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Abstract

In this paper, we apply level set and nonlinear perturbation methods to obtain the asymptotic behavior 
of the solution to a kind of parabolic Monge–Ampère equation at infinity. The Jörgens–Calabi–Pogorelov 
theorem for parabolic and elliptic Monge–Ampère equation can be regarded as special cases of our result.
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1. Introduction and main results

In affine geometry, a well known theorem of Jörgens (n = 2 [11]), Calabi (n ≤ 5 [4]) 
and Pogorelov (n ≥ 2 [14]) asserts that a convex improper affine hypersurface is an elliptic 
paraboloid. This theorem can also be stated as follows: any classical convex solution of the 
elliptic Monge–Ampère equation

det(D2u) = 1 in R
n

must be a quadratic polynomial.
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Along the lines of affine geometry, a simpler and more analytic proof was given by Cheng 
and Yau in [6]. Jost and Xin also give another proof of this result in [12]. Caffarelli proved that 
Jörgens–Calabi–Pogorelov theorem remains valid for viscosity solution in [2].

In [8], Gutiérrez and Huang established Jörgens–Calabi–Pogorelov theorem to the following 
kind of parabolic Monge–Ampère equation

−ut det(D2u) = 1 in R
n+1− := R

n × (−∞,0], −M1 ≤ ut ≤ −M2,

where M1 and M2 are two positive constants. In [17], Xiong and Bao extended Jörgens–Calabi–
Pogorelov theorem to more general parabolic Monge–Ampère equations of the form

ut = ρ
(

log(det(D2u))
)

in R
n+1− ,

which covers the results in [8].
In [3], Caffarelli and Li obtained the asymptotic behavior of convex viscosity solutions of

det(D2u) = f (x) in R
n,

where f ∈ C0(Rn) satisfies

0 ≤ inf
Rn

f ≤ sup
Rn

f < ∞,

support (f − 1) is bounded.

Recently, Zhang, Wang and Bao [18] have extended the above result to the following parabolic 
Monge–Ampère equation

−ut det(D2u) = f (x, t) in R
n+1− .

In this paper, we investigate classical solutions to the parabolic Monge–Ampère equation

ut − log
(

det(D2u)
)

= f (x, t) in R
n+1− , (1)

such that there exist two constants c0 and C0 with

c0 ≤ ut ≤ C0 in R
n+1− , (2)

where f ∈ C0(Rn+1− ) and there exists a ∈ R
1 such that

support (f − a) is bounded. (3)

In the following theorem, we obtain the asymptotic behavior of solutions of (1) and (2) under the 
hypothesis (3).
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Theorem 1.1. Let n ≥ 4 and f ∈ C0(Rn+1− ) satisfy (3). Assume that u ∈ C2,1(Rn+1− ) is a solution 
of (1) and (2) which is convex in x. Then there exist an n ×n symmetric positive definite matrix A, 
b ∈ R

n, c ∈R
1 satisfying

u(x, t) = τ t + xT Ax

2
+ bT x + c, x ∈R

n, t ≤ t∗ (4)

u(x, t) = τ t + xT Ax

2
+ bT x + c + O(|x|2−n), |x| → ∞, t∗ ≤ t ≤ 0, (5)

where τ := log detA + a and t∗ := sup{t ≤ 0 : f (x, s) = a, ∀x ∈ R
n, s ≤ t} > −∞.

By taking a = 0 and f ≡ 0 in Theorem 1.1, we can obtain the following theorem.

Corollary 1.2. Let n ≥ 4 and u ∈ C2,1(Rn+1− ) be a solution to

ut = log
(

det(D2u)
)

(x, t) ∈ R
n+1− , (6)

such that there exist two constants c0 and C0 with

c0 ≤ ut ≤ C0 (x, t) ∈R
n+1− , (7)

under the assumption that u is convex in x. Then there exist an n × n symmetric positive definite 
matrix A, b ∈ R

n, c ∈ R
1 such that

u(x, t) = τ t + xT Ax

2
+ bT x + c, (x, t) ∈R

n+1− ,

where τ := log detA.

Remark 1.1. It should be remarked that Xiong and Bao have obtained Corollary 1.2 for n ≥ 2
and u ∈ C4,2(Rn+1− ) in [17].

Now we consider an elliptic Monge–Ampère equation

det(D2u) = exp{1

2
Du · x − u} in R

n. (8)

Since an entire solution to (8) is a self-shrinking solution to Lagrangian mean curvature flow in 
pseudo-Euclidean space, we can obtain an analogous result with the Jörgens–Calabi–Pogorelov 
theorem on (8) below.

Corollary 1.3. Let n ≥ 4 and u ∈ C2(Rn) be a convex solution to (8) satisfying

lim sup |1

2
Du(x) · x − u(x)| < ∞. (9)
|x|→+∞
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Then there exist an n × n symmetric positive definite matrix A and c ∈R
1 such that

u(x) = xT Ax

2
+ c, x ∈ R

n.

Remark 1.2. By replacing the condition (9) with

lim inf|x|→+∞|x|2D2u(x) > 2(n − 1)I,

Huang and Wang obtained Corollary 1.3 for n ≥ 2 in [10]. Independently, Chau, Chen and Yuan 
obtained the same result by using a different method in [5].

Proof of Corollary 1.3. First of all, we define

v(x, t) = (1 − t)u(
x√

1 − t
) in R

n+1− .

Then we have that v is a solution to

vt = log
(

det(D2v)
)

in R
n+1− .

Due to (9), we can also deduce that |vt | is bounded in Rn+1− . By Corollary 1.2, there exist an 
n × n symmetric positive definite matrix A, b ∈ R

n, c ∈ R
1 and τ ∈ R

1 satisfying

τ = log detA,

such that

v(x, t) = τ t + xT Ax

2
+ bT x + c in R

n+1− .

Lastly, by taking t = 0, we have

u(x) = xT Ax

2
+ bT x + c in R

n.

Since u is the solution to (8), it is easy to check that b = 0. �
Our paper is organized as follows. In Section 2, we will state some preliminaries and simpli-

fications. In Section 3, the proof of Theorem 1.1 is given by being divided into five steps.
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2. Preliminaries and simplifications

We begin this section by introducing some notations. We denote by D2u(x, t) the matrix of 
second derivatives of u with respect to x and Du(x, t) the gradient of u with respect to x.

