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Abstract. This paper is mainly concerned with Euler-Poisson equations mod-

eling Newtonian stars. We establish the existence of rotating star solutions for
general compressible fluids with prescribed angular velocity law, which is the
main point distinguished with the case with prescribed angular momentum per

unit mass. The compactness of any minimizing sequence is established, which
is important from the stability point of view.

1. Introduction. Since Newton’s time, many distinguished mathematicians and
physical scientists such as Maclaurin, Clairaut, Liouville, Lyapunov and Poincaré
have made great contributions on the relative equilibrium figures of self-gravitating
rotating fluids, including incompressible and compressible cases. In 1902, Jeans
proposed the first serious theory of galaxy formation. He supposed that the universe
is filled with a non-relativistic fluids, governed by the Euler-Poisson equations (see
p562 in [26])





∂ρ
∂ t +∇ · (ρv) = 0
∂v
∂ t + (v · ∇)v = − 1

ρ∇P + g
∇× g = 0
∇ · g = −4πρ.

(1)

Here t ∈ R+, x ∈ R3, ∇ is the spatial gradient, g is the gravitational field. ρ,
v = (v1, v2, v3), and P are the density, velocity field, and pressure, respectively. A
classical problem is to investigate the stability of fluids in equilibrium. The fact
shows that the stability of a fluid depends mainly on two elements: the equation of
state P (ρ) and the rotating velocity v.

When v = 0, the existence and property of the self-gravitating non-rotating
star is classical, which shows that the star is exactly a ball. However when the
star rotates with a fixed axis, its configuration will be no longer radial symmetric.
So it is more challenging and significant in astrophysics and mathematics to study
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rotating stars. Luo and Smoller [21] call an axi-symmetry time-independent solution
of system (1) as a rotating star solution.

Here it is worthwhile in astrophysics to mention the well-known white dwarfs.
By virtue of the uncertainty principle and Pauli’s exclusion principle, the stellar
material occupies a ground state pressure P , which depends on the local density
ρ. The well-known fact from quantum statistics (see Chapter 10 in [6]) shows that
P (ρ) obeys the asymptotic relations:

{
P (ρ) = c1ρ

5/3 − c2ρ
7/3 + O(ρ3), ρ → 0,

P (ρ) = d1ρ
4/3 − d2ρ

2/3 + · · · , ρ →∞,

for the envelope and the core, respectively, where c1, c2, d1, d2 are positive constants.
In the last century, Milne and Chandrasekhar produced an impressive amount of
work on slowly rotating stars. The interested readers can see [6, 7, 25] for more
details.

In 1971, a rigorous mathematical theory for rotating stars of compressible fluids
with angular velocity was initiated by Auchmuty and Beals [3, 4]. They proved the
existence of the rotating star solution if the angular velocity satisfies certain decay
conditions, to be precisely given in the next section. Subsequently, the stars with
uniform rotation were studied. Li [16] proved there exists a rotating star solution
if the angular velocity is smaller than a certain constant. Chanillo and Li [8] gave
an a-priori bound on diameters and the number of connected components of white
dwarfs with small uniform rotation.

There is another model of this problem, in which the angular momentum per unit
mass, rather than the angular velocity, is prescribed. There are many results, such
as Auchnuty and Beals [3], Auchmuty [1, 2], Lions [17], Friedman and Turkington
[9, 10], Caffarelli and Friedman [5] and McCann [22]. Recently, Luo and Smoller
[21, 20] proved the existence and nonlinear stability of rotating star solutions for
compressible isentropic fluids and applied to rotating white dwarfs and high density
supermassive stars. The method developed in [21, 20] is very important to deal
with the fluids with angular velocity law.

