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1. Introduction

In 2018, Wang–Huang–Bao [31] studied the second boundary value problem of Lagrangian mean curvature
equation of gradient graph (x,Du(x)) in (Rn × Rn, gτ ), where Du denotes the gradient of scalar function u
nd

gτ = sin τδ0 + cos τg0, τ ∈
[
0, π2

]
is the linearly combined metric of standard Euclidean metric

δ0 =
n∑

i=1
dxi ⊗ dxi +

n∑
j=1

dyj ⊗ dyj ,

with the pseudo-Euclidean metric

g0 =
n∑

i=1
dxi ⊗ dyi +

n∑
j=1

dyj ⊗ dxj .
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hey proved that for domain Ω ⊂ Rn, if u ∈ C2(Ω) is a solution of

Fτ

(
λ
(
D2u

))
= f(x), x ∈ Ω , (1)

hen Df(x) is the mean curvature of gradient graph (x,Du(x)) in (Rn × Rn, gτ ). Previously, Warren [32]
roved that when f(x) ≡ C0 for some constants C0, the mean curvature of (x,Du(x)) is zero. In (1), f(x)
s a scalar function with sufficient regularity, λ

(
D2u

)
= (λ1, λ2, . . . , λn) are n eigenvalues of Hessian matrix

2u and

Fτ (λ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

n∑
i=1

lnλi, τ = 0,
√
a2 + 1
2b

n∑
i=1

ln λi + a− b

λi + a+ b
, 0 < τ < π

4 ,

−
√

2
n∑

i=1

1
1 + λi

, τ = π
4 ,

√
a2 + 1
b

n∑
i=1

arctan λi + a− b

λi + a+ b
, π

4 < τ < π
2 ,

n∑
i=1

arctanλi, τ = π
2 ,

= cot τ, b =
√⏐⏐cot2 τ − 1

⏐⏐.
If τ = 0, then (1) becomes the Monge–Ampère type equation

detD2u = enf(x) in Rn. (2)

For f(x) being a constant C0, there are Bernstein-type results by Jörgens [21], Calabi [8] and Pogorelov [29],
which state that any convex classical solution of (2) must be a quadratic polynomial. See Cheng–Yau [9],
Caffarelli [3], Jost–Xin [22] and Li–Xu–Simon–Jia [26] for different proofs and extensions. For f(x) − C0
aving compact support, there are exterior Bernstein-type results by Ferrer–Mart́ınez–Milán [13] for n = 2
nd Caffarelli–Li [6], which state that any convex solution must be asymptotic to quadratic polynomials
t infinity (for n = 2 we need additional ln-term). For f(x) − C0 vanishing at infinity, there are similar
symptotic results by Bao–Li–Zhang [2]. For f(x) −C0 being a periodic function or asymptotically periodic
unction, there are classification results by Caffarelli–Li [7], Teixeira–Zhang [30] etc.

If τ = π
2 , then (1) becomes the Lagrangian mean curvature equation

n∑
i=1

arctanλi

(
D2u

)
= f(x) in Rn. (3)

For f(x) being a constant C0, there are Bernstein-type results by Yuan [33,34], which state that any classical
solution of (3) and

D2u ≥
{

−KI, n ≤ 4,
−( 1√

3 + ϵ(n))I, n ≥ 5, or C0 >
n− 2

2 π, (4)

ust be a quadratic polynomial, where I denote the unit n× n matrix, K is a constant and ϵ(n) is a small
imensional constant. For f(x) − C0 having compact support, there is an exterior Bernstein-type result by
i–Li–Yuan [25], which states that any classical solution of (3) with (4) must be asymptotic to quadratic
olynomials at infinity (for n = 2 we need additional ln-term).

For general τ ∈ [0, π
2 ], for f(x) being a constant C0, there are Bernstein-type results under suitable semi-

onvex conditions by Warren [32], which is based on the results of Jörgens [21]–Calabi [8]–Pogorelov [29],
landers [14] and Yuan [33,34]. For f(x) − C0 having compact support, there are exterior Bernstein-

type results when n ≥ 3 in our earlier work [27], which state that any classical solution of (1) with

2
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uitable semi-convex conditions must be asymptotic to quadratic polynomial at infinity. There are also
igher order expansions at infinity, which give the precise gap between exterior maximal/minimal gradient
raph and the entire case. Such higher order expansions problem was considered for the Yamabe equation
nd σk-Yamabe equation by Han–Li–Li [17], which refines the study by Caffarelli–Gidas–Spruck [5],
orevaar–Mazzeo–Pacard–Schoen [23], Han–Li–Teixeira [18] etc.
In this paper, we obtain asymptotic expansion at infinity of classical solutions of

Fτ (λ(D2u)) = f(x) in Rn, (5)

here n ≥ 3, τ ∈ [0, π
4 ] and f(x) is a perturbation of f(∞) := limx→∞ f(x) at infinity. This partially refines

previous study [2,6,19,25,27] etc.
Our first result considers asymptotic behavior and higher order expansions of general classical solution of

(5). Hereinafter, we let φ = Om(|x|−k1(ln |x|)k2) with m ∈ N, k1, k2 ≥ 0 denote

|Dkφ| = O(|x|−k1−k(ln |x|)k2) as |x| → +∞

for all 0 ≤ k ≤ m. Let xT denote the transpose of vector x ∈ Rn, Sym(n) denote the set of symmetric n× n

matrix, Hn
k denote the k-order spherical harmonic function space in Rn, DFτ (λ(A)) denote the matrix with

elements being value of partial derivative of Fτ (λ(M)) w.r.t Mij variable at matrix A and [k] denote the
largest natural number no larger than k.