Let u ∈ C2,1(Rn+1− ) be a solution of (1) and (2) which is convex in x. Without loss of gener-
ality, we can assume that C0 < 0. Indeed, by defining

ũ(x, t) = u(x, t) − (1 + C0)t in R
n+1− ,

we can see that ̃u ∈ C2,1(Rn+1− ) is a solution to the equation

ũt − log
(

det(D2ũ)
)

= f̃ (x, t) in R
n+1− , (10)

such that there exist two positive constants c̃0 = c0 − C0 − 1 and C̃0 = −1 with

c̃0 ≤ ũt ≤ C̃0 in R
n+1− , (11)

where f̃ = f − (C0 + 1), ̃a = a − (C0 + 1), t̃∗ = t∗ and

support (f̃ − ã) is bounded.

Once we have proved that for such ̃u, there exist an n × n symmetric positive definite matrix A, 
b ∈ R

n, c ∈R
1 and ̃τ ∈ R

1 satisfying

τ̃ − log detA = ã

such that

ũ(x, t) = τ̃ t + xT Ax

2
+ bT x + c, x ∈R

n, t ≤ t̃∗,

ũ(x, t) = τ̃ t + xT Ax

2
+ bT x + c + O(|x|2−n), |x| → ∞, t̃∗ ≤ t ≤ 0,

then by denoting τ = 1 + C0 + τ̃ and t∗ = 1 + C0 + t̃∗, we have

u(x, t) = τ t + xT Ax

2
+ bT x + c, x ∈ R

n, t ≤ t∗,

u(x, t) = τ t + xT Ax

2
+ bT x + c + O(|x|2−n), |x| → ∞, t∗ ≤ t ≤ 0.

We say a function u :Rn+1− → R, (x, t) �→ u(x, t), is called parabolically convex if it is contin-
uous, convex in x and non-increasing in t . By this definition, it is easy to see that the assumption 
C0 < 0 yields that u is actually parabolically convex.
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Throughout the paper, we will always assume that

u(0,0) = 0, Du(0,0) = 0, (12)

and

u ≥ 0 in R
n+1− . (13)

In fact, let û(x, t) = u(x, t) − u(0, 0) − Du(0, 0) · x. Then we have û(0, 0) = 0, Dû(0, 0) = 0, 
and

ût − log
(

det(D2û)
)

= f (x, t), c0 ≤ ût ≤ C0 in R
n+1− ,

which show that assumption (12) is reasonable. By (12) and the definition of parabolically convex 
function we can get that

û(x, t) ≥ û(x,0) ≥ û(0,0) = 0, ∀(x, t) ∈R
n+1− .

This completes the proof of assumption (13).
Let D ⊂R

n+1− be a bounded set and t ≤ 0; then we denote

D(t) := {x ∈ R
n : (x, t) ∈ D},

and t0 = inf{t : D(t) = ∅}. The parabolic boundary of the bounded domain D is defined by

∂pD :=
(
D(t0) × {t0}

)
∪

( ⋃
t∈R

(∂D(t) × {t})
)

,

where D(t0) denotes the closure of D(t0) and ∂D(t) denotes the boundary of D(t). We say that 
the set D ⊂ R

n+1− is a bowl-shaped domain if D(t) is convex for each t and D(t1) ⊂ D(t2) for 
t1 ≤ t2.

At the end of this section, we will list three lemmas that are needed throughout this paper. The 
proof of Lemma 2.1 and Lemma 2.2 can be found in [18]. And we will only prove Lemma 2.3.

Throughout the paper, we will always denote

Br(0) := {x ∈R : |x| < r},
Pr(A, τ, x) := {(x, t) ∈R

n+1− : 1

2
(x − x)T A(x − x) + τ t < r},

where r > 0, τ < 0, x ∈R
n and A is an n × n symmetric positive definite matrix.

Lemma 2.1. Let n ≥ 1 and U be an (n + 1) × (n + 1) real upper-triangular matrix. Assume that 
the diagonals of U are nonnegative and for some 0 < ε < 1,

(1 − ε)P1(I,−1,0) ⊂ U(P1(I,−1,0)) ⊂ (1 + ε)P1(I,−1,0). (14)
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Then

‖U − I‖ ≤ C(n)
√

ε. (15)

Lemma 2.2. Let n ≥ 3 and A = (aij (x, t)) be a real n × n symmetric positive definite matrix 
with

|aij (x, t) − δij | ≤ C(|x|2 + |t |)− ε
2 , (x, t) ∈R

n+1− , (16)

and aij ∈ C1+α, 1+α
2 (Rn+1− ), where ε, α ∈ (0, 1) are constants. Then there exists a positive solu-

tion u ∈ C∞(Rn+1− ) of

ut − aijDiju = et
(
(1 + |x|2) 2−n

2 + n(n − 2)(1 + |x|2)− n+2
2

)
≥ 0, (x, t) ∈ R

n+1− , (17)

satisfying

0 ≤ u(x, t) ≤ C(n)et (1 + |x|2) 2−n
2 , (x, t) ∈ R

n+1− . (18)

Lemma 2.3. Let g ∈ C2,1(Rn+1− \ P1(I, τ, 0)) satisfy

gs − log
(

det(I + D2g)
)

= 0, I + D2g > 0, c0 < gs + τ < C0, (y, s) ∈R
n+1− \ P1(I, τ,0),

|g(y, s)| ≤ β

( |y|2
2

+ τs

) 2−ε
2

, (y, s) ∈R
n+1− \ P1(I, τ,0), (19)

where τ , c0, C0 < 0 and β , ε > 0. Then there exists some constant r = r(n, β, ε) ≥ 2 such that

|D2g(y, s)| + |gs(y, s)| ≤ C

( |y|2
2

+ τs

)− ε
2

, (y, s) ∈ R
n+1− \ Pr(I, τ,0),

where C depends on n, β , ε, c0 and C0.

Proof. For (y, s) ∈ ∂pPR2(I, τ, 0), R > 2, let

ηR(z, ι) := (
4

R
)2

(
1

2
|y + R

4
z|2 − (s + R2

16
ι) + g(y + R

4
z, s + R2

16
ι)

)
, (z, ι) ∈ P 9

4
(I, τ,0).

