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Abstract

In this paper, we introduce the so-called D-split sequences and show that each D-split sequence gives rise
to a derived equivalence via a tilting module. In particular, we obtain derived equivalences from Auslander–
Reiten sequences via BB-tilting modules (or from n-almost split sequences via n-BB-tilting modules), and
Auslander–Reiten triangles. Further, we recover n-almost split sequences from n-BB-tilting modules over
n-Auslander algebras.
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1. Introduction

Derived equivalences and Auslander–Reiten sequences are fundamental notions in the mod-
ern representation theory of algebras and groups. On the one hand, it is well known that derived
categories and equivalences are widely used in many aspects of mathematics, in particular, de-
rived equivalences preserve many significant invariants of groups and algebras; for example,
the number of irreducible representations, Cartan determinants, Hochschild cohomology groups,
algebraic K-theory and G-theory (see [6,9,10], and others). One of the fundamental results on
derived categories may be the Morita theory for derived categories established by Rickard in his
several papers [24–26], see also [19], which says that two rings A and B are derived-equivalent
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if and only if there is a tilting complex T of A-modules such that B is isomorphic to the endo-
morphism ring of T . On the other hand, Auslander–Reiten sequences introduced by Auslander
and Reiten in 1970’s are of significant importance in the modern representation theory, they con-
tain rich combinatorial and homological information on module categories (see [3]). There is a
lot of literature on derived categories and Auslander–Reiten sequences individually. Of course,
APR-tilting produces very special tilting modules, thus also a relationship between very spe-
cial Auslander–Reiten sequences and derived equivalences. However, we do not know if there is
any relationship between arbitrary Auslander–Reiten sequences and derived equivalences since
their introduction. In other words, is it possible to construct derived equivalences from arbitrary
Auslander–Reiten sequences or n-almost split sequences or Auslander–Reiten triangles?

In the present paper, we shall provide an affirmative answer to this question and construct
derived equivalences from D-split sequences (see Definition 3.1 below). Such sequences include
Auslander–Reiten sequences, tilting complement sequences and sequences arising from Cohen–
Macaulay modules, and occur very frequently in the representation theory of algebras and groups
(see also the examples in Section 3 below). Our result in this direction can be stated in the
following general form:

Theorem 1.1. Let C be an additive category and M be an object in C . Suppose

X −→ M ′ −→ Y

is an add(M)-split sequence in C . Then the endomorphism ring EndC (X ⊕ M) of X ⊕ M is
derived-equivalent to the endomorphism ring EndC (M ⊕ Y) of M ⊕ Y via a tilting module.

As a consequence, we see that, in Theorem 1.1, the finitistic dimension of EndC (X ⊕ M) is
finite if and only if so is the finitistic dimension of EndC (M ⊕ Y).

Theorem 1.1 reveals actually a mysterious connection between arbitrary Auslander–Reiten
sequences and derived equivalences, namely, we have the following corollary, which also shows
that BB-tilting modules, introduced about three decades ago by Brenner and Butler in [5], are
closely related to Auslander–Reiten sequences in a very natural way.

Corollary 1.2. Let A be an Artin algebra.

(1) Suppose that 0 −→ Xi −→ Mi −→ Xi−1 −→ 0 is an Auslander–Reiten sequence of
finitely generated A-modules for i = 1,2, . . . , n. Let M = ⊕n

i=1 Mi . If X0 /∈ add(M) and
if X1, . . . ,Xn are pairwise non-isomorphic, then EndA(Xn ⊕ M) is derived-equivalent to
EndA(M ⊕ X0) via an n-BB-tilting module. In particular, if 0 −→ X −→ M −→ Y −→ 0
is an Auslander–Reiten sequence, then EndA(X⊕M) is derived-equivalent to EndA(M ⊕Y)

via a BB-tilting module, and they have the same Cartan determinant.
(2) If A is self-injective and X is an A-module, then the endomorphism algebra End(A ⊕ X)

of A ⊕ X and the endomorphism algebra EndA(A ⊕ Ω(X)) of A ⊕ Ω(X) are derived-
equivalent, where Ω is the syzygy operator.

Thus, by Corollary 1.2, or more generally, by Proposition 3.15 in Section 3 below, one can pro-
duce a lot of derived equivalences from Auslander–Reiten sequences or n-almost split sequences.
We stress that the algebra EndA(X ⊕ M) and the algebra EndA(M ⊕ Y) in Corollary 1.2 may
be very different from each other (see the examples in Section 6), though the mesh diagram of
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the Auslander–Reiten sequence is somehow symmetric. Another result related to Corollary 1.2 is
Proposition 5.1 in Section 5 below, which produces derived equivalences from Auslander–Reiten
triangles in a triangulated category. In particular, we have

Corollary 1.3. Let A be a self-injective Artin algebra. Suppose 0 −→ X −→ M −→ Y −→ 0
is an Auslander–Reiten sequence such that Ω−1(X) /∈ add(M ⊕ Y). Then EndA(X ⊕ M) and
EndA(M ⊕Y) are derived-equivalent, where EndA(N) denotes the stable endomorphism algebra
of an A-module N .

The converse problem of getting Auslander–Reiten sequences from BB-tilting modules is also
considered in this paper. However, only partial result is obtained, namely, our Proposition 4.4 in
Section 4 below shows that one can recover n-Auslander–Reiten sequences from n-BB-tilting
modules over n-Auslander algebras.

The paper is organized as follows: In Section 2, we recall briefly some basic notions and a
fundamental result of Rickard on derived categories. Our main result, Theorem 1.1, is proved
in Section 3, where we also provide several generalizations of Corollary 1.2; among others is a
formulation of Corollary 1.2(1) for n-almost split sequences. In Section 4, we point out that if a
D-split sequence is given by an Auslander–Reiten sequence then Theorem 1.1 can be viewed as
an alternative version of a BB-tilting module. Thus n-almost split sequences or concatenations
of n Auslander–Reiten sequences provide us a natural way to get n-BB-tilting modules (for def-
inition, see Section 4). At the end of this section, we also prove that one can obtain n-almost
split sequences from n-BB-titling modules over n-Auslander algebras. In particular, if n = 1,
we can get Auslander–Reiten sequences from BB-tilting modules over Auslander algebras. In
Section 5, we discuss how to get derived equivalences from Auslander–Reiten triangles in trian-
gulated categories. In particular, Corollary 1.3 is proved in this section. In the last section, we
present examples to illustrate our main result.

The authors thank M.C.R. Butler and I. Reiten for some comments, and Hongxing Chen at
BNU for discussions on the first version of the manuscript. Also, the authors thank Piotr Malicki
for pointing out the reference [14] which simplifies the formulation of Proposition 3.14, and the
referees for carefully reading their manuscript. Finally, the corresponding author C.C. Xi thanks
NSFC for partial support.

2. Preliminaries

In this section, we recall some definitions and basic results required in our proofs.
Let C be an additive category. For two morphisms f : X −→ Y and g : Y −→ Z in C , the

composition of f with g is written as fg, which is a morphism from X to Z. Thus, for an object
V in C , we write f ∗ for the map HomC (V ,f ) : HomC (V ,X) −→ HomC (V ,Y ) of abelian groups
induced by f . Similarly, we write f∗ for the map HomC (Y,V ) −→ HomC (X,V ). But for two
functors F : C −→ D and G : D −→ E of categories, their composition is denoted by GF. For an
object X in C , we denote by add(X) the full subcategory of C consisting of all direct summands
of finite sums of copies of X.

A complex X• over C is a sequence of morphisms di
X between objects Xi in C : · · · −→

Xi−1 di−1
X−→ Xi

di
X−→ Xi+1 di+1

X−→ Xi+2 −→ · · · , such that di
Xdi+1

X = 0 for all i ∈ Z. We write
X• = (Xi, di

X). The category of all complexes over C with the usual complex maps of degree
zero is denoted by C (C). The homotopy and derived categories of complexes over C are denoted
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by K (C) and D(C), respectively. The full subcategory of C (C) consisting of bounded com-
plexes over C is denoted by C b(C). Similarly, K b(C) and Db(C) denote the full subcategories
consisting of bounded complexes in K (C) and D(C), respectively.

An object X in a triangulated category C with a shift functor [1] is called self-orthogonal if
HomC (X,X[n]) = 0 for all integers n �= 0.

Let A be a ring with identity. By an A-module we shall mean a left A-module. We de-
note by A-Mod the category of all A-modules, by A-mod the category of all finitely presented
A-modules, and by A-proj (respectively, A-inj) the category of finitely generated projective (re-
spectively, injective) A-modules. Let X be an A-module. If f : P −→ X is a projective cover of
X with P projective, then the kernel of f is called a syzygy of X, denoted by Ω(X). Dually, if
g : X −→ I is an injective envelope with I injective, then the cokernel of g is called a co-syzygy
of X, denoted by Ω−1(X). Note that a syzygy or a co-syzygy of an A-module X is determined,
up to isomorphism, uniquely by X. Hence we may speak of the syzygy and the co-syzygy of a
module.

It is well known that K (A-Mod), K b(A-Mod), D(A-Mod) and Db(A-Mod) all are tri-
angulated categories. Moreover, it is known that if X ∈ K b(A-proj) or Y ∈ K b(A-inj), then
HomK b(A-Mod)(X,Z) � HomDb(A-Mod)(X,Z) and HomK b(A-Mod)(Z,Y ) � HomDb(A-Mod)(Z,

Y ) for all Z ∈ Db(A-Mod).
For further information on triangulated categories, we refer to [10]. In [24], Rickard proved

the following theorem.

Theorem 2.1. For two rings A and B with identity, the following are equivalent:

(a) Db(A-Mod) and Db(B-Mod) are equivalent as triangulated categories;
(b) K b(A-proj) and K b(B-proj) are equivalent as triangulated categories;
(c) B � EndK b(A-proj)(T

•), where T • is a complex in K b(A-proj) satisfying

(1) T • is self-orthogonal in K b(A-proj), and
(2) add(T •) generates K b(A-proj) as a triangulated category.

