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Abstract
We use Perron method to prove the existence of ancient solutions of exterior problem for a
kind of parabolic Monge–Ampère equation − ut det D2u = f with prescribed asymptotic
behavior at infinity outside some certain bowl-shaped domain in the lower half space for
n ≥ 3, where f is a perturbation of 1 at infinity. We raise this problem for the first time and
construct a new subsolution to it. We also use similar method to prove the existence of the
entire solutions.

Keywords Parabolic Monge–Ampère equation · Exterior problem · Ancient solution ·
Asymptotics
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1 Introduction

A celebrated result of Jörgens (n = 2 [11]), Calabi (n ≤ 5 [5]) and Pogorelov (n ≥ 2 [16])
stated that any entire classical convex solutions to the Monge–Ampère equation

det D2u = 1 (1)

must be a quadratic polynomial. A simpler and more analytical proof was given by Cheng
and Yau [7]. Jost and Xin [12] showed another geometric proof. Caffarelli [2] extended this
result to viscosity solutions.
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Denote

A0 := {A : A is a real n × n symmetric positive definite matrix with det A = 1}.
In [3], Caffarelli and Li extended the theorem of Jörgens–Calabi–Pogorelov. They proved
that for n ≥ 3, the asymptotic behavior of viscosity solutions of (1) outside a bounded set
must be

lim sup
x→∞

|x |n−2
∣
∣u(x) −

(
1

2
x ′Ax + b · x + c

)
∣
∣ < ∞, (2)

where A ∈ A0, b ∈ R
n and c ∈ R. They also studied the existence of solutions of the

corresponding exterior Dirichlet problem.

Theorem 1.1 (Caffarelli-Li [3]) Let D be a smooth, bounded, strictly convex open subset of
R
n, n ≥ 3, and let ϕ ∈ C2(∂D). Then for any given b ∈ R

n and any given A ∈ A0, there
exists some constant c∗, depending only on n, D, ϕ, b, and A, such that for every c > c∗
there exists a unique function u ∈ C∞(Rn \ D) ∩ C0(Rn \ D) that satisfies (2) and

{

det D2u = 1, D2u > 0, in R
n \ D,

u = ϕ, on ∂D.
(3)

In [1], Bao, Li and Zhang extended [3] to

det D2u = f , (4)

where f is a perturbation of 1 near infinity:

f (x) = 1 + O(|x |−β), |x | → ∞, β > 2,

with the asymptotic behavior
⎧

⎪⎨

⎪⎩

lim sup
|x |→∞

|x |min{n,β}−2
∣
∣u(x) − ( 12 x

′Ax + b · x + c)
∣
∣ < ∞, β 
= n,

lim sup
|x |→∞

|x |n−2(ln |x |)−1
∣
∣u(x) − ( 12 x

′Ax + b · x + c)
∣
∣ < ∞, β = n.

(5)

See also [6] for the classification of the asymptotic behavior. Recently, Li and Lu [14]
continued to study the critical value c∗ and proved the existence and nonexistence of the
solutions.

For f being a periodic function, Li [13] proved the existence of entire solutions for (4).
Caffarelli and Li [4] proved that the solution u has to be a parabola plus a periodic function.
Teixeira–Zhang [17] proved the asymptotic behavior for f being asymptotically close to a
periodic function with the dimension n ≥ 4.

The study of elliptic Monge–Ampère equation was soon extended to parabolic cases. The
operator P of a parabolic version

Pu = −ut det D
2u = f (x, t) (6)

arises as the Jacobian determinant of the map

(x, t) ∈ R
n × R �→ �(x, t) := (Dxu(x, t), x · Dxu(x, t) − u) ∈ R

n × R,

and has appeared in parabolic maximum principles, curvature flows and quantitative stochas-
tic homogenization over the past few decades.
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Ancient solutions of exterior problem of parabolic… 1607

Recall that a solution is called ancient if it is defined on a time interval of the form
(−∞, T ] for some T . There are many results on ancient solutions of parabolic Monge–
Ampère equations.

Let

R
n+1− = {(x, t)∣∣ x ∈ R

n, t ≤ 0}.
The famous Jörgens, Calabi and Pogorelov theorem was extended by Gutiérrez and Huang
[9] to ancient solutions of (6). Their main result is

Theorem 1.2 (Gutiérrez-Huang [9]) Let u ∈ C4,2(Rn+1− ) be a parabolically convex solution
to the parabolic Monge–Ampère equation

− ut det D
2u = 1, in R

n+1− (7)

such that there exist positive constants m1 and m2 with

− m1 ≤ ut (x, t) ≤ −m2, for all (x, t) ∈ R
n+1− . (8)

Then u must have the form u(x, t) = τ t + p(x) where τ < 0 is a constant and p is a convex
quadratic polynomial.

They also gave an example of viscosity solutions to (7) that does not satisfy the given form
above. Later, Xiong and Bao [21] extended this theorem to more general parabolic Monge–
Ampère equations

ut = ρ(log det D2u) in R
n+1− ,

where ρ = ρ(z) ∈ C2(R).
Recently, using the method of perturbation, the study of parabolic equations emphasized

on C2,1 solutions. Zhang and Bao [23] extended the Liouville theorem of Caffarelli and Li
[4] to the parabolic Monge–Ampère equation

− ut det D
2u = f (x), in R

n+1− , (9)

where f is a positive periodic function, and u ∈ C2,1(Rn+1− ) satisfies (8). Zhang, Wang and
Bao [24] considered the equation

− ut det D
2u = f (x, t) in R

n+1− , (10)

where f ∈ C0(Rn+1− ) satisfies

0 < inf
R
n+1−

f ≤ sup
R
n+1−

f < +∞

and

supp( f − 1) is bounded.