Since

1

2
|y + R

4
z|2 + τ(s + R2

16
ι) = 1

2
(|y|2 + R

2
yT z + R2

16
|z|2) + τ(s + R2

16
ι)

≥ 1

2
|y|2 + τs + R

4
yT z

≥ R2 − R |y||z|

4
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≥ R2 − R

4
(
√

2R)(
3√
2
)

= R2

4
> 1,

we can see that ηR is well defined in P 9
4
(I, τ, 0).

By the decay hypothesis (19) on g, we have

ηR(z, ι) ≤ 16

R2
R2 + 9

4
+ 4

R
(
√

2R)(
3√
2
) + (

4

R
)2β

(
1

2
|y + R

4
z|2 + τ(s + R2

16
ι)

)− ε
2

≤ 121

4
+ 162εβ

R2+ε
,

we can take r1 satisfying 162εβ

r2+ε
1

= 1, then if R ≥ max{r1, 2}, we have

ηR(z, ι) ≤ 125

4
.

Similarly, we also have

ηR(z, ι) ≥ 16

R2
R2 + 4

R
yT z − (

4

R
)2β

(
1

2
|y + R

4
z|2 + τ(s + R2

16
ι)

)− ε
2

≥ 16 − 4

R
(
√

2R)(
3√
2
) − 162εβ

R2+ε

= 4 − 162εβ

R2+ε
.

Then if R ≥ max{r1, 2}, we have

ηR(z, ι) ≥ 3.

In conclusion, there exists some r = r(n, β, ε) = max{r1, 2} ≥ 1 such that for (y, s) ∈
∂pPR2(I, τ, 0), R > r ,

3 ≤ ηR(z, ι) ≤ 125

4
, (z, ι) ∈ P 9

4
(I, τ,0).

Since ηR satisfies

ηRι − log
(

det(D2ηR)
)

= τ, D2ηR > 0, c0 < ηRι < C0, (z, ι) ∈ P 9
4
(I, τ,0),

by the interior estimates of Pogorelov, Evans–Krylov for parabolic equations, we have

‖ηR‖ 2,1 ≤ C, C−1I ≤ D2ηR ≤ CI in P1(I, τ,0).
C (P1(I,τ,0))
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Here and in the following, C ≥ 1 denotes some constant depending on n, τ , c0 and C0 unless 
otherwise stated.

Clearly,

gR(z, ι) := (
4

R
)2g(y + R

4
z, s + R2

16
ι)

satisfies

gRι − aijDij gR = 0, in P 9
4
(I, τ,0),

and

‖gR‖C2,1(P1(I,τ,0)) ≤ C, C−1I ≤ I + D2gR ≤ CI in P1(I, τ,0), (20)

where 
(
aij (z, ι)

) = ∫ 1
0 (I + θD2gR)−1dθ satisfies, in view of (20), that

‖aij‖
C

2+α, 2+α
2 (P1(I,τ,0))

≤ C, C−1I ≤ (aij ) ≤ CI in P1(I, τ,0).

By interior Schauder theory (see [13]) and (19),

|D2gR(0,0)| + |gRι(0,0)| ≤ C‖gR‖L∞(P1(I,τ,0)) ≤ CR−ε.

The result of Lemma 2.3 follows. �
3. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into the following five steps. And in this section we will 
always assume that u ∈ C2,1(Rn+1− ) be a parabolically convex solution of (1) and (2) with the 
assumption C0 < 0 without loss of generality, which also satisfies normalizations (12) and (13).

3.1. Normalization of level sets and solutions

Given H > 0, let the level set of u be defined as

QH = {(x, t) ∈R
n+1− : u(x, t) < H },

and for every t ≤ 0, we define

QH (t) = {x ∈ R
n : u(x, t) < H }.

Let xH and E denote the mass center of QH(0) and the ellipsoid of minimum volume containing 
QH (0) with center xH respectively. By a normalization lemma of John-Cordoba and Gallegos 
(see [7]), there exists some affine transformation

TH (x) = aH x + bH , (21)
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where aH is an n × n matrix and bH ∈ R
n satisfying

det(aH ) = 1, (22)

TH (E) = BR(0), for some R = R(H) > 0, (23)

and

BαnR(0) ⊂ TH (QH (0)) ⊂ BR(0), (24)

where αn = n− 3
2 .

The following proposition gives us the relationship between R and H .

Proposition 3.1. There exists some constant C depending on n, c0, C0, sup
R

n+1−
f and inf

R
n+1−

f such 

that

C−1 ≤ H

R2
≤ C.

Proof. Since

ut (x,0) − log
(

detD2u(x,0)
)

= f (x,0), x ∈R
n,

we have

detD2u(x,0) = exp{ut (x,0) − f (x,0)}.

Let M1 = exp{inf
Rn

(ut (x, 0) − f (x, 0))}, then

M1 ≤ detD2u(x,0).

Now we consider the function

w1(y) = M
− 1

n

1 u(T −1
H (y),0), y ∈R

n.

Then,

detD2w1 ≥ 1 in BαnR(0) and w1 ≤ M
− 1

n

1 H on ∂BαnR(0).

And we also consider the comparison function

ν1(y) = 1
(|y|2 − α2

nR
2) + M

− 1
n

1 H, y ∈R
n.
2
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It is obvious that ν1 is a C2 convex function satisfying

detD2ν1 = 1 in BαnR(0) and ν1 = M
− 1

n

1 H on ∂BαnR(0).

By comparison principle, we have w1 ≤ ν1 in BαnR(0). In particular,

0 ≤ w1(0) ≤ −1

2
α2

nR
2 + M

− 1
n

1 H.

It follows that

1

2
α2

nM
1
n

1 ≤ H

R2
.

Similarly, we can obtain

H

R2
≤ 1

2
M

1
n

2 , for M2 = exp{sup
Rn

(ut (x,0) − f (x,0))}.

Therefore, by taking C = max{ 1
2M

1
n

2 , 2α−2
n M

− 1
n

1 }, we have

C−1 ≤ H

R2
≤ C. �

Proposition 3.2. For some positive constant C depending on n, c0, C0, sup
R

n+1−
f and inf

R
n+1−

f ,

C−1R ≤ dist
(
TH (QH

2
(0)

)
, ∂TH (QH (0))) ≤ 2R. (25)

Consequently,

BR
C
(0) ⊂ aH (QH (0)) ⊂ B2R(0). (26)

Proof. Once estimate (25) has been established, estimate (26) can be deduced from (25) and the 
fact

dist (TH (0) , ∂TH (QH (0))) = dist (0, ∂aH (QH (0))) .