If two rings A and B satisfy the equivalent conditions of Theorem 2.1, then A and B are
said to be derived-equivalent. A complex T • in K b(A-proj) satisfying the conditions (1) and
(2) in Theorem 2.1 is called a tilting complex over A. Given a derived equivalence F between
A and B , there is a unique (up to isomorphism) tilting complex T • over A such that FT • = B .
This complex T • is called a tilting complex associated to F .

To get derived equivalences or tilting complexes, one may use tilting modules. Recall that a
module T over a ring A is called a tilting module if

(1) T has a finite projective resolution 0 −→ Pn −→ · · · −→ P0 −→ T −→ 0, where each Pi is
a finitely generated projective A-module;

(2) ExtiA(T ,T ) = 0 for all i > 0, and
(3) there is an exact sequence 0 −→ A −→ T 0 −→ · · · −→ T m −→ 0 of A-modules with each

T i in add(T ).

It is well known that each tilting module supplies a derived equivalence. The following result
in [8] is a generalization of a result in [10, Theorem 2.10].
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Lemma 2.2. Let A be a ring, AT a tilting A-module and B = EndA(T ). Then A and B are
derived-equivalent. In this case, we say that A is derived-equivalent to B via the tilting mod-
ule AT .

Suppose that A is derived-equivalent to B via a tilting A-module AT . Then Bop is derived-
equivalent to Aop via the titling module BopT . However, we do not know, in general, whether B

is derived-equivalent to A via a tilting B-module.
In Theorem 2.1, if both A and B are left coherent rings, that is, rings for which the kernels

of any homomorphisms between finitely generated projective modules are finitely generated,
then A-mod and B-mod are abelian categories, and the equivalent conditions in Theorem 2.1 are
further equivalent to the condition

(d) Db(A-mod) and Db(B-mod) are equivalent as triangulated categories.

A special class of coherent rings is the class of Artin algebras. Recall that an Artin R-
algebra over a commutative Artin ring R is an R-algebra A such that A is a finitely generated
R-module. For the module category over an Artin algebra, there is the notion of Auslander–
Reiten sequences, or equivalently, almost split sequences. They play an important role in
the modern representation theory of algebras and groups. Recall that a short exact sequence

0 −→ X
f−→ Y

g−→ Z −→ 0 in A-mod is called an Auslander–Reiten sequence if

(1) the sequence does not split,
(2) X and Z are indecomposable,
(3) for any morphism h : V −→ Z in A-mod, which is not a split epimorphism, there is a homo-

morphism f ′ : V −→ Y in A-mod such that h = f ′f , and
(4) for any morphism h : X −→ V in A-mod, which is not a split monomorphism, there is a

homomorphism f ′ : Y −→ V in A-mod such that h = ff ′.

For an introduction to Auslander–Reiten sequences and representations of Artin algebras, we
refer the reader to the excellent book [3].

3. D-split sequences and derived equivalences

In this section, we shall construct derived equivalences from Auslander–Reiten sequences.
This builds a linkage between Auslander–Reiten sequences (or n-almost split sequences) and
derived equivalences. We start first with a general setting by introducing the notion of D-split se-
quences, which is a generalization of Auslander–Reiten sequences, and then use these sequences
to construct derived equivalences between the endomorphism rings of modules involved in D-
split sequences. In Section 5, we shall consider the question of getting derived equivalences from
Auslander–Reiten triangles.

Now we recall some definitions from [4].
Let C be a category, and let D be a full subcategory of C , and X an object in C . A mor-

phism f : D −→ X in C is called a right D-approximation of X if D ∈ D and the induced map
HomC (−, f ): HomC (D′,D) −→ HomC (D′,X) is surjective for every object D′ ∈ D. A mor-
phism f : X −→ Y in C is called right minimal if any morphism g : X −→ X with gf = f

is an automorphism. A minimal right D-approximation of X is a right D-approximation of X,
which is right minimal. Dually, there is the notion of left D-approximations and minimal left
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D-approximations. The subcategory D is called contravariantly (respectively, covariantly) finite
in C if every object in C has a right (respectively, left) D-approximation. The subcategory D is
called functorially finite in C if D is both contravariantly and covariantly finite in C .

Let C be an additive category and e : X −→ X an idempotent morphism in C . We say that
e splits if there are objects X′ and X′′ in C and an isomorphism ϕ : X′ ⊕ X′′ −→ X such that
ϕe = πλϕ, where π : X′ ⊕ X′′ −→ X′ and λ : X′ −→ X′ ⊕ X′′ are the canonical morphisms. In
an arbitrary additive category, all idempotents need not split, but of course, in the case where C
is an abelian category, every idempotent splits. If all idempotents in C split, then so does every
idempotent in a full subcategory D of C which is closed under direct summands. Moreover, for
an additive category C such that every idempotent splits, we know that, for each object M in C ,
the functor HomC (M,−) induces an equivalence between add(M) and EndC (M)-proj.

Definition 3.1. Let C be an additive category and D a full subcategory of C . A sequence

X
f−→ M

g−→ Y

in C is called a D-split sequence if

(1) M ∈ D;
(2) f is a left D-approximation of X, and g is a right D-approximation of Y ;
(3) f is a kernel of g, and g is a cokernel of f .

Recall that a morphism f : Y −→ X in an additive category C is a kernel of a morphism
g : X −→ Z in C if fg = 0, and for any morphism h : V −→ X in C with hg = 0, there is a
unique morphism h′ : V −→ Y such that h = h′f . Note that if a morphism has a kernel in C
then it is unique up to isomorphism. A cokernel of a given morphism in C is defined dually. If
f : Y −→ X in C is the kernel of a morphism g : X −→ Z in C , then f is a monomorphism, that
is, if hi : U −→ Y is a morphism in C for i = 1,2, such that h1f = h2f , then h1 = h2. Similarly,
if g : X −→ Z in C is the cokernel of a morphism f : Y −→ X in C , then g is an epimorphism,
that is, if hi : Z −→ V is a morphism in C for i = 1,2, such that gh1 = gh2, then h1 = h2.

Notice that D-split sequences may split, whereas Auslander–Reiten sequences never split.
Now we give some examples of D-split sequences.

Examples. (a) Let A be an Artin algebra and C = A-mod. Suppose D is the full subcategory
of A-mod consisting of all projective–injective A-modules in C . If g : M −→ X is a surjective
homomorphism in A-mod with M ∈ D, then the sequence 0 −→ ker(g) −→ M −→ X −→ 0 is
a D-split sequence in C , where ker(g) stands for the kernel of the homomorphism g.

(b) Let A be an Artin algebra and C = A-mod. Suppose 0 −→ X −→ M −→ Y −→ 0 is an
Auslander–Reiten sequence. Let N be any module such that M ∈ add(N ), but neither X nor Y

belongs to add(N). If we take D = add(N), then the Auslander–Reiten sequence is a D-split
sequence in C .

(c) Let A be an Artin algebra and M ∈ A-mod. Recall that M is an almost complete tilt-
ing module if M is a partial tilting module (that is, M has finite projective dimension and
ExtiA(M,M) = 0 for all i > 0), and if the number of all non-isomorphic indecomposable direct
summands of M equals the number of non-isomorphic simple A-modules minus 1. An inde-
composable A-module X ∈ A-mod is called a tilting complement to M if M ⊕ X is a tilting
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A-module. If an almost complete tilting module M is faithful, then there is an exact (not neces-
sarily infinite) sequence

0 −→ X0
f1−→ M1

f2−→ M2
f3−→ · · ·

of A-modules such that Mi ∈ add(M). Moreover, if we define Xi = coker(fi), the cokernel
of fi for i � 1, then Xi �� Xj for i �= j , proj.dimA(Xi) � i for any i, and {Xi | i � 0} is a
complete set of non-isomorphic indecomposable tilting complements to M . In addition, each
Xi −→ Mi+1 is a minimal left add(M)-approximation of Xi and each Mj −→ Xj is a minimal
right add(M)-approximation of Xj . Thus the sequence 0 −→ Xi −→ Mi+1 −→ Xi+1 −→ 0 is
an add(M)-split sequence in A-mod for all i � 0. For further information on almost complete
tilting modules and relationship with the generalized Nakayama conjecture, we refer the reader
to [7] and [13].

(d) Let X be a Cohen–Macaulay R-module over an arbitrary ring R, that is, ExtiR(X,R) = 0
for all i � 1. Then, for any i � 0, the sequence 0 −→ Ωi+1(X) −→ Pi(X) −→ Ωi(X) −→ 0 is
an add(RR)-split sequence in the category of all R-modules, where Pi(X) is the projective cover
of Ωi(X).

Now we consider some properties of D-split sequences.

Proposition 3.2. Let C be an additive category and D a full subcategory of C .

(1) Suppose that D′ is a full subcategory of D. If a sequence X −→ M −→ Y in C is a D-split
sequence with M ∈ D′, then it is a D′-split sequence in C .

(2) If X −→ M
g−→ Y and X′ −→ M ′ g′

−→ Y ′ are D-split sequences in C such that both g and
g′ are right minimal, then Y � Y ′ if and only if the two sequences are isomorphic. Similarly,

if X
f−→ M −→ Y and X′ f ′

−→ M ′ −→ Y ′ are D-split sequences in C such that both f and
f ′ are left minimal, then X � X′ if and only if the two sequences are isomorphic.