Theorem 1.1. Let u ∈ C2 (Rn) be a classical solution of (5), where f ∈ C0(Rn) is Cm outside a compact
subset of Rn and satisfies

lim sup
|x|→∞

|x|ζ+k|Dk(f(x) − f(∞))| < ∞, ∀ k = 0, 1, 2, . . . ,m (6)

for some ζ > 2 and m ≥ 2. Suppose either of the following holds

(1) D2u > 0 for τ = 0;
(2)

u(x) ≤ C(1 + |x|2) and D2u > (−a+ b)I, ∀ x ∈ Rn (7)

for some constant C, for τ ∈ (0, π
4 );

(3)
u(x) ≤ C(1 + |x|2) and D2u > −I, ∀ x ∈ Rn (8)

for some constant C, for τ = π
4 .

Then there exist c ∈ R, b ∈ Rn and A ∈ Sym(n) with Fτ (λ(A)) = f(∞) such that

u(x) −
(

1
2x

TAx+ bx+ c

)
=
{
Om+1(|x|2−min{n,ζ}), ζ ̸= n,

Om+1(|x|2−n(ln |x|)), ζ = n,
(9)

s |x| → +∞.

emark 1.2. The matrix A in Theorem 1.1 also satisfies A > 0 in case (1), A > (−a+ b)I in case (2) and
> −I in case (3) respectively.

emark 1.3. Notice that in condition (6), we only require m ≥ 2, which is an improvement to the results for
≥ 3 by Bao–Li–Zhang [2]. It would be interesting to determine sharp lower bounds for m in Theorem 1.1.
here has been an example in [2] that shows the decay rate assumption ζ > 2 in (6) is optimal.
3
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We also have the following higher order expansions for ζ > n, which gives a finer characteristic of the
error term in (9).

Theorem 1.4. Under conditions of Theorem 1.1, there exist c0 ∈ R, ck(θ) ∈ Hn
k with k = 1, 2, . . . , n −

[2n− ζ] − 1 such that

u(x) −
(

1
2x

TAx+ bx+ c

)
− c0(xT (DFτ (λ(A)))−1x)

2−n
2 −

n−[2n−ζ]−1∑
k=1

ck(θ)
(
xT (DFτ (λ(A)))−1x

) 2−n−k
2

=
{
Om(|x|2−min{2n,ζ}), min{2n, ζ} − n ̸∈ N,
Om(|x|2−min{2n,ζ}(ln |x|)), min{2n, ζ} − n ∈ N,

(10)

s |x| → +∞, where

θ = (DFτ (λ(A)))− 1
2x

(xT (DFτ (λ(A)))−1x)
1
2
.

emark 1.5. By computing Fτ (λ(D2u)) of radially symmetric u of form C1
2 |x|2 + C2|x|−k, we find exp-

ansions (9) and (10) are optimal for all ζ > 2 in the sense that the series of k does not exist or cannot be
taken up to n − [2n − ζ] when 2 < ζ ≤ n or ζ > n respectively since cn−[2n−ζ] does not belong to space

n−[2n−ζ]
n in general.

The paper is organized as follows. In Section 2 we prove that the Hessian matrix D2u converges to some
onstant matrix A ∈ Sym(n) at infinity, in order to make preparation for proving Theorem 1.1. In the next
wo sections we give the proofs of Theorems 1.1 and 1.4 respectively based on the detailed analysis of the
olutions of non-homogeneous linearized equations.

Hereinafter, we let Br(x) denote a ball centered at x ∈ Rn with radius r. Especially for x = 0, we let
r := Br(0). For any open subset Ω ⊂ Rn, we let Ω denote the closure of Ω and Ωc denote the complement
f Ω in Rn.

. Convergence of Hessian at infinity

In this section, we study the asymptotic behavior at infinity of Hessian matrix of classical solutions of
5). We prove a weaker convergence than (9) in Theorem 1.1 and D2u has bounded Cα norm for some
< α < 1 under a weaker assumption on f . By interior regularity as Lemma 17.16 of [16] and extension

heorem as Theorem 6.10 of [12], we may change the value of u, f on a compact subset of Rn and prove only
or u ∈ C2,α(Rn) and f ∈ Cα(Rn).

heorem 2.1. Let u be as in Theorem 1.1, f ∈ Cα(Rn) for some 0 < α < 1 and satisfy

lim sup
|x|→∞

(
|x|ζ |f(x) − f(∞)| + |x|α+ζ′

[f ]
Cα(B |x|

2
(x))

)
< ∞ (11)

(1) with some ζ > 1, ζ ′ > 0 for τ = 0;
(2) with some ζ > 1, ζ ′ > 0 for τ ∈ (0, π

4 );
(3) with some ζ > 0, ζ ′ > 0 for τ = π .
4

4
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hen there exist ϵ > 0, A ∈ Sym(n) with Fτ (λ(A)) = f(∞) and C > 0 such that

∥D2u∥Cα(Rn) ≤ C, and
⏐⏐D2u(x) −A

⏐⏐ ≤ C

|x|ϵ
, ∀ |x| ≥ 1.

The proof is separated into three subsections according to three different range of τ .

.1. τ = 0 case

In τ = 0 case, (5) becomes the Monge–Ampère equation (2).

heorem 2.2. Let u ∈ C0 (Rn) be a convex viscosity solution of

detD2u = ψ(x) in Rn (12)

ith u(0) = minRn u = 0, where 0 < ψ ∈ C0 (Rn) and

ψ
1
n − 1 ∈ Ln(Rn).

hen there exists a linear transform T satisfying detT = 1 such that v := u ◦ T satisfies⏐⏐⏐⏐v − 1
2 |x|2

⏐⏐⏐⏐ ≤ C|x|2−ε
, ∀ |x| ≥ 1.

or some C > 0 and ε > 0.

