(x, t) + τt − u0(|x|) − c ≤ O(|x|2−α+

α
n −min{β,n}).

On the other hand, since u1 ∈ S, by (3.6), as |x|→∞, we have

uc(x, t) + τt − u0(|x|) − c ≥ O(|x|2−α+
α
n −min{β,n}).

Thus,
lim sup
|x|→∞
(|x|min{β,n}+α− αn −2|uc(x, t) − (−τt + u0(|x|) + c)|) <∞.

Step 4: We prove that uc(x, 0) = ϕ(x), x ∈ ℝn. Choose positive constants τ1, τ2 such that 0 < τ1 ≤ τ ≤ τ2
and

τ2 detD2ϕ ≥ f(x, t), τ1 detD2ϕ ≤ f(x, t), (x, t) ∈ ℝn × (0, T].

Let
A(x, t) = −τ2t + ϕ(x), (x, t) ∈ ℝn × [0, T],

B(x, t) = −τ1t + ϕ(x), (x, t) ∈ ℝn × [0, T].

Then
−At detD2A = τ2 detD2ϕ ≥ f(x, t), (x, t) ∈ ℝn × (0, T],
−Bt detD2B = τ1 detD2ϕ ≤ f(x, t), (x, t) ∈ ℝn × (0, T].

As |x|→∞,
lim
|x|→∞
(A(x, t) − uc(x, t)) ≤ 0,

lim
|x|→∞
(B(x, t) − uc(x, t)) ≥ 0.

Clearly, for x ∈ ℝn,
A(x, 0) = B(x, 0) = ϕ(x).

So A(x, t) and B(x, t) are respectively viscosity subsolution and supersolution of (1.2)–(1.3). Then A ∈ S and
for any v ∈ S, we have v(x, t) ≤ B(x, t). Therefore

A(x, t) ≤ uc(x, t) ≤ B(x, t), (x, t) ∈ ℝn × [0, T].

As a result, uc(x, 0) = ϕ(x), x ∈ ℝn.
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Step 5: We prove that uc is a viscosity solution of (1.2). As in [5, Step 4 of the proof of Theorem 1.1], we can
prove that uc is a viscosity solution of (1.2).

Step 6: We prove the uniqueness. Suppose that u and v all satisfy (1.2)–(1.3) and (1.6). Then

lim
x→∞
(u(x, t) − v(x, t)) = 0.

By the comparison principle, u ≡ v, (x, t) ∈ ℝn × [0, T].

Theorem 1.2 is proved.

Proof of Corollary 1.1. In Step 1 of the proof of Theorem 1.2, we let f0(|x|) ≡ 1, then
∞

∫
|x|

[(
s

∫
1

nzn−1 ̄f (z) dz + a)
1
n

− (
s

∫
0

n
τ
zn−1)

1
n

] ds = O(|x|2−min{β,n}).

So
u1(x, t) = −τt +

1
2 n√τ
|x|2 + c + O(|x|2−min{β,n}),

u2(x, t) = −τt +
1

2 n√τ
|x|2 + c + O(|x|2−min{β,n}).

The remainder of the proof is the same as Theorem 1.2.

4 Proof of Theorem 1.3
Let B2(0) ⊂⊂ Ω and R1 = diam(Ω); then Ω ⊂⊂ BR1 (0). Choose R2 = 3R1.

To prove the theorem, let g̃ ∈ C∞(Ω) satisfy

{
detD2 g̃ = 1 in Ω,

g̃ = 0 on ∂Ω.

Set Ψ(x, t) = h(t) + c̃g̃(x) ∈ C2,1(Ω × [0, T]). Then Ψ|∂Ω = h(t) and Ψt(x, t)|∂Ω = h(t). By Lemma 5.4, for any
ξ ∈ ∂Ω,

wξ (x, t) = Ψ(ξ, t) +
c∗
2 [|x − x̄(ξ, t)|

2 − |ξ − x̄(ξ, t)|2], (x, t) ∈ ℝn × [0, T],

satisfying
wξ (x, t) < Ψ(x, t) on (Ω \ {ξ}) × [0, T].

In virtue of Remark 5.1, we know that (wξ )t = Ψt(ξ, t) = h(t). Then, by (H), we can choose c∗ and c̃ large
enough such that

−(wξ )t detD2wξ ≥ f(x, t), (x, t) ∈ BR2 (0) × (0, T],
detD2wξ (x, 0) ≥ detD2ϕ(x), x ∈ BR2 (0),
−Ψt detD2Ψ ≥ f(x, t), (x, t) ∈ Ω × (0, T],
detD2Ψ(x, 0) ≥ detD2ϕ(x), x ∈ Ω.

Define

w(x, t) =
{
{
{

Ψ(x, t), (x, t) ∈ Ω × [0, T],
supξ∈∂Ω wξ (x, t), (x, t) ∈ (ℝn \ Ω) × [0, T].