In this paper we prove the existence of the rotating star solutions for general
compressible fluids with prescribed angular velocity law. The compactness of any
minimizing sequence is established, which is important from the stability point of
view. We first reformulate this problem as a variational problem to find a minimizer
of the energy functional. In order to further discuss the stability problem, we
weaken the symmetry of the admissible functions. Then we use the concentration-
compactness principle, due to P. L. Lions [17] and a more specific setting recovered
by Rein [23], to show that any minimizing sequence of the energy functional must
be compact, which leads to the existence and compactness of rotating star solution.
The proof is quite different from that in [3].

In particular, for polytropic perfect gas, P (ρ) = ργ , γ > 1. We remark that
when γ = 6

5 , the nonlinear instability was discussed by Jang [14]. when γ > 4
3 , we

studied the existence of rotating stars with prescribed angular velocity law in [15].
In this paper we will improve our result to more general fluids.

The rest of this paper runs as follows. In the next section we reformulate Euler-
Poisson equations as a variational problem. Some basic inequalities were given in
section 3. The main result is proved in section 4. Once the energy is proved to be
negative, the existence theorem will be established by a standard technique. More
details could be found in [15].
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2. Reformulation and main result. For x = (x1, x2, x3) ∈ R3, we denote

r(x) =
√

x2
1 + x2

2 and z(x) = x3.

A rotating star solution (ρ,v)(r, z) is an axi-symmetric time-independent solution
of system (1), which models a star rotating about z-axis [21]. If the angular velocity
ω(r)(≥ 0) is prescribed, then the velocity field

v(x) = (−x2ω(r), x1ω(r), 0),

and |v(x)| = ω(r)r. The Euler-Poisson Equations (1) can be written as

∇P (ρ) = ρ
{∇Bρ + ω2(r)rer

}
, (2)

where the gravitational field g = ∇Bρ,

Bρ(x) =
∫

ρ(y)
|x− y|dy, er =

(x1

r
,
x2

r
, 0

)
,

the function P are prescribed.
For convenience, we will use

∫
and ‖ · ‖q to denote

∫
R3 and ‖ · ‖Lq(R3), respec-

tively, throughout this paper. We consider the problem of minimizing the energy
functional, which corresponds to (2) (see Theorem 4.1 (c)),

E(ρ) =
∫ (

A(ρ(x)) + ρ(x)J(r(x))− 1
2
ρ(x) ·Bρ(x)

)
dx

:= Eint(ρ) + Ekin(ρ) + Epot(ρ) (3)

over the set

ΓM =
{

ρ ∈ L1(R3) : ρ is axisymmetric about the z-axis, ρ ≥ 0,

∫
ρdx = M,

∫
(A(ρ) + ρ J(r)) dx < ∞

}
.

Here Eint, Ekin, Epot represent, respectively, the internal energy, the rotating kinetic
energy, and the gravitational potential energy of the fluids. A(ρ) is determined by
the pressure function P (ρ), which is continuous, with the relationship

A(ρ) = ρ

∫ ρ

0

P (t)
t2

dt.

And

J(r) =
∫ ∞

r

sω2(s)ds.

We studied in [15] the case that P (ρ) is polytropic, say

P (ρ) = ργ , γ >
4
3
.

In this paper we generalize our result [15] to more general compressible fluids,
including rotating white dwarfs. Suppose that P (ρ) satisfies

(P1) P (0) = 0, and P ′(ρ) > 0, for ρ > 0,
(P2) ρ1+1/n ≤ c0P (ρ), for ρ > ρ0,
(P3) P (ρ) ≤ c0ρ

1+1/m, for ρ < ρ0,
where c0, c

0, ρ0 < ρ0 are positive constants and 0 < m, n ≤ 3. Assume that ω(r)
satisfies

(ω1) rω2(r) ∈ L1([0,∞)),
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(ω2) rJ(r) → 0, as r →∞
(i.e. J(r) satisfies (P ′4) and (23) in [3]). It is well known that Auchmuty and Beals
[3] have proved the existence of a minimizer of the functional in the class ΓM,S ,
where ΓM,S = ΓM ∩ ΓS ,

ΓS =
{
ρ ∈ L1(R3) : ρ(x1, x2, x3) = ρ(x1, x2,−x3)

}
.