Since TH (QH
2
(0)) ⊂ TH (QH (0)) ⊂ BR(0), it is obvious that

dist
(
TH

(
QH

2
(0)

)
, ∂TH (QH (0))

)
≤ 2R.

So in order to obtain estimate (25), we only need to prove the first inequality in (25).
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Let us consider the function

w(y) = M
− 1

n

2

R2

(
u

(
T −1

H (Ry) ,0
)

− H
)

, y ∈ OH (0) := 1

R
TH (QH (0)) ,

where M2 = exp{sup
Rn

(ut (x, 0) − f (x, 0))}. Then by (24), we have

Bαn(0) ⊂ OH (0) ⊂ B1(0), w = 0 on ∂OH (0),

and

det(D2w) ≤ 1 in OH (0).

It follows from Lemma 1 in [1] that

w(y) ≥ −C(n)dist(y, ∂OH (0))
2
n , y ∈ OH (0).

For every y ∈ TH (QH
2
(0)), let x = 1

R
y; we then have

−M
− 1

n

2 H

2R2
≥ M

− 1
n

2

R2
(
H

2
) − M

− 1
n

2 H

R2
≥ w(x) ≥ −C(n)dist(x, ∂OH (0))

2
n ,

i.e.

dist(y, ∂TH (QH (0)) ≥ R

(
M

− 1
n

2 H

2R2C(n)

) n
2

.

By Proposition 3.1, we obtain

dist(y, ∂TH (QH (0)) ≥ C−1R,

where C = C(n, sup
Rn

(ut (x, 0) − f (x, 0)), inf
Rn

(ut (x, 0) − f (x, 0))). �
Proposition 3.3.

ε0a
−1
H (BR

C
(0)) × [−ε1H,0] ⊂ QH ⊂ a−1

H (B2R(0)) × [−ε2H,0], (27)

where the constant C is the same as in Proposition 3.2 and ε0, ε1, ε2 are positive constants 
depending on n, c0, C0, sup

R
n+1−

f and inf
R

n+1−
f .

Proof. Since ut (x, t) ≤ C0 for t ≤ 0, we have u(x, t) ≥ u(x, 0) +C0t . By (13) and (26), we then 
obtain u(x, t) ≥ H for t < H

C0
or x /∈ a−1

H (B2R(0)). So if we take ε2 = − 1
C0

, we have

QH ⊂ a−1(B2R(0)) × [−ε2H,0].
H
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Due to (12), QH (0) is a section of the convex function u(x, 0) at x = 0. Particularly, from 
(26) and Lemma 2.1 of [9] we have that for any ε0 ∈ (0, 1),

ε0(
1

2C
a−1
H (B2R(0))) = ε0a

−1
H (BR

C
(0)) ⊂ ε0QH (0) ⊂ Q

(1− 1−ε0
4C

)H
(0).

If (x, t) ∈ ε0a
−1
H (BR

C
(0)) × [−ε1H, 0], then

u(x, t) = u(x,0) −
0∫

t

ut (x, τ )dτ ≤ (1 − 1 − ε0

4C
)H + c0t ≤ (1 − 1 − ε0

4C
− c0ε1)H < H.

Therefore, if we take ε0 and ε1 sufficiently small, we can obtain u(x, t) < H ,

ε0a
−1
H (BR

C
(0)) × [−ε1H,0] ⊂ QH ,

which completes the proof of (27). �
Let

�H (x, t) := (
aH x

R
,

t

R2
) and Q∗

H := �H (QH ).

By Proposition 3.3 and Proposition 3.1, we have

Bε0
C

(0) × [−ε1C,0] ⊂ Q∗
H ⊂ B2(0) × [−ε2C

−1,0].

Now we define the normalized function of u

v(y, s) = 1

R2
u(�−1

H (y, s)) = 1

R2
u(Ra−1

H y,R2s), (y, s) ∈ Q∗
H .

It is easy to verify that

vs − log
(

det(D2v)
)

= f (Ra−1
H y,R2s), c0 ≤ vs ≤ C0 in Q∗

H ,

and by Proposition 3.1,

v = H

R2
∈ (C−1,C) on ∂pQ∗

H .
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3.2. Nonlinear perturbation

By [16], there exists a unique parabolically convex solution v ∈ C0(Q∗
H ) 

⋂
C∞(Q∗

H ) of

⎧⎪⎨⎪⎩
vs − log

(
det(D2v)

) = a in Q∗
H ,

v = H

R2 on ∂pQ∗
H ,

c0 ≤ vs ≤ C0 in Q∗
H .

From the interior estimates, for every δ > 0, there exists some positive constant C = C(δ) such 
that for all (y, s) ∈ Q∗

H and distp((y, s), ∂pQ∗
H ) ≥ δ, we have

C−1I ≤ D2v(y, s) ≤ CI, |D3v(y, s)| ≤ C, |Dvs(y, s)| ≤ C, |vss(y, s)| ≤ C. (28)

Lemma 3.4. For some positive constant C dependent on n, sup
R

n+1−
f , inf

R
n+1−

f and meas{f − a}, we 

have

|v − v| ≤ CR− n+2
n+1 in Q∗

H .

Proof. Let

S+ = {(y, s) ∈ Q∗
H : (v − v)s(y, s) < 0,D2(v − v)(y, s) > 0}.

Since on S+,

det
(
D2 (v − v)

)
≤ det

(
D2v

)
,

we have

−(v − v)s + log
(

detD2 (v − v)
)

≤ −vs + log
(

det(D2v)
)

= −f (Ra−1
H y,R2s),

and

f (Ra−1
H y,R2s) = vs − log

(
det(D2v)

)
< vs − log

(
det(D2v)

)
= a.

