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EXISTENCE OF ROTATING STARS WITH
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Abstract. The existence of solutions of the equations for a self-gravitating

fluid with prescribed angular velocity law is proved. The conditions on the

angular velocity are nearly optimal. The system is formulated as a varia-

tional problem and concentration-compactness methods are used to prove

the existence of minimizers of the energy functional.

1. Introduction

Since Newton’s time, the relative equilibrium figures of self-gravitating rotating
fluids, including the incompressible and compressible cases, have been received
extensive attention. These models drive their primary interest from astrophysics,
where they may be used to study the figures of stars and planets. Later on, many
distinguished mathematicians and physicists such as Maclaurin, Jacobi, Liouville,
Dirichlet, Lyapunov and Poincaré made great contributions. In the last century,
Milne, Chandrasekhar and Tassoul produced an impressive amount of work. The
interested readers can see [6][21] for more details.
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Our problem here considered is to find an equilibrium configuration of a mass
of compressible fluid that is rotating about a fixed axis (say x3-axis) under the
influence of self-gravitation. We are interested mainly in the existence and prop-
erties of the steady state solution, which is called by Luo & Smoller rotating star
solution. So far, on the aspect of existence, there are many results obtained by
using different methods. Specifically, Auchmuty & Beals [3] (compressible case),
Auchmuty [1] (incompressible case), and Li [14] (uniformly rotating case) all first
restricted to functions with support in a ball to consider a variational problem
and obtain the existence of a constrained minimizer. Then they showed an a
priori bound on the support of this minimizer, independent of the radius of the
ball, which implied that for a sufficiently large radius, the minimizer above is just
a solution of the original problem. By means of a series asymptotic estimates,
Friedman & Turkington [11] proved that there exist solutions for “white dwarf
stars”. Deng et al [8] applied the mountain pass theorem on bounded domain and
established the existence of positive solution of the Euler-Poisson equations. Mc-
Cann [19] proved an existence for rotating binary stars. Particularly, in the latest
paper [18], Luo & Smoller, using the concentration-compactness principle, proved
the existence of rotating star solution of compressible fluid with given angular
momentum. On the aspect of the properties of solution, Friedman & Turkington
([9][10]) obtained the asymptotic estimates on the diameter of fluids with given
angular momentum, and Caffarelli & Friedman [5] studied the regularity of the
stars’ boundary. Chanillo & Li [7] gave an a priori bound on diameters and the
number of connected components of white dwarfs.

What’s significant is that the above recent papers may be separated two cases,
one with given angular momentum ([1][2][3][4][5][9][10][11][17][18]), and the other
with given angular velocity ([3][7][14]), which seems comparatively less. However,
the ancient mathematicians and physicists (e.g. Maclaurin, Jacobi, Dirichlet,
etc.) actually paid more attention to the latter case. Naturally, we here are also
interested in the case with prescribed angular velocity.

In this paper, we focus on the rotating stars with given angular velocity and
total mass, which is distinguished with the case with given angular momentum
studied by Luo & Smoller. Firstly we formulate this problem as a variational
problem of finding a minimizer of an energy functional. And then under the nearly
optimal assumptions on the angular velocity we show the existence of rotating
star solution by using the concentration-compactness principle, due to P.L. Lions
[15]. We remark that the existence and stability of rotating star solution with
given angular momentum was discussed in [18].
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2. Formulation of the Problem and Main Results

Our starting point here is to formulate this problem. For x = (x1, x2, x3) ∈ R3,
write

r(x) =
√
x2

1 + x2
2 and z(x) = x3.

Let ρ, p and ω(r) denote the density, pressure and angular velocity of the fluid
rotating about z-axis, respectively. Recall the Euler equation in three dimensions
space which models the motion of a compressible fluid with self-gravitation (see
[19]):

(1) ∇p(ρ) = ρ{∇Bρ+ ω2(r)rer},

where ∇ is the spatial gradient,

Bρ(x) =
∫

ρ(y)
|x− y|

dy, er =
(
x1

r(x)
,
x2

r(x)
, 0
)
.

