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Abstract We extend a theorem of Jorgens, Calabi and Pogorelov on entire solutions of
elliptic Monge—Ampere equation to parabolic Monge—Ampere equation, and obtain delicate
asymptotic behavior of solutions at infinity. For the dimension n > 3, the work of Gutiérrez
and Huang in Indiana Univ. Math. J. 47, 1459-1480 (1998) is an easy consequence of our
result. And along the line of approach in this paper, we can treat other parabolic Monge—
Ampere equations.

Mathematics Subject Classification 35K96 - 35B08 - 35B40 - 35B53

1 Introduction

A celebrated result of Jorgens (n = 2 [13]), Calabi (n < 5 [5]) and Pogorelov (n > 2 [20])
states that any classical convex solutions to the Monge—Ampere equation

det D*u = 1in R" (1.1
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must be a quadratic polynomial. A simpler and more analytical proof was given by Cheng
and Yau [6]. Jost and Xin showed a quite different proof in [14]. Caffarelli [2] extended above
result for classical solutions to viscosity solutions. Caffarelli and Li [3] considered

det D’u = f in R", (1.2)

where f is a positive continuous function and is not equal to 1 only on a bounded set. They
proved that for n > 3, the convex viscosity solution u is very close to quadratic polynomial
at infinity. More precisely, for n > 3, there exist c € R, b € R” and an n x n symmetric
positive definite matrix A with det A = 1, such that

lim sup |x|" 2 < 00.

|x|—o00

L 7
u(x) — Ex Ax+b-x+c

In a subsequent work [4], Caffarelli and Li proved that if f is periodic, then # must be the sum
of a quadratic polynomial and a periodic function. In recent paper [12], a similar theorem for
a Monge—Ampere equation in half space was established by Jian and Wang.

Above famous Jorgens, Calabi and Pogorelov theorem was extended by Gutiérrez and
Huang [9] to solutions of the following parabolic Monge—Ampére equation

—u;det D*u =1, (1.3)

where u = u(x, t) is parabolically convex, i.e., u is convex in x and nonincreasing in ¢, and
D?u denotes the Hessian of u with respect to the variable x. They got

Theorem 1.1 Let u € C4’2(R'i+l) be a parabolically convex solution to the parabolic
Monge—Ampeére equation (1.3) in R .= R" x (—o00, 0, such that there exist positive
constants my and my with

—my <u(x,1) < —my, V(x,1)e R (1.4)

Then u must have the form u(x,t) = Cit + p(x), where C1 < 0 is a constant and p is a
convex quadratic polynomial on x.

and they gave an example to show that viscosity solutions to (1.3) may not be of the form
given by above theorem. Recently, Bao and Xiong [26] extended this theorem to general
parabolic Monge—Ampere equations.

This type of parabolic Monge—Ampere operator was first introduced by Krylov [15].
Owing to its importance in stochastic theory, he further considered it in [16—18]. This oper-
ator is relevant in the study of deformation of a surface by Gauss—Kronecker curvature [8].
Indeed, Tso [23] solved this problem by noting that the support function to the surface that
is deforming satisfies an initial value problem involving that parabolic operator. And the
operator plays an important role in a maximum principle for parabolic equations [22].

For the parabolic Monge—Ampere equation, there are many results about existence and
regularity. For example, Wang and Wang [24] proved the existence of viscosity solutions
to (1.3) with an initial boundary value by the approximation procedure and the nonlinear
perturbation method, and C2+%1+%/2 regularity of the viscosity solutions. Later, they [25]
developed a geometric measure theory associated with above parabolic Monge—Ampere
operator, and then used this theory to prove the existence of a viscosity solution to an initial
boundary value problem. Gutiérrez and Hang [11] obtained that the interior W2 ? estimates
for (1.3). Recently, Tang [21] obtained the same estimates under weaker conditions.

In this paper, we extend the theorem of Caffarelli and Li [3] to above parabolic Monge—
Ampere equation, and obtain asymptotic behavior at infinity.
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Theorem 1.2 Letn > 3 andu € C 2’I(R'ﬁ']) be a parabolically convex solution to the
parabolic Monge—Ampére equation

—u;det D*u = f(x,1) inR'!, (1.5)

such that (1.4) holds, where f € C O(R'iﬂ) satisfies

0 < inf f < sup f < +o0 (1.6)
R+ RAH
and
support (f — 1) is bounded. .7

Then there exist T < 0, an n x n symmetric positive definite matrix A, b € R" ¢ceR
satisfying —t det A = 1 such that E(x,t) :== u(x,t) — (vt + XT% +bTx + ¢) satisfies
limsup e™(1+ |x|2)%|E(x, t)| < 4o0. (1.8)
|x|2—t—+o00

Moreover, u is C* in the complement of the support of (f — 1) and
n=2+4k

2 2 o
lim sup <ﬁ — t) |D)’CD‘I/E(x,Z)| <400, i +2j=k, Vk>1. (1.9)

2

|x|2—t—+00

For n > 3, the theorem of Jorgens, Calabi and Pogorelov to (1.3) is an easy consequence
of Theorem 1.2.

Corollary 1.3 Letn > 3 and u € Cz’l(R'iﬂ) be a parabolically convex solution to (1.3)
such that (1.4) holds. Then u must have the form u(x,t) = C1t 4+ p(x), where C1 < 0 is a
constant and p is a convex quadratic polynomial on x.

Proof By Theorem 1.2, for some 7 < 0, symmetric positive definite matrix A with
—1detA=1,beR" ceRR, wehave

T
A
E(x,t) :=u(x,t)—1:l—x 2x—bTx—c—>0, as v/ |x|2 —t = +oo.

Denote F(a, M) = —a det M. Since
F(t+E,A+D*E)—F(t1,A)=1—-1=0,

it follows that
a E; -‘rh\,‘jD,'jE =0 in RTH,

where

1
@0 = [ AC1+0EA+0D2E)0. Gyx.0
0

1
= / Fij(—=1+0E,, A+ 6D*E)dé.
0

By the maximum principle, E(x,t) =0, i.e.,

xT Ax

2

ulx,t) =1t + +b"x +c.

[}
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Remark 1.1 For n > 3, the same result of Theorem 1.1 is obtained under weaker regularity
on u. Precisely, by nonlinear perturbation method developed by Caffarelli, we only need
uecC>,

Throughout the paper we work on the parabolic Monge—Ampere equation (1.5), but our
methods can be applied to other parabolic Monge—Ampere equations, such as

u; = (det D*u)s + f(x, 1),
u; = logdet D*u + f(x,1). (1.10)

Taking the (1.10) for example, we get

Corollary 1.4 Let f € COR™Y), satisfy (1.6) and (1.7), and let u € C*>'(R™™!) be a
convex solution to (1.10) satisfying

m<u <M (L.11)

Then there exist T,c € R, b € R" and a symmetric positive definite n x n matrix A with
T —logdet A = 1, such that E(x,t) == u(x,t) — [tt + %xTAx + b - x + c] satisfies

: Tt 2,152
limsup e (1+[x]|7) 2 |E(x,1)] < +o00.

|x|2—t—+00

Moreover, u is C* in the complement of the support of (f — 1) and

n—2+k

2 2 L
lim sup (%—t) |D;D{E(x,t)|<+oo,i+2j:k,VkZl.

[x|2—t—>+00

Proof Let .
ulx,t) =u(x,t) — (1 4+ M)t.

Then € C21(R"*!) is a solution to
u; = logdet D*u + f,

where i —1 —M <1, < —1, f = f — (1 + M). Then support (f — M) is bounded. Now
following the same line of the proof of above theorem, we get the asymptotic behavior of u.
Finally, we have the estimates for u. O

Recently, the first and second authors [27] classify all solutions to
—u;det D*u = f(x) in R'1,

where f € C*(R") is a positive periodic function in x. More precisely, if u is a solution to
above equation, then u is the sum of a convex quadratic polynomial in x, a periodic function
in x and a linear function of 7. Indeed, from the regularity theorem obtained by the first author
[28], we are able to get the above theorem under the weaker condition f € VM oV (RM).