By the Alexandrov–Bakelman–Pucci estimate for parabolic equations (see [15]), we have
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sup
Q∗

H

(v − v) ≤ max
∂pQ∗

H

(v − v) + C (n)

( ∫
S+

−(v − v)sdet
(
D2 (v − v)

)
dyds

) 1
n+1

≤ C (n)

( ∫
S+

exp{−(v − v)s}det
(
D2 (v − v)

)
dyds

) 1
n+1

= C (n)

( ∫
S+

exp{−(v − v)s + log
(

det
(
D2 (v − v)

))
}dyds

) 1
n+1

,

from which it follows that

sup
Q∗

H

(v − v) ≤ C (n)

( ∫
S+

exp{−f
(
Ra−1

H y,R2s
)
}dyds

) 1
n+1

= C (n)

( ∫
�−1

H

(
S+) exp{−f (x, t)}detaH

Rn+2
dxdt

) 1
n+1

≤ C (n)R− n+2
n+1

( ∫
{f <a}

exp{−f (x, t)}dxdt

) 1
n+1

≤ CR− n+2
n+1 .

Similarly, we can obtain that

sup
Q∗

H

(v − v) ≤ CR− n+2
n+1 .

Lemma 3.4 is established. �
3.3. Rough asymptotic behavior

Let (y, 0) be the unique minimum point of v on Q∗
H , H̃ ∈ (v(y, 0), H) and m > 0. For sim-

plification, we will denote that

PH̃ (0,0) := PH̃ (D2v(y,0), vs(y,0),0)

SH̃ (0,0) := ∂pPH̃ (0,0)

PH̃ (y,0) := PH̃ (D2v(y,0), vs(y,0), y)

SH̃ (y,0) := ∂pPH̃ (y,0)

mPH̃ (0,0) := {(y, s) ∈ R
n+1− : ( y

,
s

) ∈ PH̃ (0,0)}

m m2
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mPH̃ (y,0) := {(y, s) ∈ R
n+1− : ( y

m
,

s

m2
) ∈ PH̃ (y,0)}

mQH := {(y, s) ∈ R
n+1− : ( y

m
,

s

m2
) ∈ QH }.

Lemma 3.5. There exist k and C, depending on n, c0, C0, sup
R

n+1−
f , inf

R
n+1−

f and meas{f − a}, such 

that for ε = 1
3 , H = 2(1+ε)k and 2k−1 ≤ H ′ ≤ 2k , we have

(
H ′

R2
− C2− 3εk

2 )
1
2 P1(y,0) ⊂ �H (QH ′) ⊂ (

H ′

R2
+ C2− 3εk

2 )
1
2 P1(y,0), ∀k ≥ k. (29)

Proof.

�H (QH ′) = {v <
H ′

R2
} := {(y, s) ∈ Q∗

H : v(y, s) <
H ′

R2
}.

By Lemma 3.4, the level surface of v can be well approximated by the level surface of v:

{v <
H ′

R2
− C

R
n+2
n+1

} ⊂ {v <
H ′

R2
} ⊂ {v <

H ′

R2
+ C

R
n+2
n+1

},

and

− C

R
n+2
n+1

≤ v(y,0) − C

R
n+2
n+1

≤ v(y,0) ≤ v(0,0) ≤ v(0,0) + C

R
n+2
n+1

= C

R
n+2
n+1

, (30)

since v ≥ 0 and v(0, 0) = 0. We also have that

C−1I ≤ D2v(y,0) ≤ CI vs(y,0) ≤ C−1, (31)

and

|v(y, s) − v(y,0) − vs(y,0)s − 1

2
(y − y)T D2v(y,0)(y − y)| ≤ C(|y − y|2 + |s|) 3

2 , (32)

for distp((y, s), (y, 0)) < 1
C

by (28) and Dv(y, 0) = 0.
It is clear by Proposition 3.1 that

C−12−εk ≤ H ′

R2
≤ C2−εk, C−12

(1+ε)k
2 ≤ R ≤ C2

(1+ε)k
2 . (33)

Next we will prove the two relations in (29) respectively. On one side, we shall take a positive 
constant C1 such that

(
H ′

R2
− C12− 3εk

2 )
1
2 P1(y,0) ⊂ {v <

H ′

R2
− C

R
n+2
n+1

}. (34)

For (y, s) ∈ (H ′
2 − C12− 3εk

2 )
1
2 P1(y, 0), we have
R
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vs(y,0)s + 1

2
(y − y)T D2v(y,0)(y − y) <

H ′

R2
− C12− 3εk

2 ,

|y − y|2 + |s| < C(
H ′

R2
− C12− 3εk

2 ).

Thus, it follows from (30) and (32) that

v(y, s) ≤ v(y,0) + vs(y,0)s + 1

2
(y − y)T D2v(y,0)(y − y) + C(|y − y|2 + |s|) 3

2

≤ C

R
n+2
n+1

+ H ′

R2
− C12− 3εk

2 + C
5
2 (

H ′

R2
− C12− 3εk

2 )
3
2

≤ C

R
n+2
n+1

+ H ′

R2
− C12− 3εk

2 + C42− 3
2 εk.

We can take C1 = 1 + C4 such that

2C

R
n+2
n+1

≤ 2C
2n+3
n+1 2− (1+ε)(n+2)k

2(n+1) < 2− 3εk
2 ,

if k ≥ k1, k1 large enough. Therefore, we obtain

v(y, s) ≤ C

R
n+2
n+1

+ H ′

R2
+ 2− 3εk

2 <
H ′

R2
− C

R
n+2
n+1

,

and finish the proof of (34).
On the other side, we shall take a positive constant C2 such that

{v <
H ′

R2
+ C

R
n+2
n+1

} ⊂ (
H ′

R2
+ C22− 3εk

2 )
1
2 P1(y,0).

By using the fact

(y,0) ∈ {v <
H ′

R2
+ C

R
n+2
n+1

}
⋂

(
H ′

R2
+ C22− 3εk

2 )
1
2 P1(y,0),

we only need to prove

(
H ′

R2
+ C22− 3εk

2 )
1
2 S1(y,0) ⊂ {v <

H ′

R2
+ C

R
n+2
n+1

}C.

For (y, s) ∈ (H ′
R2 + C22− 3εk

2 )
1
2 S1(y, 0), then

vs(y,0)s + 1

2
(y − y)T D2v(y,0)(y − y) = H ′

R2
+ C22− 3εk

2 ,

|y − y|2 + |s| < C(
H ′

+ C22− 3εk
2 ).
R2
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Take k2 large enough satisfying for k ≥ k2,

|y − y|2 + |s| < C(
H ′

R2
+ C22− 3εk

2 ) ≤ 1

C2
.