In order to further discuss the stability problem, we weaken the symmetry of the
admissible functions. Here we just require them belong to ΓM .

Our main result is as follows.

Theorem 2.1. Suppose (ω1)(ω2) hold. Then there exists Mc > 0, depending only
on n and c0 (if n = 3 then Mc < +∞, if n < 3 then Mc = +∞), such that if
M < Mc, then

(a) the functional E(ρ) is bounded from below on ΓM and

eM := inf
ΓM

E(ρ) < 0,

(b) there exists ρ̃ in ΓM,S, which is non-increasing in z ≥ 0, such that

E(ρ̃) = min
ρ∈ΓM

E(ρ) = min
ρ∈ΓM,S

E(ρ).

Thus ρ̃ is a rotating star solution with total mass M and angular velocity ω.

Remark 1. It is essentially important for the fluids in equilibrium that its energy
is negative. This shows that its gravitational binding energy exceeds the sum of its
internal energy and its kinetic energy, which guarantees that the gravitation forces
can pull together the stellar matter.

Remark 2. When n = 3, the pressure P (ρ) of the fluids includes the white dwarf
star case. Theorem 2.1 shows that the existence of the rotating white dwarf star
solution requires the total mass M < Mc, “a critical mass”, which is also called
“Chandrasekhar limit” (see [6]).

3. Preliminaries. For convenience to read, we give several elementary results,
beginning with a convexity inequality, which is a consequence of Young’s inequality
(p145 in [12]).

Lemma 3.1. If f ∈ Ls(R3), p ≤ q ≤ s, then

‖f‖q ≤ ‖f‖λ
p‖f‖1−λ

s , 1/q = λ/p + (1− λ)/s.

The following lemma is proved in [3].

Lemma 3.2. Suppose f ∈ L1(R3) ∩ Lq(R3). If 1 < q ≤ 3/2, then Bf ∈ Lr(R3)
for 3 < r < 3q/(3− 2q), and

‖Bf‖r ≤ C(‖f‖η
1‖f‖1−η

q + ‖f‖θ
1‖f‖1−θ

q ),

where C > 0 and 1 < η, θ < 1. If q > 3/2, then Bf is bounded continuous function
and satisfies the above inequality with r = ∞.

Lemma 3.3. Let f ∈ L1(R3) ∩ Lγ(R3). if γ ≥ 4/3, then ∇Bf ∈ L2(R3), and

‖∇Bf‖22 ≤ C‖f‖
5γ−6

3(γ−1)
1 ‖f‖

γ
3(γ−1)
γ ,

for some constant C = C(γ).
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Indeed, it follows from Hölder’s inequality, Lemma 3.2 and Lemma 3.1 that

1
4π
‖∇Bf‖22 = − 1

4π

∫
(4Bf)(Bf)dx

=
∫

f(x) ·Bf(x)dx

≤
(∫

|f |6/5dx

)5/6 (∫
|Bf |6dx

)1/6

≤ C‖f‖26/5

≤ C‖f‖
5γ−6

3(γ−1)
1 ‖f‖

γ
3(γ−1)
γ .

4. Proof of the main Theorem. Our goal is to establish the existence of rotating
star solution of (2). Before proving our existence theorem, we first present the
following theorem for the minimizer by the argument used in [3].

Theorem 4.1. Under the assumption (ω1), if ρ̃ is a minimizer of the energy func-
tional E(ρ) in ΓM and let

G = {x ∈ R3 | ρ̃(x) > 0},
then

(a) ρ̃ ∈ C(R3) ∩ C1(G).
(b) there exists a constant µ < 0 such that

{
A′(ρ̃(x)) + J(r(x))−Bρ̃(x) = µ, x ∈ G,

J(r(x))−Bρ̃(x) ≥ µ, x ∈ R3 −G.

(c) ρ̃ is a solution of (2).