Proof. (1) is clear. We prove the first statement of (2). If the two sequences are isomorphic,
then X � X′ and Y � Y ′. Now assume that φ : Y −→ Y ′ is an isomorphism. Then gφ fac-
torizes through g′ since g′ is a right D-approximation of Y ′, and we may write gφ = hg′ for
some h : M −→ M ′. Similarly, there is a homomorphism h′ : M ′ −→ M such that g′φ−1 = h′g.
Thus hh′g = hg′φ−1 = gφφ−1 = g and h′hg′ = h′gφ = g′φ−1φ = g′. Since both g and g′ are
right minimal, the morphisms hh′ and h′h are isomorphisms. It follows easily that h itself is
an isomorphism. Since f ′ is the kernel of g′ and since f is the kernel of g, there is a mor-
phism k : X −→ X′ and a morphism k′ : X′ −→ X such that kf ′ = f h and k′f = f ′h−1. Thus
kk′f = kf ′h−1 = f hh−1 = f . It follows that kk′ = 1X since f is a monomorphism. Similarly,
we have k′k = 1X′ . Hence k is an isomorphism and the two sequences are isomorphic. Similarly,
the other statements in (2) can be proved. �

To get D-split sequences, we may use the following proposition. First, we introduce some
notations. Let D be a full subcategory of a category C . An object C in C is said to be generated
(respectively, co-generated) by D if there is an epimorphism D −→ C (respectively, monomor-
phism C −→ D) with D ∈ D. We denote by F (D) the full subcategory of C consisting of all
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objects C ∈ C generated by D, and by S (D) the full subcategory of C consisting of all objects
C ∈ C co-generated by D.

Proposition 3.3. Suppose that A is a ring with identity and C = A-Mod. Let D be a full subcate-
gory of C . We define X (D) = {X ∈ C | Ext1A(X, D) = 0} and Y (D) = {Y ∈ C | Ext1A(D, Y ) = 0}.

(1) If D is contravariantly finite in C , then, for any A-module Y ∈ F (D) ∩ X (D), there is a
D-split sequence 0 −→ X −→ D −→ Y −→ 0 in C .

(2) If D is covariantly finite in C , then, for any A-module X ∈ S (D)∩Y (D), there is a D-split
sequence 0 −→ X −→ D −→ Y −→ 0 in C .

Proof. (1) Since Y is generated by D, there is a surjective right D-approximation of Y , say
g : M −→ Y with M ∈ D. Let X be the kernel of g. Then it follows from the exact sequence
0 −→ X −→ M −→ Y −→ 0 that the sequence HomA(M,D′) −→ HomA(X,D′) −→ 0 is ex-
act since Y ∈ X (D). This implies that the homomorphism X −→ M is a left D-approximation
of X. Thus we get a D-split sequence in C . (2) can be proved analogously. �

Our main purpose of introducing D-split sequences is to construct derived equivalences be-
tween the endomorphism algebras of objects appearing in D-split sequences. The following
lemma is useful in our discussions.

Lemma 3.4. Let C be an additive category and M an object in C . Suppose

X
f−→ Mn −→ · · · −→ M2

t−→ M1
g−→ Y

is a (not necessarily exact) sequence of morphisms in C with Mi ∈ add(M) satisfying the follow-
ing conditions:

(1) The morphism f : X −→ Mn is a left add(M)-approximation of X, and the morphism
g : M1 −→ Y is a right add(M)-approximation of Y .

(2) Put V := X ⊕ M and W := M ⊕ Y . There are two induced exact sequences

0 −→ HomC (V ,X)
f ∗

−→ HomC (V ,Mn) −→ · · · −→ HomC (V ,M1)
g∗

−→ HomC (V ,Y ),

0 −→ HomC (Y,W)
g∗−→ HomC (M1,W) −→ · · · −→ HomC (Mn,W)

f∗−→ HomC (X,W).

Then EndC (X ⊕M) is derived-equivalent to EndC (M ⊕Y) via a tilting module of projective
dimension at most n.

Proof. Let Λ be the endomorphism ring of V , and let T be the cokernel of the map [t 0]∗ :
HomC (V ,M2) −→ HomC (V ,M1 ⊕ M), that is, T is the direct sum of HomA(V,M) and the
cokernel of HomA(V, t). Then, by (2), we have an exact sequence of Λ-modules:

0 −→ HomC (V ,X) −→ HomC (V ,Mn) −→ · · · −→ HomC (V ,M2)

−→ HomC (V ,M1 ⊕ M) −→ T −→ 0. (∗)
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Note that all the Λ-modules appearing in the above exact sequence are finitely generated. Ap-
plying HomΛ(−,HomC (V ,M)) to this sequence, we get a sequence which is isomorphic to the
following sequence

0 −→ HomΛ

(
T ,HomC (V ,M)

) −→ HomC (M1 ⊕ M,M) −→ HomC (M2,M) −→ · · ·

−→ HomC (Mn,M)
f∗−→ HomC (X,M) −→ 0.

By the second exact sequence in (2) and the fact that f is a left add(M)-approximation of X, we
see that this sequence is exact. It follows that ExtiΛ(T ,HomC (V ,M)) = 0 for all i > 0. Hence
ExtiΛ(T ,HomC (V ,M ′)) = 0 for all i > 0 and M ′ ∈ add(M). Thus, by applying HomΛ(T ,−)

to the exact sequence (∗), we get ExtiΛ(T ,T ) � Exti+n
Λ (T ,HomC (V ,X)) for all i > 0. But

Exti+n
Λ (T ,HomC (V ,X)) = 0 for all i > 0 since the projective dimension of T is at most n. Thus

ExtiΛ(T ,T ) = 0 for all i > 0. Also, it follows from the exact sequence (∗) that the following
sequence

0 −→ HomC (V ,X ⊕ M)−→HomC (V ,Mn ⊕ M) −→ · · · −→ HomC (V ,M2)

−→ HomC (V ,M1 ⊕ M) −→ T −→ 0

is exact, where HomC (V ,X ⊕M) is just Λ and the other terms are in add(T ). Thus T is a tilting
Λ-module of projective dimension at most n.

Next, we show that EndΛ(T ) and EndC (W) are isomorphic. If n = 1, we set V ′ = X and
a = [f,0] : V ′ −→ M1 ⊕ M . For n � 2, we set V ′ = M2 and a = [t,0] : V ′ −→ M1 ⊕ M . Let
u : V ′ −→ V ′ and v : M1 ⊕M −→ M1 ⊕M be two morphisms in C . The morphism pair (u, v) is
an endomorphism of the sequence V ′ −→ M1 ⊕M if ua = av. Let E be the endomorphism ring
of the sequence V ′ −→ M1 ⊕ M . Let I be the subset of E consisting of those endomorphisms
(u, v) such that there exists h : M1 ⊕ M −→ V ′ with ha = v. It is easy to check that I is an
ideal of E. We shall show that EndC (W) is isomorphic to the quotient ring E/I . Let b be the
morphism

[ 0 g

1M 0

] : M1 ⊕M −→ W := M ⊕Y , that is, b is the interchange of the columns of the
direct sum of the morphisms g and 1M . Then, by the second exact sequence of the condition (2),
we have an exact sequence

0 −→ HomC (W,W)
b∗−→ HomC (M1 ⊕ M,W)

a∗−→ HomC
(
V ′,W

)
. (∗∗)

By considering the image of the identity 1W under the composition b∗a∗, we have ab = 0. Thus,
for each (u, v) ∈ E, we have avb = uab = 0, which means that vb is in the kernel of a∗. There-
fore, there is a unique map q : W −→ W such that bq = vb. Now, we define η : E −→ EndC (W)

by sending (u, v) to q . Then η is clearly a ring homomorphism. We claim that η is surjective.
Indeed, since g is a right add(M)-approximation of Y , it is easy to check that the map b is a
right add(M)-approximation of W . Let q be an endomorphism of W . Then there is a morphism
v : M1 ⊕ M −→ M1 ⊕ M such that vb = bq . By the first exact sequence in (2), we have the
following exact sequence:

HomC
(
V ′,V ′) a∗−→ HomC

(
V ′,M1 ⊕ M

) b∗−→ HomC
(
V ′,W

)
.
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It follows from avb = abq = 0 that av is in the kernel of b∗ and there is a map u : V ′ −→ V ′
such that ua = av. This implies that (u, v) is in E and η(u, v) = q . Hence η is surjective.

Now, we determine the kernel of η. Note that, by the first exact sequence in (2), we have an
exact sequence

HomC
(
M1 ⊕ M,V ′) a∗−→ HomC (M1 ⊕ M,M1 ⊕ M)

b∗−→ HomC (M1 ⊕ M,W).

Now, suppose (u, v) is in the kernel of η. Then vb = 0, which means that v is in the kernel of b∗.
Hence there is a map h : M1 ⊕ M −→ V ′ such that ha = v. This implies (u, v) ∈ I . On the other
hand, if (u, v) ∈ I and if η sends (u, v) to q , then bq = vb = hab = 0, and q is in the kernel
of b∗. By the exact sequence (∗∗), we have q = 0. Hence I is the kernel of η, and therefore
E/I � EndC (W).

Let E be the endomorphism ring of the following complex of Λ-modules:

HomC
(
V,V ′) a∗−→ HomC (V ,M1 ⊕ M),

and I the ideal of E consisting of those (u, v) such that ha∗ = v for some h : HomC (V ,M1 ⊕
M) −→ HomC (V ,V ′). Similarly, we can show that EndΛ(T ) is isomorphic to E/I . Finally, the
natural map e : E −→ E, which sends (u, v) to (u∗, v∗), is clearly an isomorphism of rings, and
induces an isomorphism from the ring E/I to the ring E/I . Thus EndΛ(T ) and EndC (W) are
isomorphic. The proof is completed. �
Remarks. (1) For an Auslander–Reiten sequence 0 −→ X −→ M −→ Y −→ 0 in A-mod with
A an Artin algebra, the proof that End(AT ) of the tilting module T defined in Lemma 3.4 is
isomorphic to EndA(M ⊕ Y) can be carried out very easily.

(2) From the proof of Lemma 3.4 we see that if we replace the second exact sequence in (2)
by the following two exact sequences

0 −→ HomC (Y,M)
g∗−→ HomC (M1,M) −→ · · · −→ HomC (Mn,M)

f∗−→ HomC (X,M),

0 −→ HomC (Y,Y )
g∗−→ HomC (M1, Y )

t∗−→ HomC (M2, Y ),

then Lemma 3.4 still holds true. (Here M2 = X if n = 1.) However, in most of cases that we are
interested in, the second exact sequence in (2) does exist.