Thus,

v(y, s) ≥ v(y,0) + vs(y,0)s + 1

2
(y − y)T D2v(y,0)(y − y) − C(|y − y|2 + |s|) 3

2

≥ − C

R
n+2
n+1

+ H ′

R2
+ C22− 3εk

2 − C
5
2 (

H ′

R2
+ C22− 3εk

2 )
3
2

≥ − C

R
n+2
n+1

+ H ′

R2
+ C22− 3εk

2 − C
5
2 (2

H ′

R2
)

3
2

≥ − C

R
n+2
n+1

+ H ′

R2
+ C22− 3εk

2 − C42
3
2 2− 3

2 εk.

We can take C2 = 1 + 2
3
2 C4, then

2C

R
n+2
n+1

≤ 2C
2n+3
n+1 2− (1+ε)(n+2)k

2(n+1) < 2− 3εk
2 ,

if k ≥ k2, k2 large enough. Therefore, we obtain

v(y, s) ≥ − C

R
n+2
n+1

+ H ′

R2
+ 2− 3εk

2 >
H ′

R2
+ C

R
n+2
n+1

.

In conclusion, if we take C > max{C1, C2} and k = max{k1, k2}, then (29) holds. �
Proposition 3.6. There exist k and C, depending on n, c0, C0, sup

R
n+1−

f , inf
R

n+1−
f and meas{f − a}, 

such that for ε = 1
3 , H = 2(1+ε)k and 2k−1 ≤ H ′ ≤ 2k , we have

(
H ′

R2
− C2− 3εk

2 )
1
2 P1(0,0) ⊂ �H (QH ′) ⊂ (

H ′

R2
+ C2− 3εk

2 )
1
2 P1(0,0), ∀k ≥ k. (35)

Proof. In order to obtain (35), we first show that

∂Q∗̃
H+v(y,0)

(v) ⊂ Nδ1(SH̃ (y,0)), 0 < H̃ ≤ H

R2
− v(y,0), δ1 ≤ CH̃

1
2 , (36)

and neighborhood N is measured by parabolic distance

distp[(y1, s1), (y2, s2)] := (|y1 − y2|2 + |s1 − s2|) 1
2 .

In fact, for (y, s) ∈ ∂Q∗ (v), by the Mean Theorem, we have

H̃+v(y,0)
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H̃ = v(y, s) − v(y,0)

= v(y, s) − v(y,0) + v(y,0) − v(y,0)

= vs(y, s′)s + 1

2
(y − y)T D2v(y′,0)(y − y)

≥ 1

2C
(|s| + |y − y|2),

where (y′, s′) ∈ Q∗̃
H+v(y,0)

. Writing

H̃ = v(y, s) − v(y,0)

= vs(y,0)s + (vs(y, s′) − vs(y,0))s + 1

2
(y − y)T D2v(y,0)(y − y)

+ 1

2
(y − y)T (D2v(y′,0) − D2v(y,0))(y − y),

for (y, s) ∈ ∂Q∗̃
H+v(y,0)

(v), then

|H̃ − vs(y,0)s − 1

2
(y − y)T D2v(y,0)(y − y)|

= |(vs(y, s′) − vs(y,0))s + 1

2
(y − y)T (D2v(y′,0) − D2v(y,0))(y − y)|

≤ C|s| + C|y − y|2
≤ CH̃ .

For any (y, s) ∈ ∂Q∗̃
H+v(y,0)

(v) and any (ỹ, ̃s) ∈ SH̃ (y, 0), by the above inequality, we have

|vs(y,0)̃s + 1

2
(ỹ − y)T D2v(y,0)(ỹ − y) − vs(y,0)s − 1

2
(y − y)T D2v(y,0)(y − y)| ≤ CH̃ .

For s = s̃, take ỹ, y, y on the same line l with ̃y and y on the same side of the line l with respect 
to y; rotating the coordinates again so that l is parallel to some axis, we have

||̃y − y|2 − |y − y|2| ≥ |y − ỹ|2.

Then

1

2C
||̃y − y|2 − |y − y|2| ≤ CH̃ .

In fact, there exists an orthogonal matrix O such that D2v(y, 0) = OT diag{λ1, · · · , λn}O , and 
the length of a vector in Euclidean space is invariant in orthogonal transformation.

Therefore, we obtain

|y − ỹ|2 ≤ CH̃ .
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Similarly, for y = ỹ,

|vs(y,0)̃s − vs(y,0)s| ≤ CH̃ .

So we get

|s − s̃| ≤ CH̃ .

This completes the proof of (36).
Next we estimate the distance between (0, 0) and (y, 0). By Lemma 3.4, we have

0 ≤ v(0,0) − v(y,0)

= (v(0,0) − v(0,0)) + (v(0,0) − v(y,0)) + (v(y,0) − v(y,0))

≤ 2CR− n+2
n+1 ,

so (0, 0) ∈ Q∗
2CR

− n+2
n+1 +v(y,0)

(v), and by (36) (taking H̃ = 2CR− n+2
n+1 ), we have

∂(Q∗
2CR

− n+2
n+1 +v(y,0)

(v)) ⊂ Nδ1(S
2CR

− n+2
n+1

(y,0)), δ1 ≤ C(2CR− n+2
n+1 )1/2,

thus we obtain

|y| = distp((0,0), (y,0)) ≤ C(2CR− n+2
n+1 )1/2.

So by (29), we have for k ≥ k

(
H ′

R2
− C32− 3εk

2 − 2C3R− n+2
n+1 )

1
2 P1(0,0) ⊂ {v <

H ′

R2
}

⊂ (
H ′

R2
+ C32− 3εk

2 + 2C3R− n+2
n+1 )

1
2 P1(0,0).

