
Calc. Var.  (2018) 57:90 
https://doi.org/10.1007/s00526-018-1363-5 Calculus of Variations

An extension of Jörgens–Calabi–Pogorelov theorem to
parabolic Monge–Ampère equation

Wei Zhang1,2 · Jiguang Bao3 · Bo Wang4

Received: 1 May 2015 / Accepted: 8 April 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract We extend a theorem of Jörgens, Calabi and Pogorelov on entire solutions of
elliptic Monge–Ampère equation to parabolic Monge–Ampère equation, and obtain delicate
asymptotic behavior of solutions at infinity. For the dimension n ≥ 3, the work of Gutiérrez
and Huang in Indiana Univ. Math. J. 47, 1459–1480 (1998) is an easy consequence of our
result. And along the line of approach in this paper, we can treat other parabolic Monge–
Ampère equations.

Mathematics Subject Classification 35K96 · 35B08 · 35B40 · 35B53

1 Introduction

A celebrated result of Jörgens (n = 2 [13]), Calabi (n ≤ 5 [5]) and Pogorelov (n ≥ 2 [20])
states that any classical convex solutions to the Monge–Ampère equation

det D2u = 1 in R
n (1.1)
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must be a quadratic polynomial. A simpler and more analytical proof was given by Cheng
and Yau [6]. Jost and Xin showed a quite different proof in [14]. Caffarelli [2] extended above
result for classical solutions to viscosity solutions. Caffarelli and Li [3] considered

det D2u = f in R
n, (1.2)

where f is a positive continuous function and is not equal to 1 only on a bounded set. They
proved that for n ≥ 3, the convex viscosity solution u is very close to quadratic polynomial
at infinity. More precisely, for n ≥ 3, there exist c ∈ R, b ∈ R

n and an n × n symmetric
positive definite matrix A with det A = 1, such that

lim sup
|x |→∞

|x |n−2
∣
∣
∣
∣
u(x) −

(
1

2
xT Ax + b · x + c

)∣
∣
∣
∣
< ∞.

In a subsequent work [4], Caffarelli and Li proved that if f is periodic, then u must be the sum
of a quadratic polynomial and a periodic function. In recent paper [12], a similar theorem for
a Monge–Ampère equation in half space was established by Jian and Wang.

Above famous Jörgens, Calabi and Pogorelov theorem was extended by Gutiérrez and
Huang [9] to solutions of the following parabolic Monge–Ampère equation

− ut det D2u = 1, (1.3)

where u = u(x, t) is parabolically convex, i.e., u is convex in x and nonincreasing in t , and
D2u denotes the Hessian of u with respect to the variable x . They got

Theorem 1.1 Let u ∈ C4,2(Rn+1− ) be a parabolically convex solution to the parabolic
Monge–Ampère equation (1.3) in R

n+1− := R
n × (−∞, 0], such that there exist positive

constants m1 and m2 with

− m1 ≤ ut (x, t) ≤ −m2, ∀(x, t) ∈ R
n+1− . (1.4)

Then u must have the form u(x, t) = C1t + p(x), where C1 < 0 is a constant and p is a
convex quadratic polynomial on x.

and they gave an example to show that viscosity solutions to (1.3) may not be of the form
given by above theorem. Recently, Bao and Xiong [26] extended this theorem to general
parabolic Monge–Ampère equations.

This type of parabolic Monge–Ampère operator was first introduced by Krylov [15].
Owing to its importance in stochastic theory, he further considered it in [16–18]. This oper-
ator is relevant in the study of deformation of a surface by Gauss–Kronecker curvature [8].
Indeed, Tso [23] solved this problem by noting that the support function to the surface that
is deforming satisfies an initial value problem involving that parabolic operator. And the
operator plays an important role in a maximum principle for parabolic equations [22].

For the parabolic Monge–Ampère equation, there are many results about existence and
regularity. For example, Wang and Wang [24] proved the existence of viscosity solutions
to (1.3) with an initial boundary value by the approximation procedure and the nonlinear
perturbation method, and C2+α,1+α/2 regularity of the viscosity solutions. Later, they [25]
developed a geometric measure theory associated with above parabolic Monge–Ampère
operator, and then used this theory to prove the existence of a viscosity solution to an initial
boundary value problem. Gutiérrez and Hang [11] obtained that the interior W 2,p estimates
for (1.3). Recently, Tang [21] obtained the same estimates under weaker conditions.

In this paper, we extend the theorem of Caffarelli and Li [3] to above parabolic Monge–
Ampère equation, and obtain asymptotic behavior at infinity.
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Theorem 1.2 Let n ≥ 3 and u ∈ C2,1(Rn+1− ) be a parabolically convex solution to the
parabolic Monge–Ampère equation

− ut det D2u = f (x, t) in R
n+1− , (1.5)

such that (1.4) holds, where f ∈ C0(Rn+1− ) satisfies

0 < inf
R

n+1−
f ≤ sup

R
n+1−

f < +∞ (1.6)

and
support ( f − 1) is bounded. (1.7)

Then there exist τ < 0, an n × n symmetric positive definite matrix A, b ∈ R
n, c ∈ R

satisfying −τ det A = 1 such that E(x, t) := u(x, t) − (τ t + xT Ax
2 + bT x + c) satisfies

lim sup
|x |2−t→+∞

eτ t (1 + |x |2) n−2
2 |E(x, t)| < +∞. (1.8)

Moreover, u is C∞ in the complement of the support of ( f − 1) and

lim sup
|x |2−t→+∞

( |x |2
2

− t

) n−2+k
2

|Di
x D j

t E(x, t)| < +∞, i + 2 j = k, ∀ k ≥ 1. (1.9)

For n ≥ 3, the theorem of Jörgens, Calabi and Pogorelov to (1.3) is an easy consequence
of Theorem 1.2.

Corollary 1.3 Let n ≥ 3 and u ∈ C2,1(Rn+1− ) be a parabolically convex solution to (1.3)
such that (1.4) holds. Then u must have the form u(x, t) = C1t + p(x), where C1 < 0 is a
constant and p is a convex quadratic polynomial on x.

Proof By Theorem 1.2, for some τ < 0, symmetric positive definite matrix A with
−τ det A = 1, b ∈ R

n , c ∈ R, we have

E(x, t) := u(x, t) − τ t − xT Ax

2
− bT x − c → 0, as

√

|x |2 − t → +∞.

Denote F(a, M) = −a det M . Since

F(τ + Et , A + D2 E) − F(τ, A) = 1 − 1 = 0,

it follows that
â1 Et + âi j Di j E = 0 in R

n+1− ,

where

â1(x, t) =
∫ 1

0
F1(−1 + θ Et , A + θ D2 E)dθ, âi j (x, t)

=
∫ 1

0
Fi j (−1 + θ Et , A + θ D2 E)dθ.

By the maximum principle, E(x, t) ≡ 0, i.e.,

u(x, t) = τ t + xT Ax

2
+ bT x + c.

	


123



 90 Page 4 of 36 W. Zhang et al.

Remark 1.1 For n ≥ 3, the same result of Theorem 1.1 is obtained under weaker regularity
on u. Precisely, by nonlinear perturbation method developed by Caffarelli, we only need
u ∈ C2,1.

Throughout the paper we work on the parabolic Monge–Ampère equation (1.5), but our
methods can be applied to other parabolic Monge–Ampere equations, such as

ut = (det D2u)
1
n + f (x, t),

ut = log det D2u + f (x, t). (1.10)

Taking the (1.10) for example, we get

Corollary 1.4 Let f ∈ C0(Rn+1− ), satisfy (1.6) and (1.7), and let u ∈ C2,1(Rn+1− ) be a
convex solution to (1.10) satisfying

m̂ ≤ ut ≤ M̂ (1.11)

Then there exist τ, c ∈ R, b ∈ R
n and a symmetric positive definite n × n matrix A with

τ − log det A = 1, such that E(x, t) := u(x, t) − [τ t + 1
2 xT Ax + b · x + c] satisfies

lim sup
|x |2−t→+∞

eτ t (1 + |x |2) n−2
2 |E(x, t)| < +∞.

Moreover, u is C∞ in the complement of the support of ( f − 1) and

lim sup
|x |2−t→+∞

( |x |2
2

− t

) n−2+k
2

|Di
x D j

t E(x, t)| < +∞, i + 2 j = k, ∀ k ≥ 1.

Proof Let
u(x, t) = u(x, t) − (1 + M̂)t.

Then u ∈ C2,1(Rn+1− ) is a solution to

ut = log det D2u + f ,

where m̂ − 1 − M̂ ≤ ut ≤ −1, f = f − (1 + M̂). Then support ( f − M̂) is bounded. Now
following the same line of the proof of above theorem, we get the asymptotic behavior of u.
Finally, we have the estimates for u. 	


Recently, the first and second authors [27] classify all solutions to

−ut det D2u = f (x) in R
n+1− ,

where f ∈ Cα(Rn) is a positive periodic function in x . More precisely, if u is a solution to
above equation, then u is the sum of a convex quadratic polynomial in x , a periodic function
in x and a linear function of t . Indeed, from the regularity theorem obtained by the first author
[28], we are able to get the above theorem under the weaker condition f ∈ V M Oψ(Rn).

The paper is organized as follows. Section 2 lists some notations and lemmas used in the
proof of Theorems 1.1 and 1.2. The proof of Theorem 1.1 is carried out again by our notations
in Sect. 3. Finally, we give the proof of Theorem 1.2 in Sect. 4.

123



An extension of Jörgens–Calabi–Pogorelov theorem... Page 5 of 36  90 

2 Preliminary

We begin to introduce some notations. LetRn+1− = R
n×(−∞, 0]. A function u : Rn+1− → R,

(x, t) �→ u(x, t), is called parabolically convex if it is continuous, convex in x and non-
increasing in t . We denote by D2u(x, t), Du(x, t) the matrix of second derivatives and the
gradient of u with respect to x respectively. We use the notation C2k,k(Rn+1− ) to denote the

class of functions u such that the derivatives Di
x D j

t u are continuous in R
n+1− for i +2 j ≤ 2k.

Let D ⊂ R
n+1− be a bounded set and t ≤ 0, then we denote

D(t) = {x ∈ R
n : (x, t) ∈ D},

and t0 = inf{t : D(t) = ∅}. The parabolic boundary of the bounded domain D is defined by

∂p D = (D(t0) × {t0}) ∪
⋃

t∈R
(∂ D(t) × {t}),

where D denotes the closure of D and ∂ D(t) denotes the boundary of D(t). We say that the
set D ⊂ R

n+1− is a bowl-shaped domain if D(t) is convex for each t and D(t1) ⊂ D(t2) for
t1 ≤ t2.