Denote

A := {A : A is a real n × n symmetric positive definite matrix}.
Their result is

123



1608 J. Bao et al.

Theorem 1.3 (Zhang–Wang–Bao [24]) Let n ≥ 3 and u ∈ C2,1(Rn+1− ) be a parabolically
convex solution to (10) such that (8) holds. Then there exist τ < 0, A ∈ A, b ∈ R

n, c ∈ R

satisfying −τ det A = 1 such that

lim sup
|x |2−t→∞

eτ t (1 + |x |2) n−2
2 |u(x, t) −

(

τ t + 1

2
x ′Ax + b · x + c

)

| < +∞.

In [18], Wang and Bao proved the asymptotic behavior of solutions to the parabolic
Monge–Ampère equation

ut − log det D2u = f (x, t) in R
n+1− , n ≥ 4,

with supp( f − a) being bounded for a ∈ R.
The results above on asymptotics of ancient solutions naturally bring a question whether

these ancient solutions exist or not. To our knowledge, there is no answer on this question so
far.

In this paper, we first consider the exterior boundary value problem of the parabolic
Monge–Ampère equation

{

−ut det D
2u = f (x, t), in R

n+1− \D (11)

u = ϕ(x, t), on ∂pD, (12)

where f ∈ C0(Rn+1− ) is positive and satisfies

f (x, t) = 1 + O(|x |2 − t)−
β
2 , |x |2 − t → ∞, (13)

β > 2 is a constant, and

D = {(x, t)∣∣ Q(x) < t ≤ 0}, ∂pD = {(x, t)∣∣ Q(x) = t ≤ 0},
where Q(x) is a strictly convex second-order differentiable function such that D is not empty
and bounded.

Our first main theorem is

Theorem 1.4 Let n ≥ 3. For any A ∈ A, b ∈ R
n, and ϕ ∈ C2(D), there exists c∗ ∈ R,

depending on n, A, b, ϕ, such that for any c > c∗, there exists a unique viscosity solution
uc ∈ C0(Rn+1− \D) of (11), (12) and
⎧

⎪⎪⎨

⎪⎪⎩

lim sup
|x |2−t→+∞

(|x |2 − t)
min{n,β}−2

2

∣
∣
∣uc(x, t) − (τ t + 1

2 x
′Ax + b · x + c)

∣
∣
∣ < ∞, β 
= n,

lim sup
|x |2−t→+∞

(|x |2 − t)
n−2
2 (ln(|x |2 − t)

1
2 )−1

∣
∣
∣uc(x, t) − (τ t + 1

2 x
′Ax + b · x + c)

∣
∣
∣ < ∞, β = n.

(14)
where τ = − 1

det A .

As an additional result, we use similar method to prove the existence of entire solutions.
We consider the problem

− ut det D
2u = f (x, t) in R

n+1− , (15)

where f ∈ C0(Rn+1− ) is positive and satisfies (13). Our second result is

Theorem 1.5 Let n ≥ 3. For any A ∈ A, b ∈ R
n, and c ∈ R, there exists a unique

parabolically convex viscosity solution u to (15) satisfying (14).
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Ancient solutions of exterior problem of parabolic… 1609

Remark 1.6 The assumption β > 2 is sharp in Theorems 1.4 and 1.5 . Let r = |x |, and f be
a radial, smooth, positive function such that f (r) ≡ 1 for r ∈ [0, 1] and f (r) = 1+ r−2 for
r > 2. Let

u(x, t) = −t +
∫ |x |

0

( ∫ s

0
nyn−1 f (y) dy

) 1
n
ds.

It is easy to check that

−ut det D
2u = f in R

n+1− .

Moreover,

u(x, t) = −t + 1

2
|x |2 + O(log |x |), |x | → ∞, ∀t ≤ 0,

which contradicts to (14).

In addition to ancient solutions defined in the lower half space, there are also results
focusing on the time interval (0, T ] for some T > 0. In [19,20], the authors studied solutions
of the interior first initial boundary value problem

{

−ut det D2u = f (x, t), in Q := � × (0, T ],
u = ϕ(x, t), on ∂pQ := (∂� × (0, T ]) ∪ (� × {t = 0}).

where � is a C2 bounded convex domain in R
n , and f , ϕ satisfies some certain conditions.

In [8], Dai proved the existence of the viscosity solutions for the exterior initial-boundary
problem of the equation

−ut det D
2u = f (x), in (Rn \ �) × (0, T ],

where f is a perturbation of 1 near infinity.
Note also that the domains in [8,19,20] are cylinders, which is a special case of bowl-

shaped domains. General bowl-shaped domains can be time-varying domains leading tomore
difficulties.

The paper is arranged as follows. In Sect. 2, we give some useful lemmas. In Sects. 3 and
4, we prove Theorems 1.4 and 1.5, respectively, using Perron method.

2 Notations and lemmas

We begin with some notations. Given a bounded set � ⊂ R
n+1− and t ∈ R, we denote

�(t) = {x : (x, t) ∈ �}.
Let t0 = inf{t : �(t) 
= ∅}. The parabolic boundary of the bounded domain � is defined by

∂p� = (�(t0) × {t0}) ∪ ( ∪
t∈R(∂�(t) × {t})),

where � denotes the closure of � and ∂�(t) denotes the boundary of �(t). We say that the
set � ⊂ R

n+1 is a bowl-shaped domain if �(t) is convex for each t and �(t1) ⊂ �(t2) for
t1 ≤ t2.

We say a function u ∈ Ck, j (�) which means that u is k-th continuous differentiable
with spatial variables x ∈ R

n and j-th continuous differentiable with time variable t for
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1610 J. Bao et al.

(x, t) ∈ �. A function u is called locally parabolically convex if u is locally convex in x and
nonincreasing in t .

The following is the definition of viscosity solutions [20,22].