Therefore, by the approach used in [15], in order to establish the existence of
rotating star solution with given angular velocity, it suffice now to show

eM > −∞, and eM < 0.

Since the rest is a standard argument, we list some Lemmas and outline the proof
of our main result. More details can be found in [21] or [15].

It is easy to check that the condition (P2) and (P3) imply that

n(ρ1+1/n − (ρ0)1/nρ) ≤ c0A(ρ), for ρ > ρ0, (4)

and
A(ρ) ≤ mc0ρ

1+1/m, for ρ < ρ0. (5)

Then we have

Lemma 4.2. Under (4), there exists a critical constant Mc, depending only on n
and c0, (if n = 3, then Mc < +∞, if n < 3, then Mc = +∞), such that if M < Mc,
then ∫

(A(ρ(x)) + 2ρ(x)J(r(x))) dx ≤ 2E(ρ) + C, ρ ∈ ΓM . (6)

where C is a positive constant, depending only on ρ0, c0, n and M . This implies
eM > −∞.
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Proof. Since ρ ∈ ΓM , we have∫
A(ρ)dx < ∞,

∫
ρdx = M.

It follows from (4) that∫
ρ1+1/n(x)dx

=
(∫

0<ρ≤ρ0
+

∫

ρ>ρ0

)
ρ1+1/n(x)dx

≤ (ρ0)1/n

∫

ρ≤ρ0
ρ(x)dx + (ρ0)1/n

∫

ρ>ρ0
ρ(x)dx +

c0

n

∫

ρ>ρ0
A(ρ(x))dx

≤ (ρ0)1/nM +
c0

n

∫

ρ>ρ0
A(ρ(x))dx. (7)

By Lemma 3.3, taking γ = 1 + 1
n , and combining with (7), we obtain

−Epot(ρ) =
1
2

∫
ρ(x) · Bρ(x)dx ≤ ‖ρ‖26/5

≤ C‖ρ‖(5−n)/3
1 ‖ρ‖(n+1)/3

1+1/n

≤ CM (5−n)/3

(
(ρ0)1/nM +

c0

n

∫

ρ>ρ0
A(ρ(x))dx

)n/3

≤ CM5/3(ρ0)1/3 + CM (5−n)/3

(
c0

n

)n/3 (∫
A(ρ(x))dx

)n/3

, (8)

here C depends only on n, and in the last inequality we used (a + b)p ≤ ap + bp for
a > 0, b > 0 and p ≤ 1.

If n = 3, then there exists a constant Mc =
(

3
2Cc0

)3/2

, such that if M < Mc,

we have

CM2/3 · c0

3

∫
A(ρ(x))dx ≤ 1

2

∫
A(ρ(x))dx.

Combining with (8), we obtain

−Epot(ρ) ≤ 1
2

∫
A(ρ(x))dx + C, (9)

where C depends only on c0, ρ0 and M . If n < 3, then we can obtain inequality (9)
by Young’s inequality, where C depends only on c0, ρ0, n and M .

It is clear that inequality (9) implies that

E(ρ) =
∫

A(ρ(x))dx +
∫

ρ(x)J(r(x))dx + Epot(ρ)

≥ 1
2

∫
A(ρ(x))dx +

∫
ρ(x)J(r(x))dx− C

where C depends only on c0, ρ0, n and M . Hence (6) holds.

Next we prove another important lemma.

Lemma 4.3. For M < Mc (determined in Lemma 4.2),
(a) Under (ω1)(ω2), we have eM < 0.
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(b) And under a weaker condition
(ω3) ω(r)/rα is non-increasing in (0,∞), for some constant α ≥ 0,

we have, eM/M (5+2α)/3 is non-increasing for 0 < M < Mc.