We recall the definition of cross section of a convex function. Let û : Rn → R be a convex
function that for simplicity is assumed smooth. A cross section of û at the point x0 ∈ R

n and
with height H > 0 is the convex set defined by

Sû(x0, H) = {x : û(x) < û(x0) + Dû(x0) · (x − x0) + H}.
Throughout the following proof of Theorems1.1 and 1.2, we will always assume that

u(0, 0) = 0, Du(0, 0) = 0, D2u(0, 0) = I d, ut (0, 0) = −1, (2.1)

and
u(x, t) ≥ 0, ∀(x, t) ∈ R

n+1− . (2.2)

In fact, we first show that we can assume ut (0, 0) = −1. Let ξ(x, t) = u(βx, αt), where
β and α are two positive numbers. Then −ξt (x, t)detD2ξ(x, t) = αβ2n , and we can pick β

and α such that αβ2n = 1 and ξt (0, 0) = αut (0, 0) = −1.
Secondly, we show that we can also assume u(0, 0) = 0 and Du(0, 0) = 0. Let ϕ(x, t) =

ξ(x, t) − ξ(0, 0) − Dξ(0, 0) · x . Then we have ϕ(0, 0) = 0, Dϕ(0, 0) = 0, ϕt (0, 0) = −1,
and −ϕt (x, t)detD2ϕ(x, t) = 1.

Thirdly, we give the reason for the assumption of D2u(0, 0) = I d . Since ξ(x, t) is
parabolically convex, ϕ(x, t) is parabolically convex. There exists an orthogonal matrix O
such that

OT D2ϕ(0, 0)O = diag{d1, d2, . . . , dn},
where di > 0, i = 1, 2, . . . , n. Let ψ(x, t) = ϕ(Odiag

{
xi√
di

}

, t). Then

Dψ(x, t) = diag

{
1√
di

}

OT (Dϕ)

(

Odiag

{
xi√
di

}

, t

)

,

D2ψ(x, t) = diag

{
1√
di

}

OT D2ϕ

(

Odiag

{
xi√
di

}

, t

)

Odiag

{
1√
di

}

,

and hence ψ(0, 0) = 0, Dψ(0, 0) = 0 and D2ψ(0, 0) = I d . Since

detD2ϕ(0, 0) = − 1

ϕt (0, 0)
= 1,
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we get that d1d2 · · · dn = 1 and we can obtain

−ψt (x, t)detD2ψ(x, t)

= −ϕt

(

O

(
x1√
d1

,
x2√
d2

, . . . ,
xn√
dn

)

, t

)

1

d1d2 · · · dn
detD2ϕ

(

O

(
x1√
d1

,
x2√
d2

, . . . ,
xn√
dn

)

, t

)

= 1.

This completes the proof of assumption (2.1). By (2.1) and the definition of parabolically
convex function we can get that

u(x, t) ≥ u(x, 0) ≥ u(0, 0) = 0, ∀(x, t) ∈ R
n+1− .

This completes the proof of assumption (2.2).
In the rest of this section, we would like to give some lemmas that will be useful in the

proof of Theorems 1.1 and 1.2.

Lemma 2.1 Let U be an (n + 1) × (n + 1) real upper-triangular matrix. Assume that the
diagonals of U are nonnegative and for some 0 < ε < 1,

(1 − ε)Ẽ ⊂ U (Ẽ) ⊂ (1 + ε)Ẽ, (2.3)

where Ẽ = {(y, s) ∈ R
n+1− : 1

2 |y|2 − s < 1} and (1 + ε)Ẽ = {(y, s) ∈ R
n+1− : 1

2 |y|2 − s <

(1 + ε)2}. Then for some constant C = C(n),

‖U − I‖ ≤ C
√

ε. (2.4)

Proof Let U = (Ui j ), we know that Ui j = 0 for i < j . Since U (Ẽ) contains an open
neighborhood of Rn+1, U is invertible. Therefore Uii > 0, i = 1, 2, . . ., n, n + 1. Write
U−1 = (Ui j ); then U−1 is also upper-triangular, Uii = 1

Uii
, i = 1, 2, . . ., n, n + 1. For

1 ≤ k ≤ n + 1, let ek denote the unit vector with the kth component equal to 1 and the others
equal to zero. By (2.3), it is easy to check that

U (
√

2ek) ∈ (1 + ε)Ẽ, k = 1, 2, . . . , n,

U (− en+1) ∈ (1 + ε)Ẽ,

then we have √
√
√
√

n
∑

j=1

U 2
jk ≤ 1 + ε, k = 1, 2, . . . , n, (2.5)

and
1

2

n
∑

j=1

U 2
j,n+1 + Un+1,n+1 ≤ (1 + ε)2. (2.6)

In particular, Ukk ≤ 1 + ε, 1 ≤ k ≤ n + 1. The same argument can be applied to U−1, so

1

Ukk
= U kk ≤ 1

1 − ε
, 1 ≤ k ≤ n + 1.

We deduce from the two above estimates that

1 − ε ≤ Ukk ≤ 1 + ε, 1 ≤ k ≤ n + 1. (2.7)
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It follows from (2.5) and (2.7) that
∑

j =k

U 2
jk ≤ (1 + ε)2 − (1 − ε)2 = 4ε, 1 ≤ k ≤ n. (2.8)

It also follows from (2.6) and (2.7) that
∑

j =n+1

U 2
j,n+1 ≤ 2(1 + ε)2 − 2Un+1,n+1

≤ 2(1 + ε)2 − 2(1 − ε)

≤ 8ε.

Therefore, we have

‖U − I‖ =
√
√
√
√

n+1
∑

j=1

(U j j − 1)2 +
∑

j =k

U 2
jk

≤
√
√
√
√

n+1
∑

j=1

ε2 + 8(n2 − n)ε

≤
√

(n + 1)ε + 8(n2 − n)ε

= C(n)
√

ε.

	

We recall that u : D → R is continuous, then the parabolic normal mapping of u is the

set valued function Pu : D → {E : E ∈ R
n+1} defined by

P(x0, t0) = {(p, H) : u(x, t) ≥ u(x0, t0) + p · (x − x0),

∀x ∈ D(t), t ≤ t0, H = p · x0 − u(x0, t0)}.
If D′ ⊂ D, then Pu(D′) = ⋃

(x,t)∈D′ Pu(x, t). And the parabolic Monge–Ampère measure
associated with u defined by |Pu(D′)|n+1 is a Borel measure, where | · |n+1 is the Lebesgue
measure in R

n+1. The following lemma is an extension to the parabolic case of a result first
proved by Alexandrov.

Lemma 2.2 ([9], Theorem 2.1) Let D ⊂ R
n+1 be an open bounded bowl-shaped domain

and u ∈ C(D) a parabolically convex function with u = 0 on ∂p D. If (x0, t0) ∈ D then

|u(x0, t0)|n+1 ≤ C(n)dist (x0, ∂ D(t0))diam(D(t0))
n−1|Pu(Dt0)|n+1,

where Dt0 = D ∩ {(x, t) : t ≤ t0}.
Lemma 2.3 ([11], Proposition 4.1) Let Q be a normalized bowl-shaped domain in R

n+1,
which definition will be given in Sect. 3, and u a parabolically convex function in Q satisfying
0 < −ut det D2u ≤ � in Q, minQ u = 0, −m1 ≤ ut < 0 in Q, and u = 1 on ∂p Q.

If u(X0) < 1 − ε, ε ∈ (0, 1) then dist (X0, ∂p Q) ≥ Cεn+1, where X0 = (x0, t0) and
C = C(n,�, m1).

Lemma 2.4 Let n ≥ 3 and A = (ai j (x, t)) is a real n ×n symmetric positive definite matrix
with

|ai j − δi j | ≤ C

(|x |2 + |t |)ε , (x, t) ∈ R
n+1− , (2.9)
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and ai j (x, t) ∈ Cα, α
2 (Rn+1− ), where ε, α ∈ (0, 1) are constants. Then there exists a positive

solution to

ut − ai j Di j u = et g(x) =: et

[

1

(1 + |x |2) n−2
2

+ n(n − 2)

(1 + |x |2) n+2
2

]

≥ 0, in R
n+1− ,

(2.10)
satisfying

0 ≤ u(x, t) ≤ C(n, ε)et

(1 + |x |2) n−2
2

, in R
n+1− . (2.11)

The idea of the proof comes from Elmar Schrohe and the first author. The desired existence
is established by a convergence argument, and (2.11) is an easy consequence of maximum
principle.

Proof Firstly, we prove the existence of u. Denote Em = {(x, t) ∈ R
n+1− : |x |2 − t < m2},

m = 1, 2, . . .. Considering
⎧

⎨

⎩

(um)t − ai j Di j um = et g(x), in Em,

um = et

(1+|x |2)
n−2

2
on ∂p Em,

(2.12)

we see from [19] that there exists um ∈ C2+α,1+α/2(Em) ∩ C(Em) satisfying (2.12). Since
et g(x) > 0 and um |∂p Em > 0, by maximum principle,

um > 0. (2.13)

Let w(x, t) = sup∂p Em
um + et supEm

g(x), we then have

wt − ai j Di jw = et sup
Em

g(x) ≥ et g(x) = (um)t − ai j Di j um,

and
w|∂p Em ≥ um |∂p Em .

By maximum principle,
um ≤ sup

∂p Em

um + et sup
Em

g(x). (2.14)

From (2.13) and (2.14), we obtain

|um |L∞(Em ) ≤ sup
∂p Em

um + et sup
Em

g(x) ≤ (n − 1)2 + 1. (2.15)

By the Schauder interior estimates, we get

|um |C2+α,1+α/2(E1)
≤ C ′

dist (E1, ∂p Em)
(|um |L∞(Em ) + |et g(x)|Cα,α/2(Em )) ≤ C, ∀m > 1,

where C depends on dist (E1, ∂p Em), not on m. Therefore there is a subsequence {u(1)
m },

such that
u(1)

m → u(1) ∈ C2+α,1+α/2(E1), in C2,1(E1), as m → ∞.

For Ek ⊂ R
n+1− ,

|u(k−1)
m |C2+α,1+α/2(Ek ) ≤ C, m > k,
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where C depends on k and dist (Ek, ∂p Em), not on m. So there is a subsequence {u(k)
m }, such

that
u(k)

m → u(k) ∈ C2+α,1+α/2(Ek), in C2,1(Ek), as m → ∞,

and u(k) = u( j) in E j , j = 1, 2, . . . , k − 1.
Define u(x, t) = u(k)(x, t), if (x, t) ∈ Ek , then u(x, t) is defined on R

n+1− . Consider

sequence {u(m)
m } in diagram, for any Ek ,

u(m)
m → u ∈ C2+α,1+α/2(Ek), in C2,1(Ek), as m → ∞ ( {u(m)

m } ⊂ {u(k)
m }, i f m > k),

Since
(u(m)

m )t − ai j Di j u
(m)
m = et g(x), in Ek, ∀ m > k,

we then find u is the solution of

ut − ai j Di j u = et g(x),

as m → ∞.
Next, the proof of (2.11) is given. It is easy to check that v = et

(1+|x |2)
n−2

2
is the unique

positive smooth solution of

vt − �v = et g(x) in R
n+1− . (2.16)

Hence,
vt − ai j Di jv = et g(x) + (δi j − ai j )Di jv in R

n+1− . (2.17)

From |D2v| ≤ Cet

(1+|x |2)
n
2

and (2.9), there exists a L > 0 such that

|(δi j − ai j )Di jv| ≤ 1

2
et g(x) in R

n+1− \EL . (2.18)

For (x, t) ∈ ĒL , by (2.15), it is easy to see

um(x, t) ≤ ((n − 1)2 + 1)
v(x, t)

minĒL
v

≤ max
{

2, (1 + L2)
n−2

2 eL2 [(n − 1)2 + 1]
}

v(x, t)

:= CLv(x, t), m > L . (2.19)

Therefore we obtain

(CLv)t − ai j Di j (CLv) ≥ CL

2
et g(x) ≥ (um)t − ai j Di j um, Em\EL ,

and
CLv ≥ um on ∂p Em ∪ ∂p EL .