Definition 2.1 Let u be a locally parabolically convex upper-semicontinuous (USC for short)
(resp. lower-semicontinuous (LSC for short)) function in�. u is called a viscosity subsolution
(supersolution) of

− ut det D
2u = f (x, t), in �, (16)

if for any point (x̄, t̄) ∈ � and any function h ∈ C2,1(Qr (x̄, t̄)) and satisfying

u(x, t) − h(x, t) ≤ (≥)u(x̄, t̄) − h(x̄, t̄), ∀(x, t) ∈ Qr (x̄, t̄),

where

Qr (x̄, t̄) := {(x, t)∣∣|x − x̄ | < r , t̄ − r2 < t ≤ t̄} ⊂ �,

we have

−ht (x̄, t̄) det(D
2h(x̄, t̄)) ≥ (≤) f (x̄, t̄).

For the supersolution, we also require that D2h(x̄, t̄) > 0 in the matrix sense.
A function u ∈ C0(�) is called a viscosity solution of (16), if it is both a viscosity

subsolution and supersolution of (16).

Definition 2.2 A function u is called a viscosity subsolution (supersolution) of the problem
(11), (12), if u is a viscosity subsolution (supersolution) of (11), and u(x, t) ≤ (≥)ϕ(x, t)
on ∂pD.

A function u ∈ C0(Rn+1− \D) is called a viscosity solution of (11), (12), if u is a viscosity
solution of (11), and u(x, t) = ϕ(x, t) on ∂pD.

Next we prove some useful lemmas.

Lemma 2.3 Let n ≥ 3, ϕ ∈ C2(D). Then there exist some positive constants c0 and C0,
where c0 depends only on n, ϕ, D and C0 depends only on n, ϕ, D and c̄, such that, for any
(ξ, λ) ∈ ∂pD, there exists x̄(ξ, λ) ∈ R

n satisfying

|x̄(ξ, λ)| ≤ C0

and

wξ,λ(x, t) < ϕ(x, t) on ∂pD\{(ξ, λ)},
where

wξ,λ(x, t) = ϕ(ξ, λ) − c̄(t − λ) + 1

2
|x − x̄ |2 − 1

2
|ξ − x̄ |2, (x, t) ∈ R

n+1−

for any c̄ > c0.

Proof Denote

I := {x ∈ R
n
∣
∣
∣ Q(x) ≤ 0}.

Let (ξ, λ) ∈ ∂pD. By the mean value theorem, for x ∈ I , there exist ξ1, ξ2 ∈ I such that

Q(x) = Q(ξ) + DQ(ξ1) · (x − ξ),

Q(x) = Q(ξ) + DQ(ξ) · (x − ξ) + 1

2
(x − ξ)′D2Q(ξ2)(x − ξ).
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Let

M1 = max
x∈I |DQ(x)|, M2 = 1

2
min
x∈I |D2Q(x)|.

Then we have

|Q(x) − Q(ξ)| ≤ M1|x − ξ |,
Q(x) ≥ Q(ξ) + DQ(ξ) · (x − ξ) + M2|x − ξ |2.

Again by the mean value theorem, for (x, t) ∈ ∂pD,

ϕ(x, t)

= ϕ(ξ, λ) + Dx,tϕ(ξ, λ) ·
(

(x, t) − (ξ, λ)
)

+ 1

2

(

(x, t)

− (ξ, λ)
)′
D2
x,tϕ(ξ̄ , λ̄)

(

(x, t) − (ξ, λ)
)

≥ ϕ(ξ, λ) + Dxϕ(ξ, λ) · (x − ξ) + ϕt (ξ, λ)(t − λ) − C
(

|x − ξ |2 + (t − λ)2
)

= ϕ(ξ, λ) + Dxϕ(ξ, λ) · (x − ξ) + ϕt (ξ, λ)(Q(x) − Q(ξ))

− C
(

|x − ξ |2 + (Q(x) − Q(ξ))2
)

,

where (ξ̄ , λ̄) ∈ D, and C = 1
2 (max

D̄
|D2

x,tϕ| + max
D̄

|ϕt |).
Define

wξ,λ(x, t) = ϕ(ξ, λ) − c̄(t − λ) + 1

2
|x − x̄ |2 − 1

2
|ξ − x̄ |2, (x, t) ∈ R

n+1− ,

where

x̄(ξ, λ) = −Dxϕ(ξ, λ) + ξ − (c̄ + ϕt (ξ, λ))DQ(ξ).

Then on ∂pD,

wξ,λ(x, t) = ϕ(ξ, λ) − c̄(t − λ) + 1

2

(

|x |2 − |ξ |2
)

− (x − ξ) · x̄

= ϕ(ξ, λ) − c̄(Q(x) − Q(ξ)) + 1

2
|x − ξ |2 + Dxϕ(ξ, λ) · (x − ξ)

+ (c̄ + ϕt (ξ, λ))DQ(ξ) · (x − ξ).

Thus for c̄ ≥ max
D̄

|ϕt |,

(wξ,λ − ϕ)(x, t) ≤ (−c̄ − ϕt (ξ, λ))(Q(x) − Q(ξ))

+ 1

2
|x − ξ |2 + C

(

|x − ξ |2 + (Q(x) − Q(ξ))2
)

+ (c̄ + ϕt (ξ, λ))DQ(ξ) · (x − ξ)

≤ (−c̄ − ϕt (ξ, λ))M2|x − ξ |2 + 1

2
|x − ξ |2 + C

(

|x − ξ |2 + M2
1 |x − ξ |2

)

=
[

(−c̄ − ϕt (ξ, λ))M2 + 1

2
+ C(1 + M2

1 )
]

|x − ξ |2.
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1612 J. Bao et al.

Set c0 = 1
M2

(
1
2 + C(1 + M2

1 )
)

+ 2C , then for c̄ > c0,

(−c̄ − ϕt (ξ, λ))M2 + 1

2
+ C(1 + M2

1 ) < 0,

and

(wξ,λ − ϕ)(x, t) < 0 on ∂pD\{(ξ, λ)}.
��

We say � is an open set in the parabolic sense if � = �\∂p�.