The paper is organized as follows. Section 2 lists some notations and lemmas used in the
proof of Theorems 1.1 and 1.2. The proof of Theorem 1.1 is carried out again by our notations
in Sect. 3. Finally, we give the proof of Theorem 1.2 in Sect. 4.
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2 Preliminary

We begin to introduce some notations. Let R = R x (=00, 0]. A functionu : R R,

(x,1) — u(x,t), is called parabolically convex if it is continuous, convex in x and non-

increasing in 7. We denote by D?u(x, t), Du(x, t) the matrix of second derivatives and the

gradient of u with respect to x respectively. We use the notation C2<- (R"1) to denote the

class of functions u such that the derivatives Df( D,’ u are continuous in R™*! fori +2 Jj <2k.
Let D C R™*! be a bounded set and ¢ < 0, then we denote

D) ={x e R": (x,1) € D},
and top = inf{¢ : D(¢) # §}. The parabolic boundary of the bounded domain D is defined by
9pD = (D(19) x {to}) U U(aD(t) x {}),
teR

where D denotes the closure of D and 3 D(¢) denotes the boundary of D(z). We say that the
set D c R"isa bowl-shaped domain if D(¢) is convex for each ¢ and D(¢;) C D(ty) for
t < .

We recall the definition of cross section of a convex function. Let iz : R” — R be a convex
function that for simplicity is assumed smooth. A cross section of i at the point xg € R” and
with height H > 0 is the convex set defined by

S;(xo, H) = {x : u(x) < ti(xg) + Dii(xg) - (x — x0) + H}.

Throughout the following proof of Theorems1.1 and 1.2, we will always assume that

u(0,0) =0, Du(0,0)=0, D?u(0,0)=1Id, u;(0,0)=—1, (2.1)

and
u(x, 1) >0, V(x,1)eRTL (22)
In fact, we first show that we can assume u,; (0, 0) = —1. Let £(x, t) = u(Bx, at), where

B and « are two positive numbers. Then —&; (x, 1)detD?&(x, 1) = af?", and we can pick B8
and « such that aﬁz" =1and &(0,0) = au,(0,0) = —1.

Secondly, we show that we can also assume # (0, 0) = 0 and Du(0, 0) = 0. Let p(x, t) =
E(x,1) —&(0,0) — DE(0,0) - x. Then we have ¢(0, 0) = 0, Dp(0,0) =0, ¢,(0,0) = —1,
and —¢; (x, t)detD2<p(x, t)=1.

Thirdly, we give the reason for the assumption of D%u(0,0) = Id. Since &(x, 1) is
parabolically convex, ¢(x, t) is parabolically convex. There exists an orthogonal matrix O
such that

0" D%¢(0,0)0 = diagl{dy. d>, . ...d,)},

whered; > 0,i =1,2,...,n.Lety(x,t) = ¢(Odiag [ X ] ,1). Then

i

T 1 T . Xi
Dy (x,t) =diag { «/67,} 0" (D) <Odlag{ T } , z) ,

1 X; 1
D>y (x,t) = diag { } o’ D%y <0diag {—l} , t) Odiag { } ,
Jd; Jd; Jd;
and hence 1 (0,0) = 0, Dy (0,0) = 0 and D21/f(0, 0) = Id. Since

5

detD?¢(0,0) = —

=1
Pt (07 0)
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we get that did - - - d, = 1 and we can obtain

— ¥ (x, 1)detD> Y (x, 1)
_ (O(L1 R x,,) ,)
-\ \Va V& va)

L getp? (0(’” 2 x”) z)
- —3ae et e et ) ’
ddy—dy o\ V&
=1.

This completes the proof of assumption (2.1). By (2.1) and the definition of parabolically
convex function we can get that

u(x, 1) > u(x,0) > u(0,0) =0, V(x,r)eR""

This completes the proof of assumption (2.2).
In the rest of this section, we would like to give some lemmas that will be useful in the
proof of Theorems 1.1 and 1.2.

Lemma 2.1 Let U be an (n + 1) x (n + 1) real upper-triangular matrix. Assume that the
diagonals of U are nonnegative and for some 0 < € < 1,

(1—e)E CUE) C (1+6)E, (2.3)

where E = {(y,s) € R %|y|2 —s < l1}and (1 —I—e)E ={(y,s) € R %|y|2 —5 <
(1 4 €)2). Then for some constant C = C(n),

IU— 1] < CVe. (2.4)

Proof Let U = (Ujj), we know that U;; = 0 for i < j. Since U(E) contains an open

neighborhood of R+ U is invertible. Therefore U;; > 0,i = 1,2, ..., n, n + 1. Write
U—! = (UY); then U™ is also upper-triangular, U" = Ul__, i=1,2,...,n,n+ 1. For

1 <k < n+1,let ex denote the unit vector with the kth comﬁonent equal to 1 and the others
equal to zero. By (2.3), it is easy to check that

UW2e) e (1+6E, k=1,2,....n,
U(—ens1) € (1 +6)E,

then we have

n
DY UL <l+e k=12,...,n, 2.5
j=1
and
1 n
32 Ulni + Uniapn < (14 0% (2.6)
j=1
In particular, Uy <1+ €,1 <k <n + 1. The same argument can be applied to U~ s0
1
— =UM < I <k<n+]l.
Uik 1 —e€
We deduce from the two above estimates that
l—e<Uw<l4e¢ 1=<k<n+1. 2.7
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It follows from (2.5) and (2.7) that
DUR=(U+eP—(-eP=de, 1<k=n (2.8)
Jj#k
It also follows from (2.6) and (2.7) that
D UG 220+ 6 = 2Ung1at
j#En+1
<2(1+4+6%-2(1—¢)
< 8e.

Therefore, we have

n+1

D W= D>+ Uy
j=1

J#k

U =11

n+l

Zez +8(n? —n)e
j=1

Vo + De + 8(n2 — n)e
= C(n)+/e.

IA

IA

[m}

We recall that # : D — R is continuous, then the parabolic normal mapping of u is the
set valued function P, : D — {E : E € R**1} defined by

P(xo, t0) = {(p, H) : u(x,t) > u(xo, o) + p - (x — xp),
Vx € D(t),t <ty, H=p-x9—u(xg,to)}

If D" C D, then P, (D') = U, yyep Pulx, 1). And the parabolic Monge—Ampere measure
associated with u defined by |P, (D’)|,+1 is a Borel measure, where | - |+ is the Lebesgue
measure in R"*!. The following lemma is an extension to the parabolic case of a result first
proved by Alexandrov.

Lemma 2.27([9], Theorem 2.1) Let D C R"*! be an open bounded bowl-shaped domain
and u € C(D) a parabolically convex function with u = 0 on 3, D. If (xo, tp) € D then

lu(xo, 10)|" ! < C(n)dist (xo, 8D(t0))diam(D(to))”_lI”Pu(Dto)l,,_,_l,
where Dyy = D N {(x,1) 1t < fp}.

Lemma 2.3 ([11], Proposition 4.1) Let Q be a normalized bowl-shaped domain in R+
which definition will be given in Sect. 3, and u a parabolically convex function in Q satisfying
0 < —u,detDzu < Ain Q, minau =0, -m <u <0inQ andu = 1o0n3,0.
Ifu(Xo) < 1—¢, 6 € (0,1) then dist(Xo, 3,0) > Ce™tl where Xy = (xo, to) and
C =C(n, A, my).

Lemma 2.4 Letn >3 and A = (a;j(x,t)) is a real n X n symmetric positive definite matrix
with
(x,1) e ™, (2.9)

aij — 6ij| £ —5——,
laij = bij] = (Ix]2 + [t])
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and a;j(x,t) € ces (RTH), where €, a € (0, 1) are constants. Then there exists a positive
solution to

1 -2
u —ajjDiju = e'g(x) =: € |: — + e 3+2i| >0, in R,
(I+x»H7 A+
(2.10)
satisfying
C(n,e)e'
OSu(x,t)sL)eH, R (2.11)
(L+1x13) 7

The idea of the proof comes from Elmar Schrohe and the first author. The desired existence
is established by a convergence argument, and (2.11) is an easy consequence of maximum
principle.