A rotating star solution (ρ̃, ṽ)(r, z) is an axi-symmetric solution of equation
(1), which models a star rotating about the z-axis. For convenience, throughout
this paper, we use

∫
and ‖ · ‖q to denote

∫
R3 and ‖ · ‖Lq(R3), respectively. We

consider the problem of minimizing the functional, which corresponds to (1) (see
Theorem 2.1(c))

E(ρ) =
∫ (

A(ρ(x)) +
1
2
ρ(x)|v(r(x))|2 − 1

2
ρ(x) ·Bρ(x)

)
dx

:= Eint(ρ) + Ekin(ρ) + Epot(ρ)(2)

over the set

ΓM = {ρ ∈ L1(R3) | ρ is axisymmetric about the z-axis, ρ ≥ 0,∫
ρdx = M,

∫ (
A(ρ) +

1
2
ρ|v|2

)
dx <∞}.

Here A(ρ) is determined by the pressure function p(ρ), which is continuous, with
the relationship

A(s) = s

∫ s

0

p(t)t−2dt.
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Suppose that the angular velocity ω(r)(≥ 0) is prescribed, then the velocity
field

v(x) = (−x2ω(r), x1ω(r), 0) and |v(x)| = ω(r)r.

Suppose

J(r) =
∫ ∞
r

sω2(s)ds,

it is well known that Auchmuty and Beals [3] assumed that J(r) satisfies
(J1): J(r) is absolutely continuous and bounded on [0,∞),
(J2): rJ(r)→ 0, as r →∞

(i.e. J(r) satisfies (P
′

4) and (23) in [3]), and then proved the existence of a
minimizer of the functional in the class ΓM,S = ΓM ∩ ΓS , where

ΓS = {ρ ∈ L1(R3) | ρ(x1, x2, x3) = ρ(x1, x2,−x3), (x1, x2, x3) ∈ R3}.

In this present paper, our interest is focused on finding a minimizer of functional
E(ρ) in ΓM , and considering only the case that the state equation of the fluid is
polytropic, say

p(ρ) = ργ , γ > 4/3,

and
A(ρ) =

ργ

γ − 1
.

In order to show the existence, as to the angular velocity ω, we assume that
(ω1): rω2(r) ∈ L1([0,∞)),
(ω2): ω(r)/rα is nonincreasing in (0,∞), for some constant α ≥ 0.

Remark. Note that (ω1) is equivalent to (J1) but (ω2) is weaker than (J2).
Consider the case w(r) = r−p for p > 1 and r > r0 > 0. By a simple calculation,
we see that in order to make ω(r) satisfy the condition (J2),

rJ(r) = r

∫ ∞
r

sw2(s)ds = r

∫ ∞
r

ds

s2p−1
=

r3−2p

2p− 2
→ 0, as r →∞,

it has to require

p >
3
2
,

while p > 1 suffices to make our assumption (ω1) and (ω2) hold.
Actually, the angular velocity is monotone is common in astrophysics and is

related to some stability criteria. So in this sense our assumption on ω(r) is nearly
optimal.

By the argument as in [3], it is not difficult to prove the following regularity
theorem of the minimizer.
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Theorem 2.1. Under the assumption (ω1), if ρ̃ is a minimizer of the energy
functional E(ρ) in ΓM and let

G = {x ∈ R3 | ρ̃(x) > 0},

then
(a) ρ̃ ∈ C(R3) ∩ C1(G).
(b) there exists a constant µ < 0 such that{

A′(ρ̃(x)) + J(r(x))−Bρ̃(x) = µ, x ∈ G,
J(r(x))−Bρ̃(x) ≥ µ, x ∈ R3 −G.

(c) ρ̃ is a solution of (1).