Lemma 2.4 Let �1 ⊂ �2 be two open subsets in R
n+1 in the parabolic sense. Suppose

u ∈ USC(�2) and v ∈ USC(�1) are locally parabolically convex and satisfy

− ut det D
2u ≥ f (x, t) in �2, (17)

and
− vt det D

2v ≥ f (x, t) in �1 (18)

in the viscosity sense, respectively. Furthermore, assume

u ≤ v in �1, u = v on ∂�1 \ (∂�1 ∩ ∂�2).

Let

w(x, t) =
{

v(x, t), (x, t) ∈ �1,

u(x, t), (x, t) ∈ �2\�1.

Then w ∈ USC(�2) is locally parabolically convex and satisfy

−wt det D
2w ≥ f (x, t) in �2

in the viscosity sense.

Proof Let h ∈ C2,1(�2) and (x̄, t̄) ∈ �2 satisfying

w(x, t) − h(x, t) ≤ w(x̄, t̄) − h(x̄, t̄), ∀(x, t) ∈ Qr (x̄, t̄),

for some Qr (x̄, t̄) ⊂ �2.
If (x̄, t̄) ∈ �1, then for some Qr1(x̄, t̄) ⊂ Qr (x̄, t̄) ∩ �1,

v(x, t) − h(x, t) = w(x, t) − h(x, t) ≤ w(x̄, t̄) − h(x̄, t̄) = v(x̄, t̄)

−h(x̄, t̄), ∀(x, t) ∈ Qr1(x̄, t̄).

By (18), we have

−ht (x̄, t̄) det D
2h(x̄, t̄) ≥ f (x, t).

If (x̄, t̄) ∈ �2\�1, then

u(x, t) − h(x, t) ≤ w(x, t) − h(x, t) ≤ w(x̄, t̄) − h(x̄, t̄) = u(x̄, t̄)

−h(x̄, t̄), ∀(x, t) ∈ Qr (x̄, t̄).

By (17), we have

−ht (x̄, t̄) det D
2h(x̄, t̄) ≥ f (x, t).

��
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Now we give the comparison principle below.

Lemma 2.5 (Comparison principle) Let � be a bounded open set in R
n+1 in the parabolic

sense. Let u ∈ USC(�) and v ∈ LSC(�) satisfy

−ut det D
2u ≥ f (x, t) in �

and

−vt det D
2v ≤ f (x, t) in �

in the viscosity sense, respectively. Then we have

sup
�

(u − v) ≤ sup
∂p�

(u − v). (19)

Under the assumptions u, v ∈ C0(�) and � being a cylindrical domain, the lemma was
proved by Wang and Wang [20]. Based on their result, we can then directly obtain our
comparison principle.

To introduce the Perron method for parabolic equations, we first define weak viscosity
solutions which do not satisfy (semi) continuous properties.

Definition 2.6 Let � ⊂ R
n+1 be an open set in parabolic sense. We say a function u is a

weak viscosity subsolution of

−ut det D
2u = f (x, t) in �

if the USC envelope of u, namely,

u∗(x, t) = lim
r→0

sup
(y,s)∈Br (x,t)

u(y, s)

is finite and a viscosity subsolution, where

Br (x, t) := {(y, s)∣∣ |x − y|4 + |t − s|2 < r2} ⊂ �.

Similarly, one uses LSC envelope u∗ = −(−u)∗ for supersolutions. If u is a weak viscosity
sub- and supersolution, we call u a weak viscosity solution.

We can also define weak viscosity solutions of the problem (11), (12) by giving the boundary
condition like Definition 2.2.

Similar to the process by Zhan [22], we have the two lemmas below. We give the proof
here for completeness.

Lemma 2.7 Let � be an open set inRn+1 in the parabolic sense. Let S denote any nonempty
set of weak viscosity subsolutions of

− vt det D
2v = f (x, t) in �. (20)

Set

u(x, t) = sup{v(x, t)
∣
∣ v ∈ S} for (x, t) ∈ �.

Suppose u∗(x, t) < ∞ for (x, t) ∈ �, then u is a weak viscosity subsolution of (20).

123



1614 J. Bao et al.

Proof By the definition of weak viscosity subsolutions, we need to prove that for all function
ϕ ∈ C2,1(�), if there exists (x̄, t̄) ∈ � such that

max
Qr

(u∗ − ϕ) = (u∗ − ϕ)(x̄, t̄),

for some Qr := Qr (x̄, t̄), then

−ϕt det D
2ϕ(x̄, t̄) ≥ f (x̄, t̄).

Without loss of generality, we can assume that (u∗ − ϕ)(x̄, t̄) = 0.
Set

ψ(x, t) = ϕ(x, t) + |x − x̄ |4 + |t − t̄ |2,
then u∗ − ψ attains its strict maximum in Qr at (x̄, t̄). So in Qr ,

(u∗ − ψ)(x, t) + |x − x̄ |4 + |t − t̄ |2 = (u∗ − ϕ)(x, t) ≤ 0 = (u∗ − ψ)(x̄, t̄),

and

(u∗ − ψ)(x, t) ≤ −|x − x̄ |4 − |t − t̄ |2.
By the definition of u, for any k, there is a vk ∈ S such that

u(x̄, t̄) − 1

k
< vk(x̄, t̄).

Since v∗
k − ψ ∈ USC(�), it attains its maximum at (yk, sk) in some compact neighborhood

B ⊂ Qr of (x̄, t̄). Noting that

(v∗
k − ψ)(x, t) ≤ (u∗ − ψ)(x, t) ≤ −|x − x̄ |4 − |t − t̄ |2,

we have,

−1

k
= (u∗ − ψ)(x̄, t̄) − 1

k
≤ (v∗

k − ψ)(x̄, t̄) ≤ (v∗
k − ψ)(yk , sk) ≤ −|yk − x̄ |4 − |sk − t̄ |2 ≤ 0.

Let k → ∞, we have

lim
k→∞(yk, sk) = (x̄, t̄).