Proof Firstly, we prove the existence of u. Denote E,, = {(x, 1) € R lx12 =t < m?),
m =1, 2,.... Considering

(um)r — aijDijuy = €'g(x), in Ey,
ef

Uy = (2.12)

= —"—F>5 ond,Ey,
(I+x|?) 2

we see from [19] that there exists u,, € C2t®1T/2(E, ) N C(E,,) satisfying (2.12). Since
e'g(x) > 0 and uyly, £, > 0, by maximum principle,

Uy, > 0. (2.13)

— 3
Letw(x,t) = SUpy, E,, Um +e'supg g(x), we then have
t t
wy —a;jDijjw = e sup g(x) > e g(x) = (um)r — aijDijum,
EWI
and
Wl3,E, = Umla,E,-

By maximum principle,

Um < SUp Uy + e’ sup g(x). (2.14)
8pEm Em

From (2.13) and (2.14), we obtain

[tm|Loo(E,) < SUP Upm + e'supg(x) < (n— 1)2 + 1. (2.15)

pLEm m
By the Schauder interior estimates, we get
C/

u wlte/2(E) = T oo o Udm|L>® +1e'g() | paap i) < C, VYm > 1,
[m | corai+ 12(EY) dlst(El,apEm)(| mlL=(E,) + 1€ g(x)|c /2(15,"))

where C depends on dist(Eq, d,Ey), not on m. Therefore there is a subsequence {u,(,p 1,
such that o o
u) >y W e cPrelte 22BN in C2Y(EY), asm — oo.

For E; C R"*!,
|“§,I;_l)|c2+a.l+a/2(E7k) <C, m>k,
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where C depends on k and dist(Ey, 3, Ey,), not on m. So there is a subsequence {uﬁ,’f)}, such
that o o
ulp —u® e CPrOITEY, in CPN(E), asm — oo,

andu® =y inE;, j=1,2,.... k-1
Define u(x 1) = u®(x, 1), if (x,t) € Eg, then u(x,t) is defined on R"*!. Consider
sequence {u i } in diagram, for any E},

u™ -y e CPHEM2EN in CHY(ER), asm — oo ({u™} c (w®y, if m > k),

Since
(u( ))l _allejM( m — =e g(x), in Ek, Vm > k,

we then find u is the solution of

u; — ajjDiju = €' g(x),

asm — o0. )
Next, the proof of (2.11) is given. It is easy to check that v = ﬁ is the unique
(I+x]7) 2
positive smooth solution of
—Av=c¢'gx) in R (2.16)
Hence,
vy — aijD,-jv = elg(x) + (5,']‘ — a,-j)D,-jv in Rn:rl. (2.17)
From |D%v| < lfﬁ and (2.9), there exists a L > 0 such that
(1+
.. .. .. 1 t . n+1
[(8ij — aij)Dijv| < 2e gx) in RIT\EL. (2.18)

For (x,1) € Ey, by (2.15), it is easy to see
v(x,t)
U (x,1) < (n— 1%+ 1)——"
nELv
< maX{Z (1 + L) T el [(n — 1)2 +1]]v(x 1)
Crv(x,t), m > L. (2.19)

Therefore we obtain

C
(CLv)r —aijDij(Crv) = TLetg(x) > (um)t — aijDijum, Em\EL,

and
CLv>uy ondpEy, UdpEL.

Using maximum principle, we get
um <Crv in Ex\E.

Letm — oo,
u<Crv inRFNE,L. (2.20)

Combining above inequality and (2.19), we finish the proof. O
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3 Proof of Theorem 1.1

Given H > 0, let

On={G,) eR"™ s ux,t) <HY, Ou@)=1{xeR" : u(x,t) <H} fort <0.
3.1
Let xg be the mass center of Q 7 (0), E the ellipsoid of minimum volume containing Q g (0)
with center xg. By a normalization lemma of John-Cordoba and Gallegos (see [7]), there
exists some affine transformation

Tu(x) =apx + by, (3.2)

where ay is an n X n matrix satisfying

detay =1, (3.3)
and by € R" such that
Ty (E) = Br(0), forsome R = R(H) > 0, 3.4
and
By, r(0) C TH(QH(0)) C Br(0), (3.5)

3 . . .
where o, = n~ 2. By Lemma 3.1 in [9], there exist constants &g, €1, and &, depending on n,
m and m; such that for all H > 0,

goFE x[—e1H,0] C Oy C E x[—&2H,0]. (3.6)
Thus, we have

Beyr(0) X [—e1H,0] C (T, id)Qu C Br(0) x [—e2H, 0]. 3.7

Proposition 3.1 Let u € C>! R be a parabolically convex solution of (1.3) that also
satisfies (1.4), normalizations (2.1) and (2.2). Then there exists some constant C > 1 depend-
ing only on n, my and my such that

C™'H<R*<CH. (3.8)
Proof We have, by (3.7)

+1 . el 2 2p2
[(y,S)GRn S>ﬁ(|y| _SoR )]
0
. e H
C (Tu,id)Qu C {(y,s) eR™ iy > (P - 2R2>} :
Let us consider

w(y,s) = u(Ty' ), s) = ulay' (y —bn),s), (y,s) e R

On one hand,

e1H
—wsdetDzw =1 in (y,s) € R 5 > 21—(|y|2 — 85R2)
&g R?
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and
81H
w<H ond, {(y,s) eR"s > 82?0”2 —eng)} :
0
If we take
2n 0
n+l R+l
0
()= —F—— S+272(|)’| — &g R?)
2n+] 8"+] H)H»] R
then
—¢gdetD*c =1 in {(y,s) eR™ . 2 ngz)}
€0
and

£1H
t=H ond, {(y,s) eR™ 5 > 83?(|y|2 —eSRZ)}.

By the comparison principle, Proposition 2.2 in [25], we have

in particular,
2n o
n+1 R+l
0<w(0,0) <¢(0,0) = 7(—81[1) + H,
211:‘—1 8"+1 Hn:’-l
thus, we can obtain that
R < “15 H?
812" g0
Similarly, we can show that
R>—_n
2% &;"

1
So taking C = max {221"822" ‘15 }, we have

[m}

Proposition 3.2 Let u € CZ’I(RTF]) be a parabolically convex solution of (1.3) that
also satisfies (1.4), normalizations (2.1) and (2.2). Then for some positive constant C =
C(n,my, my),

C~'R < dist (TH (Q%(O)) , E)TH(QH(O))) <2R. (3.9)

Consequently,
B (0) Can(Qn(0) C B2r(0), (3.10)

and
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ehar (Bg(O)) x [—€/H,0]1 C Qn C ay' (Bar(0)) x [—&}H, O],

where ¢, &}, €, are positive constants independent of H.

(3.11)
Proof Since TH(Q% (0)) C TH(QH(0)) C Bg(0), itis clearly that

dist (TH (Qg(O)) , aTH(QH(O)) <2R.
Let w be defined on Oy (0) := %TH(QH(O)) by

1
n
n,

w(y) = R2 (M(T,Jl(Ry),O) —H), yeOu).
Then
By, (0) C O (0) C B1(0),
and

det(D*w) <1 in Oy(0),

w=0 ondOg(0).
It follows from Lemma 1 in [1] that

2
w(y) = —Cm)dist(y,d0g(0))n, y e On(0).
Fory e TH(Qg 0)), letx = %i, we then have

1 1
myH —my (H _ L 2
—h = (5 - H) 2 w6 = —Condisi & 004 (0D,
mz%H%
C(n)dist(y, 0Ty (Qpu(0)) >

25 gn—1"
By Proposition 3.1, we obtain

dist(y,3Tu(Qu(0)) > C7'R,

where C = C(n, m1, mp) > 1. Estimate (3.9) is established.
Estimate (3.10) follows from (3.9),

Tu(©) € T (Qu ) € Tu(Qu(0) C Br(0),
and

dist(Ty(0), 0Ty (Qu(0)) = dist(0, day (Qr(0)).

Since u;(x,t) < —my fort <0, we have u(x, t) > u(x,0) —mat. By u(x, 0) > 0 for all
x, we then obtain u(x, t) > H fort < —m% or xéa;,] (B2 (0)). So if 8’2 = 5 we have

On Cay' (B2r(0) x [—€4H, 0].

and with height H, i.e., Q5 (0) = Sy (x,0)(0, H). Particularly, from (3.10) and Lemma 2.1 of
[10] we have that

/ 1 —1 7 —1
) <EQH (BzR(O))>

= 8oaH

Due to (2.1), we have that Q i (0) is a cross section of the convex function u(x,0) atx = 0

@ Springer
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for0 < gy < 1.If (x,1) € e(’)a;](Bg(O)) x [—&] H, 0], then

0 1—¢
u(x, 1) = u(x, 0) —/ w (x. T)dt < <1 - 80) H—mt
; ac

1—g ,
< 1—T+m18] H < H.