Then
w(x, t) = Ψ(x, t) = h(t), (x, t) ∈ Γ × [0, T],

and by Lemma 5.1 and Lemma 5.2,

−wt detD2w ≥ f, (x, t) ∈ BR2 (0) × (0, T],
detD2w(x, 0) ≥ detD2ϕ(x), x ∈ BR2 (0).
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Similar to the proof of Theorem 1.2, we choose two functions ̄f (|x|) and f (|x|). For a > 0, we construct
two functions

v1(x, t) = −τt + inf
BR1×[0,T]

w +
|x|

∫
2R1

(
s

∫
1

nzn−1 ̄f (z) dz + a)
1
n

ds, (x, t) ∈ ℝn × [0, T],

v2(x, t) = −τt + sup
BR1×[0,T]

w +
|x|

∫
2

(
s

∫
1

nzn−1f (z) dz + a)
1
n

ds, (x, t) ∈ ℝn × [0, T].

Then v1 and v2 are parabolically convex, and

−(v1)t detD2v1 = τ ̄f ≥ f, (x, t) ∈ ℝn × (0, T],
−(v2)t detD2v2 = τf ≤ f, (x, t) ∈ ℝn × (0, T],

det(D2v1(x, t)) = f , (x, t) ∈ ℝn × [0, T],
det(D2v2(x, t)) = f , (x, t) ∈ ℝn × [0, T].

And
v1(x, t) ≤ w(x, t) for (x, t) ∈ BR1 (0) × [0, T].

Choose a0 > 0 such that for a ≥ a0,

v1(x, t) ≥ w(x, t) for (x, t) ∈ ∂BR2 (0) × [0, T],
v2(x, t) ≥ w(x, t) for (x, t) ∈ ∂BR2 (0) × [0, T],
v2(x, t) ≥ h(t) for (x, t) ∈ Γ × [0, T].

Furthermore, we find that for (x, t) ∈ ℝn × [0, T],

v1(x, t) = −τt + u0(|x|) + c + ν1(a) −
∞

∫
|x|

[(
s

∫
1

nzn−1 ̄f (z) dz + a)
1
n

− (
s

∫
0

n
τ
zn−1f0(z) dz)

1
n

] ds,

where u0(|x|) is the same as (1.7), and

ν1(a) =
∞

∫
2R1

[(
s

∫
1

nzn−1 ̄f (z) dz + a)
1
n

− (
s

∫
0

n
τ
zn−1f0(z) dz)

1
n

] ds − u0(2R1) + inf
BR1×[0,T]

w − c.

Then ν1(a) is strictly increasing in (0, +∞) and

lim
a→+∞

ν1(a) = +∞.

By (3.5),
v1(x, t) = −τt + u0(|x|) + c + ν1(a) + O(|x|2−α+

α
n −min{β,n}) as |x|→∞.

Similarly, we have that

v2(x, t) = −τt + u0(|x|) + c + ν2(a) −
∞

∫
|x|

[(
s

∫
1

nzn−1f (z) dz + a)
1
n

− (
s

∫
0

n
τ
zn−1f0(z) dz)

1
n

] ds,

where

ν2(a) =
∞

∫
2

[(
s

∫
1

nzn−1f (z) dz + a)
1
n

− (
s

∫
0

n
τ
zn−1f0(z) dz)

1
n

] ds − u0(2) + sup
BR1×[0,T]

w − c.

Then ν2(a) is also strictly increasing in (0, +∞) and

lim
a→+∞

ν2(a) = +∞.
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So as |x|→∞,
v2(x, t) = −τt + u0(|x|) + c + ν2(a) + O(|x|2−α+

α
n −min{β,n}).

For the γ in (Φ), there exist a1(γ) and a2(γ) such that

ν1(a1(γ)) = ν2(a2(γ)) = γ.

Then as |x|→∞,
v1(x, t) − γ = −τt + u0(|x|) + c + O(|x|2−α+

α
n −min{β,n}),

v2(x, t) − γ = −τt + u0(|x|) + c + O(|x|2−α+
α
n −min{β,n}).

Define

ua(x, t) =
{{
{{
{

max{w(x, t), v1(x, t)} − γ, (x, t) ∈ BR2 (0) × [0, T],
v1(x, t) − γ, (x, t) ∈ (ℝn \ BR2 (0)) × [0, T].

Then ua ∈ C0(ℝn × [0, T]). By Lemma 5.2, ua satisfies in the viscosity sense

−(ua)t detD
2ua ≥ f, (x, t) ∈ ℝ

n × (0, T],

and
detD2ua(x, 0) ≥ detD

2ϕ(x), x ∈ ℝn .