Since v∗
k is a viscosity subsolution of (20), and v∗

k −ψ attains its localmaximumat (yk , sk),
then

−ψt det D
2ψ(yk, sk) ≥ f (yk, sk).

Let k → ∞, we have

−ψt det D
2ψ(x̄, t̄) ≥ f (x̄, t̄).

The lemma follows since at (x̄, t̄), ψt = ϕt , Dxψ = Dxϕ, and D2
xxψ = D2

xxϕ. ��
Lemma 2.8 Let g be a weak viscosity supersolution of (20). Let

Sg := {v∣
∣ v is a weak viscosity subsolution of (20) and v ≤ g}

and

u(x, t) := sup{v(x, t)
∣
∣ v ∈ Sg}.

If Sg is not empty, then u is a weak viscosity solution of (20).
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Proof By Lemma 2.7, u is a weak viscosity subsolution. If u is not a weak viscosity super-
solution, there exists a function ϕ ∈ C2,1(�), and a point (x̄, t̄) ∈ � such that

min
Qr

(u∗ − ϕ) = (u∗ − ϕ)(x̄, t̄) = 0

for some Qr := Qr (x̄, t̄), and

−ϕt det D
2ϕ(x̄, t̄) > f (x̄, t̄).

We may assume here

(u∗ − ϕ)(x, t) ≥ |x − x̄ |4 + |t − t̄ |2

for (x, t) ∈ Qr since the function ϕ can be modified as ϕ − |x − x̄ |4 − |t − t̄ |2 if necessary.
Clearly ϕ ≤ u∗ ≤ g∗ in Qr , so u∗(x̄, t̄) = ϕ(x̄, t̄) < g∗(x̄, t̄), otherwise it would

contradict the fact that g is a weak viscosity supersolution of (20).
Since f and ϕ are continuous, for δ > 0 small enough, we have

− ϕt det D
2ϕ(x, t) ≥ f (x, t), (21)

ϕ(x, t) + δ2 ≤ g∗(x, t)

for (x, t) ∈ B2δ = B((x̄, t̄), 2δ) ⊂ Qr , and B((x, t), δ) = {(y, s) ∈ Qr
∣
∣|x− y|4+|t−s|2 <

δ2}.
(21) indicates that the function ϕ(x, t) + δ2 is a subsolution in B2δ; furthermore we have

u(x, t) ≥ u∗(x, t) ≥ ϕ(x, t) + |x − x̄ |4 + |t − t̄ |2 ≥ ϕ(x, t) + δ2 in B2δ \ Bδ.

Define w(x, t) by

w(x, t) =
{

max{ϕ(x, t) + δ2, u(x, t)}, (x, t) ∈ Bδ,

u(x, t), (x, t) ∈ � \ Bδ,

then

w(x, t) = max{ϕ(x, t) + δ2, u(x, t)}, (x, t) ∈ B2δ.

By Lemmas 2.4 and 2.7, w is a weak viscosity subsolution of (20) over �. Since w ≤ g,
w ∈ Sg . By the definition of u, we have u ≥ w.

On the other hand, since

0 = (u∗ − ϕ)(x̄, t̄) = lim
l→0

inf
(y,s)∈Bl

(u − ϕ)(y, s),

there is a point (z, s) ∈ Bδ such that u(z, s) − ϕ(z, s) < δ2 and u(z, s) < w(z, s), which
leads to a contradiction. ��

Let H > 0, and DH = {(x, t)∣∣ 12 |x |2 − H2 < t ≤ 0}. We prove a parabolic version of
Lemma 2.1 in [10].

Lemma 2.9 Assume ϕ(h) ∈ C2[0, H) with ϕ′(0) = 0. Then for v(x, t) = ϕ(h) where

h =
√

−t + 1
2 |x |2 < H, we have that v(x, t) ∈ C2,1(DH ).
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Proof For (x, t) 
= 0,

∂v

∂xi
(x, t) = ϕ′(h)

xi
2h

,

∂2v

∂xi∂x j
(x, t) = ϕ′′(h)

xi x j
4h2

− ϕ′(h)
xi x j
4h3

+ ϕ′(h)
δi j

2h
,

∂v

∂t
= ϕ′(h)

−1

2h
.

Since ϕ′(0) = 0, we have

lim
(x,t)→0

∂v

∂xi
(x, t) = lim

(x,t)→0

(
ϕ′(h) − ϕ′(0)

h − 0

)
xi
2

= ϕ′′(0) · 0 = 0,

lim
(x,t)→0

∂2v

∂xi∂x j
(x, t) = lim

(x,t)→0

(

(ϕ′′(h) − ϕ′(h)

h

)
xi x j
4h2

+
(

ϕ′(h)

h

δi j

2

)

= ϕ′′(0)
δi j

2
,

lim
(x,t)→0

∂v

∂t
= lim

(x,t)→0

(
ϕ′(h) − ϕ′(0)

h − 0

) −1

2
= ϕ′′(0)−1

2
.

Define

∂v

∂xi
(0) = 0,

∂2v

∂xi∂x j
(0) = ϕ′′(0)

δi j

2
,

∂v

∂t
(0) = ϕ′′(0)−1

2
.

Then v ∈ C2,1(DH ). ��

3 Proof of Theorem 1.4

We first prove the uniqueness. Let DH = {(x, t)∣∣ 12 |x |2 − H2 < t ≤ 0}. Suppose u and v are
both viscosity solutions of (11), (12) and satisfy (14). Then ∀ε > 0, there exists H > 0 such
that D ⊂ DH and

u(x, t) + ε ≥ v(x, t), R
n+1− \DH .

By the comparison principle in Lemma 2.5, we have u + ε ≥ v in DH\D. Thus u + ε ≥ v

in Rn+1− \D. Sending ε → 0, we have u ≥ v in Rn+1− \D. Similarly, we can also prove u ≤ v

in R
n+1− \D. Then the uniqueness is followed.