Our main result is the following existence theorem.

Theorem 2.2. Suppose the angular velocity satisfies the conditions (ω1) and
(ω2). Then

(a) the functional E(ρ) is bounded from below on ΓM and

eM := inf
ΓM

E(ρ) < 0,

(b) there exists ρ̃ in ΓM,S, which is non-increasing in z ≥ 0, such that

E(ρ̃) = min
ρ∈ΓM

E(ρ) = min
ρ∈ΓM,S

E(ρ).

Thus ρ̃ is a rotating star solution with total mass M and angular velocity ω.

In the rest of this paper we give some elementary results in Section 3 and
establish the existence of a rotating star solution in Section 4.

3. Preliminary Results

We notice that the integrability of the potential term in (2) can be implied
from that of the density function ρ. We begin with the convexity inequality, a
consequence of Young’s inequality (see page 145 in [12]).

Lemma 3.1. If f ∈ Ls(R3), p ≤ q ≤ s, then

‖f‖q ≤ ‖f‖λp‖f‖1−λs , 1/q = λ/p+ (1− λ)/s.

The following lemma is proved in [3] (see p259).
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Lemma 3.2. Suppose f ∈ L1(R3)∩Lq(R3). If 1 < q ≤ 3/2, then Bf ∈ Lr(RN )
for 3 < r < 3q/(3− 2q), and

‖Bf‖r ≤ C(‖f‖η1‖f‖1−ηq + ‖f‖θ1‖f‖1−θq ),

where C > 0 and 0 < η, θ < 1. If q > 3/2, then Bf is bounded continuous
function and satisfies the above inequality with r =∞.

Lemma 3.3. Let f ∈ L1(R3) ∩ Lγ(R3). if γ ≥ 4/3, then ∇Bf ∈ L2(R3), and

‖∇Bf‖22 ≤ C‖f‖
5γ−6

3(γ−1)
1 ‖f‖

γ
3(γ−1)
γ ,

for some constant C.

Indeed, it follows from Hölder’s inequality, Lemma 3.2 and 3.1 that

1
4π
‖∇Bf‖22 =

1
4π

∫
(4Bf)(Bf)dx

=
∫
f(x) ·Bf(x)dx

≤ C
(∫
|f |6/5dx

)5/6(∫
|Bf |6dx

)1/6

≤ C‖f‖26/5

≤ C‖f‖
5γ−6

3(γ−1)
1 ‖f‖

γ
3(γ−1)
γ .

4. The Existence Proof

We now establish the existence of rotating star solution with given angular
velocity. Since our proof follows closely the method detailed in [18] or [20], we
shall make our discussion brief.

Split our argument into a series of lemmas.

Lemma 4.1. There exists a positive constant C depending only on M such that

(3)
∫ (

A(ρ(x)) + ρ(x)|v(r(x))|2
)
dx ≤ 2E(ρ) + C, ρ ∈ ΓM .

This implies eM > −∞.

Proof. Since ρ ∈ ΓM , we have∫
ργdx <∞,

∫
ρdx = M.
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By the Appendix and the Young’s inequality, we obtain

−Epot(ρ) =
1
2

∫
ρ(x) ·Bρ(x)dx

≤ C‖ρ‖
5γ−6

3(γ−1)
1 ‖ρ‖

γ
3(γ−1)
γ

= CM
5γ−6

3(γ−1)

(∫
ργ(x)dx

) γ
3(γ−1)

≤ 1
2

∫
A(ρ(x))dx+ C.

This implies

E(ρ) =
∫
A(ρ(x))dx+

1
2

∫
ρ(x)|v(r(x))|2dx+ Epot(ρ)

≥ 1
2

∫
A(ρ(x))dx+

1
2

∫
ρ(x)|v(r(x))|2dx− C.

Hence (3) holds. �

Lemma 4.2. Under (ω2), we have
(a) eM < 0, and
(b) eM/M

(5+2α)/3 is non-increasing for M > 0.