Since 2− 3εk
2 � R− n+2

n+1 and letting C = C2 + C3, then we can obtain (35). �
Proposition 3.7. There exist positive constants k̂, Ĉ depending on n, c0, C0, sup

R
n+1−

f , inf
R

n+1−
f

and meas{f − a}, some real invertible upper-triangular matrices {Tk}k≥k̂ and negative number 
{τk}k≥k̂ such that

τk − log
(

det(T T
k Tk)

)
= a, ‖TkT

−1
k−1 − I‖ ≤ Ĉ2− εk

4 , |τkτ
−1
k−1 − 1| ≤ Ĉ2− εk

4 , (37)

and

(1 − Ĉ2− εk
4 )

√
H ′P1(I,−1,0) ⊂ �k(QH ′) ⊂ (1 + Ĉ2− εk

4 )
√

H ′P1(I,−1,0),

∀H ′ ∈ [2k−1,2k], (38)
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where �k = (Tk, −τk). Consequently, for some invertible upper-triangular matrix T and τ < 0,

τ − log
(

det(T T T )
)

= a, ‖Tk − T ‖ ≤ Ĉ2− εk
4 , |τk − τ | ≤ Ĉ2− εk

4 . (39)

Proof. Let H = 2(1+ε)k and 2k−1 ≤ H ′ ≤ 2k . By Proposition 3.6 and the definition of �H , there 
exist some positive constants C and k depending on n, a, c0, C0 and f such that

(H ′ − C2− 3εk
2 R2)

1
2 P1(0,0) ⊂ (aH , id)(QH ′) ⊂ (H ′ + C2− 3εk

2 R2)
1
2 P1(0,0), ∀k ≥ k.

Since

C−12−εk ≤ H ′

R2
≤ C2−εk,

we can obtain

(1 − CC2− εk
2 )

1
2
√

H ′P1(0,0) ⊂ (aH , id)(QH ′) ⊂ (1 + CC2− εk
2 )

1
2
√

H ′P1(0,0).

In conclusion, if we take Ĉ and ̂k large enough, then

(1 − Ĉ2− εk
2 )

√
H ′P1(0,0) ⊂ (aH , id)(QH ′) ⊂ (1 + Ĉ2− εk

2 )
√

H ′P1(0,0), k ≥ k̂. (40)

Let Q be the real symmetric positive definite matrix satisfying Q2 = QT Q = D2v(y, 0) and 
O be an orthogonal matrix such that

Tk := OQaH is upper-triangular,

and we also define τk = vs(y, 0) and �k = (Tk, −τk). Clearly,

τk − log
(

det(T T
k Tk)

)
= vs(y,0) − log

(
(detaH )2detD2v(y,0)

)
= a,

and P1(I, −1, 0) = (OQ, −τk)P1(0, 0).
From (40), we have

(1 − Ĉ2− εk
2 )

√
H ′P1(I,−1,0) ⊂ �k(QH ′) ⊂ (1 + Ĉ2− εk

2 )
√

H ′P1(I,−1,0), k ≥ k̂,

that is (38).
By taking H = 2(1+ε)k , H ′ = 2k−1 and H = 2(1+ε)(k−1), H ′ = 2k−1, we can obtain

(1 − Ĉ2− εk
2 )

√
2k−1P1(I,−1,0) ⊂ �k(Q2k−1) ⊂ (1 + Ĉ2− εk

2 )
√

2k−1P1(I,−1,0), (41)

(1 − Ĉ2− ε(k−1)
2 )

√
2k−1P1(I,−1,0) ⊂ �k−1(Q2k−1) ⊂ (1 + Ĉ2− ε(k−1)

2 )
√

2k−1P1(I,−1,0),

(42)

respectively. Then
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(1 − Ĉ2− ε(k−1)
2 )

√
2k−1�k�

−1
k−1P1(I,−1,0) ⊂ �k(Q2k−1)

⊂ (1 + Ĉ2− ε(k−1)
2 )

√
2k−1�k�

−1
k−1P1(I,−1,0),

(43)

by taking k sufficiently large. Similarly,

(1 − 3Ĉ2− εk
2 )P1(I,−1,0) ⊂ �k�

−1
k−1P1(I,−1,0).

So by taking k sufficiently large, we have

(1 − 3Ĉ2− εk
2 )P1(I,−1,0) ⊂ �k�

−1
k−1P1(I,−1,0) ⊂ (1 + 3Ĉ2− εk

2 )P1(I,−1,0).

Since �k�
−1
k−1 is still upper-triangular, we apply Lemma 2.1 (with U = �k�

−1
k−1) to obtain that

‖�k�
−1
k−1 − I‖ ≤ C(n)

√
3Ĉ2− εk

2 ≤ Ĉ2− εk
4 .

Estimate (37) has been established. The existence of T , τ and (39) follow by elementary consid-
eration. �

We can deduce from (38) and (39) that on one side,

�(QH ′) − �k(QH ′) ⊂ Ĉ2− εk
4
√

H ′P1(I,−1,0),

�(QH ′) ⊂ (1 + 2Ĉ2− εk
4 )

√
H ′P1(I,−1,0),

and on the other side,

�k(QH ′) − �(QH ′) ⊂ Ĉ2− εk
4
√

H ′P1(I,−1,0),

(1 − 2Ĉ2− εk
4 )

√
H ′P1(I,−1,0) ⊂ �(QH ′).

In particular, if we take H ′ = 2k , k ≥ k̂, then

(1 − 2Ĉ(H ′)−
ε
4 )

√
H ′P1(I,−1,0) ⊂ {(y, s) ∈ R

n+1− : u(T −1y,− s

τ
) < H ′}

⊂ (1 + 2Ĉ(H ′)−
ε
4 )

√
H ′P1(I,−1,0).

So we have

(1 − 2Ĉ(u(T −1y,− s

τ
))−

ε
4 )2u(T −1y,− s

τ
) < −s + 1

2
|y|2

< (1 + 2Ĉ(u(T −1y,− s

τ
))−

ε
4 )2u(T −1y,− s

τ
),
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−4Ĉ(u(T −1y,− s

τ
))1− ε

4 − 4Ĉ2(u(T −1y,− s

τ
))1− ε

2

< u(T −1y,− s

τ
) − (−s + 1

2
|y|2)

< 4Ĉ(u(T −1y,− s

τ
))1− ε

4 − 4Ĉ2(u(T −1y,− s

τ
))1− ε

2 .

Thus ∣∣∣∣u(T −1y,− s

τ
) − (−s + 1

2
|y|2)

∣∣∣∣ < ̂̂C(u(T −1y,− s

τ
))1− ε

4 .

Consequently, by the fact C−1u(T −1y, − s
τ
) ≤ 1

2 |y|2 − s, we obtain∣∣∣∣u(T −1y,− s

τ
) − (−s + 1

2
|y|2)

∣∣∣∣ ≤ C(
1

2
|y|2 − s)

4−ε
4 , (y, s) ∈ R

n+1− \ P22k (I, τ,0).