Proof. Let ρ̂ ∈ ΓM,S ⊂ ΓM (M < Mc) be a minimizer of E(ρ) in ΓM,S with

G = {x ∈ R3 : ρ̂(x) > 0}
being compact set in R3, and ρ̂ ∈ C1(G) (the existence of such a minimizer is proved
in [3]). Moreover, Caffarelli and Friedman proved in [5] that the boundary ∂G is
smooth enough to apply the Gauss-Green formula. Noting that ρ|∂G = 0, we obtain∫

G

x · ∇P (ρ(x))dx = −3
∫

P (ρ(x))dx.

By the argument in [21] (see page 455), we have∫

G

x · ρ(x)∇(Bρ(x))dx = −1
2

∫
ρ(x)Bρ(x)dx.

Next since x · er = r(x), it follows that∫

G

x · ρ(x)ω2(r)r(x)erdx = −
∫

G

ρ(x)rJ ′(r)dx =
∫

G

ρ(x)J(r(x))dx.

Therefore, by (2),
1
2

∫
ρ(x)Bρ(x)dx =

∫
ρ(x)J(r(x))dx + 3

∫
P (ρ(x))dx. (10)

For a, b > 0, by a scaling argument as in [23], we define ρ̄(x) = aρ(bx). Then it
is not difficult to show that∫

ρ̄dx = ab−3

∫
ρdx, Epot(ρ̄) = a2b−5Epot(ρ),

∫
A(ρ̄)dx = b−3

∫
A(aρ)dx.

(a) Pick a = b3 such that ρ̄ ∈ ΓM as well. We claim that

E(ρ̄) < 0, for sufficiently small b > 0.

Letting 0 < b < 1, by (10), we have

E(ρ̄) =
∫

A(ρ̄(x))dx +
∫

ρ̄(x)J(r(x))dx− 1
2

∫
ρ̄(x)Bρ̄(x)dx

=
∫

A(ρ̄(x))dx + b3

∫

G

ρ(bx)J(r(x))dx

− b

( ∫
ρ(x)J(r(x))dx + 3

∫
P (ρ(x))dx

)

=
∫

A(ρ̄(x))dx− 3b

∫
P (ρ(x))dx + b

∫

G

(
b2ρ(bx)− ρ(x)

)
J(r(x))dx.

Condition (5) implies that∫
A(ρ̄(x))dx =

1
b3

∫
A(b3ρ(x))dx

≤ mc0b
3/m

∫

G

ρ1+1/m(x)dx

= o(b), as b → 0.
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By (P1), we know that
∫

P (ρ)dx > 0. Let

f(b) =
∫

G

(
b2ρ(bx)− ρ(x)

)
J(r(x))dx,

then

f(0) = −
∫

G

ρ(x)J(r(x))dx.

If f(0) = 0, then v(x) ≡ 0. This implies that f(b) ≡ 0. Otherwise, f(b) < 0 for b
sufficiently small. So that when b is small enough, our claim is proven. This means
our assertion is established.

(b) Under (ω1) and (ω3), for b > 1, we have
∫

ρ̄J(r(x))dx = a

∫
ρ(bx)

∫ ∞

r(x)

ω2(s(x))sdsdx

≥ ab−2α

∫
ρ(bx)

∫ ∞

r(bx)

ω2(s(bx))sdsdx

= ab−(5+2α)

∫
ρ(x)J(r(x))dx.

Therefore, we choose a = 1 and b = (M/M̄)1/3 > 1, for M̄ ≤ M < Mc it follows
that

E(ρ̄) =
∫

A(ρ̄(x))dx +
∫

ρ̄(x)J(r(x))dx + Epot(ρ̄)

≥ b−3

∫
A(ρ(x))dx + b−(5+2α)

∫
ρ(x)J(r(x))dx + b−5Epot(ρ)

≥ b−(5+2α)

(∫
A(ρ(x))dx +

∫
ρ(x)J(r(x))dx + Epot(ρ)

)

= (M̄/M)(5+2α)/3E(ρ).

Since the map ρ → ρ̄ is one-to-one and onto between ΓM and ΓM̄ , thus we prove
Part (b).