Theorem 2.2 can be found in the proof of Theorem 1.2 in [2], which is based on the level set method by
affarelli–Li [6].

orollary 2.3. Let u ∈ C0(Rn) be a convex viscosity solution of (5) with f ∈ C0(Rn) satisfies

lim sup
|x|→∞

|x|ζ |f(x) − f(∞)| < ∞

or some ζ > 1. Then there exists a linear transform T satisfying detT = 1 such that v := u ◦ T satisfies⏐⏐⏐⏐v − exp(f(∞))
2 |x|2

⏐⏐⏐⏐ ≤ C|x|2−ε
, ∀ |x| ≥ 1 (13)

or some C > 0 and ε > 0.

roof. By a direct computation,

ũ(x) := 1
exp(f(∞)) (u(x) −Du(0)x− u(0))

s a convex viscosity solution of

detD2ũ = en(f(x)−f(∞)) =: f̃(x) in Rn.

By a direct computation, |f̃(x) − 1| ≤ C|x|−ζ for some C > 0 and∫
Rn\B1

⏐⏐⏐(f̃(x)) 1
n − 1

⏐⏐⏐n dx ≤ C

∫
Rn\B1

⏐⏐⏐f̃(x) − 1
⏐⏐⏐n dx ≤ C

∫
Rn\B1

|x|−ζn
dx < ∞.

he result follows immediately by applying Theorem 2.2 to ũ. □
5
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As a consequence, we have the following convergence of Hessian matrix for solutions of (12). The proof is
similar to the one in Bao–Li–Zhang [2] and in Caffarelli–Li [6]. Since there are some differences from their
proof, we provide the details here for reading simplicity.

Theorem 2.4. Let u ∈ C0 (Rn) be a convex viscosity solution of (5), f ∈ Cα(Rn) satisfy (11) for some
0 < α < 1, ζ > 1 and ζ ′ > 0. Then u ∈ C2,α(Rn),

∥D2u∥Cα(Rn) ≤ C, (14)

and
u−

(
1
2x

TAx+ bx+ c

)
= O2(|x|2−ϵ) (15)

as |x| → ∞, where ϵ := min{ε, ζ, ζ ′}, ε is the positive constant from Theorem 2.2, A ∈ Sym(n) with
detA = exp(nf(∞)), b ∈ Rn, c ∈ R and C > 0.

Proof. By Corollary 2.3, there exist a linear transform T , ε > 0 and C > 0 such that v := u ◦ T satisfies
(13).

Step 1: We prove Cα boundedness of Hessian (14). Let

vR(y) =
(

4
R

)2
v

(
x+ R

4 y
)
, |y| ≤ 2

or |x| = R > 2. By (13),
∥vR∥C0(B2) ≤ C

or some C > 0 for all R ≥ 2. Then vR satisfies

det
(
D2vR(y)

)
= exp

(
nf

(
x+ R

4 y
))

=: fR(y) in B2. (16)

y a direct computation, there exists C > 0 uniform to x such that

∥fR − exp(nf(∞))∥C0(B2) ≤ CR−ζ

nd for all y1, y2 ∈ B2,
|fR(y1) − fR(y2)|

|y1 − y2|α
= |f(z1) − f(z2)|

|z1 − z2|α
· (R4 )α ≤ CR−ζ′

,

here zi := x + R
4 yi ∈ B |x|

2
(x). Applying the interior estimate by Caffarelli [3], Jian–Wang [20] on B2, we

ave D2vR


Cα(B1) ≤ C (17)

nd hence 1
C
I ≤ D2vR ≤ CI in B1 (18)

or some C independent of R. For any |x| = R ≥ 2, we have

|D2v(x)| = |D2vR(0)| ≤ ∥D2vR∥C0(B1) ≤ C. (19)

or any x1, x2 ∈ Bc
2 with 0 < |x2 − x1| ≤ 1

4 |x1|, let R := |x1| > 2, by (17),⏐⏐D2v (x1) −D2v (x2)
⏐⏐

|x1 − x2|α
=

⏐⏐⏐D2vR (0) −D2vR

(
4(x2−x1)

|x1|

)⏐⏐⏐
|x1 − x2|α

≤ [D2vR]Cα(B1) ·
(

4
|x1|

)α

−α
≤ CR .

6
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or any x1, x2 ∈ Bc
2 with |x2 − x1| ≥ 1

4 |x1|, by (19),

|D2v(x1) −D2v(x2)|
|x1 − x2|α

≤ 2α · 2∥D2v∥C0(Rn) ≤ C.

ince the linear transform T from Theorem 2.2 is invertible, (14) follows immediately.
Step 2: We prove convergence speed at infinity (15). Let

w(x) := v(x) − exp(f(∞))
2 |x|2 and wR(y) :=

(
4
R

)2
w

(
x+ R

4 y
)
, |y| ≤ 2

or |x| = R ≥ 2. By (13) in Theorem 2.2,

∥wR∥C0(B2) ≤ CR−ε.

Applying Newton–Leibnitz formula between (16) and det(exp(f(∞))I) = exp(nf(∞)),

ãij(y)DijwR = fR(y) − exp(nf(∞)) in B2,

where ãij(y) =
∫ 1

0 DMij
(det

(
I + tD2wR(y)

)
)dt.

By (17) and (18), there exists constant C independent of |x| = R > 2 such that

I

C
≤ ãij ≤ CI in B1, ∥ãij∥Cα(B1) ≤ C.

y interior Schauder estimates, see for instance Theorem 6.2 of [16],

∥wR∥
C2,α

(
B 1

2

) ≤ C
(

∥wR∥C0(B1) + ∥fR − exp(nf(∞))∥Cα(B1)
)

≤ CR− min{ε,ζ,ζ′}.