Next we prove the existence. By an affine transformation, we can only prove the case
A = I , b = 0. Without loss of generality, we can assume that DH1 ⊂⊂ D ⊂⊂ DH2 , where
H2 > H1. We divide the proof into five steps.

Step 1.Construct a viscosity subsolution u of (11) satisfying (12), (14) and a supersolution
u+ of (11), (12) satisfying (14) such that u ≤ u+.

Let F := sup
R
n+1−

f (x, t). By Lemma 2.3, for any (ξ, λ) ∈ ∂pD, there exist c0 > 0 and

x̄(ξ, λ) ∈ R
n , |x̄(ξ, λ)| < ∞ such that

wξ,λ(x, t) < ϕ(x, t) on ∂pD\{(ξ, λ)},
where

wξ,λ(x, t) = ϕ(ξ, λ) − c̄(t − λ) + 1

2
|x − x̄ |2 − 1

2
|ξ − x̄ |2, (x, t) ∈ R

n+1− ,
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and

c̄ = max{c0, F}.
Then

−(wξ,λ)t det D
2wξ,λ = c̄ ≥ F ≥ f (x, t), (x, t) ∈ R

n+1− .

Set

w(x, t) = max
(ξ,λ)∈∂p D

wξ,λ(x, t), (x, t) ∈ R
n+1− .

Then w is a locally Lipschitz function in R
n+1− ,

w(x, t) = ϕ(x, t), (x, t) ∈ ∂pD, (22)

and by Lemma 2.7,
− wt det D

2w ≥ f (x, t), (x, t) ∈ R
n+1− (23)

in the viscosity sense.

Let r = |x |, and h(r , t) =
√

−t + 1
2r

2. By the definition of f , we can find continuous

functions f (h) and f (h) satisfying

0 < f (h) ≤ f (x, t) ≤ f (h), R
n+1− \D,

f (h) ≤ 1 ≤ f (h), h > 0,

f is monotonically nondecreasing in h for h > 0, and there exist C, H > 0 such that

f (h) = 1 − Ch−β, f (h) = 1 + Ch−β, ∀h ≥ H .

We want to construct a subsolution u−(x, t) = U (h) to (11) that satisfies

− (u−)t det D
2u− ≥ f (h) in R

n+1− \ DH1 . (24)

Since h(r , t) =
√

−t + 1
2r

2 > H1 in R
n+1− \DH1 , we have

ht = −1

2h
, hr = r

2h
, hrr = −t

2h3
,

and

(u−)t = U ′ht , (u−)r = U ′hr , (u−)rr = U ′′(hr )2 +U ′hrr .

Then we compute

− (u−)t det D
2u− = −(u−)t (

(u−)r

r
)n−1(u−)rr

= −U ′ht
(U ′hr

r

)n−1
(U ′′(hr )2 +U ′hrr )

=
(U ′

2h

)n(

U ′′ r2

4h2
−U ′ t

2h3

)

= U ′

2h3

[U ′′

2
(
U ′

2h
)n−1 r

2

2
− (

U ′

2h
)nt

]

= U ′

2h3

[U ′′

2

(U ′

2h

)n−1
h2 +

(U ′

2h

)n−1(U ′′

2
− U ′

2h

)

t
]

.
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For the thinking of transforming the partial differential inequality into an ordinary one, we
expect the following conditions hold:

U ′ ≥ 2h, U ′′ − U ′

h
≤ 0. (25)

Then we could obtain

−(u−)t det D
2u− ≥ U ′′

2

(U ′

2h

)n−1
in R

n+1− \ DH1 .

We know that solutions of

U ′′

2

(U ′

2h

)n−1 = f (h)

must be

U (h) = 2
∫ h

0

( ∫ s

0
nyn−1 f (y) dy + C1

) 1
n
ds + C2,

where C1 ≥ 0, C2 are constants. We expect u−(x, t) = U (h) with proper C1 and C2 to be
the subsolution we want.

Now we check the conditions (25). We have

U ′(h) = 2
( ∫ h

0
nyn−1 f (y) dy + C1

) 1
n
, (26)

U ′′(h) = 2hn−1 f (h)
( ∫ h

0
nyn−1 f (y) dy + C1

) 1
n −1

. (27)

The first condition is obvious since we require f ≥ 1. We claim here that if C1 is large
enough, the second condition also holds, i.e.,

f (h)hn −
∫ h

0
nyn−1 f (y) dy ≤ C1, ∀h > H1.

In fact, when h is small, the inequality is obvious. So we can only consider the case h ≥ H ,

f (h)hn −
∫ h

0
nyn−1 f (y) dy

= ( f (h) − 1)hn −
∫ h

0
nyn−1( f (y) − 1) dy

= Chn−β −
∫ H

0
nyn−1( f (y) − 1) dy −

∫ h

H
nyn−1Cy−β dy

=
{

− Cβ
n−β

hn−β + Cn
n−β

Hn−β − ∫ H
0 nyn−1( f (y) − 1) dy, β 
= n,

C − Cn ln h + Cn ln H − ∫ H
0 nyn−1( f (y) − 1) dy, β = n,

≤ CHn−β −
∫ H

0
nyn−1( f (y) − 1) dy.

Then if C1 is large enough, the inequality follows.
Due to the process above, for C1,C2 > 0, we define functions

u−(x, t) = 2
∫

√

−t+ 1
2 |x |2

H2

(∫ s

0
nyn−1 f (y) dy + C1

) 1
n

ds + inf
DH2

w, (x, t) ∈ R
n+1− , (28)
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and

u+(x, t) = 2
∫

√

−t+ 1
2 |x |2

H1

(∫ s

0
nyn−1 f (y) dy

) 1
n

ds + C2, (x, t) ∈ R
n+1− .