(3) A special case of Lemma 3.4 is the n-almost split sequences in a maximal (n − 1)-
orthogonal subcategory studied in [18]. Let A be a finite-dimensional algebra over a field.
Suppose C is a functorially finite and full subcategory of A-mod. Recall that C is called a maximal
(n−1)-orthogonal subcategory if ExtiA(X,Y ) = 0 for all X,Y ∈ C and all 0 < i � n−1, and C =
{X ∈ A-mod | ExtiA(C,X) = 0 for C ∈ C and 0 < i � n − 1} = {Y ∈ A-mod | ExtiA(Y,C) = 0
for C ∈ C and 0 < i � n − 1}. In [18], it is shown that, for any non-projective indecomposable X

in C (respectively, non-injective indecomposable Y in C ), there is an exact sequence

(∗) 0 −→ Y
fn−→ Cn−1

fn−1−→ · · · f1−→ C0
f0−→ X −→ 0
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with Cj ∈ C and fj being radical maps such that the following induced sequences of functors are
exact on C :

0 −→ C(−, Y ) −→ C(−,Cn−1) −→ · · · −→ C(−,C0) −→ radC (−,X) −→ 0,

0 −→ C(X,−) −→ C(C0,−) −→ · · · −→ C(Cn−1,−) −→ radC (Y,−) −→ 0,

where radC stands for the Jacobson radical of the category C . Note also that f0 is a minimal right
almost split morphism and that fn is a minimal left almost split morphism. The sequence (∗) is
called an n-almost split sequence in [18]. So, if Y /∈ add(C0 ⊕ · · · ⊕ Cn−1), then (∗) satisfies the
conditions of Lemma 3.4.

With Lemma 3.4 in mind, now we can show the significance of D-split sequences for con-
structing derived equivalences by the following result.

Theorem 3.5. Let C be an additive category and M an object in C . Suppose

X
f−→ M ′ g−→ Y

is an add(M)-split sequence in C . Then the endomorphism ring EndC (X ⊕ M) of X ⊕ M is
derived-equivalent to the endomorphism ring EndC (M ⊕ Y) of M ⊕ Y via a tilting module of
projective dimension at most one.

Proof. Let V = X⊕M and W = M ⊕Y . We shall verify the conditions of Lemma 3.4 for n = 1.
By the definition of a D-split sequence, we see immediately that the condition (1) in Lemma 3.4
is satisfied, while the condition (2) in Lemma 3.4 is implied by the condition (3) in Definition 3.1:
In fact, by applying HomC (V ,−) to the above sequence, we get a complex of abelian groups

(∗) 0 −→ HomC (V ,X)
f ∗

−→ HomC
(
V,M ′) g∗

−→ HomC (V ,Y ).

Since f is a monomorphism, the map f ∗ is injective. Clearly, the image of the map f ∗ is con-
tained in the kernel of the map g∗. Since f is a kernel of g, it is easy to see that the kernel of g∗
is equal to the image of f ∗. Thus (∗) is exact. Similarly, we see that the sequence

0 −→ HomC (Y,W)
g∗−→ HomC

(
M ′,W

) f∗−→ HomC (X,W)

is exact. Thus Theorem 3.5 follows from Lemma 3.4 if we take n = 1. �
In Theorem 3.5, the two rings EndC (X ⊕M) and EndC (M ⊕Y) are linked by a tilting module

of projective dimension at most 1. This is precisely the case of classical tilting modules. Thus
there is a nice linkage between the torsion theory defined by the tilting module in EndC (X ⊕M)-
mod and the one in EndC (M ⊕ Y)-mod. For more details, we refer the reader to [5] and [12].

In the following, we deduce some consequences of Theorem 3.5. Since Auslander–Reiten se-
quences can be viewed as D-split sequences, as explained in Example (b), we have the following
corollary.
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Corollary 3.6.

(1) Let A be an Artin algebra, and let 0 −→ X −→ M −→ Y −→ 0 be an Auslander–Reiten
sequence in A-mod. Suppose N is an A-module in A-mod such that neither X nor Y belongs
to add(N). Then EndA(X ⊕ N ⊕ M) and EndA(N ⊕ M ⊕ Y) are derived-equivalent. In
particular, EndA(X ⊕ M) and EndA(M ⊕ Y) are derived-equivalent.

(2) Let A be a representation-finite Artin algebra, and let Γ be a set of representatives of
isomorphism classes of all indecomposable A-modules. If X and D Tr(X) are in Γ , then
EndA(

⊕
Y∈Γ \{X} Y) and EndA(

⊕
Y∈Γ \{D Tr(X)} Y) are derived-equivalent.

As another consequence of Theorem 3.5, we have the following corollary.

Corollary 3.7. Let A be an Artin algebra and X a torsion-less A-module, that is, X is a submod-
ule of a projective module in A-mod. If f : X −→ P is a left add(AA)-approximation of X, then
EndA(A ⊕ X) is derived-equivalent to End(AA ⊕ coker(f )) via a tilting module. In particular,
if A is a self-injective Artin algebra, then, for any X in A-mod, the algebra EndA(A ⊕ Ω(X)) is
derived-equivalent to the algebra EndA(A ⊕ X) via a tilting module.

Proof. Noting that f is injective, the short exact sequence 0 −→ X
f−→ P −→ coker(f ) −→ 0

is an add(AA)-split sequence in A-mod. By Theorem 3.5, the corollary follows. �
As a consequence of Corollary 3.7, we get the following corollary.

Corollary 3.8. Let A be a self-injective Artin algebra and X an A-module. Then the algebras
EndA(A ⊕ X) and EndA(A ⊕ τX) are derived-equivalent, where τ stands for the Auslander–
Reiten translation. Thus, for all n ∈ Z, the algebras EndA(A ⊕ τnX) are derived-equivalent.

Proof. Let ν be the Nakayama functor D HomA(−,A). It is known that if A is self-injective then
τ � νΩ2, ν(A) = A and the Nakayama functor is an equivalence from A-mod to itself. Since the
algebra EndA(A ⊕ τX) is isomorphic to the algebra EndA(A ⊕ Ω2(X)), the corollary follows
immediately from Corollary 3.7. �
Remark. If A is a finite-dimensional self-injective algebra, then, for any A-module X, it
was shown in [22, Corollary 1.2] that all the algebras EndA(A ⊕ X), EndA(A ⊕ Ω(X)) and
EndA(A ⊕ τX) are stably equivalent of Morita type. Thus they are both derived-equivalent and
stably equivalent of Morita type. For further information on stably equivalences of Morita type
for general finite-dimensional algebras, we refer the reader to [17,20–22,27,28] and the refer-
ences therein.

Now, we point out the following consequence of Theorem 3.5, which follows from the fact
that derived equivalences preserve the number of non-isomorphic simple modules.

Corollary 3.9. Let A be an Artin algebra and M an A-module. If 0 −→ X −→ M ′ −→ Y −→ 0
is a D-split sequence in A-mod with D = add(M), then X and Y have the same number of
non-isomorphic indecomposable direct summands which are not in add(M).
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Many other invariants of derived equivalences can be used to study the algebras EndA(X ⊕ M)

and EndA(M ⊕ Y); for example, EndA(X ⊕ M) has finite global dimension if and only if
EndA(M ⊕ Y) has finite global dimension. This follows from the fact that derived equivalences
preserve the finiteness of global dimension. In fact, we have the following explicit formula by
tilting theory (see [12] and [10, Proposition 3.4, p. 116], for example):

If 0 −→ X −→ M ′ −→ Y −→ 0 is a D-split sequence in A-mod with D = add(M) for an
A-module M in A-mod, then

gl.dim
(
EndA(X ⊕ M)

) − 1 � gl.dim
(
EndA(M ⊕ Y)

)
� gl.dim

(
EndA(X ⊕ M)

) + 1,

where gl.dim(A) stands for the global dimension of A. Note that the global dimension of
EndA(X ⊕ M) may be infinite (see Example 2 in Section 6). Concerning global dimensions
and Auslander–Reiten sequences, there is a related result which can be found in [15].

Note that if a derived equivalence between two rings A and B is obtained from a tilting
module AT , that is, there exists a tilting A-module AT such that B � EndA(T ), then the finitistic
dimension of A is finite if and only if the finitistic dimension of B is finite (see [11]). Currently,
it is shown in [23] that the finiteness of finitistic dimension is invariant under arbitrary derived
equivalences. Recall that the finitistic dimension of an Artin algebra A, denoted by fin.dim(A), is
defined to be the supremum of the projective dimensions of finitely generated A-modules of finite
projective dimension. The finitistic dimension conjecture states that fin.dim(A) should be finite
for any Artin algebra A. This conjecture has closely been related to many other homological
conjectures in the representation theory of algebras. For some advances and further information
on the finitistic dimension conjecture, we may refer the reader to the recent paper [29] and the
references therein.

Thus we have the following corollary.

Corollary 3.10. Let C be an additive category and M an object in C . Suppose X
f−→ M ′ g−→ Y

is an add(M)-split sequence in C . Then the finitistic dimension of EndC (X ⊕ M) is finite if and
only if the finitistic dimension of EndC (M ⊕ Y) is finite.

If A is an Artin R-algebra over a commutative Artin ring R and M is an A-bimodule, then
A � M , the trivial extension of A by M is the R-algebra whose underlying R-module is A ⊕ M ,
with multiplication given by

(λ,m)
(
λ′,m′) = (

λλ′, λm′ + mλ′)

for λ,λ′ ∈ A, and m,m′ ∈ M . It is shown in [25] that if A and B are finite-dimensional algebras
over a field k that are derived-equivalent, then A � D(A) is derived-equivalent to B � D(B),
where D = Homk(−, k). Note that A � D(A) is a self-injective algebra and that a derived equiv-
alence between two self-injective algebras implies a stable equivalence between them by [25].
For further information on the relationship between derived equivalences and stable equivalences,
we refer the reader to the recent papers [16,17]. Since stable equivalences preserve representation
dimension (see [1] for definition), we have the following corollary.

Corollary 3.11. Let Λ be a finite-dimensional algebra over a field k and M a Λ-module in
Λ-mod. Suppose
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X
f−→ M ′ g−→ Y

is an add(M)-split sequence in Λ-mod, and let A = EndΛ(X⊕M) and B = EndΛ(M ⊕Y). Then
A � D(A) and B � D(B) are derived-equivalent. In particular, the representation dimensions
of A � D(A) and B � D(B) are equal.