(20)

he result (15) follows immediately by scaling back. □

emark 2.5. In the proof of Theorem 2.4, the interior Schauder estimates used in (20) can be replaced by
he W 2,∞ type estimates (see for instance Remark 1.3 of [11]),

∥wR∥W 2,∞(B 1
2

) ≤ C
(

∥wR∥C0(B1) + ∥fR − exp(nf(∞))∥Cα(B1)
)

≤ CR− min{ε,ζ,ζ′}.

emark 2.6. The condition (11) in Theorem 2.4 holds if for some C > 0,

|x|ζ |f(x) − f(∞)| + |x|1+ζ′
|Df(x)| ≤ C, ∀ |x| > 2. (21)

Even if f(x) is C1, condition (11) is weaker than (21). For example, we consider f(x) := e−|x| sin(e|x|).
n the one hand, Df(x) does not admit a limit at infinity, hence f does not satisfy condition (21). On the
ther hand, for any |x| = R > 1 and z1, z2 ∈ B |x|

2
(x),

|f (z1) − f (z2)|
|z1 − z2|α

≤ e−|z2|

⏐⏐sin(e|z1|) − sin(e|z2|)
⏐⏐

|z1 − z2|α
+ sin(e|z1|)

⏐⏐e−|z1| − e−|z2|
⏐⏐

|z1 − z2|α

≤ Ce− R
2 · |z1 − z2|

|z1 − z2|α

≤ Ce− R
2 ·R1−α

for constant C independent of R. Hence f satisfies condition (11) for all α ∈ (0, 1) and any ζ, ζ ′ > 0.

This finishes the proof of Theorem 2.1 for τ = 0 case.

7
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.2. τ ∈ (0, π
4 ) case

In this subsection, we deal with τ ∈ (0, π
4 ) case by Legendre transform and the results in previous

subsection.
Let f ∈ Cα(Rn) satisfy (11) for some 0 < α < 1, ζ > 1, ζ ′ > 0 and u ∈ C2,α(Rn) be a classical solution

f (5) satisfying (2). Let
u(x) := u(x) + a+ b

2 |x|2,

hen
D2u = D2u+ (a+ b)I > 2bI in Rn. (22)

et (x̃, v) be the Legendre transform of (x, u), i.e.,{
x̃ := Du(x),
Dv(x̃) := x,

(23)

and we have
D2v(x̃) =

(
D2u(x)

)−1 = (D2u(x) + (a+ b)I)−1 <
1
2bI.

et
v̄(x̃) := 1

2 |x̃|2 − 2bv(x̃). (24)

y a direct computation, Dū(Rn) = Rn and

λ̃i

(
D2v̄

)
= 1 − 2b · 1

λi + a+ b
= λi + a− b

λi + a+ b
∈ (0, 1). (25)

Thus v̄(x̃) satisfies the following Monge–Ampère type equation

detD2v̄ = exp
{

2b√
a2 + 1

f

(
1
2b (x̃−Dv̄(x̃))

)}
=: g(x̃) in Rn. (26)

Step 1: There exists C0 > 1 such that

1
C0

|x| ≤ |x̃| ≤ C0|x|, ∀ |x| > 1. (27)

e prove the two inequalities in (27) separately.
By the definition of x̃ = Dū(x) and (22),

|x̃− 0̃| = |Dū(x) −Dū(0)| > 2b|x|.

ence by triangle inequality,
|x̃| ≥ −|0̃| + |x̃− 0̃| > −|0̃| + 2b|x|, (28)

nd the first inequality of (27) follows immediately.
By the quadratic growth condition in (7), we prove the linear growth result of Du(x). In fact, for any

x| ≥ 1, let e := Du(x)
|Du(x)| ∈ ∂B1. By Newton–Leibnitz formula and (7)

u(x+ |x|e) = u(x) +
∫ |x|

0
e ·Du(x+ se)ds

= u(x) +
∫ |x|

0

∫ s

0
e ·D2u(x+ te) · edtds+

∫ |x|

0
e ·Du(x)ds

≥ u(x) + (−a+ b) |x|2 + |Du(x)| · |x|.

(29)
2
8
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F

T

T

a

urthermore by (7), there exists C > 0 independent of |x| ≥ 1 such that

|Du(x)| ≤ 1
|x|

(
C(1 + |(x+ |x|e)|2) + C(1 + |x|2) + a− b

2 |x|2
)

≤ C(1 + |x|).

Hence there exists C > 0 such that

|Du(x)| ≤ C(1 + |x|), ∀ x ∈ Rn. (30)

By (30), there exists C > 0 such that

|x̃| = |Du(x) + (a+ b)x| ≤ |Du(x)| + (a+ b)|x| ≤ C(|x| + 1).

The second inequality of (27) follows immediately.
Now we study Eq. (26) by applying Theorem 2.4 and Remark 2.6, which require a knowledge on the

asymptotic behavior of g(x̃).
Step 2: g(x̃) satisfies condition (11). By the equivalence (27),

lim
x̃→∞

g(x̃) = exp
{

2b√
a2 + 1

f(∞)
}

=: g(∞) ∈ (0, 1].

By a direct computation,

|x̃|ζ |g(x̃) − g(∞)|

= e

2b√
a2+1

f(∞) |x̃|ζ⏐⏐⏐ x̃−Dv̄(x̃)
2b

⏐⏐⏐ζ ·
⏐⏐⏐⏐ x̃−Dv̄(x̃)

2b

⏐⏐⏐⏐ζ ·

⏐⏐⏐⏐⏐⏐e
2b√
a2+1

(f( x̃−Dv̄(̃x)
2b

)−f(∞))
− 1

⏐⏐⏐⏐⏐⏐
≤ C|x|ζ

⏐⏐⏐⏐⏐e
2b√
a2+1

(f(x)−f(∞))
− 1

⏐⏐⏐⏐⏐
≤ C|x|ζ |f(x) − f(∞)| < C.