Therefore, taking &, and &} sufficiently small, we can get

ehar! (Bg(O)) x [—€/H,0] C Qp.
O
Proposition 3.3 Let u € C4’2(R'i+l) be a parabolically convex solution of (1.3) that

further satisfies (1.4), normalizations (2.1) and (2.2). Then for some positive constant
C = C(n,my, my),

lap| < C, laz'l <C. (3.12)
Moreover,
sup |D%u| < C. (3.13)
R'i+l

Proof Let us define
1 t N
Fp(x,t) = EGHX, 72 ) and T'y(Qp) = 0Y.
Consider
. L —1 _ L —1 2 *
w(y,s) = Fuly (v.5)) = pru(Ray y. R%s), (y.5) € Q.
By (1.3) and detay = 1, we have
—w,det D’w =1 on Q%.

It follows from Proposition 3.1 and (3.11) that

—1 H *
CT <=w=— <C ond,0%,

RZ
and
Bi(O) X [—s’lC_l, 0] C Q% C B2(0) x [—&5C, 0]. (3.14)
C
By (3.14) and the interior second derivative estimates of Pogorelov (see [24]),
8/
|D*>w| < C, in B, (0)x [——',0], (3.15)
22 2C
in particular,
|D*w(0,0)| < C.
Since
D*w(0,0) = (az") D*u(0,0)(ay") = (azH" (ay"),
we get

lay'l < C.
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90 Page 14 of 36 W. Zhang et al.

Since det(al;l) =detay = 1, we then have
lag| < C.

Estimate (3.12) is established.
By (3.15) and (3.12),

’ R2
IDu| < C in B, (0) x | —2—.0].
£+ 2C

where C = C(n, my, my). Since R can be arbitrary large (as can H), estimate (3.13) follows
from the above. O

Theorem 1.1 can be deduced from (3.13) and the interior estimates of Evans and Krylov
as follows:

Proof of Theorem 1.1 By (3.13), we have
lu(x,0) < C(x)*> —1) in R (3.16)
For (%,7) € R™*!, we will show that D2u(x, 7) = D?u(0, 0) and consequently by (1.3),

1 1
~detD2u(x,7)  detD2u(0, 0)

ui(x, 1) = = u,(0, 0).

Since (x, ¢) is arbitrary, u must have the form u(x,t) = Cit + p(x), where C; < Ois a
constant and p is a convex quadratic polynomial on x. Theorem 1.1 is established.
For R > 1, R > 2|x| and R? > —27, we consider

1
wmwzﬁmmw%,@m6&©xew1
By (1.3), (3.16) and (3.13),
—widetD*>w =1, |w|+ |D*w| <C inB;(0) x (—1,0].

It follows from the interior estimates of Evans and Krylov that for some « € (0, 1) and C
(independent of R and H),

“ 1
|D>w(y, s) — D*w(0,0)| < C(ly|* 4+ |sDZ, (y,s) € B1(0) x <_E’ o] )

In particular,

, (T OF\ FNE

2. =7 _ 2 L e
[D7u(x, 1) = D*u(0,0)| < Ra(lxl +1t)2.

Sending R — 400, we have
D*u(x,7) = D*u(0,0).
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4 Proof of Theorem 1.2

Let Ty (x) = agx + by be an affine transformation satisfying (3.3), (3.4) and (3.5), and let

T 1 B
v(y,s) = ﬁu(FHl(y,s)) = ﬁu(RaHly, R%s), (v,5) € Q. 4.1
By (3.11),
&
Biy (0) x [_EI’O] C 0% C By(0) x [ Ce, 0.
Clearly

—vsdetD*v = (T (v, 5) = f(Ray'y, R*s) in Q.

By Proposition 3.1,

H _
v= 15 €(C 1.¢) ond,03. (4.2)

By [24], there exists a unique parabolically convex solution v € C 0(Qi’;i) NC (07 of

—V,det D*v =1 in Q%,
v=4¢c(C',C) ond,0y,
-C=<v,<—-C! inQj.

And for every § > 0, there exists some positive constant C = C(§) such that for all (y, s) €
Q3 and dist,((y, s), 9, Q%) = 8, we have

C7'1 < D*0(y,5) <CI, |D*W(y, )| <C, |Dvs(y,s)| <C (4.3)

Lemma 4.1 For some positive constant c depending only on n and f, we have

Cc
[v—7] < P2 in QY. 4.4)
n+

- 1
In fact, C = C(n)|| f — 1||ZJ1réf7é1)'

Proof By replacing u in Proposition 2.1 ([22]) with —u, we have that

1

—min(v — ) < C(n)(/+ —(v — V);detD*(v — i)dyds) "
N

oy |
where
ST ={(y.5) € Q% : (v —V)s <0, D*(v —7) > 0}.
On S,
detD?*(v — D) < detD?v — detD*v < detD?v,
so we have

—(v — V)ydetD?*v
—vsdetDzv + ﬁsdetDzv
< —vsdetDQU + mdetDQU
= f(Ray'y, R%s) — 1,

— (v — D) detD*(v — D)

IA

A
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90 Page 16 of 36 W. Zhang et al.

It follows that
1

— min(v — ) < C(n) / (f(Ray;'y. R%s) — Ddyds )”*'

oy
-y ( ' H ixdr )
(n) /F o U0 ne RHZ
_Cm T
Rziz ”f |L1(f>l)
_ C(n, f)'
— n+2
Rl
Similarly, we can show that
o C(n) =T C(n, 5)
—min(v —v) < — [l — fll”+ < —05
0, Rﬁ L‘(f<1) Rﬁ
Lemma 4.1 is established. ]

Let (¥, 0) be the unique minimum point of v in Q%,. For v(y, 0) < H < H,let
1 ~
70,00 = {(r,) € R 2 23T DT, 00y + 557, 0)s = H} :
1 ~
Ef(0,0) = 1 (v,s) e R™: 5yTD%@, 0)y + 0,(3,0)s < H} ,

S;F(3,.0) =1 (y,5) e RE

1 ~
SO - W DT, 0(y — ) + 53, 0)s = H} :

_ 1 _ o o ~
Ef(3.0) = {(y,s) e R™H': F0 - M D*(3,0)(y — ) + 0,(3, 0)s < H} :
We also denote that

1 ~
mEg(0,0) = {(y, 5) : EyTDQW, 0)y +05(y, 0)s < mZH} ,meRT,

1 ~

mEg(y,0) = {(y, $): 50 =DTDHE, 00 =7 + 755G, 0)s < mZH} .meRT,

and
mQu ={(y',s") = (my,m*t) : (y,5) € Qu},m € RT.

Proposition 4.2 There exist k and C, depending only on n and f, such that for € = %,
H =20+ gng 2k=1 < H' < 2% we have
H —  sa 2 H
E—CZ 2 ) E(0,0) CTu(Qn) C e
Proof Clearly, it follows from (3.8) and (4.1) that

1
_ ek \ 2 _
+C27%> E1(0,0), Vk=>k. (4.5)

(l+€)k (+e)k

A
cla—¢k < % <c2~k ¢ <RrR<C2 2,

and .

H’ H .
{v Rz} {(y,S) v(y,S)<ﬁ}=FH(QH/)CQH~
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By Lemma 4.1,
C ~ o —lep(1+ .
[v-7|<—F <CC2 * ( ”“> in Q0%
R+l

Since ~
H' C
ﬁ»r%, as R — oo,
H' H'
CIV< —+——¢-
folr<fr el

H C
~ T CU<E

the level surface of v can be well approximated by the level surface of v:
C

V< —
{ R2 Rn+l
By Lemma 4.1, the fact v > 0 and v(0, 0) = 0, we have
C c _ C c
s <U(3.0) <5(0,0) < v(0,0) + —5 = —
R n+T R n+1

C
<v(©,0) -
R+t

Therefore by Lemmas 2.3 and (4.3),
- —= — = 1 T 2= . -2 3
[v(y,s) —0(y,0) —vs(y, 0)s — E(y =)' DV, 0Oy = =Cy =yI"+1IsDh2,

disty((y.5).(7.0)) < & and
2¢7'1 < D*(y,0) < 2C1.

! 3ek

On one hand, we take a positive constant C1 to be determined. For (y, s) € ( gzl - C12™
H _ 3¢k
5~ C] 2772,

E1(y,0), we have

vs (¥, 0)s + 2(y ) Doy, 0)(y—Yy) < R
List+ ey =312 < 2 ¥

=Is|+ =—=ly — < — - ,
cPl TP T SR T

H' 3k

3 —Ci127 72 }.