The following corollary is related to the Auslander–Reiten’s conjecture: If X is a module over
an Artin algebra A such that ExtiA(X ⊕A,X ⊕A) = 0 for all i � 1, then X should be projective.
Under the mentioned condition we see that X is a Cohen–Macaulay A-module. Since derived
equivalences respect the number of simple modules, we have

Corollary 3.12. Let A be an Artin algebra and X an indecomposable Cohen–Macaulay
A-module. Then EndA(A ⊕ X) and EndA(A ⊕ Ωi(X)) are derived-equivalent for all i � 0.
In particular, if X is non-projective, then the i-th syzygy of X is isomorphic to a direct sum of
copies of an indecomposable module Yi for every i � 0.

In the following, we consider several generalizations of Corollary 3.6, namely, we shall deal
with the case of a finite family of Auslander–Reiten sequences.

Corollary 3.13. Let A be an Artin algebra, and let 0 −→ Xi −→ Mi −→ Xi−1 −→ 0
be an Auslander–Reiten sequence in A-mod for i = 1,2, . . . , n. Let M = ⊕n

i=1 Mi . Then
EndA(Xn ⊕ M) is derived-equivalent to EndA(M ⊕ X0) via a tilting module of projective di-
mension at most n.

Proof. First, we suppose Xn ∈ add(M). Then there is an Mi such that Xn is a direct sum-
mand of Mi , and therefore there is an irreducible map from Xi to Xn. It follows that there is
an irreducible map from X0 = τ−iXi to Xn−i = τ−iXn, where τ stands for the Auslander–
Reiten translation. Thus X0 is a direct summand of Mn−i+1, which implies X0 ∈ add(M).
Hence add(Xn ⊕ M) = add(M) = add(M ⊕ X0). Consequently, the algebras EndA(Xn ⊕ M)

and EndA(M ⊕ X0) are Morita equivalent. Thus EndA(Xn ⊕ M) and EndA(M ⊕ X0) are, of
course, derived-equivalent via a (projective) tilting module.

Next, we assume Xn /∈ add(M). In this case, we claim that there is no integer i ∈ {0,1, . . . , n}
such that Xi ∈ add(M). If X0 ∈ add(M), then there is an Mi , 1 � i � n, such that X0 is a direct
summand of Mi . Thus there is an irreducible map from Xi to X0. By applying the Auslander–
Reiten translation, we see that there is an irreducible map from Xn = τn−iXi to Xn−i = τn−iX0.
Hence Xn is a direct summand of Mn−i+1, that is, Xn is in add(M). This is a contradiction and
shows that X0 does not belong to add(M). Suppose Xi ∈ add(M) for some 0 < i < n. Then there
is an integer j ∈ {1,2, . . . , n} such that Xi is a direct summand of Mj . Clearly, i �= j , and there
is an irreducible map from Xi to Xj−1. On the one hand, if i > j , then there is an irreducible
map from Xn = τn−iXi to Xn−i+j−1 = τn−iXj−1. This implies that Xn is a direct summand of
Mn−i+j , which is a contradiction. On the other hand, if i < j , then there is an irreducible map
from X0 = τ−iXi to Xj−1−i = τ−iXj−1. It follows that X0 is a direct summand of Mj−i . This
is again a contradiction. Hence there is no Xi belonging to add(M).

Now let m be the minimal integer in {0,1, . . . , n} such that Xn � Xm. If m = 0, then
add(M ⊕ Xn) = add(M ⊕ X0). This means that the endomorphism algebras EndA(Xn ⊕ M)
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and EndA(M ⊕ X0) are Morita equivalent. Now we assume m > 0. Then the A-modules
X0,X1, . . . ,Xm are pairwise non-isomorphic. We consider the sequence

Xm −→ Mm −→ · · · −→ M1 −→ X0.

Since Xm /∈ add(M), every homomorphism from Xm to M factorizes through the map Xm −→
Mm in the Auslander–Reiten sequence starting at Xm. This means that the map Xm −→ Mm

is a left add(M)-approximation of Xm. Similarly, the map M1 −→ X0 is a right add(M)-
approximation of X0. Let V = Xm ⊕M . Then Xi /∈ add(V ) for all i = 0,1, . . . ,m−1. It follows
that we have exact sequences

0 −→ HomA(V,Xi) −→ HomA(V,Mi) −→ HomA(V,Xi−1) −→ 0

for i = 1, . . . ,m. Connecting the above exact sequences, we get an exact sequence

0 −→ HomA(V,Xm) −→ HomA(V,Mm) −→ · · · −→ HomA(V,M1) −→ HomA(V,X0).

This gives the first exact sequence in Lemma 3.4(2). The second exact sequence in Lemma 3.4(2)
can be obtained similarly. Thus Corollary 3.13 follows immediately from Lemma 3.4. �
Remark. In Corollary 3.13, if Xn /∈ add(M) and X0,X1, . . . ,Xn are pairwise non-isomorphic,
then the tilting End(X ⊕ M)-module T defined in Lemma 3.4 has projective dimension n. Note
that we always have gl.dim(EndA(X ⊕ M)) − n � gl.dim(EndA(M ⊕ Y)) � gl.dim(EndA(X ⊕
M)) + n.

The following is another type of generalizations of Corollary 3.6.

Proposition 3.14. Let A be an Artin algebra.

(1) Suppose 0 −→ Xi −→ Mi −→ Yi −→ 0 is an Auslander–Reiten sequence for i =
1,2, . . . , n. Let X = ⊕

i Xi , M = ⊕
i Mi and Y = ⊕

i Yi . If add(X) ∩ add(M) = 0 =
add(M) ∩ add(Y ), then EndA(X ⊕ M) and EndA(M ⊕ Y) are derived-equivalent.

(2) Suppose 0 −→ X1 −→ X2 ⊕ M1 −→ Y1 −→ 0 and 0 −→ X2 −→ Y1 ⊕ M2 −→ Y2 −→ 0
are two Auslander–Reiten sequences in A-mod such that neither X2 is in add(M1) nor Y1 is
in add(M2). Then EndA(X1 ⊕M1 ⊕M2) and EndA(M1 ⊕M2 ⊕Y2) are derived-equivalent.

Proof. (1) Under our assumptions, the exact sequence 0 −→ X −→ M −→ Y −→ 0 is an
add(M)-split sequence in A-mod. Therefore (1) follows from Theorem 3.5.

(2) There is an exact sequence

(∗) 0 −→ X1 −→ M1 ⊕ M2 −→ Y2 −→ 0,

which can be constructed from the given two Auslander–Reiten sequences. Since Auslander–
Reiten quivers of Artin algebras have no loops, the modules X1 and Y1 do not belong to
add(X2 ⊕ M1), and the modules X2 and Y2 do not belong to add(Y1 ⊕ M2). Note that X1 /∈
add(Y1 ⊕ M2) if and only if Y2 /∈ add(X2 ⊕ M1). By [14], we see that X1 � Y1 if and only if
X2 � Y2. Thus it is readily to see that X1 ∈ add(M2) if and only Y2 ∈ add(M1). Hence, if X1 ∈
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add(M2), or Y2 ∈ add(M1), then the algebras EndA(X1 ⊕ M1 ⊕ M2) and EndA(M1 ⊕ M2 ⊕ Y2)

are Morita equivalent. So we may assume that X1 /∈ add(M2) and Y2 /∈ add(M1). Thus, X1, Y2 /∈
add(M1 ⊕ M2), and we can verify that the homomorphism X1 −→ M1 ⊕ M2 in (∗) is a left
add(M1 ⊕ M2)-approximation of X1, and that the homomorphism M1 ⊕ M2 −→ Y2 in (∗) is
a right add(M1 ⊕ M2)-approximation of Y2. Thus (∗) is an add(M1 ⊕ M2)-split sequence in
A-mod, and therefore the conclusion (2) follows from Theorem 3.5. �
Remark. Usually, given two Auslander–Reiten sequences 0 −→ Xi −→ Mi −→ Yi −→ 0
(1 � i � 2), we cannot get a derived equivalence between EndA(X1 ⊕ X2 ⊕ M1 ⊕ M2) and
EndA(M1 ⊕ M2 ⊕ Y1 ⊕ Y2). For a counterexample, we refer the reader to Example 2 in the
last section.

Now, we mention that, for n-almost split sequences studied in [18], we have a statement
similar to Corollary 3.13.

Proposition 3.15. Let C be a maximal (n− 1)-orthogonal subcategory of A-mod with A a finite-
dimensional algebra over a field (n � 1). Suppose that X and Y are two indecomposable A-
modules in C such that the sequence

0 −→ X
f−→ Mn

tn−→ Mn−1 −→ · · · −→ M2
t2−→ M1

g−→ Y −→ 0

is an n-almost split sequence in C . Then EndA(X ⊕ ⊕n
i=1 Mi) and EndA(

⊕n
i=1 Mi ⊕ Y) are

derived-equivalent.

Proof. Let M := ⊕n
i=1 Mi . Suppose that Y is a direct summand of some Mi . Then there is a

canonical projection π : Mi −→ Y . Let t1 = g and tn+1 = f . We observe that all homomor-
phisms t1, . . . , tn+1 are radical maps by the definition of n-almost split sequences. Hence the
composition ti+1π cannot be a split epimorphism and consequently factorizes through t1 = g,
that is, ti+1π = u1g for a homomorphism u1 : Mi+1 −→ M1. First, we assume i �= n. Then
ti+2u1g = ti+2ti+1π = 0. By [18, Theorem 2.5.3], we have ti+2u1 = u2t2 for a homomor-
phism u2 : Mi+2 −→ M2. Similarly, we get a homomorphism uk : Mi+k −→ Mk such that
ti+kuk−1 = uktk for k = 2,3, . . . , n − i. This allows us to form the following commutative dia-
gram:

X
f

un−i+1

Mn

un−i

tn
Mn−1

un−i−1

· · · Mi+1

u1

ti+1
Mi

π

ti
Mi−1

Mn−i+1
tn−i+1

Mn−i

tn−i

Mn−i−1 · · · M1
g

Y.