For any ỹ, z̃ ∈ B |̃x|
2 ·2b

(x̃), ỹ ̸= z̃ with |x̃| > C0, by (22) we have

y, z ∈ B |x|
2

(x), |ỹ − z̃| ≥ 2b|y − z| > 0 and y ̸= z.

hus by condition (11),

|g(ỹ) − g(z̃)|
|ỹ − z̃|α

≤ (2b)−α
exp{ 2b√

a2+1
f(y)} − exp{ 2b√

a2+1
f(z)}

|y − z|α
≤ C[f ]

Cα(B |x|
2

(x)). (31)

hus g(x̃) satisfies (11) for 0 < α < 1, ζ > 1 and ζ ′ > 0 as given.
By Theorem 2.4, we have

∥D2v̄∥Cα(Rn) ≤ C

nd
v̄ −

(
1
2 x̃

T Ãx̃+ b̃ · x̃+ c̃

)
= O2(|x̃|2−ϵ) (32)

for some 0 < Ã ∈ Sym(n) satisfying det Ã = g(∞), b̃ ∈ Rn, c̃ ∈ R and C, ϵ > 0.
Step 3: We finish the proof of Theorem 2.1 (2). By strip argument as in [25,27] etc, we prove that I− Ã

is invertible. In fact, by (25), Ã ≤ I and it remains to prove λi(Ã) < 1 for all i = 1, 2, . . . , n. Arguing by
contradiction and rotating the x̃-space to make Ã diagonal, we may assume that Ã11 = 1. By (32) with the
definition of Legendre transform (24) and (28), there exists b̃1 such that

x1 = D1v(x̃) = b̃1 +O(|x̃|1−ϵ) as |x̃| → ∞. (33)

This becomes a contradiction to (27).

9
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Let
A := 2b

(
I − Ã

)−1
− (a+ b)I.

By a direct computation, Fτ (λ(A)) = f(∞) and⏐⏐D2u(x) −A
⏐⏐ = 2b

⏐⏐⏐⏐(I −D2v̄(x̃)
)−1 −

(
I − Ã

)−1
⏐⏐⏐⏐

≤ C|D2v̄(x̃) − Ã|

≤ C

|x̃|ϵ
∀ |x| ≥ 1.

y the equivalence (27), we have ⏐⏐D2u(x) −A
⏐⏐ ≤ C

|x|ϵ
, ∀ |x| ≥ 1. (34)

urthermore, by (24), for any x, y ∈ Rn,⏐⏐D2u(x) −D2u(y)
⏐⏐ = 2b

⏐⏐⏐(I −D2v̄(x̃)
)−1 −

(
I −D2v̄(ỹ)

)−1
⏐⏐⏐ .

By (34), D2v̄(x̃) is bounded away from 0 and I, it follows that ∃ C > 0 such that⏐⏐D2u(x) −D2u(y)
⏐⏐ ≤ 2bC

⏐⏐D2v̄(x̃) −D2v̄(ỹ)
⏐⏐ (35)

Combining (35) and the equivalence (27), D2u has bounded Cα norm.
So far, we finished the proof of Theorem 2.1 for τ ∈ (0, π

4 ) case.

.3. τ = π
4 case

In this subsection, we deal with τ = π
4 case by Legendre transform and analysis on the Poisson equations.

Let f ∈ Cα(Rn) satisfy (11) for some 0 < α < 1, ζ, ζ ′ > 0 and u ∈ C2,α(Rn) be a classical solution of (5)
atisfying (3). Let

u(x) := u(x) + 1
2 |x|2,

hen D2u > 0 in Rn. By Eq. (5), for all i = 1, 2, . . . , n,

− 1
λi(D2ū) ≥ −

n∑
j=1

1
λj(D2ū) ≥

√
2

2 inf
Rn
f.

Thus there exists δ > 0 such that
D2u(x) > δI, ∀ x ∈ Rn.

et (x̃, v) be the Legendre transform of (x, u) as in (23) and we have

0 < D2v(x̃) = (D2u(x))−1 <
1
δ
I.

y a direct computation, Dū(Rn) = Rn and v(x̃) satisfies the following Poisson equation

∆v = −
√

2
2 f(Dv(x̃)) =: g(x̃) in Rn. (36)

tep 1: There exists C0 > 1 such that (27) holds. The proof is separated into two parts similarly.
By the definition of Legendre transform in (23),

|x̃− 0̃| = |Dū(x) −Dū(0)| > δ|x|.

10
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ence by triangle inequality,
|x̃| ≥ −|0̃| + |x̃− 0̃| > −|0̃| + δ|x|

nd the first inequality of (27) follows immediately. The second inequality of (27) follows similarly by (8)
nd (29).