Remark 3. We notice that (ω1) and (ω3) is weaker than (ω1) and (ω2). Consider
w(r) = r−l for l > 1 and r > r0 > 0. By a simple calculation, we see that in order
to make ω(r) satisfy the the condition (ω2),

rJ(r) = r

∫ ∞

r

sw2(s)ds = r

∫ ∞

r

ds

s2l−1
=

r3−2l

2l − 2
→ 0, as r →∞,

it has to require

l >
3
2
,

while l > 1 suffices to make our assumption (ω1) and (ω3) hold.
Actually, the monotonicity of angular velocity is common and natural in astro-

physics and is related to some stability criteria.

Then recalling Steiner symmetrization [13], we denote ρ̌ as the symmetric re-
arrangement of ρ with respect to z. By properties of the rearrangement, the inte-
grals ∫

A(ρ(x))dx,

∫
ρ(x)J(r(x))dx
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do not change, while the potential term∫∫
ρ(x)ρ(y)
|x− y| dxdy

increase. Thus,
E(ρ̌) ≤ E(ρ).

We next consider the minimizing sequence {ρi} ⊂ ΓM of the energy functional
E(ρ) and assume they have been rearranged, so that every ρi is even with respect
to z = 0 and decreasing in z ≥ 0.

We here list some Lemmas in the following. Their proof can be found in [15] [23]
and references therein.

Lemma 4.4. ([15]) Under (ω2), any minimizing sequence of E(ρ) in ΓM (M < Mc)
is bounded in Lγ(R3) (γ ≥ 4/3) and therefore has a subsequence which converges
weakly in Lγ(R3).

Lemma 4.5. ([23]) Let ρ ∈ ΓM (M < Mc). Then for R > 1,

sup
a∈R3

∫

a+BR

ρ(x)dx ≥ 1
RM

(
−2Epot(ρ)− M2

R
− C‖ρ‖2γ

R5−6/γ

)
,

where BR = {y ∈ R3 : |y| < R}.
Lemma 4.6. ([15]) Under (ω2), let {ρi} ⊂ ΓM be a minimizing sequence of E(ρ)
in ΓM (M < Mc). Then there exist positive constants δ0 = δ0(M), R0 = R0(M),
and i0 ∈ N such that∫

BR

ρi(x)dx ≥ δ0, for i > i0, R > R0.

Lemma 4.7. ([23]) Let {ρi} ⊂ Lγ(R3) (γ ≥ 4/3) be bounded and

ρi ⇀ ρ̃ weakly in Lγ(R3).

(a) For any domain Ω ⊂ R3,

∇B(χΩρi) → ∇B(χΩ ρ̃) strongly in L2(R3),

where χΩ is the indicator function on set Ω.
(b) If in addition {ρi} is bounded in L1(R3), ρ̃ ∈ L1(R3), and for any ε > 0

there exist R > 0 and i0 ∈ N such that∫

|x|≥R

ρi(x)dx < ε, i ≥ i0,

then
∇Bρi → ∇Bρ̃ strongly in L2(R3).

Next, for the completeness of this paper, we sketch out the proof of Theorem 2.1.

Proof of Theorem 2.1. Fix 0 < M < Mc. By Lemma 4.2 and 4.3 (a), we have
proved Theorem 2.1 (a). It is sufficient to show Theorem 2.1 (b).

Split ρ ∈ ΓM into three different parts as in [23],

ρ = ρχ
B(1) + ρχ

B(2) + ρχ
B(3) =: ρ(1) + ρ(2) + ρ(3),

where χ
B(j) is the indicator function on sets B(j)(j = 1, 2, 3),

B(1) = {x ∈ R3 : |x| ≤ R1}, B(2) = {x ∈ R3 : R1 < |x| ≤ R2},
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B(3) = {x ∈ R3 : |x| > R2},
for 0 < R1 < R2 (to be determined later). Thus we have

E(ρ) = E(ρ(1)) + E(ρ(2)) + E(ρ(3))− P12 − P13 − P23,

where

Pkl =
∫ ∫

ρ(k)(x)ρ(l)(y)
|x− y| dxdy, 1 ≤ k < l ≤ 3.