Using maximum principle, we get

um ≤ CLv in Em\EL .

Let m → ∞,
u ≤ CLv in R

n+1− \EL . (2.20)

Combining above inequality and (2.19), we finish the proof. 	


123



 90 Page 10 of 36 W. Zhang et al.

3 Proof of Theorem 1.1

Given H > 0, let

Q H = {(x, t) ∈ R
n+1− : u(x, t) < H}, Q H (t) = {x ∈ R

n : u(x, t) < H } f or t ≤ 0.

(3.1)
Let xH be the mass center of Q H (0), E the ellipsoid of minimum volume containing Q H (0)

with center xH . By a normalization lemma of John-Cordoba and Gallegos (see [7]), there
exists some affine transformation

TH (x) = aH x + bH , (3.2)

where aH is an n × n matrix satisfying

det aH = 1, (3.3)

and bH ∈ R
n such that

TH (E) = BR(0), for some R = R(H) > 0, (3.4)

and
Bαn R(0) ⊂ TH (Q H (0)) ⊂ BR(0), (3.5)

where αn = n− 3
2 . By Lemma 3.1 in [9], there exist constants ε0, ε1, and ε2 depending on n,

m1 and m2 such that for all H > 0,

ε0 E × [−ε1 H, 0] ⊂ Q H ⊂ E × [−ε2 H, 0]. (3.6)

Thus, we have

Bε0 R(0) × [−ε1 H, 0] ⊂ (TH , id)Q H ⊂ BR(0) × [−ε2 H, 0]. (3.7)

Proposition 3.1 Let u ∈ C2,1(Rn+1− ) be a parabolically convex solution of (1.3) that also
satisfies (1.4), normalizations (2.1) and (2.2). Then there exists some constant C ≥ 1 depend-
ing only on n, m1 and m2 such that

C−1 H ≤ R2 ≤ C H. (3.8)

Proof We have, by (3.7)
{

(y, s) ∈ R
n+1− : s >

ε1 H

ε2
0 R2

(|y|2 − ε2
0 R2)

}

⊂ (TH , id)Q H ⊂
{

(y, s) ∈ R
n+1− : s >

ε2 H

R2 (|y|2 − 2R2)

}

.

Let us consider

w(y, s) = u(T −1
H (y), s) = u(a−1

H (y − bH ), s), (y, s) ∈ R
n+1− .

On one hand,

−wsdetD2w = 1 in

{

(y, s) ∈ R
n+1− : s >

ε1 H

ε2
0 R2

(|y|2 − ε2
0 R2)

}
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and

w ≤ H on ∂p

{

(y, s) ∈ R
n+1− : s >

ε1 H

ε2
0 R2

(|y|2 − ε2
0 R2)

}

.

If we take

ζ(y, s) = ε
2n

n+1
0 R

2n
n+1

2
n

n+1 ε
n

n+1
1 H

n
n+1

(

−s + ε1 H

ε2
0 R2

(|y|2 − ε2
0 R2)

)

+ H,

then

−ζsdetD2ζ = 1 in

{

(y, s) ∈ R
n+1− : s >

ε1 H

ε2
0 R2

(|y|2 − ε2
0 R2)

}

and

ζ = H on ∂p

{

(y, s) ∈ R
n+1− : s >

ε1 H

ε2
0 R2

(|y|2 − ε2
0 R2)

}

.

By the comparison principle, Proposition 2.2 in [25], we have

w ≤ ζ in

{

(y, s) ∈ R
n+1− : s >

ε1 H

ε2
0 R2

(|y|2 − ε2
0 R2)

}

,

in particular,

0 ≤ w(0, 0) ≤ ζ(0, 0) = ε
2n

n+1
0 R

2n
n+1

2
n

n+1 ε
n

n+1
1 H

n
n+1

(−ε1 H) + H,

thus, we can obtain that

R ≤
√

2

ε
1

2n
1 ε0

H
1
2 .

Similarly, we can show that

R ≥ 1

2
1

2n ε
1

2n
2

H
1
2 .

So taking C = max

{

2
1

2n ε
1

2n
2 ,

√
2

ε
1

2n
1 ε0

}

, we have

C−1 H
1
2 ≤ R ≤ C H

1
2 .

	

Proposition 3.2 Let u ∈ C2,1(Rn+1− ) be a parabolically convex solution of (1.3) that
also satisfies (1.4), normalizations (2.1) and (2.2). Then for some positive constant C =
C(n, m1, m2),

C−1 R ≤ dist
(

TH

(

Q H
2
(0)

)

, ∂TH (Q H (0))
)

≤ 2R. (3.9)

Consequently,
B R

C
(0) ⊂ aH (Q H (0)) ⊂ B2R(0), (3.10)

and
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ε′
0a−1

H

(

B R
C
(0)

)

× [−ε′
1 H, 0] ⊂ Q H ⊂ a−1

H (B2R(0)) × [−ε′
2 H, 0], (3.11)

where ε′
0, ε′

1, ε′
2 are positive constants independent of H.

Proof Since TH (Q H
2
(0)) ⊂ TH (Q H (0)) ⊂ BR(0), it is clearly that

dist
(

TH

(

Q H
2
(0)

)

, ∂TH (Q H (0)
)

≤ 2R.

Let w be defined on OH (0) := 1
R TH (Q H (0)) by

w(y) = m
1
n
2

R2 (u(T −1
H (Ry), 0) − H), y ∈ OH (0).

Then
Bαn (0) ⊂ OH (0) ⊂ B1(0),

and
det(D2w) ≤ 1 in OH (0), w = 0 on ∂OH (0).

It follows from Lemma 1 in [1] that

w(y) ≥ − C(n)dist (y, ∂OH (0))
2
n , y ∈ OH (0).

For y ∈ TH (Q H
2
(0)), let x = 1

R y, we then have

−m
1
n
2 H

2R2 = m
1
n
2

R2

(
H

2
− H

)

≥ w(x) ≥ − C(n)dist (x, ∂OH (0))
2
n ,

C(n)dist (y, ∂TH (Q H (0)) ≥ m
1
2
2 H

n
2

2
n
2 Rn−1

.

By Proposition 3.1, we obtain

dist (y, ∂TH (Q H (0)) ≥ C−1 R,

where C = C(n, m1, m2) ≥ 1. Estimate (3.9) is established.
Estimate (3.10) follows from (3.9),

TH (0) ∈ TH

(

Q H
2 (0)

)

⊂ TH (Q H (0)) ⊂ BR(0),

and
dist (TH (0), ∂TH (Q H (0)) = dist (0, ∂aH (Q H (0)).

Since ut (x, t) ≤ −m2 for t ≤ 0, we have u(x, t) ≥ u(x, 0) − m2t . By u(x, 0) ≥ 0 for all
x , we then obtain u(x, t) ≥ H for t < − H

m2
or x∈a−1

H (B2R(0)). So if ε′
2 = 1

m2
, we have

Q H ⊂ a−1
H (B2R(0)) × [−ε′

2 H, 0].
Due to (2.1), we have that Q H (0) is a cross section of the convex function u(x, 0) at x = 0
and with height H , i.e., Q H (0) = Su(x,0)(0, H). Particularly, from (3.10) and Lemma 2.1 of
[10] we have that

ε′
0

(
1

2C
a−1

H (B2R(0))

)

= ε′
0a−1

H

(

B R
C
(0)

)

⊂ ε′
0 Q H (0) ⊂ Q(

1− 1−ε′0
4C

)

H
(0)
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for 0 < ε′
0 < 1. If (x, t) ∈ ε′

0a−1
H (B R

C
(0)) × [−ε′

1 H, 0], then

u(x, t) = u(x, 0) −
∫ 0

t
ut (x, τ )dτ ≤

(

1 − 1 − ε′
0

4C

)

H − m1t

≤
(

1 − 1 − ε′
0

4C
+ m1ε

′
1

)

H < H.

Therefore, taking ε′
0 and ε′

1 sufficiently small, we can get

ε′
0a−1

H

(

B R
C
(0)

)

× [− ε′
1 H, 0] ⊂ Q H .

	

Proposition 3.3 Let u ∈ C4,2(Rn+1− ) be a parabolically convex solution of (1.3) that
further satisfies (1.4), normalizations (2.1) and (2.2). Then for some positive constant
C = C(n, m1, m2),

|aH | ≤ C, |a−1
H | ≤ C. (3.12)

Moreover,
sup
R

n+1−
|D2u| ≤ C. (3.13)

Proof Let us define

�H (x, t) =
(

1

R
aH x,

t

R2

)

, and �H (Q H ) = Q∗
H .

Consider

w(y, s) := 1

R2 u(�−1
H (y, s)) = 1

R2 u(Ra−1
H y, R2s), (y, s) ∈ Q∗

H .

By (1.3) and det aH = 1, we have

−wt det D2w = 1 on Q∗
H .

It follows from Proposition 3.1 and (3.11) that

C−1 ≤ w = H

R2 ≤ C on ∂p Q∗
H ,

and
B ε′0

C

(0) × [−ε′
1C−1, 0] ⊂ Q∗

H ⊂ B2(0) × [−ε′
2C, 0]. (3.14)

By (3.14) and the interior second derivative estimates of Pogorelov (see [24]),

|D2w| ≤ C, in B ε′0
2C

(0) ×
[

− ε′
1

2C
, 0

]

, (3.15)

in particular,
|D2w(0, 0)| ≤ C.

Since
D2w(0, 0) = (a−1

H )T D2u(0, 0)(a−1
H ) = (a−1

H )T (a−1
H ),

we get
|a−1

H | ≤ C.
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Since det(a−1
H ) = det aH = 1, we then have

|aH | ≤ C.

Estimate (3.12) is established.
By (3.15) and (3.12),

|D2u| ≤ C in B ε′0 R
2C

(0) ×
[

−ε′
1 R2

2C
, 0

]

,

where C = C(n, m1, m2). Since R can be arbitrary large (as can H ), estimate (3.13) follows
from the above. 	


Theorem 1.1 can be deduced from (3.13) and the interior estimates of Evans and Krylov
as follows:

Proof of Theorem 1.1 By (3.13), we have

|u(x, t)| ≤ C(|x |2 − t) in R
n+1− . (3.16)

For (x, t) ∈ R
n+1− , we will show that D2u(x, t) = D2u(0, 0) and consequently by (1.3),

ut (x, t) = − 1

detD2u(x, t)
= − 1

detD2u(0, 0)
= ut (0, 0).