=2
- C
ly =yI" +1sl < (R

We can take k| satisfying for k > k1, then
2

ly — V1> + s <C<

3ek

2

)%
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Thus,

v(y, s)

We can take C; > C* satisfying

IA

IA

IA

1 ;
73,00+ 053, 05 + 5 (v = DX, 00(y — ) + C(ly — P + Is)?

Cc +H’ CZ_%—i—C% H' C2’5€k 3
R R? : R? !
¢ L ey (B :
Rict R? : R?
Cc H' ¢
s -2 i
Rn+1 R
Cc H' 3ek
W+7Z+(C4_CI)Z_T~
R)H»]
CZIS%‘ < 1, then
C ~ ek 4y ek
2= <2CCa A < (0 — Ch2 K
Rt

For k > k1, we can obtain

C H' 4 3¢k ! C
V(y,s) S —5+ 5+ C" =CN27 72 < — — —.
RETR? R?  pi

In conclusion, we have

oy %E(*O)c s _C Vk >k
— - , V< — — —— ¢, > k.
2 O 1(y R o= 1

On the other hand, we take a positive constant C; to be determined. In order to prove

1

_ H c H' a2
U<ﬁ'|‘T+2 C p+C22 2 Ei(3,0),
R

using the fact

1

a _ H C H' 7
¥,0) e v < =2 +—=(N =2 + C22 E(y,0),
R n+1

we only need to prove

H/+c2—¥%8(*0)c* L c |
— , < —=4+—0F1 -
R Y TR R

1
For (v, s) € (% + czz—%) 2 §1(7, 0), then we get

@ Springer
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c' T T ST

H’ ek
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Taking k» satisfying for k > k>, we obtain

3¢k

_n H' 3k 1
ly =y +1Isl <C F+C22 Y=
Thus,

1
70,9 2 5,00+ 5,3, 05 + S — ¥ D23, 0)(y —3) — C(ly — 31 + |s])2
3

6 H' _ 3ek s (H' 3¢k \ 2
+ —=+C27 72 —C2|—= +Cr27 2

= R% R2 R2
~ 3
S e <2H/>j
- T T a2 - 2 - ey
Rit R? R2
~ ’
> O T e ctadaie
n R2
R n+1
c H' 3 3k
= ——r + o+ (G —2icY) 2 F
Rt R
3
We can take Cy > 2204 satisfying C2723+62‘4 > 1, and then
2CC T
5 ~ nt+2 _ (+6)(n+D)k 3 4 _ 3¢k
2—— <2CCHT2 2t < (Cz —_23C )2 7.
R+t

For k > ko, we obtain

n+2 nt2 °

C H « H C
T0,8) 2~y + 2+ (C2-235CY) 27 = o
Risi R R Rus

In conclusion, we have

1

_ H c H' ek \ 2 B _
U<E+E C ﬁ—i—CzZ 2 Ei(v,0), Vk=>k».

n+1

Therefore, taking C3 > max{Cy, C>} and k = max{ky, k»}, we see

H' _ 3¢k 2 _ H' H'  3ek 3 B _
ﬁ—csz 2 Ei(y,0) C V< o3 C F+C32 2 Ei(7,0) Vk > k.
4.6)

Finally, we want to obtain (4.5). We first show that
9,(0% ) C N5, (S5, 0)) 0<I—~I<£—6(7 0), 8§ <CH:? 4.7
PAY HA5(5,0) Rty ) - R? o= ’ '
and neighborhood N is measured by parabolic distance
. 1
distp[(y1.s1), (2,521 := (Iy1 = 2* + Is1 = 52))7.
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" _
In fact, for (y, s) € Bp(QﬁH@’O) (v)), by the Mean Theorem, Lemma 2.3 and (4.3), we have

H=71(y,s) —9(3,0)
=0(y,5) —(y,0) + 0(y, 0) — (3, 0)
1
=vx%dh+5@—yﬂD%@cm@—y>

v

1(||+| y%)
’o — e
where (y', s') € Q’I‘;W@’O)(v). Writing
H=71(y,s) —9(7,0)
o _ o 1 _
=w@ﬂn+mu»f»waymn+5@—wﬁﬂwxmw—w
1 _ _ _ _
+;y—wWD%@u»—D%@ﬂ»o—yx
for (v, s) € aP(Q77+U(§,0)@))’ it follows
7 _1 e =
H —v,(y,0)s 2(y v)' D@, 00k —Y)

1
amﬁﬁ—mgﬁm+§@—ﬂﬁwﬂ%m—D%@mmwﬂ‘

< Cls|+Cly -3
< CH.

For any (y, s) € 8P(Q*ﬁ+v@0) (v)) and any (,5) € S5 (¥, 0), by the above inequality, we

show

L I PR N S .
vs(y,O)erz(y ) DU, 00y —y) —vs(y,0)s 2(y y) D0(y,0)(y —y)

<CH.

Taking V, y, y on the same line / with ' and y on the same side of the line / with respect to
7y (rotating the coordinates again so that / is parallel to some axis), we have

1y =3P =1y =3P = Iy =5
Then for s =5, we get
-5 -y - = cil
2C -
In fact, there exists an orthogonal matrix O such that D*v(y, 0) = OTdiag{A1, ..., k)0,

and the length of a vector in Euclidean space is invariant under orthogonal transformation.

Therefore, we get ~
ly—5* <CH.

Similarly, for y =y, N
[vs (D, 0)s — v (v,0)s| < CH,

So we get ~
s —5] <CH.
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An extension of Jorgens—Calabi—Pogorelov theorem...

Next we estimate the distance between (0, 0) and (¥, 0). By Lemma 4.1, we have

This completes the proof of (4.7).

0 <v(0,0) —v(y,0)
= (@(0.0) = v(0,0)) + (1(0.0) = v(F. 0)) + (v(7, 0) — (. 0))
2C
< ==
— n+2
R+l
0(0,0) € O* = _ (v), and by (4.7) (taking H= 2€z ), we have
nt2 0 Rt
Rn+I
26 \'?
. B o
8 Q%+B®’O)(U) CNS] (Sicﬁ(y70))v 81 EC(R:X%)
RET Rn+1
Thus we get
~ 172
distp((O, 0)7 (yv 0)) = C ( n+2 )
Rl

So by (4.6), we have

1
7 ’
) El(0,0)C{v<ﬁ}

/
u _C327%_C2 n+2
R;i-%—l
~ 1
2 —
) E(0,0) Vk > k.
O

c (—H/ +C27 T 42

3 n
R? Rt
Since 27 % > %z’ then we can obtain (4.5) by taking C = 2C2C + C;.

R+l
Let E denote the set {(y,s) € R . %Iyl2 — s < 1}, then we have the following

proposition.
Proposition 4.3 There exist positive constants %, C, some real invertible upper-triangular
(4.8)

matrix {Tj} >k and negative number {ti} ok such that
T _ -1 A€k 1 ~ ek
—qdet T[T =1, LT\ -11<C2° %, |ur, —1]<C2°%,

(4.10)

and
(1 - 62—%) VHE C S4(0n) C (1 n 62—%) VHE, v <H <2k (4.9

where Xy = (Ty, — ti). Consequently, for some invertible T and t,
—2detTTT =1, |Ti—T| <C2~%, |y —1|<C2%.

Proof Let H = 2019k and 2k=1 < H’ < 2k By Proposition 4.2, there exist some positive
1
2 —
) E(0,0), Vk=>k.

constants C and k depending only on  and f such that
H' s
)

1
fzf%y E10,0) C T (Qp) C (

H/
(7

R2
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Then we have
1

1 1
(H/ —62*¥R2)2 E1(0,0) C (ag.id)(Qpr) C (H/ +62*¥R2)2 E1(0.0),
1
. sa R2 2 .
1—C2™ 22 T ~H'E(0,0) C (an, id)(Qyr)

1
sk R2 2
c|1+C272 a v H'E1(0,0).
Since ,
C—12—6k 5 % f C2—€k!
we can get

1 1
(1 —fcz—%)2 VH'E(0,0) C (ag,id)(Qp') C (1 +EC2—%)2 VH'E, (0, 0).