Note that if i = n then the above diagram still makes sense. We claim that un−i+1 is a split
monomorphism. If this is not the case, then the map un−i+1 factorizes through f . This means
that there is some map hn : Mn −→ Mn−i+1 such that f hn = un−i+1. Then we have f (un−i −
hntn−i+1) = f un−i − un−i+1tn−i+1 = 0. By [18, Theorem 2.5.3], there is some homomorphism
hn−1 : Mn−1 −→ Mn−i such that tnhn−1 = un−i − hntn−i+1, that is, un−i = tnhn−1 + hntn−i+1.
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Similarly, we get hk : Mk −→ Mk−i+1 such that uk−i+1 = hk+1tk−i+2 + tk−i+1hk for k = n −
2, n−3, . . . , i. Thus ti+1(π −hig) = ti+1π − (u1 −hi+1t2)g = ti+1π −u1g = 0. Hence π −hig

factorizes through ti , say π −hig = tihi−1. Then π = hig + tihi−1, which is a radical map since
both g and ti are radical maps. This is a contradiction. Hence X is a direct summand of Mn−i+1
and add(X ⊕ M) = add(M) = add(M ⊕ Y). Thus, EndA(X ⊕ M) and EndA(M ⊕ Y) are Morita
equivalent.

Similarly, if X is a direct summand of some Mi , then Y is a direct summand of Mn−i+1. It
follows that EndA(X ⊕ M) and EndA(M ⊕ Y) are Morita equivalent.

Now we assume that neither X nor Y is a direct summand of M . We use Lemma 3.4 to show
Proposition 3.15. By a property of n-almost split sequences (see [18, Theorem 2.5.3]) and the
fact that both X and Y do not lie in add(M), we see that f is a left add(M)-approximation
of X and g is a right add(M)-approximation of Y . It remains to check the condition (2) in
Lemma 3.4. However, it follows from [18, Theorem 2.5.3] (see Remark (3) at the end of the
proof of Lemma 3.4) that we have two exact sequences

0 −→ HomA(V,X)
f ∗

−→ HomA(V,Mn) −→ · · · −→ HomA(V,M1)
g∗

−→ HomA(V,Y ),

0 −→ HomA(Y,W)
g∗−→ HomA(M1,W) −→ · · · −→ HomA(Mn,W)

f∗−→ HomA(X,W)

for V := X ⊕ M and W := M ⊕ Y . Thus the condition (2) in Lemma 3.4 is satisfied. Conse-
quently, Proposition 3.15 follows from Lemma 3.4. �
4. Auslander–Reiten sequences and BB-tilting modules

In this section, we point out that, when we cofine our consideration to Auslander–Reiten
sequences, the tilting modules defining the derived equivalences in Theorem 3.5 are of special
form, namely, they are BB-tilting-modules in the sense of Brenner and Butler [5]. This shows
that the tilting theory and the Auslander–Reiten theory are so beautifully integrated with each
other. We first recall the BB-tilting-module procedure in [5], and then give a generalization of
BB-tilting modules, namely, the notion of n-BB-tilting modules.

Let A be an Artin algebra and S a non-injective simple A-module with the following two
properties:

(a) proj.dimA(τ−1S) � 1, and
(b) Ext1A(S,S) = 0.

Here τ−1 stands for the inverse TrD of the Auslander–Reiten translation, and proj.dimA(S)

means the projective dimension of S. We denote the projective cover of S by P(S), and assume
that AA = P(S) ⊕ P such that there is not any direct summand of P isomorphic to P(S). Let
T = τ−1S ⊕ P . It is well known that T is a tilting module. Such a tilting module is called a
BB-tilting module. Unfortunately, to date, not much is known about BB-tilting modules. How-
ever, if S is a projective non-injective simple module, then HomA(D(A),S) = 0, and therefore
proj.dimA(τ−1S) � 1. Thus T is a BB-tilting module. This special case was first studied in [2],
and the tilting module of this form is called an APR-tilting module in literature. It is widely
used in the representation theory of algebras. Note that if S is a non-injective, projective simple
A-module, then there is an Auslander–Reiten sequence
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0 −→ S −→ P ′ −→ τ−1S −→ 0

in A-mod with P ′ projective.

Proposition 4.1. Let A be an Artin algebra, and let 0 −→ X
f−→ M

g−→ Y −→ 0 be an
Auslander–Reiten sequence in A-mod. Further, let N ∈ A-mod such that X /∈ add(N). We define
V := X ⊕ N ⊕ M , Λ = EndA(V ). Then the Λ-module coker(f ∗) ⊕ HomA(V,N ⊕ M) is a BB-
tilting module. In particular, the derived equivalence between EndA(X ⊕ M) and EndA(M ⊕ Y)

in Theorem 3.5 is given by a BB-tilting module.

Proof. Set Λ := EndA(V ). From the Auslander–Reiten sequence we have an exact sequence

(∗) 0 −→ HomA(V,X)
f ∗

−→ HomA(V,M) −→ L −→ 0,

where L is the cokernel of f ∗ = HomA(V,f ). (This is a minimal projective presentation of the
Λ-module L.) Let T := L ⊕ HomA(V,N ⊕ M). Then T is a tilting module by the proof of
Lemma 3.4. We shall show that T is a BB-tilting Λ-module. To prove this, it is sufficient to show
that L is of the form τ−1S for a simple Λ-module S.

If we apply HomΛ(−,Λ) to (∗), then we get an exact sequence of right Λ-modules:

HomΛ

(
HomA(V,M),Λ

) −→ HomΛ

(
HomA(V,X),Λ

) −→ TrΛ(L) −→ 0,

which is isomorphic to the following exact sequence

HomA(M,V )
f∗−→ HomA(X,V ) −→ TrΛ(L) −→ 0,

where TrΛ stands for the transpose over Λ. Note that the image of the map f∗ is the radical
of the indecomposable projective right Λ-module HomA(X,V ). Thus TrΛ(L) is a simple right
Λ-module, and consequently, τΛL is isomorphic to the socle S of the indecomposable injective
Λ-module D HomA(X,V ). Hence L � τ−1

Λ S. Since X is not a direct summand of M , we see that
Ext1Λ(S,S) = 0. Thus T is a BB-tilting Λ-module. If we take N = 0, then the BB-tilting module
T induces the derived equivalence between EndA(M ⊕ X) and EndA(M ⊕ Y) in Theorem 3.5.
Thus Proposition 4.1 follows. �
Remark. In case of APR-tilting modules, we can see that the Auslander–Reiten sequence

0 −→ S −→ P ′ −→ τ−1S −→ 0,

just given before Proposition 4.1, defines an APR-tilting module T := P ⊕ τ−1S, that this se-
quence is an add(P )-split sequence in A-mod, and that the derived equivalence between A and
EndA(T ) in Theorem 3.5 is given precisely by the APR-tilting module T .

Now, we introduce the notion of n-BB-tilting modules: Let A be an Artin R-algebra. Recall
that we denote by Ωn the n-th syzygy operator, and by Ω−n the n-th co-syzygy operator. As
usual, D is the duality of Artin R-algebras. Suppose that S is a simple A-module and n is a
positive integer. If S satisfies
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(a) ExtjA(D(A),S) = 0 for all 0 � j � n − 1, and
(b) ExtiA(S,S) = 0 for all 1 � i � n,

then we say that S defines an n-BB-tilting module, and that the module T := τ−1Ω−n+1(S)⊕P

is an n-BB-tilting module, where P is the direct sum of all non-isomorphic indecomposable
projective A-modules which are not isomorphic to P(S), the projective cover of S. Note that (a)
implies that the injective dimension of S is at least n, and that the case n = 1 is just the usual
BB-tilting module. The terminology is adjudged by the following lemma.

Lemma 4.2. If S defines an n-BB-tilting A-module, then T := τ−1Ω−n+1S ⊕ P is a tilting
module of projective dimension at most n.

Proof. Let ν be the Nakayama functor D HomA(−, AA). Suppose that the sequence

0 −→ S −→ νP0 −→ νP1 −→ · · · −→ νPn −→ · · ·

is a minimal injective resolution of S with all Pi projective. Since ExtiA(D(A),S) = 0 for 0 �
i � n − 1, we have the following exact sequence by applying HomA(D(A),−) to the injective
resolution:

0 −→ HomA

(
D(A),S

) −→ HomA

(
D(A), νP0

) −→ · · · −→ HomA

(
D(A), νPn

) −→ L −→ 0,

which is isomorphic to the following exact sequence

0 −→ 0 −→ P0 −→ · · · −→ Pn −→ L −→ 0.

This shows that L � TrDΩ−n+1
A (S) and the projective dimension of L is at most n. Moreover,

we have the following sequence:

(∗) 0 −→ HomA(L,P ) −→ HomA(Pn,P ) −→ · · · −→ HomA(P0,P ) −→ 0.

Since HomA(νPj , νP ) � HomA(Pj ,P ), we see that (∗) is isomorphic to the sequence

0 −→ HomA(L,P ) −→ HomA(νPn, νP ) −→ · · · −→ HomA(νP0, νP ) −→ 0,

which is exact because HomA(−, νP ) is an exact functor. Note that HomA(S, νP ) = 0 by the
definition of P . This shows that ExtiA(L,P ) = 0 for all i > 0. Since ExtiA(S,S) = 0 for all
1 � i � n, this means that νP0 is not a direct summand of νPi for 1 � i � n. Thus P(S) is not
a direct summand of Pi for 1 � i � n, that is, Pi ∈ add(P ) for all 1 � i � n. Now, if we apply
HomA(L,−) to the projective resolution of L, we get Extn+i

A (L,P0) � ExtiA(L,L) for all i � 1.
Hence ExtiA(L,L) = 0 for all i � 1.

We note that P0 = P(S) and there is an exact sequence

0 −→ A −→ P ⊕ P1 −→ · · · −→ L −→ 0.