Since (x, t) is arbitrary, u must have the form u(x, t) = C1t + p(x), where C1 < 0 is a
constant and p is a convex quadratic polynomial on x . Theorem 1.1 is established.

For R > 1, R > 2|x | and R2 > −2t , we consider

w(y, s) = 1

R2 u(Ry, R2s), (y, s) ∈ B1(0) × (−1, 0].
By (1.3), (3.16) and (3.13),

−wt detD2w = 1, |w| + |D2w| ≤ C in B1(0) × (−1, 0].
It follows from the interior estimates of Evans and Krylov that for some α ∈ (0, 1) and C
(independent of R and H ),

|D2w(y, s) − D2w(0, 0)| ≤ C(|y|2 + |s|) α
2 , (y, s) ∈ B 1

2
(0) ×

(

−1

2
, 0

]

.

In particular,

∣
∣
∣
∣
D2w

(
x

R
,

t

R2

)

− D2w(0, 0)

∣
∣
∣
∣
≤ C

(( |x |
R

)2

+ |t |
R2

) α
2

,

i.e.,

|D2u(x, t) − D2u(0, 0)| ≤ C

Rα
(|x |2 + |t |) α

2 .

Sending R → +∞, we have
D2u(x, t) = D2u(0, 0).
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4 Proof of Theorem 1.2

Let TH (x) = aH x + bH be an affine transformation satisfying (3.3), (3.4) and (3.5), and let

v(y, s) = 1

R2 u(�−1
H (y, s)) = 1

R2 u(Ra−1
H y, R2s), (y, s) ∈ Q∗

H . (4.1)

By (3.11),

B ε0
C

(0) ×
[

−ε1

C
, 0

]

⊂ Q∗
H ⊂ B2(0) × [− Cε2, 0].

Clearly
− vsdetD2v = f (�−1

H (y, s)) = f (Ra−1
H y, R2s) in Q∗

H .

By Proposition 3.1,

v = H

R2 ∈ (C−1, C) on ∂p Q∗
H . (4.2)

By [24], there exists a unique parabolically convex solution v ∈ C0(Q∗
H )

⋂
C∞(Q∗

H ) of
⎧

⎪⎨

⎪⎩

− vs det D2v = 1 in Q∗
H ,

v = H
R2 ∈ (C−1, C) on ∂p Q∗

H ,

− C ≤ vs ≤ − C−1 in Q∗
H .

And for every δ > 0, there exists some positive constant C = C(δ) such that for all (y, s) ∈
Q∗

H and distp((y, s), ∂p Q∗
H ) ≥ δ, we have

C−1 I ≤ D2v(y, s) ≤ C I, |D3v(y, s)| ≤ C, |Dvs(y, s)| ≤ C (4.3)

Lemma 4.1 For some positive constant C̃ depending only on n and f , we have

|v − v| ≤ C̃

R
n+2
n+1

in Q∗
H . (4.4)

In fact, C̃ = C(n)‖ f − 1‖
1

n+1

L1( f =1)
.

Proof By replacing u in Proposition 2.1 ([22]) with −u, we have that

− min
Q∗

H

(v − v) ≤ C(n)
( ∫

S+
1

−(v − v)sdetD2(v − v)dyds
) 1

n+1
,

where
S+

1 = {(y, s) ∈ Q∗
H : (v − v)s < 0, D2(v − v) > 0}.

On S+
1 ,

detD2(v − v) ≤ detD2v − detD2v ≤ detD2v,

so we have

− (v − v)sdetD2(v − v) ≤ −(v − v)sdetD2v

= −vsdetD2v + vsdetD2v

≤ −vsdetD2v + vsdetD2v

= f (Ra−1
H y, R2s) − 1,
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It follows that

− min
Q∗

H

(v − v) ≤ C(n)
( ∫

S+
1

( f (Ra−1
H y, R2s) − 1)dyds

) 1
n+1

= C(n)
( ∫

�−1
H (S+

1 )

( f (x, t) − 1)
detaH

Rn+2 dxdt
) 1

n+1

= C(n)

R
n+2
n+1

‖ f − 1‖
1

n+1

L1( f >1)

≤ C̃(n, f )

R
n+2
n+1

.

Similarly, we can show that

− min
Q∗

H

(v − v) ≤ C(n)

R
n+2
n+1

‖1 − f ‖
1

n+1

L1( f <1)
≤ C̃(n, f )

R
n+2
n+1

.

Lemma 4.1 is established. 	

Let (y, 0) be the unique minimum point of v in Q∗

H . For v(y, 0) < H̃ ≤ H , let

SH̃ (0, 0) =
{

(y, s) ∈ R
n+1− : 1

2
yT D2v(y, 0)y + vs(y, 0)s = H̃

}

,

EH̃ (0, 0) =
{

(y, s) ∈ R
n+1− : 1

2
yT D2v(y, 0)y + vs(y, 0)s < H̃

}

,

SH̃ (y, 0) =
{

(y, s) ∈ R
n+1− : 1

2
(y − y)T D2v(y, 0)(y − y) + vs(y, 0)s = H̃

}

,

EH̃ (y, 0) =
{

(y, s) ∈ R
n+1− : 1

2
(y − y)T D2v(y, 0)(y − y) + vs(y, 0)s < H̃

}

.

We also denote that

m EH̃ (0, 0) =
{

(y, s) : 1

2
yT D2v(y, 0)y + vs(y, 0)s < m2 H̃

}

, m ∈ R
+,

m EH̃ (y, 0) =
{

(y, s) : 1

2
(y − y)T D2v(y, 0)(y − y) + vs(y, 0)s < m2 H̃

}

, m ∈ R
+,

and
m Q H = {(y′, s′) = (my, m2t) : (y, s) ∈ Q H }, m ∈ R

+.

Proposition 4.2 There exist k and C, depending only on n and f , such that for ε = 1
3 ,

H = 2(1+ε)k and 2k−1 ≤ H ′ ≤ 2k , we have
(

H ′

R2 − C2− 3εk
2

) 1
2

E1(0, 0) ⊂ �H (Q H ′) ⊂
(

H ′

R2 + C2− 3εk
2

) 1
2

E1(0, 0), ∀k ≥ k. (4.5)

Proof Clearly, it follows from (3.8) and (4.1) that

C−12−εk ≤ H ′

R2 ≤ C2−εk, C−12
(1+ε)k

2 ≤ R ≤ C2
(1+ε)k

2 ,

and {

v <
H ′

R2

}

:=
{

(y, s) : v(y, s) <
H ′

R2

}

= �H (Q H ′) ⊂ Q∗
H .
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By Lemma 4.1,

|v − v| ≤ C̃

R
n+2
n+1

≤ C̃C2
− 1+ε

2 k
(

1+ 1
n+1

)

in Q∗
H .

Since
H ′

R2 � C̃

R
n+2
n+1

, as R → ∞,

the level surface of v can be well approximated by the level surface of v:

{

v <
H ′

R2 − C̃

R
n+2
n+1

}

⊂
{

v <
H ′

R2

}

⊂
{

v <
H ′

R2 + C̃

R
n+2
n+1

}

.

By Lemma 4.1, the fact v ≥ 0 and v(0, 0) = 0, we have

− C̃

R
n+2
n+1

≤ v(y, 0) − C̃

R
n+2
n+1

≤ v(y, 0) ≤ v(0, 0) ≤ v(0, 0) + C̃

R
n+2
n+1

= C̃

R
n+2
n+1

.

Therefore by Lemmas 2.3 and (4.3),

|v(y, s) − v(y, 0) − vs(y, 0)s − 1

2
(y − y)T D2v(y, 0)(y − y)| ≤ C(|y − y|2 + |s|) 3

2 ,

distp((y, s), (y, 0)) < 1
C and

2C−1 I ≤ D2v(y, 0) ≤ 2C I.

On one hand, we take a positive constant C1 to be determined. For (y, s) ∈
(

H ′
R2 − C12− 3εk

2

) 1
2

E1(y, 0), we have

vs(y, 0)s + 1

2
(y − y)T D2v(y, 0)(y − y) <

H ′

R2 − C12− 3εk
2 ,

1

C
|s| + 1

2C
|y − y|2 <

H ′

R2 − C12− 3εk
2 ,

|y − y|2 + |s| < C

(
H ′

R2 − C12− 3εk
2

)

.

We can take k1 satisfying for k ≥ k1, then

|y − y|2 + |s| < C

(
H ′

R2 − C12− 3εk
2

)

≤ 1

C2 .
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Thus,

v(y, s) ≤ v(y, 0) + vs(y, 0)s + 1

2
(y − y)T D2v(y, 0)(y − y) + C(|y − y|2 + |s|) 3

2

≤ C̃

R
n+2
n+1

+ H ′

R2 − C12− 3εk
2 + C

5
2

(
H ′

R2 − C12− 3εk
2

) 3
2

≤ C̃

R
n+2
n+1

+ H ′

R2 − C12− 3εk
2 + C

5
2

(
H ′

R2

) 3
2

≤ C̃

R
n+2
n+1

+ H ′

R2 − C12− 3εk
2 + C42− 3

2 εk

= C̃

R
n+2
n+1

+ H ′

R2 + (C4 − C1)2
− 3εk

2 .

We can take C1 > C4 satisfying 2C̃C
C1−C4 < 1, then

2
C̃

R
n+2
n+1

≤ 2C̃C2− (1+ε)(n+2)k
2(n+1) < (C1 − C4)2− 3εk

2 .

For k ≥ k1, we can obtain

v(y, s) ≤ C̃

R
n+2
n+1

+ H ′

R2 + (C4 − C1)2
− 3εk

2 <
H ′

R2 − C̃

R
n+2
n+1

.

In conclusion, we have
(

H ′

R2 − C12− 3εk
2

) 1
2

E1(y, 0) ⊂
{

v <
H ′

R2 − C̃

R
n+2
n+1

}

, ∀k ≥ k1.

On the other hand, we take a positive constant C2 to be determined. In order to prove

{

v <
H ′

R2 + C̃

R
n+2
n+1

}

⊂
(

H ′

R2 + C22− 3εk
2

) 1
2

E1(y, 0),

using the fact

(y, 0) ∈
{

v <
H ′

R2 + C̃

R
n+2
n+1

}

∩
(

H ′

R2 + C22− 3εk
2

) 1
2

E1(y, 0),

we only need to prove

(
H ′

R2 + C22− 3εk
2

) 1
2

S1(y, 0) ⊂
{

v <
H ′

R2 + C̃

R
n+2
n+1

}c

.

For (y, s) ∈
(

H ′
R2 + C22− 3εk

2

) 1
2

S1(y, 0), then we get

vs(y, 0)s + 1

2
(y − y)T D2v(y, 0)(y − y) = H ′

R2 + C22− 3εk
2 ,

1

C
|s| + 1

2C
|y − y|2 <

H ′

R2 + C22− 3εk
2 ,

|y − y|2 + |s| < 2C

(
H ′

R2 + C22− 3εk
2

)

.