Then we see that

u−(x, t) ≤ 2
∫ H2

H2

(∫ s

0
nyn−1 f (y) dy + C1

) 1
n

ds + inf
DH2

w ≤ w(x, t), on ∂pD. (29)

Choose H3 = H2 + 1 and sufficiently large C1,C2 such that the following three inequalities
hold at the same time

u−(x, t) = 2
∫ H3

H2

(∫ s

0
nyn−1 f (y) dy + C1

) 1
n

ds + inf
DH2

w ≥ w(x, t), on ∂pDH3 ,

(30)

u+(x, t) = 2
∫ H3

H1

(∫ s

0
nyn−1 f (y) dy

) 1
n

ds + C2 ≥ w(x, t), on ∂pDH3 , (31)

u+(x, t) = C2 ≥ w(x, t) ≥ u−(x, t), on ∂pDH1 . (32)

We have already proved that if C1 is large enough,

− (u−)t det D
2u− ≥ f (h), in R

n+1− \DH1 . (33)

Using the expressions (26) and (27) forU ′(h) andU ′′(h), similar to the computations of u−,
we can easily obtain that

−(u+)t det D
2u+ ≤ f (h) + 1

h3

(∫ h

0
nyn−1 f (y) dy

) 1
n

[

f (h) − 1

hn

(∫ h

0
nyn−1 f (y) dy

)]

t .

Since f is monotonically nondecreasing in h, we have
∫ h

0
nyn−1( f (h) − f (y)) dy ≥ 0.

Thus we have
− (u+)t det D

2u+ ≤ f (h), in R
n+1− \DH1 . (34)

Now we consider the asymptotics. As s → +∞, the integrand function in (28)

(∫ s

0
nyn−1 f (y) dy + C1

) 1
n

= (sn + C1 +
∫ H

0
nyn−1( f (y) − 1) dy +

∫ s

H
nyn−1Cy−β dy)

1
n

=
{

(sn + d1 + d2sn−β)
1
n , β 
= n,

(sn + d3 + d4 ln s)
1
n , β = n,

=
{

s(1 + d1s−n + d2s−β)
1
n , β 
= n,

s(1 + d3s−n + d4s−n ln s)
1
n , β = n,

=
{

s + O(s1−min{n,β}), β 
= n,

s + O(s1−n ln s), β = n,
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where

d1 = C1 +
∫ H

0
nyn−1( f (y) − 1) dy − Cn

n − β
Hn−β, d2 = Cn

n − β
,

d3 = C1 +
∫ H

0
nyn−1( f (y) − 1) dy − Cn ln H , d4 = Cn.

Thus, as |x |2 − t → ∞,

u−(x, t) = 2
∫

√

−t+ 1
2 |x |2

H2

(∫ s

0
nyn−1 f (y) dy + C1

) 1
n

ds + inf
DH2

w

= 2
∫

√

−t+ 1
2 |x |2

H2

[(∫ s

0
nyn−1 f (y) dy + C1

) 1
n − s

]

ds − t + 1

2
|x |2 − H2

2 + inf
DH2

w

=
⎧

⎨

⎩

−t + 1
2 |x |2 + μ(C1) + O

(

(|x |2 − t)
2−min{n,β}

2

)

, β 
= n,

−t + 1
2 |x |2 + μ(C1) + O

(

(|x |2 − t)
2−n
2 ln(|x |2 − t)

1
2

)

, β = n,

where

μ(C1) = 2
∫ ∞

H2

[(∫ s

0
nyn−1 f (y) dy + C1

) 1
n − s

]

ds − H2
2 + inf

DH2

w < +∞.

Similarly, as |x |2 − t → +∞,

u+(x, t) = 2
∫

√

−t+ 1
2 |x |2

H1

(∫ s

0
nyn−1 f (y) dy

) 1
n

ds + C2

=
⎧

⎨

⎩

−t + 1
2 |x |2 + ν(C2) + O

(

(|x |2 − t)
2−min{n,β}

2

)

, β 
= n,

−t + 1
2 |x |2 + ν(C2) + O

(

(|x |2 − t)
2−n
2 ln(|x |2 − t)

1
2

)

, β = n,

where

ν(C2) = 2
∫ ∞

H1

[(∫ s

0
nyn−1 f (y) dy

) 1
n − s

]

ds − H2
1 + C2 < +∞.

We can see that μ(C1) and ν(C2) are continuous and strictly increasing in (0,+∞) and

lim
C1→+∞ μ(C1) = +∞, lim

C2→+∞ ν(C2) = +∞.

Then there exists c∗ large enough such that for any c > c∗, there exists C1(c) and C2(c)
satisfying μ(C1(c)) = c and ν(C2(c)) = c. Therefore, we have, as |x |2 − t → +∞,

u−(x, t) = u+(x, t) =
⎧

⎨

⎩

−t + 1
2 |x |2 + c + O

(

(|x |2 − t)
2−min{n,β}

2

)

, β 
= n,

−t + 1
2 |x |2 + c + O

(

(|x |2 − t)
2−n
2 ln(|x |2 − t)

1
2

)

, β = n.

(35)
Then by (32), (33), (34), (35), and Lemma 2.5,

u−(x, t) ≤ u+(x, t), in R
n+1− \DH1 . (36)
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For c > c∗, define

u(x, t) =
{

max{w(x, t), u−(x, t)}, DH3\DH1 ,

u−(x, t), R
n+1− \QH3 .

By (30), we know that u ∈ C0(Rn+1− \D) is locally parabolically convex. And by (23), (33)
and Lemma 2.4, 2.7, u satisfies

− ut det D
2u ≥ f (x, t), in R

n+1− \D (37)

in the viscosity sense. By (22), (29),

u(x, t) = w(x, t) = ϕ(x, t), (x, t) ∈ ∂pD. (38)

Then u is a viscosity subsolution of (11), (12). And by (35), as |x |2 − t → +∞,

u(x, t) =
⎧

⎨

⎩

−t + 1
2 |x |2 + c + O

(

(|x |2 − t)
2−min{n,β}

2

)

, β 
= n,

−t + 1
2 |x |2 + c + O

(

(|x |2 − t)
2−n
2 ln(|x |2 − t)

1
2

)

, β = n.
(39)

Furthermore, by (23), (31), (32), and Lemma 2.5,

w(x, t) ≤ u+(x, t), in DH3\DH1 .