Altogether, we have shown that T is a tilting module of projective dimension at most n. �
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Proposition 4.3.

(1) Suppose 0 −→ Xi −→ Mi −→ Xi−1 −→ 0 is an Auslander–Reiten sequence in A-mod for
i = 1,2, . . . , n. Let M = ⊕n

i=1 Mi and V = Xn ⊕M . If Xn /∈ add(M) and if X0,X1, . . . ,Xn

are pairwise non-isomorphic, then the EndA(V )-module T := HomA(V,M ⊕ X0) is an n-
BB-tilting module.

(2) Let C be a maximal (n − 1)-orthogonal subcategory of A-mod with A a finite-dimensional
algebra over a field (n � 1). Suppose that X and Y are two indecomposable A-modules in
C such that the sequence

0 −→ X
f−→ Mn

tn−→ Mn−1 −→ · · · −→ M2
t2−→ M1

g−→ Y −→ 0

is an n-almost split sequence in C . We define M := ⊕n
i=1 Mi , V = X ⊕ M , and L to be the

image of the map HomA(V,g). If X /∈ add(M), then HomA(V,M) ⊕ L is an n-BB-tilting
EndA(V )-module.

Proof. The proof of (1) is similar to the one of Proposition 4.1. We leave it to the reader.
(2) We shall show that L is isomorphic to τ−1Ω−n+1

Λ (S) with S = τΩn−1
Λ (L) being a sim-

ple Λ-module. It is easy to see that D(S) = TrΩn−1
Λ (L) is a simple right Λ-module. In fact,

it is isomorphic to the top of the indecomposable right Λ-module HomA(X,V ), and is not in-
jective since X /∈ add(

⊕
j Mj ). Further, it follows from X /∈ add(

⊕
i Mi) that we have an exact

sequence

0 −→ HomA(Y,V ) −→ HomA(M1,V ) −→ HomA(M2,V ) −→ · · · −→ HomA(Mn,V )

−→ HomA(X,V ) −→ TrΩn−1
Λ (L) = D(S) −→ 0.

If we apply HomΛop(−,Λ) to this sequence, we can see that ExtiΛop(D(S),Λ) = 0 for all
0 � i � n − 1. This is just the condition (a) in the definition of n-BB-tilting modules. To see
that ExtiΛ(S,S) = 0 for all 1 � i � n, we show that ExtiΛop(D(S),D(S)) = 0 for all 1 � i � n.
This means that the projective cover HomA(X,V ) of the right Λ-module D(S) is not a direct
summand of HomA(Mi,V ) for all 1 � i � n. However, this follows from the assumption that
X /∈ add(

⊕n
j=1 Mj). Thus the condition (b) of n-BB-tilting modules is fulfilled. �

Remarks. (1) One can see that a non-injective simple A-module S defines an n-BB-tilting mod-
ule if and only if (a′) proj.dimA(τ−1Ω−n+1(S)) � n, (b′) ExtiA(S,S) = 0 for all 1 � i � n and
(c′) ExtiA(D(A),S) = 0 for all 1 � i � n − 1. Note that if a simple module S defines an n-BB-
tilting module then the injective dimension of S is n if and only if HomA(τ−1Ω−n+1(S),A) = 0.

(2) With the same method as in Proposition 4.3, we can prove the following fact:
Let C be a maximal (n − 1)-orthogonal subcategory of A-mod with A a finite-dimensional

algebra over a field (n � 1). Suppose X and Y are two indecomposable A-modules in C such
that the sequence

0 −→ X
f−→ Mn

tn−→ Mn−1 −→ · · · −→ M2
t2−→ M1

g−→ Y −→ 0

is an n-almost split sequence in C . We define M = ⊕n
i=1 Mi , V = X ⊕M , and U = X ⊕M ⊕Y .

Let Σ be the endomorphism algebra of U . If X /∈ add(M ⊕ Y), then T := HomA(V,U) ⊕ SX is
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an (n+ 1)-BB-tilting right Σ -module, where SX is the top of the right Σ -module HomA(X,U).
If we define  = End(TΣ), then HomΣ(HomA(V,U)Σ,TΣ) ⊕ HomΣ(HomA(Y,U)Σ,TΣ) is
an (n+ 1)-APR-tiling right -module, that is, it is an (n+ 1)-BB-tilting right -module defined
by the projective simple right -module HomΣ(SX,T ). Note that  is a one-point extension of
EndA(V ) because HomΣ(SX,Σ) = 0.

We have seen that each Auslander–Reiten sequence gives rise to a BB-tilting module. The
converse question is:

Given a BB-tilting module T over an Artin algebra Λ, can we find an Artin algebra A, an

A-module V and an Auslander–Reiten sequence 0 −→ X
f−→ M

g−→ Y −→ 0 in A-mod such
that V = X ⊕ M ⊕ N with X /∈ add(N), Λ � EndA(V ) and T � T ′? Here T ′ is the BB-tilting
module L ⊕ HomA(V,M ⊕ N) with L the cokernel of HomA(V,f ).

At moment, we are not able to answer this question in general, but we have the following
partial result.

Let us recall the definition of n-Auslander algebras from [18]. By definition, an n-Auslander
algebra Λ is the endomorphism algebra of some maximal (n − 1)-orthogonal module M over a
finite-dimensional algebra A. Again, by definition, the category add(M) contains all projective
modules and all injective modules over A, and has n-almost split sequences.

Proposition 4.4. Let Λ be an n-Auslander algebra, and let T := τ−1Ω−n+1(S)⊕P be an n-BB-
tilting Λ-module. Then there is a finite-dimensional algebra A, a maximal (n − 1)-orthogonal
A-module M , and an n-almost split sequence

0 −→ X −→ Mn −→ · · · f−→ M1 −→ Y −→ 0

in add(M) such that τ−1Ω−n+1(S) is isomorphic to the cokernel of f ∗ := HomA(M,f ).

Proof. Since Λ is an n-Auslander algebra, there is, by definition, a finite-dimensional algebra A

and a maximal (n − 1)-orthogonal A-module M such that Λ = EndA(M). For simplicity, in this
proof, we shall denote HomA(−,−) by (−,−).

Since the injective dimension of S is at least n, we have a minimal injective resolution of S

0 −→ S −→ D(X,M)
D(g∗)−→ D(Mn,M) −→ · · · D(f∗)−→ D(M1,M) −→ · · · ,

where the A-modules X,M1, . . . ,Mn are in add(M). By the definition of n-BB-tilting modules,
we have ExtiΛ(DΛ,S) = 0 for all 0 � i < n. By applying HomΛ(DΛ,−), we get an exact
sequence which is isomorphic to the sequence

0 −→ (M,X)
g∗

−→ (M,Mn) −→ · · · −→ (M,M2)
f ∗

−→ (M,M1).

By definition, the cokernel of f ∗ is τ−1Ω−n+1(S). Since AA ∈ add(M), we get an exact se-
quence

0 −→ X
g−→ M1 −→ · · · f−→ M1 −→ Y −→ 0, (∗)
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where Y = cokerf . Clearly, g is a radical map, and therefore the indecomposable A-module X

is not injective. By [18, Theorem 2.5.3], there is an n-almost split sequence in add(M):

0 −→ X −→ M ′
n −→ · · · −→ M ′

1 −→ Y ′ −→ 0. (∗∗)

Now, applying D(−,M) to this sequence, we get the following exact sequence

0 −→ socD(X,M)(� S) −→ D(X,M) −→ D
(
M ′

n,M
) −→ · · · −→ D

(
Y ′,M

) −→ 0.

This gives another minimal injective resolution of S. It follows that the sequences (∗) and (∗∗)

are isomorphic. Hence the sequence (∗) is an n-almost split sequence such that τ−1Ω−n+1(S) is
isomorphic to coker(f ∗). This finishes the proof. �
5. Auslander–Reiten triangles and derived equivalences

By Corollary 3.6, one can get derived equivalences from Auslander–Reiten sequences. An
analogue of Auslander–Reiten sequences in a triangulated category is the notion of Auslander–
Reiten triangles. Thus, a natural question rises: is it possible to get derived equivalences from
Auslander–Reiten triangles in a triangulated category? In this section, we shall discuss this ques-
tion. First, let us briefly recall some basic definitions concerning Auslander–Reiten triangles. For
more details, we refer the reader to [10].

Let R be a commutative ring. Let C be a triangulated R-category such that HomC (X,Y ) has
finite length as an R-module for every X and Y in C . In this case, we say that C is a Hom-
finite triangulated R-category. Suppose further that the category C is a Krull–Schmidt category.

A triangle X
f−→ M

g−→ Y
w−→ X[1] in C is called an Auslander–Reiten triangle if

(AR1) X and Y are indecomposable;
(AR2) w �= 0; and
(AR3) if t : U −→ Y is not a split epimorphism, then tw = 0.

Note that neither f is a monomorphism nor g is an epimorphism in an Auslander–Reiten trian-
gle. This is a difference of Auslander–Reiten triangles from D-split sequences. Thus, Auslander–
Reiten triangles in a triangulated category are not D-split sequences. Also, Auslander–Reiten se-
quences in the module category of an Artin algebra in general may not give us Auslander–Reiten
triangles in its derived module category. For Artin algebras, we even don’t know whether their
stable module categories have triangulated structures except in case that they are self-injective.
In this case, Auslander–Reiten sequences can be extended to Auslander–Reiten triangles in their
stable module categories. Note that M = 0 is possible in an Auslander–Reiten triangle. For ex-
ample, in the stable module category of k[x]/(x2) with k a field, we have an Auslander–Reiten

triangle k −→ 0 −→ k
1−→ Ω−1(k).