Step 2: Asymptotic behavior of g(x̃) at infinity. By the equivalence (27),

g(x̃) = −
√

2
2 f(x) → −

√
2

2 f(∞) =: g(∞)

as |x̃| → +∞. Similar to the proof of (31), we have

lim sup
|x̃|→+∞

⎛⎝|x̃|ζ |g(x̃) − g(∞)| + |x̃|α+ζ′
[g]

Cα(B
|̃x|
2

(x̃))

⎞⎠ < ∞

for the give 0 < α < 1, ζ, ζ ′ > 0.
Step 3: Asymptotic behavior of v(x̃) at infinity.
Since (11) remains when ζ > 0 becomes smaller, we only need to prove for 0 < ζ < 2 case for

eading simplicity. By a direct computation, ∆|x|2−ζ = cn,ζ |x|−ζ in Bc
1. Thus there exist subsolution v

and supersolution v of Poisson equation

∆ṽ = g(x̃) − g(∞) in Rn (37)

ith v, v = O(|x̃|2−ζ) as |x| → ∞. By Perron’s method (see for instance [2,10,24]) and interior regularity,
e have a classical solution ṽ ∈ C2,α(Rn) of (37) with ṽ = O(|x̃|2−ζ) as |x̃| → ∞.
For any |x̃| = R ≥ 1, let

ṽR(y) :=
(

2
R

)2
ṽ(x̃+ R

2 y), y ∈ B1.

hen ṽR satisfies
∆ṽR = g(x̃+ R

2 y) − g(∞) =: gR(y) in B1.

By a direct computation,

∥gR∥Cα(B1) ≤ CR− min{ζ,ζ′} and ∥ṽR∥C0(B1) ≤ CR−ζ .

y interior Schauder estimates, we have

∥ṽR∥C2,α(B1/2) ≤ CR− min{ζ,ζ′}

nd then
ṽ(x̃) = O2(|x̃|2−min{ζ,ζ′})

s |x̃| → ∞. Then
∆(v − ṽ) = g(∞) in Rn

nd D2(v − ṽ) is bounded. By Liouville type theorem, v − ṽ is a quadratic function and hence

v −
(

1
2 x̃

T Ãx̃+ b̃x̃+ c̃

)
= O2(|x̃|2−min{ζ,ζ′})

for some Ã ∈ Sym(n) with traceÃ = g(∞), b̃ ∈ Rn and c̃ ∈ R. Similarly we have (33) and Ã is invertible.
Taking A := Ã−1 − I and the result follows similar to τ ∈ (0, π ) case.
4

11
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. Asymptotics of solutions of (5)

In this section, we prove Theorem 1.1. As an integral part of the preparation, we analyze the linearized
quation of (5) and obtain the asymptotic behavior at infinity. The major difficulty is that the linearized
quation is not homogeneous.

.1. Asymptotics of solutions of nonhomogeneous linear elliptic equations

Consider the linear elliptic equation

Lu := aij(x)Diju(x) = f(x) in Rn, (38)

here the coefficients are uniformly elliptic, satisfying

∥aij∥Cα(Rn) < ∞, (39)

or some 0 < α < 1 and
|aij(x) − aij(∞)| ≤ C|x|−ε

, (40)

or some 0 < (aij(∞)) ∈ Sym(n) and ε, C > 0.

heorem 3.1. Let v be a classical solution of (38) that bounded from at least one side, the coefficients
atisfy (39) and (40) and f ∈ C0(Rn) satisfy

lim sup
|x|→+∞

|x|ζ |f(x)| < ∞ (41)

or some ζ > 2. Then there exists a constant v∞ such that

v(x) = v∞ +

⎧⎨⎩O
(

|x|2−min{n,ζ}
)
, ζ ̸= n,

O
(

|x|2−n(ln |x|)
)
, ζ = n,

(42)

s |x| → ∞.

The homogeneous version of Theorem 3.1 has been proved earlier, see for instance Gilbarg–Serrin [15]
nd Li–Li–Yuan [25]. Hence we start with constructing a special solution of (38) and translate the question
nto homogeneous case.

By the criterion in [28], the Green’s function of operator L is equivalent to the Green’s function of
aplacian under conditions (39) and (40). More precisely, let GL(x, y) be the Green’s function centered
t y, there exists constant C such that

C−1|x− y|2−n ≤ GL(x, y) ≤ C|x− y|2−n
, ∀ x ̸= y,⏐⏐Dxi

GL(x, y)
⏐⏐ ≤ C|x− y|1−n

, i = 1, . . . , n, ∀ x ̸= y,⏐⏐⏐Dxi
Dxj

GL(x, y)
⏐⏐⏐ ≤ C|x− y|−n

, i, j = 1, . . . , n, ∀ x ̸= y.

(43)

y an elementary estimate as in Bao–Li–Zhang [2], we construct a solution that vanishes at infinity. More
igorously, we introduce the following result.

emma 3.2. There exists a bounded strong solution u ∈ W 2,p
loc (Rn) with p > n of (38) satisfying

u(x) =
{
O(|x|2−min{n,ζ}), ζ ̸= n,

O(|x|2−n(ln |x|)), ζ = n,

s |x| → ∞.

12
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roof. By (43) and Calderón–Zygmund inequality,

w(x) :=
∫
Rn
GL(x, y)f(y)dy

elongs to W 2,p
loc (Rn) for p > n and is a strong solution of (38) (see for instance [1,35]). It remains to compute

he vanishing speed at infinity. Let

E1 := {y ∈ Rn, |y| ≤ |x|/2} ,
E2 := {y ∈ Rn, |y − x| ≤ |x|/2} ,
E3 := Rn\ (E1 ∪ E2) .

y a direct computation,∫
E1

1
|x− y|n−2 f(y)dy ≤ C

∫
B |x|

2

f(y)dy · |x|2−n ≤

{
C|x|2−min{n,ζ}

, ζ ̸= n,

C|x|2−n(ln |x|), ζ = n.

imilarly, we have |x|
2 ≤ |y| in E2 and hence∫

E2

1
|x− y|n−2 f(y)dy ≤ C

∫
|x−y|≤ |x|

2

1
|x− y|n−2 dy · 1

|x|ζ
≤ C|x|2−ζ

.

Now we separate E3 into two parts

E+
3 := {y ∈ E3 : |x− y| ≥ |y|}, E−

3 := E3 \ E+
3 .