Then combining with (36), we have

u(x, t) ≤ u+(x, t) in R
n+1− \D. (40)

Step 2. Define the Perron solution of (11), (12).
For X = R

n+1− \D, let Sc,X denote the set of locally parabolically convex functions v

which are weak viscosity subsolutions of (11), (12) satisfying

v(x, t) ≤ u+(x, t), in R
n+1− \D.

According to Step 1, u ∈ Sc,X . So Sc,X 
= ∅. Define
uc(x, t) = sup{v(x, t) : v ∈ Sc,X }, (x, t) ∈ R

n+1− \D.

Step 3. We prove that uc has the asymptotic behavior at infinity.
First, by the definition of uc, we have

uc(x, t) ≤ u+(x, t), in R
n+1− \D. (41)

And since u ∈ Sc,X , by (35), (39), as |x |2 − t → +∞,

uc(x, t) =
⎧

⎨

⎩

−t + 1
2 |x |2 + c + O

(

(|x |2 − t)
2−min{n,β}

2

)

, β 
= n,

−t + 1
2 |x |2 + c + O

(

(|x |2 − t)
2−n
2 ln(|x |2 − t)

1
2

)

, β = n.
(42)

Step 4. We prove that uc(x, t) = ϕ(x, t), (x, t) ∈ ∂pD.
For any (ξ, τ ) ∈ ∂pD, on the one hand, by (38), we have

lim inf
(x,t)→(ξ,τ )

uc(x, t) ≥ lim
(x,t)→(ξ,τ )

u(x, t) = ϕ(ξ, τ ).

On the other hand, we have

lim sup
(x,t)→(ξ,τ )

uc(x, t) ≤ ϕ(ξ, τ ).
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Indeed, for every v ∈ Sc,X , by the definition of viscosity solutions, we have, in the viscosity
sense,

⎧

⎪⎪⎨

⎪⎪⎩

−v∗
t + �v∗ ≥ 0, (x, t) ∈ DH2\D,

v∗ ≤ ϕ, (x, t) ∈ ∂pD,

v∗ ≤ sup
∂p DH2

u+ =: B, (x, t) ∈ ∂pDH2 .

Let w+ ∈ C2,1(DH2\D) ∩ C0(DH2\D) be the solution of the problem [15]
⎧

⎪⎨

⎪⎩

−w+
t + �w+ = 0, (x, t) ∈ DH2\D,

w+ = ϕ, (x, t) ∈ ∂pD,

w+ = B, (x, t) ∈ ∂pDH2 .

By the comparison principle for the heat conduction equation, which can be proved directly
by the definition of viscosity solutions, we have v ≤ v∗ ≤ w+, (x, t) ∈ DH2\D. So
uc ≤ w+, (x, t) ∈ DH2\D, and

lim sup
(x,t)→(ξ,τ )

uc(x, t) ≤ lim
(x,t)→(ξ,τ )

w+(x, t) = ϕ(ξ, τ ).

Step 5. We prove that uc is a viscosity solution of (11).
By the definition of uc and Lemma 2.8, we can prove that uc is a weak viscosity solution

of (11). Then by Lemma 2.5 and the asymptotic behavior, u∗
c ≤ uc∗. By the definition of u∗

c
and uc∗, u∗

c ≥ uc∗. So u∗
c = uc∗ = uc, then uc is continuous and a viscosity solution.

4 Proof of Theorem 1.5

The uniqueness part can be proved easily by comparison principle and the asymptotic behav-
ior (14). We only prove the existence part and assume A = I , b = 0 and c = 0.

For C3 large enough, define

u−(x, t) = 2
∫ h

0

(∫ s

0
nyn−1 f̄ (y) dy + C3

) 1
n

ds − γ (C3),

and

u+(x, t) = 2
∫ h

0

(∫ s

0
nyn−1 f (y) dy

) 1
n

ds − C4,

where

γ (C3) = 2
∫ ∞

0

[(∫ s

0
nyn−1 f (y) dy + C3

) 1
n − s

]

ds < +∞,

and

C4 = 2
∫ ∞

0

[(∫ s

0
nyn−1 f (y) dy

) 1
n − s

]

ds < +∞,

Then by computation in Sect. 3, definition of viscosity solutions, and Lemma 2.9, we have

−(u−)t det D
2u− ≥ f in R

n+1−
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and

−(u+)t det D
2u+ ≤ f in R

n+1−
in viscosity sense. And

u−(x, t) = u+(x, t) = −t + 1

2
|x |2 +

{

O(|x |2 − t)
2−min{n,β}

2 , β 
= n,

O(|x |2 − t)
n−2
2 ln(|x |2 − t)

1
2 , β = n.

By comparison principle and the asymptotic behavior, we can obtain that u− ≤ u+.
Let S denote the set of parabolically convex functions v which are weak viscosity subso-

lutions of (15), satisfying

v(x, t) ≤ u+(x, t), in R
n+1− .

Since u− ∈ S, S 
= ∅. Define
u(x, t) = sup{v(x, t) : v ∈ S}, (x, t) ∈ R

n+1− .

By the definition of u, we have

u−(x, t) ≤ u(x, t) ≤ u+(x, t), in R
n+1− .

Then as |x |2 − t → +∞,

u(x, t) = −t + 1

2
|x |2 +

{

O(|x |2 − t)
2−min{n,β}

2 , β 
= n,

O(|x |2 − t)
n−2
2 ln(|x |2 − t)

1
2 , β = n.

Using Perron method, comparison principle and the asymptotic behavior as Step 5 in
Sect. 3, we can prove that u is a viscosity solution of (15).
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