As |x|→∞,
ua(x, t) = −τt + u0(|x|) + c + O(|x|

2−α+ αn −min{β,n}). (4.1)

So
lim sup
|x|→∞
(ua(x, 0) − ϕ(x)) = 0.

Thus from the comparison principle, we know that

ua(x, 0) ≤ ϕ(x), x ∈ ℝn .

In addition,
ua(x, t) = w(x, t) − γ = h(t) − γ, (x, t) ∈ Γ × [0, T]. (4.2)

Then
ua(x, 0) = w(x, 0) − γ = h(0) − γ = −γ = ϕ(x), x ∈ Γ.

By the comparison principle, we also have

ua(x, t) ≤ v2(x, t) − γ, (x, t) ∈ ℝ
n × [0, T].

Step 2: Define the Perron solution of (1.9). Let S denote the set of locally parabolically convex functions v
which are viscosity subsolutions of (1.9) satisfying

v(x, t) ≤ v2(x, t) − γ, (x, t) ∈ ℝn × [0, T],
v(x, t) = h(t) − γ, (x, t) ∈ Γ × [0, T],
v(x, 0) ≤ ϕ(x), x ∈ ℝn \ Γ.

Then ua ∈ S. So S ̸= 0 . Define

uc(x, t) = sup{v(x, t) : v ∈ S}, (x, t) ∈ ℝn × [0, T].

Step 3: We prove that uc has the asymptotic behavior at infinity. Firstly, by the definition of uc, we have

uc(x, t) ≤ v2(x, t) − γ, (x, t) ∈ ℝn × [0, T].

Then as |x|→∞,
uc(x, t) + τt − u0(|x|) − c ≤ O(|x|2−α+

α
n −min{β,n}).
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On the other hand, since ua ∈ S, then by (4.1), as |x|→∞, we have

uc(x, t) + τt − u0(|x|) − c ≥ O(|x|2−α+
α
n −min{β,n}).

Thus,
lim sup
|x|→∞
(|x|min{β,n}+α− αn −2|uc(x, t) − (−τt + u0(|x|) + c)|) <∞.

Step 4: We prove that uc(x, t) = h(t) − γ, (x, t) ∈ Γ × [0, T], and uc(x, 0) = ϕ(x), x ∈ ℝn \ Γ. We first prove
that uc(x, 0) = ϕ(x), x ∈ ℝn \ Γ. Since h ∈ C1[0, T], by (1.12) there exists some positive constant h2 ≥ h1 such
that h(t) ≥ −h2. Choose positive constants τ1, τ2 such that τ1 < 1 < τ2, τ1h1 ≤ τ ≤ τ2h2 and

τ2h2 detD2ϕ(x) ≥ f(x, t), τ1h1 detD2ϕ(x) ≤ f(x, t), (x, t) ∈ ℝn × (0, T].

Let
A(x, t) = −τ2h2t + ϕ(x), (x, t) ∈ ℝn × [0, T],
B(x, t) = −τ1h1t + ϕ(x), (x, t) ∈ ℝn × [0, T].

Then
−At detD2A = τ2h2 detD2ϕ ≥ f(x, t), (x, t) ∈ ℝn × (0, T],
−Bt detD2B = τ1h1 detD2ϕ ≤ f(x, t), (x, t) ∈ ℝn × (0, T].

In addition, on Γ × [0, T],

A(x, t) = −τ2h2t + ϕ(x) ≤ −h2t + ϕ(x) = −h2t − γ ≤ h(t) − γ,
B(x, t) = −τ1h1t + ϕ(x) ≥ −h1t + ϕ(x) = −h1t − γ ≥ h(t) − γ.

As |x|→∞,
lim
|x|→∞
(A(x, t) − uc(x, t)) ≤ 0

and
lim
|x|→∞
(B(x, t) − uc(x, t)) ≥ 0.

Clearly, as x ∈ ℝn \ Γ,
A(x, 0) = B(x, 0) = ϕ(x).

So A(x, t) and B(x, t) are respectively viscosity subsolution and viscosity supersolution of (1.9), (1.10) and
(1.13). So, A ∈ S and for any v ∈ S, we have v(x, t) ≤ B(x, t). Therefore,

A(x, t) ≤ uc ≤ B(x, t), (x, t) ∈ ℝn × [0, T].

As a result, uc(x, 0) = ϕ(x), x ∈ ℝn \ Γ.
Next we prove that uc(x, t) = h(t) − γ, (x, t) ∈ Γ × [0, T]. For any ξ ∈ Γ, 0 ≤ τ ≤ T, on one hand, since

ua ∈ S, then by (4.2),
lim inf
(x,t)→( ̄ξ ,τ̄)

uc(x, t) ≥ lim
(x,t)→( ̄ξ ,τ̄)

ua(x, t) = h( ̄ξ ) − γ.