Recall that a morphism f : U −→ V in a category C is called a split monomorphism if there
is a morphism g : V −→ U in C such that fg = 1U ; a split epimorphism if gf = 1V ; and an
irreducible morphism if f is neither a split monomorphism nor a split epimorphism, and, for any
factorization f = f1f2 in C , either f1 is a split monomorphism or f2 is a split epimorphism.
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Suppose X
f−→ M

g−→ Y
w−→ X[1] is an Auslander–Reiten triangle in a triangulated cate-

gory C . Then we have the following basic properties:

(1) fg = 0 and gw = 0. Moreover, if M �= 0, then both f and g are irreducible morphisms.
(2) If s : X −→ U is not a split monomorphism, then s factorizes through f . Similarly, if

t : V −→ Y is not a split epimorphism, then t factorizes through g.
(3) Let V be an indecomposable object in C . Then V is a direct summand of M if and only if

there is an irreducible map from V to Y if and only if there is an irreducible map from X

to V .

We mention that in any triangulated category C the functors HomC (V ,−) and HomC (−,V )

are cohomological functors for each object V ∈ C (see [10, Proposition 1.2, p. 4]).
The following is an expected result for Auslander–Reiten triangles.

Proposition 5.1. Let C be a Hom-finite, Krull–Schmidt, and triangulated R-category. Sup-

pose that X
f−→ M

g−→ Y
w−→ X[1] is an Auslander–Reiten triangle in C such that X[1] /∈

add(M ⊕ Y). If N is an object in C such that none of X, Y , X[1] and Y [−1] belongs to add(N),
then EndC (X ⊕ N ⊕ M) is derived-equivalent to EndC (N ⊕ M ⊕ Y) via a tilting module. In
particular, EndC (X ⊕ M) is derived-equivalent to EndC (M ⊕ Y) via a tilting module.

Proof. First, if X is a direct summand of M , then there is an irreducible map from X to Y . It
follows from the property (3) of Auslander–Reiten triangles that Y is a direct summand of M .
Similarly, if Y is a direct summand of M , then so is X. Thus, if X or Y is in add(M), then
add(N ⊕M ⊕X) = add(N ⊕M ⊕Y) = add(N ⊕M). In this case, both EndC (N ⊕M ⊕X) and
EndC (N ⊕ M ⊕ Y) are Morita equivalent to EndC (N ⊕ M), and therefore EndC (N ⊕ M ⊕ X)

and EndC (N ⊕ M ⊕ Y) are derived-equivalent. Now, we assume that neither X nor Y lies in
add(M). For simplicity, we set U := N ⊕ M , V := X ⊕ U and W := U ⊕ Y . Denote by Λ the
endomorphism ring of V . Since X and Y are not in add(U), we see that f is a left add(U)-
approximation of X and g is a right add(U)-approximation of Y . To see that the condition (2) in
Lemma 3.4 is satisfied, we consider the exact sequence

· · · −→ HomC
(
V,M[−1]) δ−→ HomC

(
V,Y [−1]) −→ HomC (V ,X)

−→ HomC (V ,M) −→ HomC (V ,Y ).

We have to show that the map δ is surjective. By assumption, we have Y [−1] /∈ add(N) and
Y [−1] �� X since Y �� X[1]. If Y [−1] ∈ add(M), then there is an irreducible map from X to
Y [−1] by the property (3), and therefore there is an irreducible map from X[1] to Y . It follows
that X[1] is a direct summand of M , which contradicts to our assumption that X[1] /∈ add(M).
This shows Y [−1] /∈ add(M). Thus any morphism from V to Y [−1] cannot be a split epimor-
phism. This implies that the map δ is surjective by the property (2) of Auslander–Reiten triangles
since the triangle X[−1] −→ M[−1] −→ Y [−1] −→ X is also an Auslander–Reiten triangle.
Hence we have the following desired exact sequence

0 −→ HomC (V ,X) −→ HomC (V ,M) −→ HomC (V ,Y ).
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Similarly, we can get an exact sequence

0 −→ HomC (Y,W) −→ HomC (M,W) −→ HomC (X,W).

Thus Proposition 5.1 follows from Lemma 3.4 by taking n = 1. �
From Proposition 5.1 we get the following corollary.

Corollary 5.2. Let A be a self-injective Artin algebra. Suppose 0 −→ X −→ M −→ Y −→ 0
is an Auslander–Reiten sequence such that Ω−1(X) /∈ add(M ⊕ Y). Then EndA(X ⊕ M) and
EndA(M ⊕ Y) are derived-equivalent, where EndA(N) stands for the quotient of EndA(N) of
an A-module N by the ideal of those endomorphisms of N , that factorize through a projective
A-module.

Proof. If A is a self-injective Artin algebra, then every Auslander–Reiten sequence 0 −→ X −→
M −→ Y −→ 0 in A-mod can be extended to an Auslander–Reiten triangle

X −→ M −→ Y −→ Ω−1
A X

in the triangulated category A-mod (for details, see [10]). Thus Corollary 5.2 follows. �
Note that under the assumptions in Proposition 5.1 the corresponding statement of Proposi-

tion 4.1 holds true for Auslander–Reiten triangles.
Let us note that Corollary 5.2 may fail if A is not self-injective; for example, if we take A to be

the path algebra (over a field k) of the quiver 2 −→ 1 ←− 3, then there is an Auslander–Reiten
sequence

0 −→ P(1) −→ P(2) ⊕ P(3) −→ I (1) −→ 0,

where P(i) and I (i) stand for the projective and injective modules corresponding to the vertex i,
respectively. Clearly, this is a counterexample. Also, this example shows that Corollary 3.8 may
fail for non-self-injective algebras.

Finally, we remark that an analogous notion of D-split sequences can be defined for trian-
gulated categories. In this case the exactness condition (3) of Definition 3.1 will be replaced
by triangles, we then speak of D-split triangles instead of D-split sequences. For example, mu-
tations in a Calabi–Yau category provide D-split triangles. In fact, let C be an n-Calabi–Yau
category in the sense of Keller, and let T be an (n − 1)-cluster tilting object with a decomposi-
tion T = T ′ ⊕ T ′′ such that add(T1) ∩ add(T2) = 0. Then there is a triangle

(∗) T3
α−→ T ′ β−→ T1 −→ T3[1]

such that β is a minimal right add(T2)-approximation of T1. It is easy to check that α is then a
minimal left add(T2)-approximation of T3. So, the triangle (∗) is an add(T2)-split triangle. The
object T3 ⊕ T2 is called the mutation of T1. We shall discuss this kind of relationship between
D-split triangles and derived equivalences in a forthcoming paper.
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6. Examples

In this section, we illustrate our results with examples.

Example 1. Let k be a field, and let A = k[x, y]/(x2, y2). If Y denotes the simple A-module,
then there is an Auslander–Reiten sequence

0 −→ X −→ N ⊕ N −→ Y −→ 0

in A-mod. Note that X = Ω2
A(Y ) and N is the radical of A. By Theorem 1.1 or Corollary 1.2, the

two algebras EndA(N ⊕Y) and EndA(N ⊕X) are derived-equivalent. Though the local diagram
of the Auslander–Reiten sequence is reflectively symmetric, the two algebras EndA(N ⊕ Y) and
EndA(N ⊕ X) are very different. This can be seen by the following presentations of the two
algebras given by quivers with relations:

EndA(N ⊕ Y)

• •
� �
� �
�

γ

α

β

αγ = 0 = βγ .

EndA(N ⊕ X)

• •
� �
� ���

� 	


 �
�

�

��

��

γ1

γ2

α1

α2

β1

β2

γiαj = 0 = γiβj , i �= j ,
γ1β1 = γ2β2, γ1α1 = γ2α2,
α1γ2 = β1γ1, α2γ2 = β2γ1.

Note that the algebra EndA(N ⊕ Y) is a 7-dimensional algebra of global dimension 2, while
the algebra EndA(N ⊕ X) is a 19-dimensional algebra of global dimension 3. Hence the two
algebras are not stably equivalent of Morita type since global dimension is invariant under stable
equivalences of Morita type (see [27]). A calculation shows that the Cartan determinants of the
two algebras equal 1.

Recall that the Cartan matrix of an Artin algebra A is defined as follows: Let S1, . . . , Sn be
a complete list of non-isomorphic simple A-modules, and let Pi be a projective cover of Si . We
denote the multiplicity of Sj in Pi as a composition factor by [Pi : Sj ]. The Cartan matrix of A

is the n × n matrix ([Pi : Sj ])1�i,j�n, and its determinant is called the Cartan determinant of A.
It is well known that the Cartan determinant is invariant under derived equivalences.

Example 2. Let A be the following algebra over a field given by quiver with relations:

α ◦
1

◦,
2���

�
�

α2 = 0.

We denote by P(i), I (i) and S(i) the indecomposable projective, injective and simple modules
corresponding to the vertex i, respectively. Let V be the 3-dimensional indecomposable module
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with S(1) as its socle and S(1) ⊕ S(2) as its top. The Auslander–Reiten quiver of this algebra
can be seen as follows:

P(2) I (2)

I (1)

V

S(1)

2
1

P(1)

P (2).

V

...

...

...

...

...

...

...

......

... · · ·
· · ·

...

· · · · · ·
· · ·

· · · · · ·

· · · · · ·
· · ·

·

·
·

·

·

·
·

As usual, the horizontal dotted lines denote the Auslander–Reiten translation, and the modules
on the vertical dotted lines are identified correspondingly.

For this algebra, there are two Auslander–Reiten sequences:

0 −→ P(1) −→ V ⊕ P(2) −→ I (1) −→ 0,

0 −→ V −→ I (1) ⊕ S(1) −→ P(2)/ soc
(
P(2)

) −→ 0.

These sequences satisfy the conditions in Proposition 3.14(2). So, we get a derived equivalence
between EndA(P (1) ⊕ P(2) ⊕ S(1)) and EndA(P (2) ⊕ S(1) ⊕ P(2)/ soc(P (2))). However, we
cannot get a derived equivalence between

EndA

(
P(1) ⊕ V ⊕ P(2) ⊕ I (1) ⊕ S(1)

)
and

EndA

(
V ⊕ P(2) ⊕ S(1) ⊕ I (1) ⊕ P(2)/ soc

(
P(2)

))

because the Cartan determinant of the former algebra is 1, and the one of the latter is −1. These
are two algebras of the form in Proposition 3.14(1). Note that the two Auslander–Reiten se-
quences do not satisfy the conditions in Proposition 3.14(1).
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