Proof. (a) If ρ is a minimizer of E(ρ) in ΓM , by Theorem 2.1, we know that ρ
is continuous and satisfies the equation (1). Moreover, Caffarelli and Friedman
proved in [5] that the boundary ∂G is smooth enough to apply the Gauss-Green
formula. Noting that ρ|∂G = 0, we obtain∫

G

x · ∇p(ρ(x))dx = −3
∫
p(ρ(x))dx.

By the argument in [18] (see page 9), we have∫
G

x · ρ(x)∇(Bρ(x))dx = −1
2

∫
ρ(x)Bρ(x)dx.

Next since x · er = r(x), it follows that∫
G

x · ρ(x)ω2(r)r(x)erdx =
∫
G

ρ(x)ω2(r)r2(x)dx =
∫
G

ρ(x)|v(x)|2dx.

Therefore, by (1)

1
2

∫
ρ(x)Bρ(x)dx =

∫
ρ(x)|v(x)|2dx+ 3

∫
p(ρ(x))dx.
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So that

E(ρ) =
∫
A(ρ(x))dx+

1
2

∫
ρ(x)|v(x)|2dx− 1

2

∫
ρ(x)Bρ(x)dx

=
4− 3γ
γ − 1

∫
ργ(x)dx− 1

2

∫
ρ(x)|v(x)|2dx

< 0

since γ > 4/3.
(b) For a, b > 0, by a scaling argument as in [20] (see page 905), we define

ρ̄(x) = aρ(bx). Then it is not difficult to show that∫
ρ̄dx = ab−3

∫
ρdx,

∫
A(ρ̄)dx = b−3

∫
A(aρ)dx,

Epot(ρ̄) = a2b−5Epot(ρ).

By the condition on the angular velocity (ω2), for b > 1, we have∫
ρ̄|v(x)|2dx = a

∫
ρ(bx)ω2(r(x))r2(x)dx

≥ ab−2α

∫
ρ(bx)ω2(r(bx))r2(x)dx

= ab−(5+2α)

∫
ρ(x)|v(x)|2dx.

Therefore, we choose a = 1 and b = (M/M̄)1/3 > 1, it follows that

E(ρ̄) =
∫
A(ρ̄(x))dx+

1
2

∫
ρ̄(x)|v(x)|2dx+ Epot(ρ̄)

≥ b−3

∫
A(ρ(x))dx+

b−(5+2α)

2

∫
ρ(x)|v(x)|2dx+ b−5Epot(ρ)

≥ b−(5+2α)

(∫
A(ρ(x))dx+

1
2

∫
ρ(x)|v(x)|2dx+ Epot(ρ)

)
= (M̄/M)(5+2α)/3E(ρ).

Since the map ρ→ ρ̄ is one-to-one and onto between ΓM and ΓM̄ , thus we prove
Part (b). �

We next consider the minimizing sequence {ρi} ⊂ ΓM of the energy functional
E(ρ). Recalling the Steiner symmetrization [13], we denote ρ̂i as the symmetric
rearrangement of ρi with respect to z. By the properties of the rearrangement,
the integrals ∫

A(ρ(x))dx,
∫
ρ(x)|v(x)|2dx
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are not changed, while the potential term∫∫
ρ(x)ρ(y)
|x− y|

dxdy

is increased. Thus,
E(ρ̂i) ≤ E(ρi).

Therefore, in the following the minimizing sequences are assumed being rear-
ranged, so that every ρi is even with respect to z = 0 and decreasing in z ≥ 0.

Lemma 4.3. Under (ω2), any minimizing sequence of E(ρ) in ΓM is bounded in
Lγ(R3) and therefore has a subsequence which converges weakly in Lγ(R3).