123



An extension of Jörgens–Calabi–Pogorelov theorem... Page 19 of 36  90 

Taking k2 satisfying for k ≥ k2, we obtain

|y − y|2 + |s| < C

(
H ′

R2 + C22− 3εk
2

)

≤ 1

C2 .

Thus,

v(y, s) ≥ v(y, 0) + vs(y, 0)s + 1

2
(y − y)T D2v(y, 0)(y − y) − C(|y − y|2 + |s|) 3

2

≥ − C̃

R
n+2
n+1

+ H ′

R2 + C22− 3εk
2 − C

5
2

(
H ′

R2 + C22− 3εk
2

) 3
2

≥ − C̃

R
n+2
n+1

+ H ′

R2 + C22− 3εk
2 − C

5
2

(

2
H ′

R2

) 3
2

≥ − C̃

R
n+2
n+1

+ H ′

R2 + C22− 3εk
2 − C42

3
2 2− 3

2 εk

= − C̃

R
n+2
n+1

+ H ′

R2 +
(

C2 − 2
3
2 C4

)

2− 3εk
2 .

We can take C2 > 2
3
2 C4 satisfying C2−2

3
2 C4

2C̃C
n+2
n+1

> 1, and then

2
C̃

R
n+2
n+1

≤ 2C̃C
n+2
n+1 2− (1+ε)(n+2)k

2(n+1) <
(

C2 − 2
3
2 C4

)

2− 3εk
2 .

For k ≥ k2, we obtain

v(y, s) ≥ − C̃

R
n+2
n+1

+ H ′

R2 +
(

C2 − 2
3
2 C4

)

2− 3εk
2 >

H ′

R2 + C̃

R
n+2
n+1

.

In conclusion, we have

{

v <
H ′

R2 + C̃

R
n+2
n+1

}

⊂
(

H ′

R2 + C22− 3εk
2

) 1
2

E1(y, 0), ∀k ≥ k2.

Therefore, taking C3 > max{C1, C2} and k = max{k1, k2}, we see

(
H ′

R2 − C32− 3εk
2

) 1
2

E1(y, 0) ⊂
{

v <
H ′

R2

}

⊂
(

H ′

R2 + C32− 3εk
2

) 1
2

E1(y, 0) ∀k ≥ k.

(4.6)
Finally, we want to obtain (4.5). We first show that

∂p(Q∗̃
H+v(y,0)

(v)) ⊂ Nδ1(SH̃ (y, 0)), 0 < H̃ ≤ H

R2 − v(y, 0), δ1 ≤ C H̃
1
2 , (4.7)

and neighborhood N is measured by parabolic distance

distp[(y1, s1), (y2, s2)] := (|y1 − y2|2 + |s1 − s2|) 1
2 .
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In fact, for (y, s) ∈ ∂p(Q∗̃
H+v(y,0)

(v)), by the Mean Theorem, Lemma 2.3 and (4.3), we have

H̃ = v(y, s) − v(y, 0)

= v(y, s) − v(y, 0) + v(y, 0) − v(y, 0)

= vs(y, s′)s + 1

2
(y − y)T D2v(y′, 0)(y − y)

≥ 1

2C
(|s| + |y − y|2),

where (y′, s′) ∈ Q∗̃
H+v(y,0)

(v). Writing

H̃ = v(y, s) − v(y, 0)

= vs(y, 0)s + (vs(y, s′) − vs(y, 0))s + 1

2
(y − y)T D2v(y, 0)(y − y)

+1

2
(y − y)T (D2v(y′, 0) − D2v(y, 0))(y − y),

for (y, s) ∈ ∂p(Q∗̃
H+v(y,0)

(v)), it follows

∣
∣
∣
∣
H̃ − vs(y, 0)s − 1

2
(y − y)T D2v(y, 0)(y − y)

∣
∣
∣
∣

=
∣
∣
∣
∣
(vs(y, s′) − vs(y, 0))s + 1

2
(y − y)T (D2v(y′, 0) − D2v(y, 0))(y − y)

∣
∣
∣
∣

≤ C |s| + C |y − y|2
≤ C H̃ .

For any (y, s) ∈ ∂p(Q∗̃
H+v(y,0)

(v)) and any (ỹ, s̃) ∈ SH̃ (y, 0), by the above inequality, we

show
∣
∣
∣
∣
vs(y, 0)̃s + 1

2
(ỹ − y)T D2v(y, 0)(ỹ − y) − vs(y, 0)s − 1

2
(y − y)T D2v(y, 0)(y − y)

∣
∣
∣
∣

≤ C H̃ .

Taking ỹ, y, y on the same line l with ỹ and y on the same side of the line l with respect to
y (rotating the coordinates again so that l is parallel to some axis), we have

||̃y − y|2 − |y − y|2| ≥ |y − ỹ|2.
Then for s = s̃, we get

1

2C
||̃y − y|2 − |y − y|2| ≤ C H̃ .

In fact, there exists an orthogonal matrix O such that D2v(y, 0) = OT diag{λ1, . . . , λn}O ,
and the length of a vector in Euclidean space is invariant under orthogonal transformation.
Therefore, we get

|y − ỹ|2 ≤ C H̃ .

Similarly, for y = ỹ,
|vs(y, 0)̃s − vs(y, 0)s| ≤ C H̃ ,

So we get
|s − s̃| ≤ C H̃ .
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This completes the proof of (4.7).
Next we estimate the distance between (0, 0) and (y, 0). By Lemma 4.1, we have

0 ≤ v(0, 0) − v(y, 0)

= (v(0, 0) − v(0, 0)) + (v(0, 0) − v(y, 0)) + (v(y, 0) − v(y, 0))

≤ 2C̃

R
n+2
n+1

,

so (0, 0) ∈ Q∗
2C̃

R
n+2
n+1

+v(y,0)
(v), and by (4.7) (taking H̃ = 2C̃

R
n+2
n+1

), we have

∂

⎛

⎝Q∗
2C̃

R
n+2
n+1

+v(y,0)
(v)

⎞

⎠ ⊂ Nδ1

(

S 2C̃

R
n+2
n+1

(y, 0)

)

, δ1 ≤ C

(
2C̃

R
n+2
n+1

)1/2

.

Thus we get

distp((0, 0), (y, 0)) ≤ C

(
2C̃

R
n+2
n+1

)1/2

.

So by (4.6), we have

(
H ′

R2 − C32− 3εk
2 − C2 2C̃

R
n+2
n+1

) 1
2

E1(0, 0) ⊂
{

v <
H ′

R2

}

⊂
(

H ′

R2 + C32− 3εk
2 + C2 2C̃

R
n+2
n+1

) 1
2

E1(0, 0) ∀k ≥ k.

Since 2− 3εk
2 � 1

R
n+2
n+1

, then we can obtain (4.5) by taking C = 2C2C̃ + C3. 	


Let Ẽ denote the set {(y, s) ∈ R
n+1− : 1

2 |y|2 − s < 1}, then we have the following
proposition.

Proposition 4.3 There exist positive constants k̂, Ĉ , some real invertible upper-triangular
matrix {Tk}k≥k̂ and negative number {τk}k≥k̂ such that

− τk det T T
k Tk = 1, ‖Tk T −1

k−1 − I‖ ≤ Ĉ2− εk
4 , |τkτ

−1
k−1 − 1| ≤ Ĉ2− εk

4 , (4.8)

and
(

1 − Ĉ2− εk
2

)√
H ′ Ẽ ⊂ �k(Q H ′) ⊂

(

1 + Ĉ2− εk
2

)√
H ′ Ẽ, ∀2k−1 ≤ H ′ ≤ 2k, (4.9)

where �k = (Tk,− τk). Consequently, for some invertible T and τ ,

− τ det T T T = 1, ‖Tk − T ‖ ≤ Ĉ2− εk
4 , |τk − τ | ≤ Ĉ2− εk

4 . (4.10)

Proof Let H = 2(1+ε)k and 2k−1 ≤ H ′ ≤ 2k . By Proposition 4.2, there exist some positive
constants C and k depending only on n and f such that

(
H ′

R2 − C2− 3εk
2

) 1
2

E1(0, 0) ⊂ �H (Q H ′) ⊂
(

H ′

R2 + C2− 3εk
2

) 1
2

E1(0, 0), ∀k ≥ k.
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Then we have
(

H ′ − C2− 3εk
2 R2

) 1
2

E1(0, 0) ⊂ (aH , id)(Q H ′) ⊂
(

H ′ + C2− 3εk
2 R2

) 1
2

E1(0, 0),

(

1 − C2− 3εk
2

R2

H ′

) 1
2 √

H ′E1(0, 0) ⊂ (aH , id)(Q H ′)

⊂
(

1 + C2− 3εk
2

R2

H ′

) 1
2 √

H ′E1(0, 0).

Since

C−12−εk ≤ H ′

R2 ≤ C2−εk,

we can get

(

1 − CC2− εk
2

) 1
2 √

H ′E1(0, 0) ⊂ (aH , id)(Q H ′) ⊂
(

1 + CC2− εk
2

) 1
2 √

H ′E1(0, 0).

On one hand, we take C1 > CC
2 , k5 satisfying when k ≥ k5, 2

kε
2 ≥ C

2
1

2C1−CC
. If k ≥ k6 :=

max{k5, k}, we have

C
2
1 ≤ 22

kε
2 C1 − 2

kε
2 CC,

2−εkC
2
1 ≤ 22− kε

2 C1 − 2− kε
2 CC,

2−εkC
2
1 − 22− kε

2 C1 ≤ −2− kε
2 CC,

2−εkC
2
1 − 22− kε

2 C1 + 1 ≤ 1 − 2− kε
2 CC,

(

1 − C12− kε
2

)2 ≤ 1 − 2− kε
2 CC .

Therefore, (

1 − C12− kε
2

)√
H ′E1(0, 0) ⊂ (aH , id)(Q H ′), k ≥ k6.

On the other hand, if taking C2 > CC
2 , then for any k ≥ k, we have

(

1 + CC2− kε
2

) 1
2 ≤

(

1 + C22− kε
2

)

.

So we show
(aH , id)(Q H ′) ⊂

(

1 + C22− kε
2

)√
H ′E1(0, 0), k ≥ k.

In conclusion, taking Ĉ > CC
2 , k̂ = k6, we have

(

1 − Ĉ2− kε
2

)√
H ′E1(0, 0) ⊂ (aH , id)(Q H ′) ⊂

(

1 + Ĉ2− kε
2

)√
H ′E1(0, 0), k ≥ k̂.

(4.11)
Let Q be the real symmetric positive definite matrix satisfying Q2 = QT Q = D2v(y, 0)

and O be an orthogonal matrix such that

Tk := O QaH is the upper-triangular.