Then ∫
E+

3

1
|x− y|n−2 · |y|ζ

dy ≤
∫

|y|≥ |x|
2

1
|y|n+ζ−2 dy ≤ C|x|2−ζ

and ∫
E−

3

1
|x− y|n−2 · |y|ζ

dy ≤
∫

|y−x|≥ |x|
2

1
|y − x|n+ζ−2 dy ≤ C|x|2−ζ

.

Hence there exists C > 0 such that

|w(x)| ≤ C

⏐⏐⏐⏐⏐
∫

E1∪E2∪E3

1
|x− y|n−2 f(y)dy

⏐⏐⏐⏐⏐ ≤

{
C|x|2−min{n,ζ}

, ζ ̸= n,

C|x|2−n(ln |x|), ζ = n. □

roof of Theorem 3.1. We may assume without loss of generality that v is bounded from below, otherwise
onsider −v instead. Let w(x) be the bounded strong solution of (38) from Lemma 3.2, then

ṽ := v − w − inf
Rn

(v − w) ≥ 0

s a strong solution of (38) with f ≡ 0. By interior regularity, ṽ is a positive classical solution. By Theorem
.2 in [25],

ṽ(x) = ṽ∞ +O
(

|x|2−n
)

as |x| → ∞,

or some constant ṽ∞. Then the result follows immediately from Lemma 3.2. □

emark 3.3. If v is a classical solution of (38) with |Dv(x)| = O(|x|−1) as |x| → ∞ and f ∈ C0(Rn)
atisfy (41), then v is bounded from at least one side. The proof is similar to f ≡ 0 case, which can be found
n Corollary 2.1 of [25].
13
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.2. Proof of Theorem 1.1

Let u ∈ C2 (Rn) be a classical solution of (5), where f satisfies (6) for some ζ > 2,m ≥ 2 and either of
cases (1)–(3) holds. By extension and interior estimates, we may assume that u ∈ W 4,p

loc (Rn) for some p > n.
y Theorem 2.1, Hessian matrix D2u have finite Cα norm on Rn and converge to some A ∈ Sym(n) at a

Hölder speed as in (34).
Let v := u(x) − 1

2x
TAx. Applying Newton–Leibnitz formula between

Fτ

(
λ
(
D2v +A

))
= f(x) and Fτ (λ(A)) = f(∞),

we have
aij(x)Dijv :=

∫ 1

0
DMij

Fτ

(
λ(tD2v +A)

)
dt ·Dijv = f(x) − f(∞) =: f(x) (44)

or any e ∈ ∂B1, by the concavity of operator F , the partial derivatives ve := Dev and vee := D2
ev are

trong solutions of
âij(x)Dijve := DMij

Fτ

(
λ(D2v +A)

)
Dijve = fe(x), (45)

nd
âij(x)Dijvee ≥ fee(x). (46)

y Theorem 2.1, there exist ϵ > 0 and C > 0 such that⏐⏐⏐aij(x) −DMij
Fτ (λ(A))

⏐⏐⏐+
⏐⏐⏐âij(x) −DMij

Fτ (λ(A))
⏐⏐⏐ ≤ C

|x|ϵ
.

y condition (6) and constructing barrier functions for (46), there exists C > 0 such that for all x ∈ Rn,

vee(x) ≤

{
C|x|2−min{n,ζ+2}

, ζ ̸= n− 2,
C|x|2−n(ln |x|), ζ = n− 2.

y the arbitrariness of e,

λmax
(
D2v

)
(x) ≤

{
C|x|2−min{n,ζ+2}

, ζ ̸= n− 2,
C|x|2−n(ln |x|), ζ = n− 2.

y (6) and the ellipticity of Eq. (44),

λmin
(
D2v

)
(x) ≥ −Cλmax

(
D2v

)
− C|f(x)| ≥

{
−C|x|2−min{n,ζ+2}

, ζ ̸= n− 2,
−C|x|2−n(ln |x|), ζ = n− 2.

ence ⏐⏐D2v(x)
⏐⏐ ≤

{
C|x|2−min{n,ζ+2}

, ζ ̸= n− 2,
C|x|2−n(ln |x|), ζ = n− 2.

By Theorem 2.1, the coefficients aij , âij have bounded Cα norm on exterior domain. Since ζ > 2, applying
Remark 3.3 to Eq. (45), for any e ∈ ∂B1, ve(x) is bounded from one side and there exists be ∈ R such that

ve(x) = be +

⎧⎨⎩O
(

|x|2−min{n,ζ+1}
)
, ζ ̸= n− 1,

O
(

|x|2−n(ln |x|)
)
, ζ = n− 1,

as |x| → ∞. (47)

icking e as n unit coordinate vectors of Rn, we found b ∈ Rn from (47) and let

v(x) := v(x) − bx = u(x) −
(

1
xTAx+ bx

)
.
2

14
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y (47),

|Dv(x)| = |(∂x1v − b1, . . . , ∂xnv − bn)| =

⎧⎨⎩O
(

|x|2−min{n,ζ+1}
)
, ζ ̸= n− 1,

O
(

|x|2−n(ln |x|)
)
, ζ = n− 1,

s |x| → ∞. By (44),

aij(x)Dijv = aij(x)Dijv = f(x).

By the arguments above again, there exists c ∈ R such that

v(x) = c+

⎧⎨⎩O(|x|2−min{n,ζ}), ζ ̸= n,

O
(

|x|2−n(ln |x|)
)
, ζ = n,

as |x| → ∞.

otice that here we used ζ > 2 for |Dv̄| = O(|x|−1) and f = O(|x|−ζ) at infinity. Let Q(x) := 1
2x

TAx+bx+c.
hen

|u−Q| = |v − c| =
{
O(|x|2−min{n,ζ}), ζ ̸= n,

O(|x|2−n(ln |x|)), ζ = n,
as |x| → ∞.