Proof. Let {ρi} ⊂ ΓM be a minimizing sequence of E(ρ) in ΓM . By Lemma 4.1
and Lemma 4.2, for i large enough,∫

A(ρi)dx ≤ 2E(ρi) + C ≤ eM + C ≤ C.

So {ρi} is bounded in Lγ(R3), the assertion is true by the self-flexibility. �

To prove the result of Theorem 2.2, we need the following lemma due to Rein
(see Lemma 3.4 in [20]). It is included here for easier reference.

Lemma 4.4. Let ρ ∈ ΓM . Then for R > 1,

sup
a∈R3

∫
a+BR

ρ(x)dx ≥ 1
RM

(
−2Epot(ρ)− M2

R
−
C‖ρ‖2γ
R5−6/γ

)
,

where BR = {y ∈ R3
∣∣ |y| < R}.

Lemma 4.5. Under (ω2), let {ρi} ⊂ ΓM be a minimizing sequence of E(ρ) in
ΓM . Then there exist positive constants δ0 = δ0(M), R0 = R0(M), and i0 ∈ N
such that ∫

BR

ρi(x)dx ≥ δ0, for i > i0, R > R0.

Proof. It follows by Lemma 4.3 that {ρi} is bounded in Lγ(R3). And by Lemma
4.2(a), eM < 0, we have for i ≥ i0,

−Epot(ρi) =
1
2

∫
ρiBρidx ≥ −E(ρi) ≥ −

eM
2

> 0.

Therefore, by Lemma 3.4, there exist δ0 = δ0(M) > 0, R′ = R′(M) > 0 and a
sequence of shift vectors {ai} ⊂ R3 such that∫

ai+BR

ρi(x)dx ≥ δ0, for i ≥ i0, R > R′.
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By the property of Steiner symmetrization, ρi is even in z and decrease in z > 0,
and ai can be chosen on the plane z = 0.

Next, we prove r(ai) is uniformly less than a positive constant r0. Indeed,
Since ρi is symmetric about z-axis and has mass at least δ0 in the ball ai+BR, it
has mass more than Cr(ai)δ0 in the torus obtained by revolving this ball around
z-axis. Hence r(ai) ≤ M/Cδ0, denoted by r0. Then letting R0 = r0 + R′, the
proof is completed. �

The following result indicates the well-known compactness property, which is
also due to Rein (see Lemma 3.7 in [20]).

Lemma 4.6. Let {ρi} ⊂ Lγ(R3) be bounded and

ρi ⇀ ρ̃ weakly in Lγ(R3).

(a) For any domain Ω ⊂ R3,

∇B(χΩρi)→ ∇B(χΩ ρ̃) strongly in L2(R3),

where χΩ is the indicator function on set Ω.
(b) If in addition {ρi} is bounded in L1(R3), ρ̃ ∈ L1(R3), and for any ε > 0

there exist R > 0 and i0 ∈ N such that∫
|x|≥R

ρi(x)dx < ε, i ≥ i0,

then
∇Bρi → ∇Bρ̃ strongly in L2(R3).

Next, we prove the main result Theorem 2.2.

Proof of Theorem 2.2. Fix M > 0. By lemma 4.1 and 4.2(a), we have proved
Theorem 2.2(a). It is sufficient to give the proof of Theorem 2.2(b).

For any 0 < R1 < R2 (to be determined), we denote

B(1) = {x ∈ R3| |x| ≤ R1},

B(2) = {x ∈ R3| R1 < |x| ≤ R2},
B(3) = {x ∈ R3| |x| > R2},

and split ρ ∈ ΓM into three different parts as in [20],

ρ = ρχ
B(1) + ρχ

B(2) + ρχ
B(3) =: ρ(1) + ρ(2) + ρ(3),

where χ
B(j) is the indicator function on sets B(j), j = 1, 2, 3. Thus we have

E(ρ) = E(ρ(1)) + E(ρ(2)) + E(ρ(3))− P12 − P13 − P23,
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where

Pkl =
∫ ∫

ρ(k)(x)ρ(l)(y)
|x− y|

dxdy, 1 ≤ k < l ≤ 3.