And we also define τk = vs(y, 0) and �k = (Tk,−τk). Clearly,

−τk det T T
k Tk = −vs(y, 0)(det aH )2 det D2v(y, 0) = 1.
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Now we claim that Ẽ = (O Q,−τk)E1(0, 0). ∀(y, s) ∈ E1(0, 0), (x, t) = (O Qy,−τks),
xT x = yT QT OT O Qy = yT D2v(y, 0)y, t = −τks = −vs(y, 0)s. Recall that

1

2
yT D2v(y, 0)y + vs(y, 0)s = 1,

so (x, t) ∈ Ẽ , and vice versa. From (4.11), we have
(

1 − Ĉ2− kε
2

)√
H ′ Ẽ ⊂ �k(Q H ′) ⊂

(

1 + Ĉ2− kε
2

)√
H ′ Ẽ, k ≥ k̂.

If taking H = 2(1+ε)k and H ′ = 2k−1, we can obtain
(

1 − Ĉ2− kε
2

)√

2k−1 Ẽ ⊂ �k(Q2k−1) ⊂
(

1 + Ĉ2− kε
2

)√

2k−1 Ẽ, (4.12)

and if taking H = 2(1+ε)(k−1) and H ′ = 2k−1, we can get
(

1 − Ĉ2− (k−1)ε
2

)√

2k−1 Ẽ ⊂ �k−1(Q2k−1) ⊂
(

1 + Ĉ2− (k−1)ε
2

)√

2k−1 Ẽ .

Thus we obtain
(

1 − Ĉ2− (k−1)ε
2

)√

2k−1�−1
k−1 Ẽ ⊂ Q2k−1 ⊂

(

1 + Ĉ2− (k−1)ε
2

)√

2k−1�−1
k−1 Ẽ, (4.13)

(

1 − Ĉ2− (k−1)ε
2

)√

2k−1�k�
−1
k−1 Ẽ ⊂ �k(Q2k−1)

⊂
(

1 + Ĉ2− (k−1)ε
2

)√

2k−1�k�
−1
k−1 Ẽ . (4.14)

On one hand, from the left hand of (4.14) and the right hand of (4.12), we see
(

1 − Ĉ2− (k−1)ε
2

)√

2k−1�k�
−1
k−1 Ẽ ⊂

(

1 + Ĉ2− kε
2

)√

2k−1 Ẽ,

thus we have

�k�
−1
k−1 Ẽ ⊂ 1 + Ĉ2− kε

2

1 − Ĉ2− (k−1)ε
2

Ẽ =
(

1 + Ĉ2− (k−1)ε
2 + Ĉ2− kε

2

1 − Ĉ2− (k−1)ε
2

)

Ẽ .

Since

lim
k→+∞ 2

εk
2

Ĉ2− (k−1)ε
2 + Ĉ2− kε

2

1 − Ĉ2− (k−1)ε
2

= lim
k→+∞

Ĉ2
ε
2 + Ĉ

1 − Ĉ2− ε(k−1)
2

= Ĉ2
ε
2 + Ĉ,

by taking k sufficiently large, we can obtain

�k�
−1
k−1 Ẽ ⊂

(

1 + Ĉ2− (k−1)ε
2 + Ĉ2− kε

2

1 − Ĉ2− (k−1)ε
2

)

Ẽ ⊂
(

1 + Ĉ2− εk
2

)

Ẽ .

On the other hand, from the left hand of (4.12) and the right hand of (4.14), we get
(

1 − Ĉ2− kε
2

)√

2k−1 Ẽ ⊂
(

1 + Ĉ2− (k−1)ε
2

)√

2k−1�k�
−1
k−1 Ẽ,

thus we obtain
(

1 − Ĉ2− (k−1)ε
2 + Ĉ2− kε

2

1 + Ĉ2− (k−1)ε
2

)

Ẽ = 1 − Ĉ2− kε
2

1 + Ĉ2− (k−1)ε
2

Ẽ ⊂ �k�
−1
k−1 Ẽ,
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Since

lim
k→+∞ 2

εk
2

Ĉ2− (k−1)ε
2 + Ĉ2− kε

2

1 + Ĉ2− (k−1)ε
2

= lim
k→+∞

Ĉ + Ĉ2
ε
2

1 + Ĉ2− ε(k−1)
2

= Ĉ + Ĉ2
ε
2 ,

by taking k sufficiently large, we can show

(

1 − Ĉ2− εk
2

)

Ẽ ⊂
(

1 − Ĉ2− (k−1)ε
2 + Ĉ2− kε

2

1 + Ĉ2− (k−1)ε
2

)

Ẽ ⊂ �k�
−1
k−1 Ẽ .

So we have (

1 − Ĉ2− εk
2

)

Ẽ ⊂ �k�
−1
k−1 Ẽ ⊂

(

1 + Ĉ2− εk
2

)

Ẽ, k ≥ k̂.

Since �k�
−1
k−1 is still upper-triangular, we apply Lemma 2.1 (with U = �k�

−1
k−1) to obtain

that
‖�k�

−1
k−1 − I‖ ≤ C(n)Ĉ2− εk

4 , k ≥ k̂.

Estimates (4.8) and (4.9) have been established. The existence of T , τ and (4.10) follow by
elementary consideration. 	


From Proposition 4.3, we can define

� = (T,−τ),

and let w = u ◦ �−1, then we have

−ws det D2w = 1, in R
n+1− \ �(Q H ),

in fact, ws = − ut
τ

, det D2w = (det T −1)2 det D2u,

−ws det D2w = 1

τ

1

(det T )2 ut det D2u = 1

from (4.10). Since {(y, s) : w(y, s) < H ′} = �(Q H ′), (3.11) and

Q H ′√
H ′ =

(

diag

{
1√
H ′ ,

1√
H ′ , . . . ,

1√
H ′

}

,
1

H ′

)

Q H ′ ,

then we can deduce from (4.9) and (4.10) that on one hand

�(Q H ′) − �k(Q H ′) ⊂ Ĉ2− εk
4
√

H ′ Ẽ,

�(Q H ′) ⊂
(

1 + 2Ĉ2− εk
4

)√
H ′ Ẽ,

on the other hand

�k(Q H ′) − �(Q H ′) ⊂ Ĉ2− εk
4
√

H ′ Ẽ,
(

1 − 2Ĉ2− εk
4

)√
H ′ Ẽ ⊂ �(Q H ′).

In particular, taking H ′ = 2k , then we get
(

1 − 2Ĉ(H ′)−
ε
4

)√
H ′ Ẽ ⊂ {(y, s) : w(y, s) < H ′}

⊂
(

1 + 2Ĉ(H ′)−
ε
4

)√
H ′ Ẽ, ∀H ′ ≥ 2k̂ .

So we have
(

1 − 2Ĉ(w(y, s))−
ε
4

)2
w(y, s) < −s + 1

2
|y|2 <

(

1 + 2Ĉ(w(y, s))−
ε
4

)2
w(y, s),
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on one hand, we see

− s + 1

2
|y|2 <

(

1 + 2Ĉ(w(y, s))−
ε
4

)2
w(y, s),

− s + 1

2
|y|2 < w(y, s) + 4Ĉ(w(y, s))1− ε

4 + 4Ĉ2(w(y, s))1− ε
2 ,

− s + 1

2
|y|2 < w(y, s) + (4Ĉ + 4Ĉ2)(w(y, s))1− ε

4 ,

w(y, s) −
(

−s + 1

2
|y|2

)

> −(4Ĉ + 4Ĉ2)(w(y, s))1− ε
4 ,

on the other hand, we show
(

1 − 2Ĉ(w(y, s))−
ε
4

)2
w(y, s) < −s + 1

2
|y|2,

w(y, s) − 4Ĉ(w(y, s))1− ε
4 + 4Ĉ2(w(y, s))1− ε

2 < −s + 1

2
|y|2,

w(y, s) −
(

− s + 1

2
|y|2

)

< 4Ĉ(w(y, s))1− ε
4 − 4Ĉ2(w(y, s))1− ε

2 ,

w(y, s) −
(

− s + 1

2
|y|2

)

< 4Ĉ(w(y, s))1− ε
4 .

Thus we obtain ∣
∣
∣
∣
w(y, s) −

(

− s + 1

2
|y|2

)∣
∣
∣
∣
< ̂̂C(w(y, s))1− ε

4 .

Consequently, by the fact C−1w(y, s) ≤ |y|2 + |s|, we get
∣
∣
∣
∣
w(y, s) −

(

− s + 1

2
|y|2

)∣
∣
∣
∣
≤ C(|y|2 + |s|) 2−ε/2

2 ,

√

|y|2 + |s| ≥ 2k . (4.15)

Proposition 4.4 Let g ∈ C∞(Rn+1− \ Ẽ) satisfy

(1 − gs) det(I + D2g) = 1, I + D2g > 0, −m5 < gs − 1 < −m6, (y, s) ∈ R
n+1− \ Ẽ,

where m5, m6 are two positive constants, and for some constants β > 0 and γ > −2,

|g(y, s)| ≤ β

(
√|y|2/2 + |s|)γ , (y, s) ∈ R

n+1− \ Ẽ,

Then there exist some constant r = r(n, β, γ ) ≥ 1 such that

|Di
y D j

s g(y, s)| ≤ C

(
√|y|2/2 + |s|)γ+k

, i + 2 j = k,
|y|2

2
− s > r, k = 1, 2, 3 . . . .

where C depends only on n, k, β and γ .

Proof Let

η(y, s) := −s + |y|2
2

+ g(y, s).

For
( |y|2

2 + |s|
) 1

2 = R > 2, let

ηR(z, ι) :=
(

4

R

)2

η

(

y + R

4
z, s + R2

16
ι

)

,

( |z|2
2

+ |ι|
) 1

2

≤ 3

2
.
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We have to show that ηR is well defined when
( |z|2

2 + |ι|
) 1

2 ≤ 3
2 .

∣
∣y + R

4 z
∣
∣
2

2
−

(

s + R2

16
ι

)

= 1

2

(

|y|2 + R

2
yT z + R2

16
|z|2

)

−
(

s + R2

16
ι

)

≥ 1

2
|y|2 − s + R

4
yT z

≥ R2 − R

4
|y||z|

≥ R2 − R

4
(
√

2R)

(
3√
2

)

= R2

4
> 1.

Then let

gR(z, ι) : =
(

4

R

)2

g

(

y + R

4
z, s + R2

16
ι

)

=
(

4

R

)2
[

η

(

y + R

4
z, s + R2

16
ι

)

+ s + R2

16
ι −

∣
∣y + R

4 z
∣
∣
2

2

]

= ηR(z, ι) + ι + 16

R2 s − 8
∣
∣
∣

y

R
+ z

4

∣
∣
∣

2
,

( |z|2
2

+ |ι|
) 1

2

≤ 3

2
.

By the decay hypothesis on g, on one hand, we have

ηR(z, ι) ≤ 8
∣
∣
∣

y

R
+ z

4

∣
∣
∣

2 −
(

ι + 16

R2 s

)

+
(

4

R

)2
β

(∣
∣
∣y+ R

4 z
∣
∣
∣

2

2 +
∣
∣
∣s + R2

16 ι

∣
∣
∣

) γ
2

≤ 8

( |y|
R

+ |z|
4

)2

+ 9

4
+ 16 + 16β

R2

1
(

25
64 R2

) γ
2

≤ 97

2
+ 16β8γ

5γ R2+γ
.