Let us define w(y, s) = u(T −1y, s); then

ws − log
(

det(D2w)
)

= log
(

det(T T T )
)

+ a = τ, (y, s) ∈ R
n+1− \ P22k (I, τ,0),

where �̃(QH ) := (T , id)QH and

|w(y, s) − (τ s + 1

2
|y|2)| ≤ C(

1

2
|y|2 + τs)

4−ε
4 , (y, s) ∈ R

n+1− \ P22k (I, τ,0). (44)

We call the above inequality the asymptotic behavior of w.

3.4. Explicit asymptotic behavior

In this section, we will obtain the explicit asymptotic behavior of w.

Proposition 3.8. There exist b̃ ∈ R
n, c̃ ∈ R and some positive constant C depending on n, c0, 

C0, sup
R

n+1−
f , inf

R
n+1−

f and meas{f − a} such that

|w(y, s) − τs − |y|2
2

− b̃T y − c̃| ≤ Ce−τs(1 + |y|2)− n−2
2 , (y, s) ∈ R

n+1− \ P22k (I, τ,0).

Proof. Let

g(y, s) := w(y, s) − (τ s + |y|2
2

), (y, s) ∈R
n+1− \ P22k (I, τ,0),

and by (44) and Lemma 2.3,

|D2g(y, s)| + |gs(y, s)| ≤ C(
1 |y|2 − s)−

ε
4 .
2
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It follows that

gs − âijDij g = 0 in R
n+1− \ P22k (I, τ,0), (45)

where (̂aij (y, s)) = ∫ 1
0 (I + θD2g)−1dθ .

Let e ∈ R
n be a unit vector; now we apply Ds , De and Dee to the following equation

gs − log
(

det(I + D2g)
)

= 0, in R
n+1− \ P22k (I, τ,0),

in view of the concavity of log(det), we have

(gs)s − BijDij (gs) = 0, in R
n+1− \ P22k (I, τ,0), (46)

(Deg)s − BijDij (Deg) = 0, in R
n+1− \ P22k (I, τ,0), (47)

and

(Deeg)s − Bij (Deeg)ij ≤ 0, in R
n+1− \ P22k (I, τ,0), (48)

where (Bij ) = (I + D2g)−1. We claim that

|Bij − δij | ≤ C(
1

2
|y|2 − s)−

ε
4 .

In fact, let λ1, λ2, · · ·, λn denote the eigenvalues of D2g; then

| 1

1 + λi

− 1| = |λi |
|1 + λi | ,

≤ |λi |
1 − |λi | ,

= 1

|λi |−1 − 1
,

≤ 1
( 1

2 |y|2−s)ε/4

C
− 1

≤ 1
( 1

2 |y|2−s)ε/4

C
− ( 1

2 |y|2−s)ε/4

2C

≤ C

(
1

2
|y|2 − s

)− ε
4

,

this completes the proof of the claim.
By Lemma 2.2, for such coefficients, there exists a positive solution G(y, s) of

Gs − BijDijG = e−τs(1 + |y|2)− n
2 −1

(
−τ(1 + |y|2)2 + n(n − 2)

)
≥ 0 in R

n+1− . (49)
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By (46), (48), (49) and the maximum principle, we have

−gs(y, s) ≤ G(y, s) ≤ Ce−τs(1 + |y|2)− n−2
2 , (50)

and

Deeg(y, s) ≤ G(y, s) ≤ Ce−τs(1 + |y|2)− n−2
2 . (51)

Thus

|D2g(y, s)| ≤ Ce−τs(1 + |y|2)− n−2
2 .

Then for 1 ≤ m ≤ n, there exists ̃bm ∈ R satisfying Dmg(y, s) − b̃m → 0, as |y|2 − s → 0 (see 
[18]) and Dmg − b̃m satisfies

(Dmg − b̃m)s − Bij (Dmg − b̃m)ij = 0, (y, s) ∈R
n+1− \ P22k (I, τ,0),

from (47). Let ̃b = (̃b1, ̃b2 · · · , ̃bn)
T ; so we can also deduce from the maximum principle that

|Dg(y, s) − b̃| ≤ Ce−τs(1 + |y|2)− n−2
2

by combining (49).
Similarly, there exists ̃c ∈ R such that

|g(y, s) − b̃T y − c̃| ≤ Ce−τs(1 + |y|2)− n−2
2 , ∀(y, s) ∈ R

n+1− \ P22k (I, τ,0). �
3.5. Finishing proof of Theorem 1.1

Proof. Since w(y, s) = u(T −1y, s), then letting x = T −1y and t = s, by Proposition 3.8, we 
have

|u(x, t) − τ t − xT T T T x

2
− b̃T T x − c̃| ≤ Ce−τ t (1 + |x|2) 2−n

2 ,
1

2
|x|2 − t is large enough.

By taking A = T T T , b = T T b̃, c = c̃, we have

|u(x, t) − τ t − xT Ax

2
− bT x − c| ≤ Ce−τ t (1 + |x|2) 2−n

2 ,
1

2
|x|2 − t is large enough. (52)

If t∗ ≤ t ≤ 0, then by (52), we have

u(x, t) = τ t + xT Ax

2
+ bT x + c + O(|x|2−n), |x| → ∞, t∗ ≤ t ≤ 0.

If t ≤ t∗, by defining

u∗(x, t) = u(x, t + t∗) in R
n+1− ,
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we have that c0 ≤ u∗
t ≤ C0 in Rn+1− ,

u∗
t − log

(
det(D2u∗)

)
= f (x, t + t∗) = a in R

n+1−

and

|u∗(x, t) − τ(t + t∗) − xT Ax

2
− bT x − c| ≤ Ce−τ t (1 + |x|2) 2−n

2 ,
1

2
|x|2 − t → +∞.

Now we define

E∗(x, t) := u∗(x, t) − τ(t + t∗) − xT Ax

2
− bT x − c,

then

E∗(x, t) → 0, as
1

2
|x|2 − t → +∞.

Since

E∗
t − âijDijE

∗ = 0 in R
n+1− ,

where

(̂aij ) =
1∫

0

(θD2u + (1 − θ)A)−1dθ,

by the maximum principle, E∗ ≡ 0 in Rn+1− , i.e.,

u∗(x, t) = τ(t + t∗) + xT Ax

2
+ bT x + c in R

n+1− .

In conclusion, u(x, t) = τ t + xT Ax
2 + bT x + c − τ t∗ in Rn+1− . �
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