On the other hand, we have
lim sup
(x,t)→( ̄ξ ,τ̄)

uc(x, t) ≤ h( ̄ξ ) − γ.

Indeed, choose BR = {x : |x| ≤ R} such thatℝn ⊃⊃ BR ⊃⊃ Ω. Let

QT
R = (BR \ Γ) × (0, T]

and
∂pQT

R = (∂BR × [0, T]) ∪ ((BR \ Γ) × {t = 0}).

For every v ∈ S, we have
{{{
{{{
{

−vt + ∆v ≥ 0, (x, t) ∈ QT
R ,

v ≤ h(t) − γ, (x, t) ∈ Γ × [0, T],
v ≤ B, (x, t) ∈ ∂pQT

R .
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Let w+ (see [12, Theorem 5.14]) satisfy

{{{
{{{
{

−w+t + ∆w
+ = 0, (x, t) ∈ QT

R ,
w+ = h(t) − γ, (x, t) ∈ Γ × [0, T],
w+ = B, (x, t) ∈ ∂pQT

R .

By the comparison principle, v ≤ w+, (x, t) ∈ QT
R. So uc ≤ w+, (x, t) ∈ Q

T
R and

lim sup
(x,t)→( ̄ξ ,τ̄)

uc(x, t) ≤ lim
(x,t)→( ̄ξ ,τ̄)

w+(x, t) = h( ̄ξ ) − γ.

Step 5: We prove that uc is a viscosity solution of (1.9). As in [5, Step 4 of the proof of Theorem 1.1], we can
prove that uc is a viscosity solution of (1.9).

Step 6: We prove the uniqueness. Suppose that u and v all satisfy (1.9), (1.10), (1.13) and (1.8). Then

lim
x→∞
(u(x, t) − v(x, t)) = 0.

By the comparison principle, u ≡ v, (x, t) ∈ ℝn × [0, T].

Theorem 1.3 is proved.

5 Appendix
In this section, we give some basic results.

Lemma 5.1 ([6]). Let S denote the nonempty set of viscosity subsolutions of

− vt detD2v = f in Q = Ω × (0, T]. (5.1)

Set
w(x, t) = sup{v(x, t)|v ∈ S} for (x, t) ∈ Q.

Then w is a viscosity subsolution of (5.1).

Similar to [7, Lemma 2.3], we have the following:

Lemma 5.2. Let Ω ⊂ Ω1 be two bounded open strictly convex subsets with smooth boundaries in ℝn and
Q = Ω × (0, T], U = Ω1 × (0, T]. Suppose that v and u are parabolically convex and satisfy respectively

−vt detD2v ≥ f in Q,
−ut detD2u ≥ f in U.

Furthermore,

{
u ≤ v in Q,
u = v on ∂Ω × [0, T].

Let

w(x, t) =
{
{
{

v(x, t), (x, t) ∈ Q,
u(x, t), (x, t) ∈ U.

Then w is parabolically convex and satisfies, in the viscosity sense,

−wt detD2w ≥ f on U.

In [15, 16], a comparison principle in V = U × (0, T]with U being a convex domain is proved, see [16, Propo-
sition 2.2] or [15, Proposition 2.1].Wefind that if we adopt the definition of viscosity solution (Definition 1.2),
the comparison principle still holds for any bounded domain.
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Lemma 5.3 (Comparison Principle). LetΩ be aboundeddomain inℝn, letQ = Ω × (0, T]and let the f, g ∈ C(Q̄)
be positive functions. Suppose that u and v are locally parabolically convex viscosity solution of the equation

−ut detD2u = f(x, t) in Q

and the equation
−vt detD2v = g(x, t) in Q,

respectively. If
f(x, t) ≥ g(x, t) on Q̄.

Then
sup
Q
(u − v) ≤ sup

∂pQ
(u − v).

Lemma 5.4 ([7]). Let Ψ(x, t) ∈ C2,1(Ω × [0, T]). Then there exists some constant C0, depending only on n, Ψ,
Ω, T, such that, for any ξ ∈ ∂Ω, there exists x̄(ξ, t) ∈ ℝn satisfying

|x̄(ξ, t)| ≤ C0

and
wξ (x, t) < Ψ(x, t) on (Ω \ {ξ}) × [0, T],

where
wξ (x, t) = Ψ(ξ, t) +

c∗
2 [|x − x̄(ξ, t)|

2 − |ξ − x̄(ξ, t)|2], (x, t) ∈ ℝn × [0, T],

and c∗ is any bounded positive constant.

Remark 5.1. In [7], from the proof of Lemma 5.4, we can see that if Ψxi ,t(x, t) = 0, x ∈ ∂Ω, then we have
(wξ )t = Ψt(ξ, t), ξ ∈ ∂Ω.
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