Taking r1 satisfying 16β8γ

5γ r2+γ
1

= 1, for R ≥ max{r1, 8}, we have

ηR(z, ι) ≤ 99

2
.
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On the other hand, we have

ηR(z, ι) ≥ 8
∣
∣
∣

y

R
+ z

4

∣
∣
∣

2 −
(

ι + 16

R2 s

)

−
(

4

R

)2
β

(∣
∣y + R

4 z
∣
∣
2 +

∣
∣
∣s + R2

16 ι

∣
∣
∣

) γ
2

≥ 8

( |y|
R

− |z|
4

)2

+ 16 − 8|y|2
R2 − 16β

R2

1
(

25
64 R2

) γ
2

= 8

( |y|2
R2 − |yz|

2R
+ z2

16

)

+ 16 − 8|y|2
R2 − 16β

R2

1
(

25
64 R2

) γ
2

≥ −4|yz|
R

+ 16 − 16β8γ

5γ R2+γ

≥ −4|y|
R

· 3
√

2

2
+ 16 − 16β8γ

5γ R2+γ

≥ −12 + 16 − 16β8γ

5γ R2+γ

= 4 − 16β8γ

5γ R2+γ
.

then taking R ≥ max{r1, 8}, we have

ηR(z, ι) ≥ 3.

In conclusion, there exists some r = r(n, β, γ ) = max{r1, 8} ≥ 1 such that for ( |y|2
2 +|s|) 1

2 =
R ≥ r ,

3 ≤ ηR(z, ι) ≤ 99

2
,

( |z|2
2

+ |ι|
) 1

2

≤ 3

2
.

Since ηR satisfies

−ηRιdetD2ηR = 1, D2ηR > 0, −m5 < ηRι < −m6,

( |z|2
2

+ |ι|
) 1

2

≤ 3

2
,

by the estimates of Pogorelov, Evans-Krylov and regularity theory of the parabolic equation,
we have

‖ηR‖Ck,k/2(Ẽ) ≤ C, C−1 I ≤ D2ηR ≤ C I in Ẽ .

Here and in the following, C ≥ 1 denotes some constant depending only on n unless otherwise
stated.

‖gR‖Ck,k/2(Ẽ) ≤ C, C−1 I ≤ (I + D2gR) ≤ C I in Ẽ, k ≥ 2. (4.16)

Clearly, gR satisfies

â1gRι + âi j Di j gR = 0,

( |z|2
2

+ |ι|
) 1

2

<
3

2
,

where

â1(z, ι) =
∫ 1

0
F1(−1 + θgRι, I + θ D2gR)dθ, âi j (z, ι)

=
∫ 1

0
Fi j (−1 + θgRι, I + θ D2gR)dθ

123



 90 Page 28 of 36 W. Zhang et al.

satisfies, in view of (4.16), that

‖̂a1‖Ck,k/2(Ẽ) ≤ C, C−1 ≤ −â1 ≤ C in Ẽ,

and
‖̂ai j‖Ck,k/2(Ẽ) ≤ C, C−1 I ≤ (̂ai j ) ≤ C I in Ẽ .

Here we use the notation
F(a, M) := −a det M.

By interior estimate of parabolic equations, we have

|Di
z D j

ι gR(0, 0)| ≤ C‖gR‖L∞(Ẽ)

≤ 16

R2

β
(∣

∣
∣y+ R

4 z
∣
∣
∣

2

2 +
∣
∣
∣s + R2

16 ι

∣
∣
∣

) γ
2

≤ C(n, k, β, γ )

R2+γ
, i + 2 j = k.

It follows that

|Di
y D j

s g(y, s)| ≤ C(n, k, β, γ )

(
√|y|2/2 + |s|)γ+k

, i + 2 j = k, k = 1, 2, . . . .

	

Proposition 4.5 There exist b̃ ∈ R

n, c̃ ∈ R and some positive constant C such that
∣
∣
∣
∣
w(y, s) + s − |y|2

2
− b̃T y − c̃

∣
∣
∣
∣
≤ Ces

(1 + |y|2) n−2
2

, ∀ (y, s) ∈ R
n+1− \ �(Q H ).

Proof Let

Ê(y, s) := w(y, s) −
(

−s + |y|2
2

)

, (y, s) ∈ R
n+1− \ �(Q H ),

and by (4.15) and Proposition 4.4

|D2 Ê(y, s)| + |Ês(y, s)| ≤ C

(|y|2 + |s|) ε
2
, (4.17)

and

|D3 Ê(y, s)| + |Dm Ês(y, s)| ≤ C

(|y|2 + |s|) ε+1
2

. (4.18)

It follows that
â1 Ês + âi j Di j Ê = 0 in R

n+1− \ �(Q H ), (4.19)

where

â1(y, s) =
∫ 1

0
F1(−1 + θ Ês, I + θ D2 Ê)dθ,

âi j (y, s) =
∫ 1

0
Fi j (−1 + θ Ês, I + θ D2 Ê)dθ.
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Next we adopt the notation

F̃(a, M) = (a det M)
1
n ,

A is an n × n symmetric positive definite matrix and a > 0. It is well-known that in the open

set of n × n symmetric positive definite matrices, det
1
n is concave. If

F̃(a(y, s), M(y, s)) = 1,

then by differentiating it, we have

F̃aas + F̃i j Mi js = 0,

and
F̃aak + F̃i j Mi jk = 0, k = 1, 2, . . . , n.

We differentiate the above equation again, and get

F̃aaalak + F̃aakl + F̃i j,αβ Mαβl Mi jk + F̃i j Mi jkl + 2F̃i jaak Mi jk = 0, k, l = 1, 2, . . . , n.

By the concavity of F̃ and let e ∈ R
n be a unit vector, we have

F̃aa(Dea)2 + F̃a(Deea) + F̃i j (e
T Me)i j ≥ 0,

where F̃a = 1
na , F̃aa = − 1

na2 , F̃i j = 1
n Mi j and (Mi j ) = (Mi j )

−1. Thus we show

− 1

a2 (Dea)2 + 1

a
(Deea) + Mi j (eT Me)i j ≥ 0.

Let a = −ws = −Ês + 1, M = D2w = D2 Ê + I , we have

− 1

1 − Ês
(Ês)s + ((D2 Ê + I )−1)i j (Ês)i j = 0,

− 1

1 − Ês
(Dm Ê)s + ((D2 Ê + I )−1)i j (Dm Ê)i j = 0, m = 1, 2, . . . , n,

and

− 1

1 − Ês
(Dee Ê)s + ((D2 Ê + I )−1)i j (Dee Ê)i j ≥ (De(−Ês))

2

(1 − Ês)2
≥ 0.

Taking B1 = 1
1−Ês

and Bi j = ((D2 Ê + I )−1)i j , we have

− B1(Ês)s + Bi j (Ês)i j = 0,

− B1(Dm Ê)s + Bi j (Dm Ê)i j = 0, m = 1, 2, . . . , n,

and

−B1(Dee Ê)s + Bi j (Dee Ê)i j ≥ (De(−Ês))
2

(1 − Ês)2
≥ 0.

We claim that

|Bi j − δi j | ≤ C

(|y|2 + |s|) ε
2
, |B1 − 1| ≤ C

(|y|2 + |s|) ε
2
.
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Indeed, let λ1, λ2, . . ., λn denote the eigenvalues of D2 Ê , then on one hand,
∣
∣
∣
∣

1

1 − Ês
− 1

∣
∣
∣
∣
= | det(D2 Ê + I ) − 1|
= |1 + λ1 + λ2 + · · · + λn + λ1λ2 + · · · + λ1λ2 · · · λn − 1|
= |λ1 + λ2 + · · · + λn + λ1λ2 + · · · + λ1λ2 · · · λn |
≤ C

(|y|2 + |s|) ε
2
,

on the other hand,
∣
∣
∣
∣

1

1 + λi
− 1

∣
∣
∣
∣
= |λi |

|1 + λi |
≤ |λi |

1 − |λi |
≤ C

(|y|2 + |s|) ε
2
,

this completes the proof of the claim. So we have

− (Ês)s + B̃i j (Ês)i j = 0, (4.20)

− (Dm Ê)s + B̃i j (Dm Ê)i j = 0, m = 1, 2, . . . , n, (4.21)

and
− (Dee Ê)s + B̃i j (Dee Ê)i j ≥ 0, (4.22)

where B̃i j = Bi j
B1

and

|B̃i j − δi j | = |Bi j − δi j + (1 − B1)δi j |
|B1|

≤ |Bi j − δi j | + |1 − B1|
|B1|

≤
2C

(|y2|+|s|)ε/2

1 − C
(|y2|+|s|)ε/2

≤
2C

(|y2|+|s|)ε/2

1 − 1
2

= 4C

(|y2| + |s|)ε/2 .

By Lemma 2.4, for such coefficients, there exists a positive solution G(y, s) to

− Gs + B̃i j Gi j = −es

[(
1

1 + |y|2
) n−2

2 + n(n − 2)

(
1

1 + |y|2
) n+2

2
]

≤ 0 (4.23)

satisfying

0 ≤ G(y, s) ≤ Ces

(1 + |y|2) n−2
2

.
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Similarly, there exists a negative solution G ′(y, s) to

− G ′
s + B̃i j G

′
i j = es

[(
1

1 + |y|2
) n−2

2 + n(n − 2)

(
1

1 + |y|2
) n+2

2
]

≥ 0 (4.24)

satisfying

0 ≤ −G ′(y, s) ≤ C
es

(1 + |y|2) n−2
2

.

By (4.20), (4.23) and the maximum principle, we have

− Ês(y, s) ≤ CG(y, s) ≤ Ces
(

1

1 + |y|2
) n−2

2

. (4.25)

By (4.22), (4.23) and the maximum principle, we also get

Dee Ê(y, s) ≤ CG(y, s) ≤ Ces
(

1

1 + |y|2
) n−2

2

. (4.26)

This means the largest eigenvalue of D2 Ê(y, s) is bounded from above by Ces

(1+|y|2)
n−2

2
.

Denoting N (y, s), N ′(y, s) by

N (y, s) =
(

âi j (y, s) 0
0 −â1(y, s)

)

,

N ′(y, s) =
(

Di j Ê(y, s) 0
0 −Ês(y, s)

)

,

we can regard (4.19) as
tr(N (y, s)N ′(y, s)) = 0.