2
- _
L Ik > ke =

On one hand, we take C; > fTC ks satisfying when k > ks, 25 > el
max{ks, k}, we have
—2 ke — ke —
c? <2%c, -2%cc,
ke <22-5C, — 275 CC,
2ekCT —2275C, < 277 CC
1 1= ,
—ek A2 . _ ke — . _ke —
27 Cy=2272Ci+1<1=-2"2CC,

_ ke \ 2 B
(1 —C12_7)

(1 — 612—%6) VHE(0,0) C (ay,id)(Qp), k> k.

ke —
1-272CC.

IA

Therefore,

On the other hand, if taking C5 > %C, then for any k > k, we have

o ke\3 — ke
(1+cc2 z) 5(1+c22 z).
So we show

(ay.id)(Qp) C (1 +€22*"7€) VH'E(0.0), k> F.

In conclusion, taking C > %, k = k¢, we have

(1-C2 %) VHE(0,0) € (anid)(Qu) < (14 C27F ) VHEI0,0), k=k.
4.11)
Let Q be the real symmetric positive definite matrix satisfying 0> = 07 Q = D*v(3, 0)
and O be an orthogonal matrix such that

Ty == OQap is the upper-triangular.
And we also define 7z = v5(y, 0) and X = (T, —71¢). Clearly,
—q det I T, = —7,(3, 0)(detag)? det D*B(3, 0) = 1.

@ Springer



An extension of Jorgens—Calabi—Pogorelov theorem... Page 23 of 36 90

Now we claim that E = (0 Q, —t)E1(0,0). ¥(y, s) € E(0,0), (x,1) = (0Qy, —ts),
xTx =yT0ToT0Qy = y' D*W(3,0)y, t = —1¢s = —U5 (3, 0)s. Recall that

(P o
7Y DG 0y + 0, O)s =1,
so (x,1) € E, and vice versa. From (4.11), we have
(1 - 62—%) VHE C S(0n) C (1 n 62—%‘) VHE, k=%
If taking H = 2149k and H’ = 2~ we can obtain
(1-C27%) V21E € 3u(Qp € (14 C27 %) V2T, 4.12)

and if taking H = 2U+9&=D and H' = 2%~ we can get

(k—1)e (k—1)e
2

)Jzki—li C Zk—1(Qp-1) C (1 +C2 2 ) Ah-1E.

(1 _ 0o
Thus we obtain

(1-C275") VoI B e gy (14 €277 ) V2 I E, @413)

~ (k=De 1~
(1 _ 2 >\/2’<—‘Ek2k_11E C S(Qir)
- (1 n 62*“”2”") Vs x o E (4.14)

On one hand, from the left hand of (4.14) and the right hand of (4.12), we see

(1-C275") VoI B (14 €27 %) Vob I,

thus we have

-~ ke -~ (k—1)e ~ ke

o~ 1+4C272 ~ C277 72 4+C2772\ ~

2kzk—llE C P E= (1 + PO )E
1-C27 2 1-C27 2
Since

o C2-5" 1 2% C22+C ~e A

lim 272 — = = lim T = o =C22 =+ C,
k—+o00 1=C2— == k—+o00 | _ Co—<F

by taking k sufficiently large, we can obtain
fop e S
~ ~ -~ ek ~
s Ec 1+ o |Ec(1+827%) E.
1-C27 2
On the other hand, from the left hand of (4.12) and the right hand of (4.14), we get

(1= %) V2-TE ¢ (14 G257 ) Vo Im s B,

thus we obtain

S Lo\ . 11— % o =
1 - ~_ (—De E= ~  (—De EC EkzkflE’
1+C27 2 1+C27 2

@ Springer



90 Page 24 of 36 W. Zhang et al.

Since “n .
«C2™ 2 +C277 C+C25 .
lim 2% e m S ey,
k— 400 1+C2_ 5 k—>+ool+c2— 5

by taking k sufficiently large, we can show

(k— ~

A ~ Co T 1025 < L~
(1-¢2r%)Ec(1- Ecmiz | E

~__ (k—De

1+C27 2
So we have N ~ U
(1 - cz—i) Ecwmzs | Ec (1 + 02—7) E. k=%
Since X E,;ll is still upper-triangular, we apply Lemma 2.1 (with U = X Ek_j]) to obtain
that .
IZez ! -1l < CcmC2™7, k=k.

Estimates (4.8) and (4.9) have been established. The existence of 7', t and (4.10) follow by
elementary consideration. O

From Proposition 4.3, we can define
X =(T,—1),
andlet w = u o X!, then we have
—wydet D*w =1, inR"™™\ 2(Qp),

in fact, wy = — %, det D*w = (det T~1)2 det D?u,

2 1 1 2
—wgdet D*w = ——u;det D°u =1
7 (det T)2

from (4.10). Since {(y, s) : w(y,s) < H'} = Z(Qp), (3.11) and

On . 1 1 1 1
= (diag , s ) Qwrs
v H' vH' ~H' v H' H’
then we can deduce from (4.9) and (4.10) that on one hand
S(0n) — Sk (Qp) € C2HVH'E,
(0 C (1 n 262—%) VH'E,
on the other hand
S0(Qu) — £(Qu) € C2 4 VH'E,
(1 - 262—%) VH'E C 2(0n).
In particular, taking H' = 2k then we get
(1 - 26(H’)_f’t) VHE c{(y,5): w(y,s) < H')
c (1 + 26(11’)—%) VHE, VH' = 2*
So we have

~ e\2 1 2 ~ e\2
(1=2C@0.5)7F) w05 < =5+ 512 < (1+20@0.5)7F) (..
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on one hand, we see
1, ~ _e\2
—s4 31 < (14200, 9)77) wiys),
l —_ € €
—s+ §|y|2 < w(y,s) +4Cw(y,s)' T +4C(w(y,s)' "2,
1 —_~ €
s+ 5|y|2 <w(y,s)+ 4C +4CH(w(y, s))' 1,

1 _ €
w(y, s) — (—s + §|y|2) > —(4C +4CH(w(y, )7 F,
on the other hand, we show
~ _e)\2 1,
(1=2C@0.)7F) wiyes) < =5+ 5P
-~ 1—€ 2 1-£ l 2
w(y, ) = 4Cw(y, $)' 77 +4C W, )72 < s + Syl

w(y. s) - (—s + %mz) <4Cw(y, s)' ™5 —4C%w(y, )" 1,

w(y, s) — (—s + %mz) <4C(w(y,s)'5.

| L
w(y,s) — (—S+ 2Iyl >

Consequently, by the fact C~'w(y, s) < |y|? + |s|, we get

1 —e T
‘w(y,w—(_”zlyﬁ) <CUyP+1sh3, IR +1sl = 28,

Proposition 4.4 Let g € C°(R"™ !\ E) satisfy

Thus we obtain
< 6(w(y, s))l_%.

(4.15)

(1—godet(I + D?g)=1, I+ D*g >0, —ms < gs — 1 < —mg, (y,5) e R"\ E,

where ms, mg are two positive constants, and for some constants § > 0 and y > =2,

(v,5) e RN E,

g ) < ——P
WY P2+ s

Then there exist some constant r = r(n, B, y) > 1 such that

IyI?

|D}D{g(y, )| <

C
WIyP/2 + [shr+e’

where C depends only on n, k, p and y.

Proof Let
lyI?

n(y,s) :=—s+ - + 8, ).

1

, !
For (% n |s|)2 — R > 2, let

1
co= (B n(or Bas s B ) <
Nr(z,t) == R n\y 41’5 16t ) > L =

N W

+2j =k, 7—s>r, k=1,

2,3....
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) 1
We have to show that 5 is well defined when (% + |L|) <3

R_|2 2 2 2
ly + £z R\ 1 , R, R , R
> <s+16t =3 |y|+2y z+16|z| S+16t

| R
Elyl2 —s+—y'z

[\S1[9%}

v

4
= R = Riya
- 4
R 3
= R* = —(V2R) (—)
4 V2
R2
4
> 1

Then let

o= (B e(be R &
gr(z,0) 1 = R gly 4z,s 16L
2
NZAS RN LR |y + 7]
“\&)|"UTETT 6 T 6! 2

1
16 y 2 Iz|? 23
:UR(Z,L)+1+723—8’E+ , (T+|l| SE.