If we choose R2 > 2R1, then (see [23])

P13 ≤ C

R2
, P12 + P23 ≤ C‖ρ‖γ/6(γ−1)

γ ‖∇Bρ(2)‖2.
Denote

M (j) =
∫

ρ(j)(x)dx, j = 1, 2, 3.

Noticing that eM < 0 and using Lemma 4.3 (b), we find

eM − E(ρ(1))− E(ρ(2))− E(ρ(3))

≤ eM


1−

(
M (1)

M

) 5+2α
3

−
(

M (2)

M

) 5+2α
3

−
(

M (3)

M

) 5+2α
3




≤ eM

(
1−

(
M (1)

M

) 5
3

−
(

M (2)

M

) 5
3

−
(

M (3)

M

) 5
3
)

≤ 10eM

9M2

(
M (1)M (3) + M (1)M (2) + M (2)M (3)

)

≤ 10eM

9M2
·M (1)M (3).

Here we have used the elementary formula

1−
(
a5/3 + b5/3 + c5/3

)
≥ 10

9
(ab + bc + ac)

for 0 < a, b, c < 1, a + b + c = 1. From these estimates above, it follows

eM − E(ρ) = eM − E(ρ(1))− E(ρ(2))− E(ρ(3)) + P12 + P13 + P23

≤ CeMM (1)M (3) + C
(
R−1

2 + ‖ρ‖γ/6(γ−1)
γ ‖∇Bρ(2)‖2

)
. (11)

Let {ρi} ⊂ ΓM be a minimizing sequence of E(ρ). By Lemma 4.4, {ρi} is
bounded in Lγ(R3). So there exists a subsequence, still denoted by {ρi}, such that

ρi ⇀ ρ̃, weakly in Lγ(R3).

We now choose R1 > R0, by Lemma 4.6, such that M
(j)
i ≥ δ0 for i large. By (11),

−CeMδ0M
(3)
i ≤ C

R2
+ C‖∇Bρ

(2)
i ‖2 + E(ρi)− eM

≤ C

R2
+ C‖∇Bρ̃(2)‖2 + C‖∇Bρ

(2)
i −∇Bρ̃(2)‖2 + E(ρi)− eM . (12)

where

ρ
(j)
i = ρiχB(j) M

(j)
i =

∫
ρ
(j)
i (x)dx, i = 1, 2, · · · , j = 1, 2, 3,

referring to the splitting.
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Given any ε > 0, by the same argument as [23], we can increase R1 > R0 such
that the mass of ρ̃ mainly concentrates in the ball B(1), so the potential energy
generated by ρ̃2, the second term on the right-hand side of (12), can be sufficiently
small, say less than ε/4. Next, we take R2 > 2R1 such that the first term of (12)
is also small and less than ε/4. Now, R1 and R2 are fixed. By Lemma 4.7 (a), the
third term in (12) converges to zero as i → ∞. And the remainder |E(ρi) − eM |
can be small if i is large. Therefore, for i sufficiently large, we can make

M
(3)
i =

∫

B(3)
ρi(x)dx < ε,

then ∫

BR2

ρi(x)dx = M −M
(3)
i ≥ M − ε.

In virtue of Lemma 4.7 (b), we have

‖∇Bρi −∇Bρ̃‖2 → 0, as i →∞.

Obviously, ρ̃ ≥ 0 a.e. By the weak convergence we have that for any ε > 0,

M ≥
∫

BR

ρ̃(x)dx ≥ M − ε, if R large enough,

which in particular implies that ρ̃ ∈ L1(R3) with
∫

ρ̃dx = M . Since ρ 7→ ∫
A(ρ)dx

is convex, by a standard argument, we have

E(ρ̃) = eM .

Therefore, ρ̃ is a minimizer of E(ρ).
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