By (4.25) and (4.26), the least eigenvalue of D2 Ê(y, s) is bounded below by a negative
constant multiple of the largest eigenvalue of N ′(y, s). Thus we have

|D2 Ê(y, s)| ≤ Ces

(1 + |y|2) n−2
2

, (4.27)

and

|Ês(y, s)| ≤ Ces

(1 + |y|2) n−2
2

. (4.28)

Now we claim that for 1 ≤ m ≤ n, there exists b̃m ∈ R satisfying lim|y|2−s→∞ Dm Ê =
b̃m . The idea of the proof comes from Elmar Schrohe and the first author. We divide the proof
into four steps:

Step 1

|Dm Ês(y, s)| ≤ C

(1 + |y|2 − s)
n−1

2

. (4.29)

Since Ês is a solution to (4.20), (4.29) is the gradient estimates for Ês . From the definition
of B̃i j , (4.18), (4.27) and (4.28), it is easy to see that

|Dm B̃i j (y, s)| ≤ C

(1 + |y|2 − s)
1+ε

2

. (4.30)
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Let v be a solution to

− vs + B̃i j Di jv = 0 in R
n+1− \ �(Q H ). (4.31)

For |y|2
2 − s = R2 > 4, let

vR(z, ι) = 16

R2 v

(

y + R

4
z, s + R2

16
ι

)

in E9/4, (4.32)

where E9/4 := {(z, ι) : |z|2
2 − ι < 9/4}. Since

∣
∣y + R

4 z
∣
∣
2

2
−

(

s + R2

16
ι

)

= 1

2

(

|y|2 + R

2
yT z + R2

16
|z|2

)

−
(

s + R2

16
ι

)

≥ 1

2
|y|2 − s + R

4
yT z

≥ R2 − R

4
|y||z|

≥ R2 − R

4
(
√

2R)

(
3√
2

)

= R2

4
> 1,

we see that vR is well defined when (z, ι) ∈ E9/4. Clearly, vR satisfies

− (vR)ι + (B̃R)i j Di jvR = 0, (4.33)

where (B̃R)i j (z, ι) := B̃i j (y + R
4 z, s + R2

16 ι), and

|Dm(B̃R)i j | ≤ R

4

C

R1+ε
= C

Rε

From the gradient estimate for uniformly parabolic differential equation (4.33), we get

sup
E1/4

|DmvR | ≤ C1 sup
E9/4

|vR |, (4.34)

where C1 depends only on n, the decay of |Dm(B̃R)i j | and the parabolic constants of (4.33).
In fact, we use an idea that goes back to Bernstein, and choose a function

ηR(z, ι) :=
(

9

4
− |z|2

2
+ ι

)2 n
∑

m=1

(DmvR)2 + C2
1v2

R .

After a simple computation and an application of Cauchy inequality, we can find C1 depending
only on n, the decay of |Dm(B̃R)i j | and the parabolic constants of (4.33), such that

− (ηR)ι + (B̃R)i j Di jηR ≥ 0 in E9/4.

Then we can apply the maximum principle and obtain (4.34). Particularly, from (4.34), we
see that

|DmvR(0, 0)| ≤ C1 sup
E9,4

|vR |,
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that is,

|Dmv(y, s)| = R

4
|DmvR(0, 0)| ≤ C R sup

E9/4

|vR | ≤ C

R
sup

(y,s)+ R
4 E9/4

|v|.

Setting v(y, s) = Ês(y, s), we get (4.29).
Step 2 |Dm Ê | ≤ C ln(1+|y|2 − s) for n = 3, or |Dm Ê | ≤ C for n ≥ 4. Indeed, for n = 3

and fixed a > 0 and b < 0, we set F(t) = Dm Ê(t (y1, y2, y3, s) + (1 − t)(a, a, a, b)), from
(4.29), then have

|Dm Ê(y1, y2, y3, s) − Dm Ê(a, a, a, b)| = |F(1) − F(0)| =
∣
∣
∣
∣

∫ 1

0

d F

dt
dt

∣
∣
∣
∣

=
∣
∣
∣
∣
∣

3
∑

i=1

(∫ 1

0
Dmi Êdt

)

(yi − a) +
(∫ 1

0
Dm Êsdt

)

(s − b)

∣
∣
∣
∣
∣

≤
3

∑

i=1

⎛

⎜
⎜
⎝

∫ 1

0

Cets+(1−t)b

(

1 + ∑3
j=1 |a + t (y j − a)|2

) 1
2

dt

⎞

⎟
⎟
⎠

|yi − a|

+
(
∫ 1

0

C

1 + ∑3
j=1 |a + t (y j − a)|2 + |b + t (s − b)|dt

)

|s − b|

≤ C ln(1 + |y|2 − s)

Similarly, we obtain, for n ≥ 4,

|Dm Ê(y, s) − Dm Ê(a, a, . . . , a, b)| ≤ C.

Step 3 Dm Ê(y, s) ≡ Dm Ê(0, τ0), (y, s) ∈ R
n × (−∞, τ0], τ0 < 0. It is easy to see that

Dm Ê satisfies (4.21) in R
n × (−∞, τ0], since (4.21) holds outside a compact set in R

n+1− .
Let v be a solution to

− vs + B̃i j Di jv = 0 in R
n × (−∞, τ0], (4.35)

where B̃i j ∈ C∞(Rn × (−∞, τ0]) satisfies (4.30). For any (y0, s0) ∈ R
n × (−∞, τ0], we

apply interior gradient estimates for v in ER = {(y, s)| |y−y0|2
2 − (s − s0) < R2 and s ≤ s0},

and have

|Dmv|L∞(ER/2) ≤ C2|v|L∞(ER)

R2 , (4.36)

where C2 depends only on n, the decay of |Dm(B̃R)i j | and the parabolic constants of (4.35).

In fact, we choose η(y, s) = (R2 − |y−y0|2
2 + (s − s0))

2 ∑n
m=1(Dmv)2 + C2

2v2, such that
−ηs + B̃i j Di jη ≥ 0 in ER . Then applying the maximum principle, we get (4.36). In particular,

|Dv(y0, s0)| ≤ C2|v|L∞(ER)

R2 . (4.37)

If |v|L∞(ER) ≤ C ln(1 + R2), or |v|L∞(Rn+1− \�(Q H ))
≤ C , we send R → ∞, then get

|Dv(y0, s0)| = 0, and then v(y0, s0) = v(0, s0), D2v(y0, s0) = 0. From (4.35), we conclude
vs(y0, s0) = 0 and v(y0, s0) = v(0, s0) = v(0, τ0) for (y0, s0) ∈ R

n × (−∞, τ0]. Now
Setting v = Dm Ê , by the estimate of |Dm Ê | from Step 2, we finish the proof of Step 3.
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Step 4 lim|y|→∞ Dm Ê(y, s) = lim|y|→∞ Dm Ê(y, τ0) = Dm Ê(0, τ0), (y, s) ∈ R
n ×

[τ0, 0]\�(Q H ). Indeed, for fixed y0 ∈ R
n , from (4.29), we have

|Dm Ê(y0, s) − Dm Ê(y0, τ0)| ≤
∫ s

τ0

|Dm Ês(y0, s)|ds ≤ C |τ0|
(1 + |y0|2) n−1

2

. (4.38)

Let |y0| → ∞, we get

lim|y|→∞ Dm Ê(y, s) = lim|y|→∞ Dm Ê(y, τ0).

From above four steps, we finally obtain the claim.
Next we will prove that lim|y|2−s→∞(Ê(y, s) − b̃T y) = c̃, following the same line of the

proof of the existence of b̃m . Since Dm Ê(y, s) − b̃m satisfies

− (Dm Ê − b̃m)s + B̃i j (Dm Ê − b̃m)i j = 0

from (4.21). Combining (4.23), (4.24) and maximum principle, we have

|DÊ(y, s) − b̃| ≤ Ces

(1 + |y|2) n−2
2

,

where b̃ = (̃b1, b̃2, . . ., b̃n).
Let Ẽ(y, s) := Ê(y, s) − b̃T y. From (4.19), we have that Ẽ satisfies

− Ẽs + Ai j Di j Ẽ = 0, (4.39)

where Ai j := âi j
−â1

. Recall that â1(y, s) = ∫ 1
0 F1(−1 + θ Ês, I + θ D2 Ê)dθ , âi j (y, s) =

∫ 1
0 Fi j (−1 + θ Ês, I + θ D2 Ê)dθ , and F(a, M) = −a det M . By (4.17) and (4.18), we get

|Ai j − δi j | ≤ C

(|y|2 − s)
ε
2
, (4.40)

and

|Dm Ai j | ≤ C

(|y|2 − s)
1+ε

2

. (4.41)

It follows from Lemma 2.4 that there exists a positive solution g(y, s) to

− gs + Ai j gi j = −es

[(
1

1 + |y|2
) n−2

2 + n(n − 2)

(
1

1 + |y|2
) n+2

2
]

≤ 0 (4.42)

satisfying

0 ≤ g(y, s) ≤ Ces

(1 + |y|2) n−2
2

.

Similarly, there exists a negative solution g′(y, s) to

− g′
s + Ai j g′

i j = es

[(
1

1 + |y|2
) n−2

2 + n(n − 2)

(
1

1 + |y|2
) n+2

2
]

≥ 0 (4.43)

satisfying

0 ≤ −g′(y, s) ≤ Ces

(1 + |y|2) n−2
2

.
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Since

|Ẽs(y, s)| = |Ês(y, s)| ≤ Ces

(1 + |y|2) n−2
2

,

we skip the Step 1 in the proof of existence of b̃m , along the same line of other Steps, then
see that there exists c̃ ∈ R such that

lim
|y|2−s→∞

Ẽ(y, s) = c̃.

It follows that Ẽ(y, s) − c̃ is a solution to (4.39). Then from (4.42), (4.43) and maximum
principle, we obtain

|Ẽ(y, s) − c̃| ≤ Ces

(1 + |y|2) n−2
2

, ∀(y, s) ∈ R
n+1− \ �(Q H ),

that is,

|Ê(y, s) − b̃T y − c̃| ≤ Ces

(1 + |y|2) n−2
2

, ∀(y, s) ∈ R
n+1− \ �(Q H ).

	


Proof of Theorem 1.2 Recall that w is a solution to −ws det D2w = 1 in R
n+1− \�(Q H ).

Let

Ĕ(y, s) := w(y, s) −
(

−s + |y|2
2

+ b̃T y − c̃

)

.

with

|Ĕ(y, s)| ≤ Ces

(1 + |y|2) n−2
2

≤ C

(|y|2/2 − s)
n−2

2

.

From Proposition 4.4, we see that

|Di
y D j

t Ĕ(y, s)| ≤ C

(|y|2/2 − s)
n−2+k

2

, i + 2 j = k, ∀ k ≥ 1.

Since w(y, s) = u(T −1 y, s
−τ

), x = T −1 y and t = s
−τ

, we have

|u(x, t) − τ t − xT T T T x

2
− b̃T T x − c̃| ≤ Ce−τ t

(1 + |x |2) n−2
2

,

and

|Di
x D j

t (u(x, t)− τ t − xT T T T x

2
− b̃T T x − c̃)| ≤ C

(|y|2/2 − s)
n−2+k

2

, i +2 j = k, ∀ k ≥ 1.

If taking A = T T T , b = T T b̃, c = c̃, then we complete the proof of Theorem 1.2. 	
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