R

<
4

By the decay hypothesis on g, on one hand, we have
( )<8‘y+z‘2 +16 + 4y’ P
W <84+ —|t+ = —
i R4 R2 R :

2
. 9 16 1

- R 4 4 R? 25 7
(&)
_ 97 1688”7
= 2 ' sYR2y’
. e 1688”
Taking r; satistying i 1, for R > max{r;, 8}, we have
L8]

99
nr(z,1) < ER
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On the other hand, we have

y z|2 16 4\? B
’ >8‘7 7‘ B R2 B R
nr(z, 1) > rta (H—st) (R i -
(|y+zz| +’s+—16t

2 2
8 168 1
o g (R e ST 168 .
R 4 R R 5 o\%
()

Iyl vzl 2 8ly> 168 1
ﬂ(ﬁ‘*** O e TR L T
(g§R2>

64

[FaS

)

v
|
o)
I

R 57 Rty

%

—12416 — ———

16887
©SYRHYC

then taking R > max{ry, 8}, we have
ng(z, 1) > 3.
2
In conclusion, there exists some r = r(n, 8, y) = max{ry, 8} > 1such thatfor(%—Hsl)% =

R>r,

1
99 7% 2 3
3 <ngr(z,0) < 5 (%Htl) < 5

Since ng satisfies

|Z|2 2 3
—nrdetD’ng = 1, D*ng > 0, —ms < ng, < —me, (7 ) =3

by the estimates of Pogorelov, Evans-Krylov and regularity theory of the parabolic equation,
we have _
Inr ||Ck,k/2(§) <c, c'r< D277R <CIl inE.

Here and in the following, C > 1 denotes some constant depending only on n unless otherwise
stated. _
Igrllckrn(g < C. CT' < (I+D?gg) <CI inE, k> 2. (4.16)

Clearly, gg satisfies

. N |z|? 203
aigr +aijDijgr =0, | —+1l) <3,
2 2
where

1
ai(z, ) = / Fi(—=1+40gr,. I +0D*gr)do, Gij(z, 1)
0

1
:/ Fij(—=1+6gg,, [ +60D*gr)do
0
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satisfies, in view of (4.16), that

I@ll ks < C. €' < =@ < C inE,
and
@l cerrngy < C. €' < @j) < CI in E.

Here we use the notation
F(a, M) = —adet M.

By interior estimate of parabolic equations, we have

|DLD/ gr(0,0)| < Cligrll =

<@ L

’H%zr 1\

2+ ‘S + E“
C(n, k,B,y) . .
S — gy [tZ=k
It follows that
C(n, k,B,y)

1DyD] gy, )] = i+2j=k k=12,

Y272+ [shr+e’

O
Proposition 4.5 There exist b € R", T € R and some positive constant C such that
2 s
~ ~ Ce
w ) +s— L5y d < T v eRT S0n).
(I+1yH 2
Proof Let
= . |y|2 n+l
E(%S) '_w(yss)_ _S+T ) (y7s)€R7 \E(QH)7
and by (4.15) and Proposition 4.4
ID*E(y, )| + | Es(y, )| £ ————, 4.17)
(IyI=+1sh?
and c
ID*E(y. )| + 1D Es(y. )| < ————. (4.18)
(yI* +1sh 2
It follows that R R
@Es +a;;DijE=0 iR\ 2(0p), (4.19)

where

1
ai(y,s) =/ Fi(—140E,, I + 0D*E)do,
0
1 R .
@'j(y,s)=/ Fij(—1 4 0E,, I +0D*E)do.
0
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Next we adopt the notation
F(a. M) = (adet M),

A is an n x n symmetric positive definite matrix and a > 0. It is well-known that in the open
. . . . 1.
set of n x n symmetric positive definite matrices, det» is concave. If

Fa(y,s), M(y,9) =1,
then by differentiating it, we have
Fuas + F‘ijMijs =0,

and _ ~
Foap + FijM;j =0, k=1,2,...,n.

We differentiate the above equation again, and get
Faaaay + Faap + Fij apMapiMiji + FijMiji + 2FjaaxcMije = 0, k,1=1,2,...,n.
By the concavity of F and let ¢ € R" be a unit vector, we have
Faa(Dea)* + Fa(Deea) + Fij(e" Me)ij = 0,

~ ~ 1

where F, = é Fag = =77, Fij = 1M and (M) = (M;;)~". Thus we show
1 2, 1 ij T
- a—z(Dea) + ;(Dega) + M"Y (e’ Me);; > 0.
Leta = —ws = —Es +1,M =D*w = DZE+ I, we have

] ~ —~ _ ~
— 5 B+ ((D’E + I)™Y;j(Ey)ij =0,

- L

1 —~ -~ . -~
= (DuE)s + (D’E+1)™";j(DuE)ij =0, m=1,2,...,n,
S

and -~
(De(=E)? _
(1 — Ey)?

1 - —_ _ -~
= (DeeE)s + (D*E +1)7")ij(DecE)ij =
s
Taking B| = 1‘711»:: and B;j = ((DZE—F I)_l)ij, we have

— Bi(Ey)s + Bij(Ey)ij =0,
—Bi{(DnE)s + Bij(DyE)ij =0, m=1,2,...,n,

and -
= = (D¢ (—Es))
—B1(DeeE)s + Bij (Do E)ij > —————=—— >
1( ee )s z]( ee )z] (1 — Es)z
We claim that
|Bij —éijl < ——F, BI— 1| — .
(Iy1> + Is])2 (yl>+1sD2
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Indeed, let 11, A2, ..., A, denote the eigenvalues of D’E , then on one hand,

1 .
‘ — —1‘ = |det(D’E + 1) — 1|
1—E,

=[l4+r+r+Fr+rAr+ -+ AAr Ay — 1]
= A +A+ - F A A A+ A A Ay

C
< —7F,
(yP>+IsDh2
on the other hand,
‘ 1 ‘_ il
14+ X 14+ A;
[Ail
T L=l
C
< —7,
(v +Ish2

this completes the proof of the claim. So we have

— (Ey)s + Bij(Ey)ij =0, (4.20)
—(DmE)S+Bij(DmE)[j:0, m=1,2,...,n, 4.21)

and N e R
— (DeeE)s + Bij(DeeE)ij = 0, (4.22)

where B;; = B—’lf and

|§;j syl = |Bij — 8;j + (1 — B1)d;j]
| B1]

_ |Bij — &ijl + 11 — By

- | B1]

2C
(Iy*1+Ishe/?

1

— c
(1y21+IsDer?
2

(1y21+IsDe?

1
-3
B 4C
(1y2 + IsDe/?
By Lemma 2.4, for such coefficients, there exists a positive solution G (y, s) to

1\ T
G+ BiGii=—|(——) tan-2(——s
s+ By [<1+|y|2> -2 (r557)

satisfying

:| <0 (4.23)

Ce’

0=G6(,9) s ——=-
(I+1y»H =

@ Springer



An extension of Jorgens—Calabi—Pogorelov theorem... Page 31 of 36 90

Similarly, there exists a negative solution G'(y, s) to

n=2 nt2

satisfying
e&‘

n-2"°
(I+y»Hz
By (4.20), (4.23) and the maximum principle, we have

0<-G'(y,s)<C

~ 1 =
—E;(y,8) <CG(y,s) <Cé’| —— . 4.25
((3.5) < CG(y. ) <l+|y|2> (4.25)
By (4.22), (4.23) and the maximum principle, we also get
n;Z
DeeE(y,5) < CG(y,s) < Ce* : 4.26
ee E(y,s) < (y,8) < (1+|y|2> ( )
This means the largest eigenvalue of D’E (v, s) is bounded from above by %
A+ly» 2

Denoting N (y, s), N'(y, s) by

N(y,s)=<aij(g’s) 0 ),

—al(y»s)
’ _ Di'g(y’s) AO
N(%S)—( ! 0 —Es(y,s))’

we can regard (4.19) as
tr(N(y, s)N'(y,s)) = 0.