If we choose R2 > 2R1, then (see [20])

P13 ≤
C

R2
, P12 + P23 ≤ C‖ρ‖γ/6(γ−1)

γ ‖∇Bρ(2)‖2.

Denote
M (j) =

∫
ρ(j)(x)dx, j = 1, 2, 3.

Noticing that eM < 0 and using Lemma 4.2(b), we find

eM − E(ρ(1))− E(ρ(2))− E(ρ(3))

≤ eM

1−
(
M (1)

M

) 5+2α
3

−
(
M (2)

M

) 5+2α
3

−
(
M (3)

M

) 5+2α
3


≤ eM

(
1−

(
M (1)

M

) 5
3

−
(
M (2)

M

) 5
3

−
(
M (3)

M

) 5
3
)

≤ 10eM
9M2

(
M (1)M (3) +M (1)M (2) +M (2)M (3)

)
≤ 10eM

9M2
·M (1)M (3).

Here we have used the elementary formula

1−
(
a5/3 + b5/3 + c5/3

)
≥ 10

9
(ab+ bc+ ac)

for 0 < a, b, c < 1, a+ b+ c = 1. From these estimates above, it follows

eM − E(ρ) = eM − E(ρ(1))− E(ρ(2))− E(ρ(3)) + P12 + P13 + P23

≤ CeMM (1)M (3) + C
(
R−1

2 + ‖ρ‖γ/6(γ−1)
γ ‖∇Bρ(2)‖2

)
.(4)

Let {ρi} ⊂ ΓM be a minimizing sequence of E(ρ). By Lemma 4.3, the sequence
{ρi} is bounded in Lγ(R3) so there exists a subsequence, still denoted by {ρi},
such that

ρi ⇀ ρ̃, weakly in Lγ(R3).

We now choose R1 > R0 by Lemma 4.5, such that M (j)
i ≥ δ0 for i large. By (4),

−CeMδ0M (3)
i ≤ C

R2
+ C‖∇Bρ(2)

i ‖2 + E(ρi)− eM

≤ C

R2
+ C‖∇Bρ̃(2)‖2 + C‖∇Bρ(2)

i −∇Bρ̃
(2)‖2 + E(ρi)− eM .(5)
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where ρ(j)
i = ρiχB(j) and M (j)

i =
∫
ρ

(j)
i (x)dx, i = 1, 2, · · · , j = 1, 2, 3, referring to

the splitting.
Given any ε > 0, by the same argument as [20], we can increase R1 > R0 such

that the mass of ρ̃ mainly concentrates in the ball B(1), so the potential energy
generated by ρ̃2, the second term on the right-hand side of (5), can be sufficiently
small, say less than ε/4. Next, we take R2 > 2R1 such that the first term of (5) is
also small and less than ε/4. Now, R1 and R2 are fixed, so the third term in (5)
converges to zero as i →∞, by Lemma 4.6(a). And the remainder |E(ρi)− eM |
can be small if i is large. Therefore, for i sufficiently large, we can make

M
(3)
i =

∫
B(3)

ρi(x)dx < ε,∫
BR2

ρi(x)dx = M −M (3)
i ≥M − ε.

By Lemma 4.6(b), we obtain

‖∇Bρi −∇Bρ̃‖2 → 0, as i→∞.

Obviously, ρ̃ ≥ 0 a.e. By the weak convergence we have that for any ε > 0,

M ≥
∫
BR

ρ̃(x)dx ≥M − ε, if R large enough,

which in particular implies that ρ̃ ∈ L1(R3) with
∫
ρ̃dx = M . The functional

ρ 7→
∫
A(ρ)dx is convex, so by a standard argument, we have

E(ρ̃) = eM .

Therefore, ρ̃ is a minimizer of E(ρ). �
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