Finally, we give the estimates of derivatives of u. For |x| ≥ 1, let

E(y) =
(

2
|x|

)2
(u−Q)

(
x+ |x|

2 y

)
.

hen by Newton–Leibnitz formula,

aij(y)DijE(y) = Fτ

(
λ(A+D2E(y))

)
− Fτ (λ(A)) = f(x+ |x|

2 y) − f(∞) =: f(y) in B1,

here

aij(y) =
∫ 1

0
DMij

Fτ

(
λ(A+ tD2E(y))

)
dt.

By the Evans–Krylov estimate and interior Schauder estimate (see for instance Chap.8 of [4] and Chap.6
of [16]), for all 0 < α < 1, we have

∥E∥C2,α(B 1
2

) ≤ C(∥E∥C0(B1) + ∥f∥Cα(B2))

≤ C(∥E∥C0(B1) + ∥f∥C1(B2))

=
{
O(|x|− min{n,ζ}), ζ ̸= n,

O(|x|−n(ln |x|)), ζ = n,
as |x| → ∞.

y taking further derivatives and iterate, we have for all k ≤ m+ 1,(
|x|
2

)k−2 ⏐⏐Dk(u−Q)(x)
⏐⏐ = |DkE(0)|

≤ Ck(∥E∥C0(B1) + ∥f∥Ck−2,α(B1))
≤ Ck(∥E∥C0(B1) + ∥f∥Ck−1(B1))

=
{
O(|x|− min{n,ζ}), ζ ̸= n,

O(|x|−n(ln |x|)), ζ = n,
as |x| → ∞.

his finishes the proof of Theorem 1.1.

15



Z. Liu and J. Bao Nonlinear Analysis 212 (2021) 112450

4

u

T

b

b

i

T
e

t

B

. Proof of Theorem 1.4

In this section, we consider asymptotic expansion at infinity for classical solutions of (5). Assume that
, f are as in Theorem 1.1. Let aij , f and v be as in (44) and Section 3.2 respectively.

In the following, we only need to focus on ζ > n case as explained in Remark 1.5. It follows from (9) in
heorem 1.1, ⏐⏐⏐aij(x) −DMij

Fτ (λ(A))
⏐⏐⏐ ≤ C

⏐⏐D2v(x)
⏐⏐ = Om−1

(
|x|−n

)
and hence

DMij
Fτ (λ(A))Dijv = f − (aij(x) −DMij

Fτ (λ(A)))Dijv =: g(x)
= Om(|x|−ζ) +Om−1

(
|x|−2n

)
= Om−1(|x|− min{2n,ζ})

y (6) as |x| → ∞.
Let

Q := [DMij
Fτ (λ(A))] 1

2 and ṽ(x) := v(Qx).
Then

∆ṽ(x) = g(Qx) =: g̃(x) in Rn. (48)
By a direct computation,

ṽ = Om+1(|x|2−n) and g̃ = Om−1

(
|x|− min{2n,ζ}

)
.

Let ∆Sn−1 be the Laplace–Beltrami operator on unit sphere Sn−1 ⊂ Rn and

Λ0 = 0, Λ1 = n− 1, Λ2 = 2n, . . . , Λk = k(k + n− 2), . . . ,

e the sequence of eigenvalues of −∆Sn−1 with eigenfunctions

Y
(0)

1 = 1, Y (1)
1 (θ), Y (1)

2 (θ), . . . , Y (1)
n (θ), . . . , Y (k)

1 (θ), . . . , Y (k)
mk

(θ), . . .

.e.,
−∆Sn−1Y (k)

m (θ) = ΛkY
(k)

m (θ), ∀ m = 1, 2, . . . ,mk.

By Lemmas 3.1 and 3.2 of [27], there exists a solution ṽ
g̃

of ∆ṽ
g̃

= g̃ in Rn \B1 with

ṽ
g̃

=

⎧⎨⎩Om

(
|x|2−min{2n,ζ}

)
, min{2n, ζ} − n /∈ N,

Om

(
|x|2−min{2n,ζ}(ln |x|)

)
, min{2n, ζ} − n ∈ N.

hus v(x) := ṽ − ṽ
g̃

is harmonic on Rn \ B1 with v = O(|x|2−n) as |x| → ∞. By spherical harmonic
xpansions, there exist constants C(1)

k,m, C
(2)
k,m such that

v =
∞∑

k=0

mk∑
m=1

C
(1)
k,mY

(k)
m (θ)|x|k +

∞∑
k=0

mk∑
m=1

C
(2)
k,mY

(k)
m (θ)|x|2−n−k

.

By the vanishing speed of v, we have C(1)
k,m = 0 for all k,m. Thus similar to the proof of Lemma 3.3 in [27],

here exist constants ck,m with k ∈ N, m = 1, . . . ,mk such that

ṽ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ζ]−n∑
k=0

mk∑
m=1

ck,mY
(k)

m (θ)|x|2−n−k +Om

(
|x|2−ζ

)
, n < ζ < 2n, ζ ̸∈ N,

ζ−n−1∑
k=0

mk∑
m=1

ck,mY
(k)

m (θ)|x|2−n−k +Om

(
|x|2−ζ(ln |x|)

)
, n < ζ < 2n, ζ ∈ N,

n−1∑
k=0

mk∑
m=1

ck,mY
(k)

m (θ)|x|2−n−k +Om

(
|x|2−2n(ln |x|)

)
, 2n ≤ ζ.

−1
y rotating backwards by Q , the results in Theorem 1.4 follow immediately.
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