By (4.25) and (4.26), the least eigenvalue of D’E (v, s) is bounded below by a negative
constant multiple of the largest eigenvalue of N'(y, s). Thus we have

—~ C S
ID?E(y, 9)| £ ————, 4.27)
I+ 1y
and
~ Ce’
|Es(y, s)| < PN (4.28)
(I+1yl%) 2
Now we claim that for 1 < m < n, there exists 3,” € R satisfying lim|y|2—s—>oo DmE =

by The idea of the proof comes from Elmar Schrohe and the first author. We divide the proof
into four steps:

Step 1
C

|DwEs(y,$)] < ——————.
A+ 2 =97

(4.29)

Singg E. s 1s a solution to (4.20), (4.29) is the gradient estimates for E. . From the definition
of B;j, (4.18), (4.27) and (4.28), it is easy to see that

c

| Dy Bij (v, $)| < ——————.
A+ yP2=s7

(4.30)
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Let v be a solution to

— v+ B;jD;jjuv=0 in R\ £(Qn). (4.31)
For% —s=R>>4,let
16 R R\ .
vR(z,1) = ﬁv <y + ZZ’ s+ RL) in Eg4, (4.32)
where Eg/4 1= {(z, 1) : 2 —t < 9/4}. Since

ly+ &2 S (s Ryt +R2| 2 S
— = s+ =) == — — — s+ —
2 16 p \Ph Ty e gl 16

1 2 R T
> — J— —
_2|y| S+4yz
> R~ Ry
= 4yz

R 3
> R*— —(v2R) (—)
4 V2

R2
-4
> 1,

we see that vg is well defined when (z, 1) € Egj4. Clearly, vg satisfies
— (r). + (BR)ij Djjvg = 0., (4.33)

~ ~ 2
where (BR);j(z, ) := B;j(y + %z, s+ If—()t), and

~ R C C
| Dy (BRr)ijl < 1 Rt = Re
From the gradient estimate for uniformly parabolic differential equation (4.33), we get

sup | Dy vr| < Cy sup |vgl, (4.34)
Ejj4 Eg/4

where C1 depends only on n, the decay of | D,, (E r)ij| and the parabolic constants of (4.33).
In fact, we use an idea that goes back to Bernstein, and choose a function

2 n

9 Iz 2 2.2

NR(Z, 1) = (Z =5+t D (Dwvr) + Ciug.
m=1

After asimple computation and an application of Cauchy inequality, we can find Cy depending

only on n, the decay of | D,, (Bg);;| and the parabolic constants of (4.33), such that

— (R). + (BR)ijDijng = 0 in Eogs.

Then we can apply the maximum principle and obtain (4.34). Particularly, from (4.34), we
see that
|Divr(0,0)] < Cysup|vrl,
Egq
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that is,

>J\Q

[Dmv(y, s)| = *ID vr(0,0)] < CRsup |vg| < sup  |vl.
Eosa (.8)+ R Egpy

Setting v(y, s) = Es(y, 5), we get (4.29).

Step 2 |DnE| < Cln(1+|y|2 —s) forn = 3, 0r |DnE| < C forn > 4. Indeed, forn = 3
and fixeda > Oand b < 0, we set F(t) = Dmf(t(yl, 2, ¥3,8)+ (1 —1t)(a,a,a, b)), from
(4.29), then have

~ - Lar
D E(y1, y2,¥3,5) — DpE(a,a,a,b)] =|F(1) — F(0)| = '/ Edl
0

3

3 1 1
Z(/ Dmigdt> (yi _a)"‘f' (/ DmEf‘”) (S—b)
X 0 0

i=1

Cets+(1-1b

: 1
SN —dt |y —al

=T (a0 - oP)

1
c
+ / 3 dt ) |s — b|
0 14+37 jlat+1(yj—a)+1b+1t(s —b)
<Cln(l+|y*=s)

Similarly, we obtain, for n > 4,
|DwE(y.s) = DpE(a,a,....a,b)| < C.

Step3 DmE(y s) = D,,,f(O 70), (v,8) € R" x (—00, 19, 70 < 0. It is easy to see that
Dy, E satisfies (4.21) in R" x (—o00, 7], since (4.21) holds outside a compact set in R"*!.
Let v be a solution to

— vy + BijDijv = 0in R" x (—o0, 1], (4.35)

where E;J € C®(R" x (—o0, 19]) satisfies (4.30). For any (yg, s9) € R" x (—00, 19], we

)— V) 2
apply interior gradient estimates for v in Eg = {(y, §)| % —(s—s09) < R%?and s < s¢},

and have
Calv|Loo(Eg)

FE (4.36)

[ DL (Eg ) <

where C depends only on n, the decay of | D,, (E r)ij| and the parabolic constants of (4.35).

In fact,~we choose n(y,s) = (R? — W + (s — 50))? > (D v)? + C% 2 such that
—ns+B;jD;jn > 0in Eg. Then applying the maximum principle, we get (4.36). In partlcular,

Calv| oo (Eg)

o 4.37)

[Dv(yo, so)| <

If |v|peo(gg) < Cln(l + Rz), or |U|L°¢(R",+‘\Z(QH)) < C, we send R — oo, then get

[Dv(yo, so)| = 0, and then v(yg, so) = v(0, s9), Dzv(yo, s0) = 0. From (4.35), we conclude
s (y0, 50) = 0 and v(yo, s0) = v(0, s0) = v(0, 79) for (yp,s0) € R" x (=00, 70]. Now
Setting v = Dy, E, by the estimate of | Dy, E | from Step 2, we finish the proof of Step 3.
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Step 4 1im |y 00 D E(y,s) = limjy| oo DuE(y, 1) = DnE(0, 10), (y,5) € R" x
[t0, 0)\X(Qp). Indeed, for fixed yp € R" , from (4.29), we have
Clol

|DwE (30, 8) — DmE (30, 70)| s/ | Dy Es (o, $)lds < i (4.38)
70

Let |yo| — oo, we get

lim Dy E(y,s)= lim DnE(y, 1)
Iyl—o00 lyl=oc0

From above four steps, we finally obtain the claim.
Next we will prove that hmb 2—s—00 (E(y s) — bTy) = ¢, following the same line of the

proof of the existence of bm Since D,, E (y, s) — by, satisfies

— (D E = by)s + Bij(DyE — bp)ij =0
from (4.21). Combining (4.23), (4.24) and maximum principle, we have
Ceé*

112

IDE(y.s) = bl < ————
(1+1y»'T

whereb = (bl,bz, .. 5 ).
Let E(y, s) = E(y, s) — bTy From (4.19), we have that E satisfies

_ Es 4 AijDijE =0, (4.39)

where Ajj := Y4 Recall that @(y,s) = fy Fi(~=1 +0E;. I +6D2E)do, ay(y. s) =
[y Fij(=1+0E,, I +0D*E)d0, and F(a, M) = —adet M. By (4.17) and (4.18), we get

C
[Aij = bijl = ————=. (4.40)
(Iyl? —s)2

and

| D Aij| < (4.41)

P S—
(yl> =9
It follows from Lemma 2.4 that there exists a positive solution g(y, s) to

n=2 n+2

1 2 1 2
ot Aigs = —5 | [ ——— o
o s = [<1+|y|2> #n0-2) (1)

satisfying

} <0 (442

CeS

0<g(y,s) < ————.
(I+yl%)2

Similarly, there exists a negative solution g’(y, s) to

n—2 n+2
1 E 1 k3

satisfying
cé’

0<—¢'(,s) s ——7s
A+y>
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Since
~ ~ Ce’
[Es(y, )| =Es(y,$)| £ ————
A+1y» 2

we skip the Step 1 in the proof of existence of Em, along the same line of other Steps, then
see that there exists ¢ € R such that

lim E(y,s) =72

ly|2—s—o0

It follows that E(y, s) — C is a solution to (4.39). Then from (4.42), (4.43) and maximum
principle, we obtain

~ - Ce’
|E(y,5) =8l < ——————, V(y,5) e R"™\ =(Qp),
I+ 1y»H=T
that is,
~ ~ - Ce®
|E(y,s) =bTy -8 < —————, ¥(y.s) e R\ 2(0n).
(I+1y»=

O
Proof of Theorem 1.2 Recall that w is a solution to — w; det D?>w = 1in R'LH\E(QH).
Let 5
- . |yl =T ~
E(y,s) :=w(y,s) — —s+7+b y——c).
with
Ce’ C

|E(y, )] < — < —-
A+1yDT ~ (yP2—9"7

From Proposition 4.4, we see that

i+2j=k Yk=>1.

C
n—2tk

IDiD]E(y.s)| < ————
(yl2/2—5)" 7"

y

s
-7

: _ -1 _ -1 _
Since w(y,s) =u(T~'y, =), x =T 'yandt = =, we have

xITTTx ~r - Ce ™
[IEI ) R 7 Rty = [ A, [ S —
: A+ x)
and
o TTTTx C
DD} (e, ) —tt— =2 BT Tx 7)) < ———— o T2 =k Vk= 1L
2 (IyP/2 =92
If taking A = TTT,b = TTh, ¢ = T, then we complete the proof of Theorem 1.2. o
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